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ABSTRACT

LLM-as-a-Judge has been widely adopted as an evaluation method and served as
supervised rewards in model training. However, existing benchmarks for LLM-
as-a-Judge are mainly relying on human-annotated ground truth, which introduces
human bias that undermines the assessment of reliability and imposes scalability
constraints. To overcome these limitations, we introduce SAGE, a novel eval-
uation suite that assesses the quality of LLM judges without necessitating any
human annotation. Inspired by axioms of rational choice theory, SAGE introduces
two new lenses for measuring LLM-as-a-Judge: local self-consistency (pair-wise
preference stability) and global logical consistency (transitivity across a full set
of preferences). We curate a dataset of 650 questions by combining structured
benchmark problems with real-world user queries. Our experiments demonstrate
both the intrinsic stability of our metrics and their high correlation with supervised
benchmarks like LLMBar and RewardBench2, confirming SAGE’s reliability as
an evaluation suite for the robustness and accuracy of LLM-as-a-Judge. Based on
SAGE, we reveal that current state-of-the-art LLMs exhibit significant robustness
deficiencies when acting as judges; even the top-performing models, Gemini-2.5-
Pro and GPT-5, fail to maintain consistent preferences in nearly a quarter of diffi-
cult cases. We attribute this to a new phenomenon called situational preference
which explains why explicit rubrics or criteria can help model judge consistently
across answer pairs. Our further analysis shows that fine-tuning LL.M-as-a-Judge
is an unreliable method which further induces biases, while multi-agent judges,
deep reasoning can enhance performance through different means.

1 INTRODUCTION

The LLM-as-a-Judge paradigm (Zheng et al.,2023) uses a large language model (LLM) to evaluate
Al system outputs, offering a scalable and efficient alternative to costly and time-consuming human
evaluation. Furthermore, beyond merely assessing performance, these evaluators are instrumental
in refining models. During training, an LLM-as-a-Judge acts as a scalable reward model to fine-tune
performance through automated feedback (Ouyang et al., 2022} [Yuan et al., [2024; [Luo et al.| |2024;
Bai et al., [2022)), while at inference time, it serves as a real-time filter to evaluate and select the best
possible response to eventually form better answers (Faria & Smith| 2025; Lightman et al., 2023)).

However, the LLM-as-a-Judge paradigm is undermined by inherent flaws. Judge models are sus-
ceptible to biases such as positional (Shi et al., [2024)), verbosity (Saito et al., [2023)), and self-
enhancement (Wataoka et al.l 2024), which skew evaluation results and call the paradigm’s relia-
bility into question. In response, various benchmarks have been developed to scrutinize the judges
themselves (Zheng et al., 2023} (Gera et al.| 2025} Pu et al., |2025; |Chiang et al., 2023). Yet, the
methodology of these benchmarks presents its own challenges, as they almost universally rely on
human-annotated ground truth. Scoring LLM judges based on their consistency with this human
data, particularly on subjective questions, leads to two fundamental issues:

* First, the acquisition of human annotations is a notoriously expensive and labor-intensive process,
limiting the scale and diversity of datasets (Horych et al.,|2024; |Liao et al.| [2025).

* Second, and more fundamentally, assuming human judgment as a gold standard is precarious, a
“bitter lesson” where human-induced biases compromise Al evaluation (Sutton, 2019). As il-
lustrated in Figure |1} this reliance is problematic. Persistent inter-annotator disagreement creates
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Figure 1: Human-annotated preference may not be reliable. We find three key challenges with rely-
ing on human annotators for evaluating LLM-as-a-Judge systems. (a) Inter-annotator Disagreement:
Different annotators can have conflicting preferences, especially for subjective questions, leading to
noisy and inconsistent data. (b) Overlooking Nuances: Annotators may miss subtle errors or inaccu-
racies in lengthy and complex answers, leading to flawed evaluations. (c¢) Cognitive Biases: Human
evaluators are susceptible to cognitive biases, such as favoring an answer that confirms their false
beliefs, which can further compromise the objectivity of the assessment.

noisy data (Zhang et al.| 2024), demonstrated by low agreement shown in AlpacaFarm (66%,
Dubois et al.| (2023))) and MT-Bench (63%, [Zheng et al.| (2023)). This problem is compounded
when lengthy answers tax human cognitive capacity. Furthermore, human evaluators are suscepti-
ble to cognitive biases (Wu & Aji, [2025;Zheng et al., 2023 |(Chen et al.,|[20244)), favoring answers
that match with their false beliefs, making human annotations an unreliable foundation.

To address this challenge, we introduce SAGE (Self-Assessing Gauge for Evaluators), a novel eval-
uation suite for assessing LL.M-as-a-Judge robustness without any human annotation. Our approach
is grounded in fundamental principles of rational decision-making, which posit that a reliable judge
must exhibit consistent and coherent preferences. For example, a robust judge’s preference between
two answers should not flip simply because their presentation order is swapped. Furthermore, its
judgments should adhere to the principle of transitivity, maintaining a logical and consistent order
across a full set of preferences (Ouyang et al., 2022} |Song et al., [2024; Hou et al., 2024; |Hu et al.,
2024;|Liu et al.,|2024). A breakdown in this coherence suggests the model lacks a consistent internal
gauging principle for the question, leading to unreliable situational preferences.

Based on these principles, we propose two metrics to quantify this robustness: Intra-Pair Insta-
bility (IPI) and Weak Total Order Violation (TOV). IPI directly measures the local, pairwise
consistency by detecting instabilities caused by positional bias, as in the first example. TOV, on the
other hand, assesses the global logical coherence of a judge’s complete set of preferences, identify-
ing systemic contradictions like the violation of transitivity described.

For the evaluation, we curate a diverse dataset of 650 questions by combining selections from Re-
wardBench2 (Gureja et al., 2025) and the large-scale WildChat-1m corpus (Zhao et al., 2024) to
ensure broad coverage of real-world user queries. On this dataset, we conduct a comprehensive
evaluation of thirteen prominent LLMs. We validate the soundness of our metrics in empirical and
theoretical way by consistent checking and a distribution-free error bounding method that quantify
the statistical certainty of our results, confirming that the metrics have minuscule variance on the
order of 104, A high correlation with established LLMBar (Zeng et al.,[2023) and RewardBench?2
LLM-as-a-judge benchmark also demonstrates this.

Based on SAGE, we evaluate a wide range of systems, including state-of-the-art LLMs, fine-tuned
judges, and multi-agent as juries. All judge models degrade when encountering answers with a
close quality gap, with an average decline of 180.1% and 191.0% in IPI and TOV scores, high-
lighting the potential problem in using LLM-as-a-Judge in RL-based training and test-time scal-
ing. Our findings reveal that current models exhibit significant robustness deficiencies and spe-
cialized fine-tuning does not guarantee improvement, as some models’ robustness paradoxically
degrades by up to 24%. Our findings also show that multi-agent panels can improve perfor-
mance by up to 12% and that increasing a model’s reasoning depth improves logical coherence
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Figure 2: SAGE uses a symmetrized, round-robin protocol to conduct pairwise comparisons on a set
of candidate answers. From these judgments, SAGE quantifies performance using two metrics: IPI,
which measures local consistency by tracking preference reversals (e.g., 3 inconsistent pairs result
in an IPI of 0.5), and TOV, which assesses global logical coherence by calculating the minimum al-
terations required for a consistent ranking (e.g., 3 alternations required). This methodology scalably
diagnoses logical deficiencies to help identify and select more reliable LLM evaluators.

by over 11%. Notably, prompting for self-generated rubrics to avoid situational preference yields
an even greater performance boost, reducing local inconsistency (IPI) and global inconsistency
(TOV) by 23.4% and 19.3%, respectively. Lastly, we demonstrate SAGE’s practical utility in se-
lecting stable evaluators for automated arenas. We will release all source code, curated dataset at
https://anonymous.4open.science/r/SAGE-6601/l

2 ASSESSING LLM-AS-A-JUDGE WITH SAGE

This section details the foundational methodology of our proposed framework, SAGE. We begin
by formally defining the evaluation problem and introducing a symmetrized protocol. Building on
this, we then present our two novel metrics: Intra-Pair Instability (IPI) to assess local, pairwise
consistency, and Weak Total Order Violation (TOV) to measure global, logical coherence.

2.1 PROBLEM FORMULATION

Let M be the LLM under evaluation, referred to as the judge model. Our evaluation is based on
a set of questions Q. For any given question ) € Q, we generate a set of n candidate answers,
denoted as Ag = {A1, Aa, ..., A, }. The core task of the judge model M is to perform a pairwise
comparison between any two answers, A; and A;, from the set Ag. We define a function Jj;:

vij = Ju(Q, Ai, Aj) € {—1,0,1} (1)
where the outcome y;; is interpreted as:
* y;; = 1: M judges A; to be superior to A; (A; >~ Aj;).

* y;; = —1: M judges A; to be inferior to A; (4; < Aj).
* y;; = 0: M judges A; and A; to be of equal quality (4; = A;).

For each question (), we conduct a full round-robin evaluation, assessing all (Z) unique pairs of
answers, to establish a complete set of pairwise judgments for our subsequent coherence analysis.

2.2 SYMMETRIZED EVALUATION PROTOCOL

A naive single-pass evaluation is susceptible to positional bias, where the order of presentation
influences the outcome. To substantiate that positional bias does exist in SAGE, we sample 1120
answer pairs and measure the inconsistent rate for Llama3-8B-Instruct (Dubey & et al., [2024),
Gemini-2.5-Flash-Lite (Comanici & et al.l 2025), and Qwen3-4B-Instruct-2507 (Team), 2025]).
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We define this rate as the frequency of judgments that are  Table 1: Local inconsistency (i.e., Posi-
not the logical inverse when the answer order is reversed  tional Bias) across LLM-as-a-Judge.

Ge., Jm(Q, Ai, Aj) # —JInm(Q, Aj, A;)). The results in Model
Table E]conﬁrm the presence of bias. To tackle this issue,

Inconsistency (%)

. . Llama3-8B-Instruct 76.2
we adopt a symmetrized evaluation protocol. For each . ini-2.5-Flash-Lite 253
unordered pair of answers {4,, A;}, we query the judge Qwen-3-4B-Instruct 44.4

model twice:
Forward pass: y;; < Jar(Q, A;, A;); Reversed pass: yj; < Jar(Q, 4, A;).

This protocol provides a direct way to measure and account for first-order positional bias.

2.3 Two EVALUATION METRICS

We propose two metrics to quantify the robustness of an LLM judge, targeting two distinct failure
modes: local inconsistency on a single pair and global logical incoherence across a set of answers.

Intra-Pair Instability (IPI). This metric assesses robustness from an atomic, local level. It quanti-
fies inconsistencies arising from both systematic positional bias and the inherent stochasticity of the
judge model. Under the symmetrized protocol, a perfectly consistent judge would always produce

opposite scores for reversed pairs (i.e., y;; = —¥;i). The IPI score for a given question () quantifies
the deviation from this ideal by calculating the average disagreement across all unique pairs:
1
IPI(Q) = 775 Z I(ysj # yji) 2
<2) 1<i<j<n

A higher IPI score indicates a greater degree of local inconsistency of the judge model.

Weak Total Order Violation (TOV). This metric assesses robustness from a global, systematic
level. Specifically, it measures the logical coherence of the judge’s full set of preferences for a
question. A rational judge’s preferences should be transitive and form a weak total order (i.e., a
total order that allows ties). Let Jo = {vij }1<i j<n,i; be the set of derived preference from the
symmetrized evaluation for a question ). Let O,, be the set of all possible valid weak total orders
on n items. For any order O € O,,, we can represent it as a corresponding set of pairwise relations
Po = {pi;}, where p;; € {—1,0,1} denotes the pairwise relationship between items i and j with
the order O. Specifically, p;; = 1if ¢ is preferred to j, p;; = —1if j is preferred to ¢, and p;; = 0 if
they are tied. The TOV score is defined as the minimum number of preference changes required to
transform the judge’s observed preferences P into any valid weak total order:

TOV(Q) = Jom Z I(yi; # pij) 3)
1<d,j<n,i#j
A higher TOV score signifies more severe logical contradictions in the judge’s reasoning.

To summarize a judge model’s overall performance, we compute aggregate scores for both IPI and
TOV. The aggregate IPI and TOV scores are the arithmetic mean of the per-question scores over
the entire set of questions Q in SAGE, calculated as IPI = (1/|Q]) >_5co IPI(Q) and TOV =

(1/1Q1) >-geo TOV(Q). The stability of these metrics is validated empirically in Section El] and
supported by the theoretical analysis in Appendix [B]

3 THE CONSTRUCTION OF SAGE

We source the question set Q from five RewardBench2 (Gureja et al., 2025) categories and the
large-scale WildChat1M corpus (Zhao et al.,[2024) to better reflect real-world user interactions. The
resulting question set consists of 650 questions, and its category composition is shown in Figure
To validate its semantic diversity, we use a t-SNE visualization (van der Maaten & Hinton, 2008) to
project our questions against a background of 500k English questions from WildChat1M. As shown
in Figure our questions spread broadly across the embedding space, confirming the dataset’s
representativeness and wide topical coverage. Further details are provided in Appendix [C.1]

For each of the 650 questions, we generate a set of n = 6 candidate answers for the LLM judge to
evaluate, which were used to construct two distinct tiers: SAGE-EASY and SAGE-HARD.
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Figure 3: We provide statistics and analysis of our selected queries and answers within SAGE.
Distribution of CV values shows the varied difficulty among our two subsets.

* SAGE-EASY: the six answers are generated by a diverse lineup of six models with a clear capa-
bility gradient: Gemini-2.5-Pro and Gemini-2.5-Flash (Comanici & et al., [2025); Qwen3-32B
(Team, 2025), Claude-3-Haiku (Anthropicl 2024), Llama-3.2-3B-Instruct, and Llama-3.2-1B-
Instruct (Meta), [2024b). These models, which have a well-documented performance gap on the
LMSYS Chatbot Arena leaderboard (LMSY'S| [2025), produce a set of answers with a wide vari-
ance in quality, making the pairwise comparison task relatively simple for a competent judge.
Moreover, SAGE-EASY reflects the general-purpose task of comparing different models of vary-
ing capabilities, which is largely used in automated judges like MT-Bench and Arena Hard Auto.

* SAGE-HARD: all six answers for each question are generated by a single capable model, Gemini-
2.5-Flash. Since the answers originate from the same model, their quality is expected to be much
more homogeneous. This setup presents a more challenging task, requiring the judge to make
finer-grained distinctions between subtly different responses. SAGE-HARD models the judge’s
role in applications like model-based reinforcement learning and rejection sampling. In these
scenarios, the judge must distinguish between subtly varied outputs from a single capable model.

To quantitatively confirm the difference in quality diversity between these two tiers, a state-of-the-
art reward model, QRM-Gemma-2-27B (Dorka, [2024)), is employed to score each of the six answers
for every question. For each question, the Coefficient of Variation (CV) of the six reward scores
is then calculated. The CV, defined as the ratio of the standard deviation to the mean (o/pu), is a
normalized measure of dispersion. As shown in Figure the CV distribution for SAGE-HARD is
markedly shifted towards lower values, empirically confirming that the answers within its sets are
more similar in quality and thus present a more formidable challenge for LLM judges.

4 EXPERIMENT AND ANALYSIS

We first conduct a series of validation experiments to prove the internal consistency and external
validity of our metrics in Section d.T]and [#.2] We then employ SAGE to evaluate a diverse set of
thirteen popular LLMs-as-a-Judge, six specialized fine-tuned judges, and multi-agent configura-
tions. The results highlight significant robustness challenges in state-of-the-art LLMs, especially
on difficult, fine-grained distinction tasks (Figure [7). Our in-depth analysis reveals that fine-tuning
offers no guarantee of improved robustness and that multi-agent judges may boost performance. We
attribute it to a new phenomenon we discover, situational preference, which can be mitigated by
deep reasoning and self-generated rubrics for a more consistent modeling of the question.

4.1 VALIDATING METRIC STABILITY AND ROBUSTNESS

A critical aspect of a reliable framework is the stability of its evaluation metrics against the inherent
stochasticity of Models. To validate that our proposed metrics are not unduly influenced by random
sampling variations, we analyze their stability from both an empirical and a theoretical standpoint.
Furthermore, we demonstrate that temperature settings wouldn’t threaten the robustness of SAGE.

Empirical Analysis. We select two representative models, Qwen3-4B-Instruct-2507 and Qwen3-
30B-A3B-Instruct-2507, and evaluate each 50 times on the complete SAGE-EASY and SAGE-
HARD. We then calculate the variance of the IPI and TOV scores across these 50 independent
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Table 3: Pearson Correlation Coefficients between SAGE metrics and external benchmarks. “Easy-
IPI” refers to the IPI metric on SAGE-EASY, and similarly for metric Hard-IPI, Easy-TOV, and
Hard-TOV. There is a strong correlation between SAGE and external benchmarks.

LLMBar RewardBench2
Easy-IPI Easy-TOV  Hard-IPI Hard-TOV  Easy-TOV  Hard-TOV
0.7997 0.7904 0.7513 0.7504 0.8705 0.7509
0.7811 0.7723 0.7301 0.7299 0.8651 0.7488

runs. As presented in Table [2 the observed variances are exceptionally low, which provides strong
empirical evidence that our metrics are highly reproducible and capture the fundamental reasoning
patterns of the judge model rather than ephemeral artifacts of its generative process.

Theoretical Guarantees. Our argument proceeds in three stages. First, using principles from Con-
formal Prediction (Angelopoulos & Bates| [2021)), we establish a probabilistic guarantee that any
single pairwise judgment, ey, is highly stable and matches its most probable outcome, y;.,,, With
high confidence:

P(ynew = y:ew) >1l-a “4)
Second, we leverage this result to derive a tight upper bound on the variance of the per-question
metrics. For IPI, the score is a fraction of inconsistent pairs out of N = (g) = 15 unique pairs. The
deviation from the stable score, Apr(Q@), is bounded by the number of unstable judgments X . This
allows us to bound the variance as:

1 0.387
Var(IPI(Q)) < E[Am(Q)?] < WE[XQ] S T B 0.00172. (5)
Finally, we show that this variance diminishes over the aggregate evaluation suite. Assuming the
per-question scores are independent and identically distributed over our diverse set of |Q| = 650

questions, the variance of the final aggregate IPI score is given by:

Var(IPI(Q)) _ 0.00172
Q| = 650

A similar derivation establishes an upper bound for Var(TOV) which is Var(TOV) < 5.95 x 104
These theoretical results align perfectly with our empirical findings, confirming that the final re-
ported scores are highly stable. The full derivation of this analysis is available in Appendix [B]

Var(IPI) = 2.65 x 1076, (6)

Consistency across Temperatures. To fur-

¢ o Table 2: Variance across 50 independent runs for
ther validate the stability of SAGE, we evalu-

LLM-as-a-Judge consistency checking.

ate model performance across various tempera- Model St IPI Varlance TOV Vearlance

ture settings. The resulting IPI and TOV scores

. . g . _7 5
demonstrate remarkable consistency, indicating ~ Qwen3-4B Easy  2.9x 10 6.3 x 10

Hard 8.2 x 1077 1.7 x 1074

that our metrics effectively capture the fun-
damental reasoning capabilities of the models =~ Qwen3-30B-A3B
rather than superficial sampling artifacts. For

Easy 6.7x 1077 1.5 x 107
Hard 2.1 x 1076 4.4 x107%

all models and metrics tested, the variance in
the scores is less than 4.5 x 10~%, which further substantiates the reliability of our framework. More
results are presented in Appendix [E.1]

4.2 VALIDATING SAGE AS A PROXY FOR ROBUSTNESS AND ACCURACY

Correlation with LLMBar. To establish the credibility of SAGE as a new evaluation framework,
we first validate its external alignment with existing methodologies by comparing our robustness
metrics against LLMBar (Zeng et al., |2023), an established benchmark that evaluates LLM-as-a-
Judge systems using human-annotated ground truth. We focus specifically on the adversarial subset
of LLMBar, which is designed to stress-test the robustness of judge models. This subset contains
instances where one response is correct while the other is adversarially crafted to be superficially
appealing, thus challenging a judge’s ability to remain robust against deceptive quality. We test the
same thirteen models evaluated in Section £.3] on both SAGE and the LLMBar adversarial subset.
As shown in Table [3| the results reveal a strong positive correlation between the models’ error rates
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Table 4: The performance of thirteen LLMs on SAGE, with lower scores indicate greater robustness.
A clear trend emerges where advanced models like Gemini-2.5-Pro demonstrate superior robustness.

Model Factuality ‘ Precise IF ‘ Mathematics ‘ Safety ‘ Focus ‘ Overall
ocen IpI} TOV) IPI} TOV| IPI} TOV] IPI)} TOV] IPI) TOV|] IPI, TOV]
Performance on SAGE-EASY
Gemini-2.5-Pro 0.064 0.993 0.091 1.367 0.071 1.135 0.123 1.942 0.062 0.927 0.082 1.265
Gemini-2.5-Flash 0.077 1.175 0.133 2.043 0.082 1.305 0.105 1.667 0.075 1.137 0.095 1.471
Qwen3-235B-A22B-Instruct-2507 0.077 1.175 0.117 1.761 0.150 2.310 0.101 1.626 0.091 1.374 0.106 1.626
Qwen3-4B-Instruct-2507 0.110 1.664 0.151 2.288 0.166 2.492 0.130 1.992 0.090 1.347 0.129 1.952
DeepSeek-V3-0324 0.105 1.601 0.141 2.108 0.194 3.058 0.115 1.821 0.094 1.417 0.129 1.989
DeepSeek-V3.1 0.107 1.645 0.160 2.425 0.172 2.780 0.159 2.451 0.109 1.683 0.141 2.182
DeepSeek-R1-0528 0.114 1.725 0.189 2914 0.147 2421 0.154 2.424 0.104 1.593 0.142 2.222
GPT-5-Chat 0.111 1.671 0.226 3.389 0.132 2.108 0.132 2.008 0.157 2.379 0.152 2.319
GPT-40-mini 0.114 1.706 0.144 2.179 0.239 3.600 0.184 2.959 0.088 1.331 0.152 2.323
Qwen3-30B-A3B-Instruct-2507  0.135 2.035 0.125 1.893 0.190 2.850 0.332 5.008 0.135 2.024 0.180 2.715
Gemini-2.0-Flash-Lite 0.152 2280 0.179 2.686 0.224 3.375 0.247 3.878 0.164 2.460 0.191 2.906
Claude-3-Haiku 0.225 3.392 0.342 5.138 0.323 4908 0.396 5984 0.201 3.048 0.296 4.468
Llama-3.1-8B-Instruct 0.360 5.640 0.353 5.625 0.406 6.475 0.341 5261 0.358 5.554 0.364 5.710
Performance on SAGE-HARD
Gemini-2.5-Pro 0.277 4.490 0.290 4.600 0.133 2.517 0.249 4.276 0317 5.169 0.244 4.239
Gemini-2.5-Flash 0.269 4.091 0316 4.864 0.223 3.983 0.233 3.984 0.278 4.420 0.266 4.280
DeepSeek-V3-0324 0.381 5921 0.351 5.393 0.277 4.740 0309 4.901 0.418 6.484 0.349 5.504
Qwen3-235B-A22B-Instruct-2507 0.382 6.126 0.325 4.986 0.285 4.824 0.297 5.211 0.457 7.282 0.350 5.691
Qwen3-4B-Instruct-2507 0.388 5.846 0.372 5.586 0.324 5.083 0.390 5.886 0.455 6.855 0.386 5.849
GPT-40-mini 0.436 6.993 0.458 7.086 0.337 5.375 0.358 5.724 0.487 7.992 0.417 6.665
DeepSeek-V3.1 0.486 7.979 0.522 8.093 0.174 3.250 0.382 6.309 0.489 8.460 0.417 6.905
GPT-5-Chat 0.467 7.196 0.581 8.800 0.191 3.250 0.352 5.650 0.615 9.331 0.447 6.928
DeepSeek-R1-0528 0.432 7200 0.493 8.157 0.203 3.757 0.408 6.813 0.501 8.618 0.413 6.993
Gemini-2.0-Flash-Lite 0.656 9.902 0.565 8.521 0.443 6.842 0.318 5236 0.745 11.371 0.550 8.437
Claude-3-Haiku 0.552 8.469 0.578 8.797 0.551 9.183 0.539 8.545 0.574 8.734 0.559 8.736
Llama-3.1-8B-Instruct 0.555 8.706 0.518 7.907 0.706 10.725 0.789 11.968 0.586 9.040 0.625 9.588

Qwen3-30B-A3B-Instruct-2507  0.647 9.699 0.440 6.614 0.637 9.775 0.785 11.772 0.765 11.476 0.649 9.780

on LLMBar and our proposed metrics. This strong statistical alignment validates that SAGE serves
as a reliable proxy for judging model robustness without the need for costly manual annotation.

Proxy for Accuracy. Beyond robustness, we argue that SAGE can also function as an effective proxy
for judging accuracy. Theoretically, TOV quantifies the minimum number of pairwise judgments
that must be altered for the entire set to become logically coherent. Since logical coherence is a
prerequisite for correctness, the total number of errors in a set of judgments must be at least as large
as the minimum alterations needed to resolve its logical contradictions. Therefore, TOV establishes
a rigorous lower bound on the error rate. To empirically substantiate this claim, we leverage a
599-question subset of our evaluation suite for which ground-truth preference labels are available
from the RewardBench2. We evaluate the same thirteen LLMs, calculating each model’s error rate
against the provided ground-truth and comparing it with their TOV scores from SAGE. As shown
in Table[3] we see a significantly high Pearson Correlation between the models’ ground-truth error
rates and their TOV scores, proving that SAGE can serve as a robust proxy for judgment accuracy.

4.3 EVALUATING LLM-AS-A-JUDGE WITH SAGE

We benchmark thirteen popular LLMs with the aforementioned settings, including five proprietary
models (i.e. Gemini-2.5-Pro and Gemini-2.5-Flash (Comanici & et al., [2025)); Gemini-2.0-Flash-
Lite (Googlel 2025)), GPT-5-Chat (OpenAl, 2025), GPT-40-mini (OpenAll 2024) and Claude-3-
Haiku (Anthropic}, 2024)) and seven open source models (i.e. Qwen3-235B-A22B-Instruct-2507,
Qwen3-30B-A3B-Instruct-2507 and Qwen3-4B-Instruct-2507 (Team), 2025); DeepSeek-R1-0528
(DeepSeek-AlL 2025a), DeepSeek-V3 (DeepSeek-Al & et al., [2024)), DeepSeek-V3.1 (DeepSeek-
Al 2025b), Llama-3.1-8B-Instruct (Meta,[2024a)). The results are shown in Table[d] All evaluations
are conducted at the default temperature to ensure a fair and consistent comparison.
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Table 5: Our experiments on SAGE-HARD show that specialized finetuned judges varies in their
stability, with some even falling behind its base model.

Factuality ‘ Precise IF ‘Mathematics‘ Safety ‘ Focus ‘ Overall
Models

IPI, TOV| IPI} TOV|] IPI} TOV| IPI] TOV| IPI} TOV] IPL, TOV]
QOwen2.5-3B-Instruct (Base)  0.637 10.206 0.565 9.092 0.559 9.000 0.603 9.703 0.571 9.513 0.586 9.483
M-Prometheus-3B 0.723 10.909 0.580 8.814 0.659 10.075 0.696 10.626 0.686 10.387 0.668(114%) 10.151(17%)
JudgeLRM-3B 0.823 12.371 0.610 9.171 0.801 12.025 0.826 12.382 0.869 13.057 0.782(133%) 11.751(124%)
QOwen2.5-7B-Instruct (Base)  0.876 13.140 0.811 12.164 0.926 13.900 0.786 12.000 0.944 14.161 0.867 13.049
M-Prometheus-7B 0.580 8.762 0.509 7.821 0.677 10.283 0.569 8.878 0.613 9.347 0.587(132%) 8.974(124%)
JudgeLRM-7B 0.939 14.077 0.883 13.243 0.960 14.400 0.976 14.634 0.973 14.589 0.944(19%) 14.160(19%)
Mistral-7B-Instruct (Base) 0.734 11.078 0.582 8.978 0.806 12.133 0.655 9.854 0.786 11.839 0.710 10.736
Prometheus-7B-V2.0 0.616 9.634 0.546 8.773 0.602 10.000 0.553 9.186 0.652 10.105 0.592(117%) 9.509(]11%)
Llama-3.1-8B-Instruct (Base) 0.555 8.706 0.518 7.907 0.706 10.725 0.789 11.968 0.586 9.040 0.625 9.588

Skywork-Critic-Llama-3.1-8B 0.503 7.539 0.421 6.314 0.380 5.700 0.348 5.268 0.584 8.766 0.449(128%) 6.740(]30%)

Our comprehensive benchmarking reveals significant robustness deficiencies in current state-of-the-
art LLMs. A clear trend emerges where more advanced models, such as Gemini-2.5-Pro, consis-
tently demonstrate superior robustness with the lowest IPI and TOV scores, indicating stronger local
self-consistency and global logical coherence. Crucially, all models show a marked degradation in
performance from SAGE-EASY to SAGE-HARD with a 180.1% and 191% decline on IPI and TOV
scores. This performance gap underscores a key limitation: while models may appear relatively
reliable when judging answers of clearly different quality, their adjudicative abilities falter when
faced with subtle distinctions, posing a serious threat to their effectiveness in inference-time en-
hancement techniques like rejection sampling or Monte Carlo Tree Search. These findings highlight
that fundamental consistency remains a substantial challenge for LLMs acting as judges.

4.4 IN-DEPTH ANALYSIS

Injustice Judges or Situational Preference? We argue that a robust LLM-as-a-Judge should first
model the question internally regardless of how the answers vary. However, the extremely high IPI
and TOV scores across even state-of-the-art models raise the concern of whether models are inca-
pable of providing just judgments, or whether their judgments are merely situational preferences
(Laine et al., 2024} [Needham et al., [2025), i.e., inconsistent judging criteria encountering different
answers under the same question. To validate this hypothesis, we investigate whether an LLM can
improve its evaluation by first explicitly articulating its judging rubrics and then using the rubrics to
judge the answers across different judging pairs under the same questions. Crucially, this rubric is
generated only once per question and serves as a fixed standard for all answer pairs, a method de-
signed to mitigate situational preferences by preventing the judge’s evaluation criteria from shifting
between comparisons. Figured]shows that this approach yields a notable performance boost, reduc-
ing IPI and TOV scores by 23.4% and 19.3%. This gap demonstrates that current LLM-as-a-Judge
systems indeed exhibit extreme situational preferences when encountering different answer pairs,
and that explicit judging rubrics can substantially mitigate this.

Do fine-tuned Judges make better judgments? A fine-tuned judge is an LLM trained on a prefer-
ence dataset to improve their evaluation. We benchmark six fine-tuned judges (i.e. Prometheus-7B-
V2.0 (Kim et al., |2024), Skywork-Critic-Llama-3.1-8B (Shiwen et al.| [2024)), M-Prometheus-3/7B
(Pombal et al., 2025)), and JudgeLRM-3/7B (Chen et al., | 2025))) and their corresponding base mod-
els. The results are shown in Table[5] Additional results of their performance on SAGE-EASY are
available in Appendix Our result reveals a mixed impact from fine-tuning. While some models
like Skywork-Critic-Llama-3.1-8B show marked improvement, others, particularly the JudgeLRM
series, paradoxically become less reliable. We attribute the degradation to biases inherited from
the training datasets, which can cause the model to learn and amplify flawed judgment patterns,
compromising its objectivity. See Appendix [F-4]for the examples of human biases in training data.

Do Multi-agent Debates or Panels Judge Better? In our evaluation, we also explore the effec-
tiveness of multi-agent judge systems, an approach intended to reduce bias and improve evaluation
robustness. We investigate two distinct methodologies: a panel-based approach inspired by POLL
(Verga et al., 2024), which leverages a diverse jury of different LLMs, and a debate-based frame-
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Table 6: Performance comparison of multi-agent systems: POLL panels (left) and ChatEval debates
(right). For POLL, “Best Indi.” refers to the best individual model in the panel.

Method IPI-Easy | TOV-Easy | IPI-Hard | TOV-Hard | Method IPI-Easy | TOV-Easy | IPI-Hard | TOV-Hard |
Panel 1 (Powerful Models) Qwen3-4B-Instruct-2507
BestIndi.  0.082 1.265 0.244 4.239 Baseline  0.129 1.952 0.386 5.849
Aggregate 0.073 1.146 0.248 4.088 ChatEval 0.334 5.105 0.651 10.050
(11%) (9%) (12%) (14%) (T158%)  (1162%)  (169%) (172%)
Panel 2 (Weaker Models) Qwen3-30B-A3B-Instruct-2507
BestIndi.  0.141 2.182 0.417 6.665 Baseline  0.180 2.715 0.649 9.780
Aggregate 0.122 1.909 0.367 5.965 ChatEval 0.261 4.080 0.518 8.395
(13%) (13%) (12%) (11%) (T45%) (150%) (120%) (114%)

work, ChatEval (Chan et al.| 2023), which utilizes multiple agents derived from a single LLM.
The results are shown in Table |6l For the panel approach, we construct two separate juries: the
first comprised of powerful models (Gemini-2.5-Pro, Gemini-2.5-Flash, and Qwen3-235B-A22B-
Instruct-2507), while the second uses weaker models (Gemini-2.0-Flash-Lite, GPT-40-mini, and
DeepSeek-V3.1). For the POLL method, the aggregated judgments in the majority of cases surpass
the performance of the best individual model within each respective group, demonstrating a clear
performance boost. Conversely, debate-based ChatEval framework fails to yield an improvement in
evaluation quality, demonstrating less robust performance.

Does Deep Reasoning Lead to Better Performance? We analyze the distinct effects of a model’s
intrinsic reasoning depth. For this experiment, we employ the gpt-oss model family (20B and 120B)
(Agarwal et al.,[2023)), for its configurable reasoning modes: low, medium and high. As illustrated
in Figure 4] the results show an improvement as the reasoning mode is intensified from low to high.

8.182

0.506

Low High Low High
7.870
0.50 0.479 0485 Medium Rubrics 7835 Medium Rubrics
0.456 7.255
0.45 0.440 (436 o 7.017 6.965
2 2
0.40 6.225 6.186
0.365 0.370 6
0.35
o gpt-oés-ZOb gpl-osé-lZOb o gpt-oés-ZOb gpt-osé-lZOb

Figure 4: We discover high IPI and TOV scores in SAGE-HARD due to situational preference phe-
nomenon in LL.M-as-a-Judge, while deep thinking and explicit rubrics can mitigate this.

Selecting Robust Judges for Automated Arenas. Here we explore the practical utility of our
framework in selecting robust evaluators for large-scale, automated model ranking systems like
Arena-Hard-Auto (Chiang et al.| [2024). In such systems, models are ranked using Elo ratings de-
rived from pairwise comparisons. The confidence interval of a model’s Elo rating serves as a crucial
indicator of its judgment stability; a smaller interval suggests more consistent and more reliable
evaluation performance. Our investigation reveals a strong positive correlation between our metrics
and the Elo rating confidence intervals from Arena-Hard-Auto. Our IPI and TOV scores show strong
Pearson correlations of 0.7638 and 0.7600, respectively, with the confidence intervals. This strong
alignment demonstrates that SAGE can effectively identify more stable judges, making it a valuable
tool for selecting high-quality evaluators to enhance the reliability of automated arena rankings.

5 CONCLUSION

We introduce SAGE, a novel framework to evaluate LLM-as-a-Judge without human annotation
or any extrinsic information by measuring local and global logical consistency. Our experiments
reveal significant robustness deficiencies in current state-of-the-art models, demonstrating that fine-
tuning can amplify inherited biases and that model diversity is critical for multi-agent evaluators.
We validate that our metrics are exceptionally stable and can serve as a strong proxy for accuracy.
Consequently, SAGE provides a scalable, reliable, and cost-effective tool to diagnose and improve
LLM evaluators, paving the way for more consistent and rational Al systems.
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ETHICS STATEMENT

Our dataset is curated from established public research sources: the RewardBench2 benchmark and
the WildChat-1m corpus. To mitigate ethical risks, such as the potential inclusion of private infor-
mation or inappropriate content from real-world user logs, we conducted a rigorous curation process
(see Appendix [C.T)). This process involved both large-scale automated filtering and a thorough man-
ual review of every selected question. This ensures that the final dataset is appropriate for research
use and aligns with the data-sharing and privacy standards of the original sources.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we will release all source code, the curated dataset,
and the collected model responses. The foundational methodology of our framework, including the
formal problem definition, the symmetrized evaluation protocol, and the definitions of our IPI and
TOV metrics, is detailed in Section [2] The comprehensive process for curating our 650-question
dataset is described in Section [3] with further implementation details provided in Appendix
For our theoretical claims, a complete derivation of the variance bounds for our metrics is available
in Appendix [B] Furthermore, all detailed experimental setups, including descriptions of the models
evaluated (Appendix [C.4) and the exact prompts used in our experiments, are provided in appendix
[ to facilitate the replication of our results.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

The use of large language models (LLMs) in this work is strictly limited to auxiliary text editing,
such as correcting spelling and improving grammar, and dataset generation. Our study is about
LLM-as-a-Judge, therefore we also test various LLMs for this task. All conceptual and technical
contributions are the original work of the authors. We are transparent about this limited usage.

A RELATED WORK

LLM-as-a-Judge. LLM-as-a-Judge (Zheng et al. 2023) has emerged as a scalable and cost-
effective alternative to human evaluation for assessing the quality of generative Al outputs. This
approach utilizes a powerful LLM to judge the responses of other models, addressing the limitations
of traditional metrics like BLEU and ROUGE that often fail to capture deeper semantic qualities
such as coherence, factual accuracy, and relevance.

However, the reliability of LLM-as-a-Judge is a significant concern, with numerous studies (Zheng
et al.} 2023; [Wu & Aji, 2025} |Chen et al.l [2024a) highlighting its susceptibility to various biases.
These include verbosity bias, where longer answers are favored irrespective of their quality; position
bias, a preference for the first or last presented response; and self-enhancement bias, where a model
tends to rate its own outputs more favorably. Research (Chen et al., |2024a) has also identified
other distorting influences, such as authority bias, where an LLM may favor answers containing
citations even if they are fabricated. These identified biases underscore the necessity for continued
investigation and validation of the reliability of LLM-as-a-Judge.

Benchmark for LLM-as-a-Judge. Following the recognition of these potential biases of LLM-as-
a-Judge, researchers have focused on developing specialized benchmarks to systematically evaluate
the reliability and behavior of LLM judges. Unlike general-purpose LLM benchmarks that assess
broad capabilities, these targeted frameworks are designed specifically to scrutinize the adjudicative
performance of models. For instance, foundational benchmarks such as MT-Bench and Chatbot
Arena (Zheng et al,2023) are introduced to verify the agreement between LLM judges and human
preferences on open-ended, multi-turn questions. Subsequent works like [Tan et al.|(2025) and |Gera
et al.[(2025)) continue to follow this paradigm, primarily assessing the capability of LLM judges by
measuring the correlation between their assessments and human preference judgments.

However, this reliance on human judgment as the definitive “gold standard” is unreliable for three
key reasons: First, human annotators are susceptible to inherent biases (Wu & Ajil 2025} [Zheng
et al., 2023)), including authority bias and misinformation oversight bias (Chen et al., [2024a). In
addition, (Chen et al.| (2024a) shows that human evaluators of LLMs can be more biased than the
models themselves. Second, there is an persistent issue of inter-annotator disagreement (Zhang
et al.l 2024). Different human evaluators often provide inconsistent assessments, particularly for
tasks that are subjective or nuanced. This lack of consensus means that the “ground truth” data used
for benchmarking is often noisy and unreliable. Finally, as Al models advance, they are beginning
to surpass human capabilities in specialized domains. When Al generates highly complex or lengthy
outputs, human annotators might struggle to accurately assess their quality or correctness (Tan et al.}
2023)). In such scenarios, human annotations may no longer be a reliable ground truth.

Fine-tuned Judge. In the pursuit of improving automated evaluation accuracy, one prevalent strat-
egy involves specializing a model using preference datasets, resulting in a fine-tuned “judge” model
(Zhu et al.| 20255 Kim et al., [2024; |Wang et al., [2024bfa; He et al., [2024). These datasets generally
comprise a series of prompts, each followed by multiple model-generated responses, with evalua-
tors providing labels to indicate the superior response. By leveraging this data, the judge model is
trained to predict human evaluative behaviors, enabling it to autonomously score or rank new model
outputs. The fine-tuning process allows the judge to learn nuanced patterns in human preferences,
such as understanding which aspects of a response are prioritized. As a result, the judge can offer an
automated alternative to human evaluation, making it invaluable for large-scale applications where
human assessment may be time-consuming or impractical. However, this approach is not without its
limitations (Huang et al., 2024aZb). For those judge models that are fine-tuned on datasets derived
from human evaluations, they inevitably inherit the biases and inconsistencies present in the human
labeling process. Human annotators, despite their best efforts, may display subjective tendencies,
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varying interpretation of instructions, or inconsistencies in rating, which can be subtly reflected in
the model’s predictions (Chen et al., 2024b). As a consequence, the fine-tuned judge may some-
times generate evaluations that do not align with a broader, more objective standard (Gao et al.,
2023). Given these challenges, the reliability and fairness of fine-tuned judge models as objective
evaluators must be subjected to thorough scrutiny. It becomes crucial to investigate the degree to
which these models mirror human biases and assess their robustness across diverse contexts and
response types.

B THEORETICAL ANALYSIS OF METRIC STABILITY

In this section, we provide a theoretical analysis to substantiate the empirical stability of our pro-
posed metrics, Intra-Pair Instability (IPI) and Weak Total Order Violation (TOV), as presented in
.1} The core of our analysis is to demonstrate that the variance of these metrics is exceptionally
low, thereby ensuring their reliability against the inherent stochasticity of LLM judges.

The foundational source of any potential instability in our evaluation framework stems from the
stochastic nature of the LLM judge, M. When queried multiple times with the identical input triplet
(@, Ai, Aj), the model’s judgment, y;; = Jam(Q, Ai, A;), may fluctuate. Our analysis proceeds
in three stages: first, we certify the stability of a single pairwise judgment; second, we bound the
variance of the per-question metrics; and third, we establish the stability of the final, aggregate
benchmark scores.

B.1 CERTIFYING SINGLE-PAIR JUDGMENT STABILITY VIA CONFORMAL PREDICTION

To formally quantify the stability of individual judgments, we adopt principles from Conformal
Prediction (Angelopoulos & Bates| [2021). We posit that for any given question-answer pair, there
exists a “stable judgment”, which represents the most stable outcome if the model were to be sam-
pled repeatedly. We approximate this stable judgment by the modal outcome over a large number of
trials.

We construct a large-scale calibration set, C, by selecting N = 30,000 distinct question-answer
pairs. For each pair k € {1,..., N}, we prompt the LLM judge T' = 20 times, yielding a total of
N x T = 600,000 individual judgments. For each pair k, we define its stable judgment, v, as the
most frequently observed outcome:

T
yp = argmax Z]I(y](:) =)
ye{-1,0,1} ;7

where y,(:) is the outcome of the ¢-th judgment for the k-th pair.

We can now use the n = 600, 000 judgments in C to build a calibration set for a new judgment. Let
the non-conformity score for a given judgment y,(:) be its disagreement with the stable judgment:

s(y,(f)) = H(y,(f) # yr). By applying the conformal prediction framework to this large calibration

set of scores, we can construct a prediction interval for a new, unseen judgment. Our empirical
analysis on this calibration set reveals that the fraction of judgments deviating from their stable
counterpart is exceedingly small. Following the standard procedure for conformal calibration, we
can formally certify that for any new judgment ¥, .., , the probability of it matching its corresponding
stable judgment ¥, is bounded with high confidence. Specifically, for a desired miscoverage rate
a = 0.01, the procedure yields the following guarantee:

P(ynew = y;ew) >1—a=0.99

This result provides a strong probabilistic guarantee that any single pairwise comparison performed
by the judge is highly likely to be stable.

B.2 BOUNDING THE VARIANCE OF PER-QUESTION METRICS

For each question in our benchmark, the calculation of IPI and TOV scores relies on a set of pairwise
comparisons. Given that we generate n = 6 candidate answers, a full round-robin evaluation under
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our symmetrized protocol requires M = 2 X (g) = 30 individual judgments. Our objective is

to establish a rigorous, high-confidence upper bound for the variance of the per-question metric,
Var(TOV(Q)), which arises from the LLM judge’s inherent stochasticity.

By definition, the variance of the measured score TOV(Q) is the expected squared difference from
its mean:
Var(TOV(Q)) = E [(TOV(Q) — E[TOV(Q)])?] @)

A fundamental property of variance is that it represents the minimum possible expected squared
error. For any constant c, the following inequality holds: Var(TOV(Q)) < E [(TOV(Q) — ¢)?].
We can leverage this property by strategically choosing a constant. Let us choose the deterministic
stable score, TOV*(Q), as our constant c. This yields this inequality:

Var(TOV(Q)) < E [(TOV(Q) — TOV*(Q))?] (8)

Let the deviation from the stable score be Aoy (Q) = TOV(Q) — TOV*(Q). Equation [§| can be
rewritten as:

Var(TOV(Q)) < E[Arov(Q)’] ©)
Our task now simplifies to finding an upper bound for the second moment of this deviation.

Let X be the random variable for the total number of unstable judgments among the M = 30 trials.
As established in Section B.1, the probability p of any single judgment being unstable is bounded
by p < a = 0.01. Assuming independence across judgments, X follows a Binomial distribution,
X ~ B(M,p).

A direct, deterministic relationship connects the score deviation to the number of unstable judg-
ments. Since the TOV score is the minimum number of edge modifications required to resolve all
logical contradictions, X unstable judgments can alter the final score by at most X. This gives the
inequality |Arov(Q)| < X, which implies:

Arov(Q)® < X? (10)
By taking the expectation, we can chain the inequalities together:
Var(TOV(Q)) < E[Arov(Q)?] < E[X7] (1D
The second moment of a binomial random variable is given by E[X?] = Var(X) + (E[X])? =
Mp(1 — p) + (Mp)?2. Using M = 30 and the upper bound p = 0.01, we compute:
E[X] = 30 x 0.01 = 0.3 (12)
Var(X) = 30 x 0.01 x (1 — 0.01) = 0.297 (13)

Therefore, the second moment of X is:
E[X?] = 0.297 + (0.3)* = 0.387 (14)

This directly provides a tight and rigorously derived upper bound for the variance of the per-question
TOV score:
Var(TOV(Q)) < 0.387 (15)

This result formally demonstrates that the variance of the per-question scores is exceptionally small,
confirming that our metrics are highly robust to the inherent stochasticity of LLM judges.

An identical argument holds for the IPI score, yielding a similarly small per-question variance.
The IPI score for a question, IPI(Q), is the fraction of inconsistent pairs. It is calculated over
N = (g) = 15 unique pairs of answers. Each inconsistent pair contributes 1 to a sum, which is
then normalized by N. An unstable judgment can affect the consistency of at most one pair, thus
changing the sum by at most 1. Therefore, X unstable judgments can change the sum of inconsistent
pairs by at most X . The deviation of the normalized IPI score, Ap;(Q), is thus bounded by:

X

|Ap(Q)] < N (16)

It is worth noting that this inequality can be tightened; since the IPI score is bounded in [0, 1], the
maximal deviation is 1, making the true bound |Ap(Q)| < min(X/N, 1). By proceeding with the
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analytically simpler X /N, we are establishing a conservative overestimate for the variance, which
strengthens our claim of stability. Following the same logic, we can bound its variance:

X\? 1
IPI <E[A I<E|( =] | = 5E[X? 1
Var(IPI(Q) < Elam (@)% < 2| () ] B a7
Substituting N = 15 and our previously calculated value for E[X?2]:
0.387  0.387
< —=——=0.
Var(IPI(Q)) < 152 595 0.00172 (18)

These results formally demonstrate that the variances of both per-question TOV and IPI scores are
exceptionally small, confirming that our metrics are highly robust to the inherent stochasticity of
LLM judges.

B.3 STABILITY OF AGGREGATE BENCHMARK SCORES

The final SAGE metrics are the aggregate scores, IPI and TOV, which are the arithmetic means of
the per-question scores over the entire set of |Q| = 650 questions:

1

@ZTOV(Q) and TP = - > IPIQ) (19)

TOV = —
Qe |Q‘ Qe

Assuming the scores for each question are independent and identically distributed (i.i.d.) random
variables—a standard assumption for a diverse benchmark—the variance of the mean is the per-
question variance divided by the number of questions.

Using the upper bound for the per-question TOV variance derived in Section [B.2] we can bound the
variance of the final aggregate TOV score:

Var(TOV(Q)) _ 0.387
|Q| ~ 650

Var(TOV) = ~5.95x 1074 (20)

Similarly, using the upper bound for the per-question IPI variance, we can bound the variance of the
final aggregate IPI score:

Var(IPI(Q)) _ 0.00172

Var(IPI) = <
ar(IPT) o] = 650

~2.65 x 1076 1)

These resulting variances for both aggregate metrics are exceptionally small, indicating that the final
reported scores are highly concentrated around their expected values.

In conclusion, this theoretical analysis, grounded in first principles and basic statistical properties,
formally demonstrates the robustness of our evaluation framework. The high stability of individual
judgments propagates through the metric calculation, resulting in aggregate scores for both IPI and
TOV with minimal variance. This theoretical finding is in strong alignment with the empirical
results presented in Table [2} confirming that SAGE provides a consistent and reliable methodology
for assessing the reasoning capabilities of LLM judges.

C DETAILED EXPERIMENT SETUPS

C.1 DATASET CURATION

The curation process for our benchmark’s dataset is meticulously designed to ensure both diver-
sity and representativeness, as illustrated in Figure 5] We began by drawing questions from two
distinct, high-quality sources. First, we extracted questions from five core categories within the Re-
wardBench2 dataset—namely Factuality, Focus, Precise Instruction Following, Mathematics, and
Safety—to establish a foundation of structured evaluation problems. These questions are manually
selected to ensure semantic uniqueness. To complement this and incorporate more natural, real-
world user interactions, we also sourced a large volume of queries from the WildChat-1m corpus,
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which contains logs of human-LLM conversations. These queries underwent a rigorous screening
process, including both large-scale automated filtering and manual review, to select for relevance
and clarity. The questions from both sources are then merged to form the final, comprehensive set
of 650 questions. This dual-source approach ensures that our benchmark covers a wide seman-
tic space, balancing formal assessment criteria with the unpredictability of genuine user inquiries,
which is essential for a robust evaluation of LLM judges.

Original Dataset Question Benchmark
Set Curation Data Components
ymm————
= ] - = " -
e | Best-of-Four | "= N I —
[l]]]]_ P | Selection 1 ot Preliminary : - : - g :
1 ! i Remain 1 n
1 ey 1 Question Question Set | g0 Five : ..’ Unchonlged 1 Question Set :
RewardBench2 : ' : Subset | Nyt ! 1
| 1 1 1 % !
1 ! ! ; S 1
' e : 1 ,  Merged =~ ' a» !
: . I_.)) . B | Question set Prompt LLMs : — :
| Human-LLM 1 ° Large-Scale | Manual : to Generate | -— 1
IConversaIions: Extract Question Set : Screening | Answers : Answer Set !
: | Question i | N !
WildChat-1m i 4 N 4

Figure 5: Curation of our dataset.

C.2 PEARSON CORRELATION COEFFICIENT

The Pearson Correlation Coefficient, commonly denoted by r, is a statistical measure that quantifies
the strength and direction of the linear relationship between two continuous variables. It is one of
the most widely used measures of association. The coefficient’s value is always constrained to the
interval [—1, 1].

C.2.1 INTERPRETATION OF THE COEFFICIENT

The value of the Pearson correlation coefficient (r) is interpreted as follows:

e r = +1: Indicates a perfect positive linear relationship. As the value of one variable increases,
the value of the other variable increases in a perfectly linear fashion.

* r = —1: Indicates a perfect negative linear relationship. As the value of one variable increases,
the value of the other variable decreases in a perfectly linear fashion.

* r = 0: Indicates no linear relationship between the two variables. It is crucial to note that a
coefficient of zero does not necessarily mean there is no relationship at all; it specifically indicates
the absence of a linear association.

The magnitude of |r| indicates the strength of the linear association. While context-dependent, a
common convention for interpreting the strength is:

|r| > 0.7: Strong linear relationship.

0.5 < |r| < 0.7: Moderate linear relationship.

* 0.3 < |r| < 0.5: Weak linear relationship.

|r| < 0.3: Very weak or negligible linear relationship.

Figure@from (Wikipedial 2025) shows the visual representation of Pearson Correlation Coefficients.

C.2.2 MATHEMATICAL FORMULATION

For a sample of n paired observations (x;,y;), the sample Pearson correlation coefficient is calcu-
lated as the ratio of the sample covariance of the two variables to the product of their sample standard
deviations. The formula is given by:

Yo (@i —7)(yi — 9)
Vi (@i — 22/ (i — §)?

Ty =
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F

Figure 6: Visual representation of various Pearson Correlation Coefficients (7).

where:

* n is the sample size.
* z; and y; are the individual sample points indexed with 3.
L5 | ; is the sample mean of the z variable.

L]
I
Il

Yy % Z?:l vy; is the sample mean of the y variable.

C.3 COEFFICIENT OF VARIATION

The Coefficient of Variation (CV) is a standardized statistical measure of the relative dispersion
of a data distribution. Unlike the standard deviation, which quantifies absolute variability, the CV
expresses the standard deviation as a fraction of the arithmetic mean. This normalization renders the
CV a dimensionless quantity, thereby facilitating the comparison of variability across datasets with
different units of measurement or significantly different means.

For a population, the Coefficient of Variation is defined as the ratio of the standard deviation (o) to
the mean (), provided that the mean is non-zero:

CV=—
|l
For a sample, the CV is estimated using the sample standard deviation (s) and the sample mean (Z):
s
Cy = 77
|Z|

The absolute value of the mean is often used in the denominator to ensure the CV remains non-
negative and is well-defined for negative means, preserving its interpretation as a measure of vari-
ability magnitude.

The primary utility of the CV lies in its capacity to provide a relative measure of consistency or
homogeneity. A lower CV indicates less variability relative to the mean, suggesting greater consis-
tency within the data. Conversely, a higher CV signifies greater relative dispersion. This property
is particularly advantageous when comparing the degree of variation between two or more groups
of data. For instance, comparing the standard deviation of prices in two different currencies is not
directly meaningful; however, their Coefficients of Variation can be compared to determine which
currency’s price level is relatively more stable, as it is a unit-free metric.

C.4 MODELS

Large Language Models. An LLM is an advanced Al model, typically using a Transformer archi-
tecture, trained on massive text data to understand and generate natural language by predicting the
next token. Pre-trained on broad datasets, they can be fine-tuned for specific tasks. Their large scale,
with billions of parameters, results in strong generalization and emergent abilities for diverse tasks
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like text generation, summarization, translation, and question answering. The detailed information
about the models we used in our experiments is as follows:

DeepSeek-R1-0528 (DeepSeek-All [2025a): DeepSeek-R1-0528 is a 671B sparse Mixture-of-
Experts (MoE) model with 37B active parameters and a 128k context length. Built upon
DeepSeek-V3-Base, it is trained using reinforcement learning to enhance its capabilities in com-
plex reasoning, mathematics, and coding.

DeepSeek-V3-0324 (DeepSeek-Al & et al., [2024): DeepSeek-V3-0324 is a 671B Mixture-of-
Experts (MoE) model with 37B active parameters per token. Trained on a 14.8T-token dataset,
it uses optimized attention and advanced expert routing to enhance performance on complex rea-
soning and coding tasks with computational efficiency.

DeepSeek-V3.1 (DeepSeek-AlL 2025b): DeepSeek-V3.1 is a 671B Mixture-of-Experts (MoE)
model that activates 37B parameters per token. It features a hybrid architecture for reasoning and
fast responses, supports a 128K context window, and is post-trained for tool-calling and agentic
tasks.

Gemini-2.0-Flash-Lite (Googlel [2025): Gemini-2.0-Flash-Lite is a lightweight, multimodal
Google model for high-speed, high-volume tasks where latency and cost are critical. This smaller,
faster variant excels at summarization and chat, ideal for scalable services and on-device applica-
tions requiring rapid, resource-efficient inference.

Gemini-2.5-Flash (Comanici & et al., [2025): Gemini-2.5-Flash is a cost-efficient, multimodal
foundation model by Google DeepMind with a 1 million context window. It uses a sparse Mixture-
of-Experts (MoE) architecture to balance performance, cost, and latency, and is optimized for
speed in reasoning and multimodal tasks.

GPT-40-Mini (OpenAl, 2024): GPT-40-Mini is a compact, cost-efficient variant of OpenAl’s
GPT-40 model, released in July 2024. It offers strong language and vision capabilities with lower
latency and supports a 128K token context window for handling long inputs.

GPT-5-Chat (OpenAlL [2025): GPT-5-Chat (OpenAl, August 2025) is a flagship, multimodal
conversational model that unifies fast responses with deep reasoning. It supports long context and
multi-step tool calling, featuring improved code quality, reduced hallucinations, and enhanced
steerability.

Llama-3.1-8B-Instruct (Metal 2024a)): Llama-3.1-8B-Instruct is an 8-billion-parameter multi-
lingual instruction-tuned autoregressive transformer released by Meta. It features a 128K token
context window and is fine-tuned for instruction following, dialogue, reasoning, and translation.
Claude-3-Haiku (Anthropic} [2024): Claude-3-Haiku, part of Anthropic’s Claude 3 family, is
optimized for speed and cost-effectiveness in lighter tasks. It supports a 200K token context
window for text and image inputs, delivering fast, responsive generation, though its benchmark
scores are lower than the more capable Sonnet or Opus models.

Qwen3-4B-Instruct-2507 (Team) 2025): Qwen3-4B-Instruct-2507 is a compact language model
with 4 billion parameters, optimized for instruction-following and multilingual tasks. It supports
a 256K token context window and provides fast, efficient responses for real-time applications.
Qwen3-30B-A3B-Instruct-2507 (Team, 2025): Qwen3-30B-A3B-Instruct-2507 is a sparse
Mixture-of-Experts (MoE) instruction-tuned model with 30.5B total and 3.3B active parame-
ters. It uses 128 experts (8 active per token), supports a 262,144-token context window, and is
tuned for instruction following, multilingual understanding, reasoning, coding, and tool use.

Qwen3-235B-A22B-Instruct-2507 (Team, 2025): Qwen3-235B-A22B-Instruct-2507 is a 235B
parameter Mixture-of-Experts (MoE) instruction-tuned model that activates 22B parameters per
inference. It supports a 256K context length, features 128 experts (activating 8 per token), and uses
Grouped-Query Attention. The model is improved for instruction-following, reasoning, math, and
coding.

Qwen2.5-3B-Instruct (Team, [2024): Qwen2.5-3B-Instruct is a 3.09B-parameter, instruction-
tuned causal language model. It features a 36-layer transformer with Grouped-Query Attention,
RoPE, SwiGLU, and RMSNorm. This multilingual model supports a 32k-token context and shows
strengths in instruction following, structured output, mathematics, and coding.
Qwen2.5-7B-Instruct (Team, 2024): Qwen2.5-7B-Instruct is a 7.6B-parameter instruction-tuned
causal transformer from Alibaba. It features RoPE, SwiGLU, and GQA, with a context window
of up to 131k tokens. The model is multilingual and excels in instruction following, coding, and
math.
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* Mistral-7B-Instruct-V0.3 (Jiang et al. 2023): Mistral-7B-Instruct-V0.3 is a 7.3B-parameter
causal transformer by Mistral Al, fine-tuned for instruction following. It features a v3 tokenizer,
a 32ktoken vocabulary, a 32ktoken context window, and supports function calling, delivering fast
inference.

Fine-tuned Judges. A fine-tuned judge is a Large Language Model specialized to evaluate text
quality. It is further trained on a dataset containing generated text and corresponding human prefer-
ence labels, such as comparisons or scores. This process aligns the model with human evaluators’
standards, allowing it to learn the nuances and criteria they value. Consequently, a fine-tuned Judge
serves as a more reliable automated evaluation tool, producing judgments that more closely resemble
those of human experts than a general-purpose model.

* Prometheus-7B-V2.0 (Kim et al.,|2024): A 7-billion-parameter open-source evaluator LLM built
on Mistral-Instruct. Trained on 100K “Feedback Collection” examples and 200K preference/rank-
ing pairs, it supports both absolute grading (direct assessment) and relative grading (pairwise
ranking) tasks.

* M-Prometheus-3B (Pombal et al., 2025): M-Prometheus-3B is a 3-billion-parameter multilingual
LLM evaluator from Unbabel, built upon the Qwen2.5-3B architecture. Trained on 480K instances
of multilingual data, it provides both direct assessment and pairwise comparison feedback. The
model has demonstrated superior performance on multilingual meta-evaluation benchmarks and
in literary translation evaluation.

* M-Prometheus-7B (Pombal et al.,[2025): M-Prometheus-7B is a 7-billion-parameter multilingual
evaluator model from Unbabel, fine-tuned from Qwen2.5-Instruct. Trained on 480,000 instances
of multilingual assessment and comparison data, it supports both absolute and relative grading.

» Skywork-Critic-Llama-3.1-8B (Shiwen et al., [2024): Skywork-Critic-Llama-3.1-8B is an 8-
billion-parameter preference evaluator from the SkyworkAl Alignment Team, fine-tuned from
Meta’s Llama-3.1-8B-Instruct. Trained on a curated dataset, it evaluates the relative quality of
text responses for data improvement, evaluation, and reward modeling.

* JudgeLRM-3B (Chen et al} 2025): JudgeLRM-3B is a 3-billion-parameter, judgment-oriented
language model. Built on a Qwen2.5-3B-Instruct base and trained with reinforcement learning
(GRPO), it is designed for complex reasoning tasks. The model demonstrates superior perfor-
mance by surpassing GPT-4 on judgment benchmarks like JudgeLM and PandalLM and signifi-
cantly outperforming similarly-sized SFT models.

* JudgeLRM-7B (Chen et al., 2025): JudgeLRM-7B is a language model built upon Qwen2.5-
7B-Instruct. It utilizes Group Relative Policy Optimization (GRPO), a reinforcement learning
method, to enhance complex reasoning. The model demonstrates superior performance on rea-
soning benchmarks, outperforming GPT-4 on specific tasks and significantly surpassing other
similarly-sized models.

Multi-Agent Judges. Multi-Agent Judges is an evaluation framework using multiple autonomous
Large Language Models (LLMs) to assess text quality. Instead of a single LLM, this method involves
either a group of LLM agents debating to form a collective judgment or independently scoring an
output, with the scores then aggregated. The goal is to reduce the bias and variance of single-agent
evaluation, aiming for more robust and reliable assessments that better align with human preferences.

* ChatEval (Chan et al., 2023): ChatEval is a debate-based framework using a “referee team”
of multiple LLM agents to simulate human collaborative evaluation. Each agent is assigned a
unique persona to ensure diverse perspectives. These agents autonomously debate the quality of
a text over multiple turns, guided by communication strategies. The final evaluation aggregates
individual judgments after the debate, such as by majority vote or averaging scores, rather than
forcing a consensus.

* PoLL (Verga et al.|2024): The “Panel of LLM evaluators (PoLL)” is a multi-agent method using
a diverse group of LLMs to independently assess text generations, similar to a jury. The individual
scores are then aggregated into a final judgment. This approach aims to reduce the bias, cost, and
variance of using a single LLM for evaluation.
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D ARENA HARD AUTO

D.1 EVALUATION PROCESS

The Arena-Hard-Auto evaluation process (L1 et al., |2024) is based on a pairwise comparison
framework (Chiang et al.| 2024)). For every prompt in the benchmark, the response from the model
being evaluated is compared against the response from a fixed, strong baseline model (Zheng et al.,
2023; |L1u et al.| 2023),. In our experiment we use the Gemini-2.5-Pro (Comanici & et al., |2025)) as
the baseline model This comparison is mediated by an LLM-as-Judges. To ensure a high-quality
and consistent assessment, the judge model is first prompted to generate its own ideal solution
directly. It then evaluates the two models’ responses, rating the preference on a 5-point Likert scale
to capture the degree of superiority (Newman, 2023). To mitigate potential positional bias (Shi
et al.| [2024)), where a judge might favor the first or second answer presented, the entire evaluation
for a single prompt is conducted twice in a two-game setup, with the positions of the model outputs
swapped in the second round.

D.2 SCORES CALCULATION

After collecting all pairwise judgments, the Bradley-Terry model is employed to compute a final,
continuous score for each model. This statistical model aggregates the outcomes of thousands
of individual head-to-head comparisons against the baseline. It works by estimating a latent
“strength” parameter for each model, effectively converting the discrete win/loss/tie results from
the Likert scale judgments into a single, comprehensive score. This score represents the model’s
overall performance and capability across the diverse and challenging prompts of the benchmark,
allowing for a quantitative and ordered ranking of all evaluated models.

D.3 MODEL PERFORMANCE EVALUATION

To precisely quantify the final score and its range of uncertainty for each evaluated model, a
bootstrapping methodology is employed. This statistical process involves repeatedly resampling the
entire set of pairwise judgments with replacement to create thousands of new, simulated datasets.
For each of these bootstrapped datasets, a win-rate against the baseline is recalculated for every
model. This generates a distribution of potential win-rates, from which a final average score and a
95% confidence interval are derived (Efron,|1992). This confidence interval represents the “floating
range” of the model’s performance, indicating the score’s stability and statistical reliability.

Furthermore, in our experiments, this process is extended to assess and compare the robustness of
different models when they serve as the judge. To achieve this, a specific model is designated as
the judge and is used to evaluate a standard set of other models against the baseline. The boot-
strapping process is then carried out to determine the confidence interval for each of the evaluated
models. We then calculate the average size (or width) of all these resulting confidence intervals.
This value, the “average confidence interval,” serves as a single metric to quantify the judge’s
consistency. A smaller average confidence interval indicates that the judge model is more stable
and reliable, as its evaluations produce less variance and lead to more precise performance estimates.

E ADDITIONAL RESULT

E.1 METRIC CONSISTENCY ACROSS TEMPERATURES

As discussed in the main text, we conduct experiments to verify the stability of our proposed metrics
against the stochasticity inherent in LLM outputs. Table [/ details the performance of two models,
Qwen3-4B-Instruct-2507 and Qwen3-30B-A3B-Instruct-2507, under five different temperature set-
tings (T=0.1, T=0.3, T=0.5, T=0.7 and T=0.9).

The results show that both the Intra-Pair Instability (IPI) and Weak Total Order Violation (TOV)
scores remain exceptionally stable across all temperatures. This low variance demonstrates the
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SAGE-Easy + Small SAGE-Hard + Small SAGE-Easy * Large SAGE-Hard + Large

Figure 7: Comparison of radar charts for different models

robustness of our evaluation framework, confirming that the metrics capture consistent aspects of a
model’s judgment capabilities rather than random artifacts of the generation process.

Table 7: IPI and TOV scores at varying temperatures on SAGE. (T for temperature)

Models Benchmark Metric T=0.1 T=0.3 T=0.5 T=0.7 T=0.9

IPI 0.129 0.129 0.129 0.130 0.128

Qwen3-4B- SAGE-EAsY TOV 1.967 1.957 1.965 1.971 1.950

Instruct-2507

SAGE-HARD IPI 0.385 0.384 0.384 0.386 0.385

TOV 5.831 5.815 5.811 5.848 5.838

IPI 0.180 0.181 0.179 0.182 0.182

Qwen3-30B-  SaGE-EAsY TOV 2714 2715 2.691 2,746 2,746
A3B- Instruct-

2507 S IPI 0.648 0.649 0.651 0.648 0.651

AGE-HARD TOV 9.763 9.765 9.795 9.757 9.803

E.2 THE PERFORMANCE OF FINE-TUNED JUDGES ON SAGE-EASY

Table 8] demonstrates the performance of fine-tuned judges on SAGE-EASY, which shows that fine-
tuning does not necessarily enhance judgment robustness. The results are inconsistent across differ-
ent models, demonstrating that the fine-tuning process itself is not a guaranteed path to improvement.
For example, models such as JudgeLRM-7B and Prometheus-7B-V2.0 exhibit a clear degradation
in performance, scoring worse on both IPI and TOV metrics than their respective base models.

E.3 THE DISTRIBUTION OF TIE PROPOTION ON SAGE-EASY

Distribution of IPI vs. Proportion of -1s Distribution of TOV vs. Proportion of -1s

Tov value

e oleo o o o o
.
o oo o o
e 0 o o o

000 005, 010 015 0.20 025 030 035 0.40 000 005, 010 015 0.20 025 030 035 0.0
Proportion of -1 in compare_results Proportion of -1 in compare._results

(a) Tie Propotion Distribution on IPI (b) Tie Propotion Distribution on TOV

Figure 8: Distribution of Tie Propotion on SAGE-EASY

From the distribution in[8] we can find that there is no obvious correlation between the tie propotion
and the SAGE-EASY IPI or SAGE-EASY TOV.
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Table 8: The performance of finetune models and their base models on SAGE-EASY.

Factuality ‘ Precise IF ‘Mathematics‘ Safety ‘ Focus ‘ Overall
IPI, TOV| IPL, TOV) IPI, TOV| IPL, TOV) IPI, TOV] IPL, TOV|
Owen2.5-3B-Instruct (Base) 0.590 8.930 0.571 8.824 0.453 6.917 0.460 6.935 0.590 9.354 0.536 8.233

Models

M-Prometheus-3B 0.285 4.294 0.283 4.243 0.271 4.117 0.243 3.699 0.299 4.508 0.277, 4.179)
JudgeLRM-3B 0.570 8.546 0.370 5.557 0.390 5.850 0.363 5.439 0.715 10.726 0.482] 7.232|
Qwen2.5-7B-Instruct (Base)  0.462 6.951 0.400 6.014 0.437 6.558 0.341 5.138 0.626 9.395 0.452 6.800
M-Prometheus-7B 0.192 2.888 0.165 2.507 0.237 3.550 0.241 3.626 0.206 3.105 0.206) 3.109.)
JudgeLRM-7B 0.596 8.944 0.530 7.950 0.527 7.900 0.527 5.790 0.767 11.508 0.5891 8.8291
Mistral-7B-Instruct (Base) 0.394 5916 0.320 4.882 0.412 6.258 0.210 3.172 0.407 6.129 0.349 5.283
Prometheus-7B-V2.0 0.338 5.236 0.373 5.824 0.421 6.673 0.337 5.258 0.398 6.066 0.3681 5.7181

Llama-3.1-8B-Instruct (Base) 0.360 5.640 0.353 5.625 0.406 6.475 0.341 5.261 0.358 5.554 0.364 5.710
Skywork-Critic-Llama-3.1-8B 0.115 1.727 0.177 2.650 0.084 1.267 0.114 1.715 0.111 1.669 0.122 ] 1.828]

F PROMPTS AND CASE STUDY

F.1 PROMPT OF MAIN EXPERIMENT

Prompt of Main Experiment

System Prompt

Please act as an impartial judge and evaluate the quality of the responses provided by two Al
assistants to the user question displayed below. You should choose the assistant that follows
the user’s instructions and answers the user’s question better. Your evaluation should
consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of
detail of their responses. Avoid any position biases and ensure that the order in which the
responses were presented does not influence your decision. Do not allow the length of the
responses to influence your evaluation. Do not favor certain names of the assistants. Be as
objective as possible. Do not provide your explanation, only output your final verdict by
strictly following this format: “[[A]]” if assistant A is better, “[[B]]” if assistant B is better,
and “[[C]]” for a tie.

User Prompt

[User Question]

{question}

[The Start of Assistant A’s Answer]
{answer_a}

[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{answer b}

[The End of Assistant B’s Answer]

Remember only output “[[A]]” or “[[B]]” or “[[C]]” without any explanation. Output “[[A]]”
if assistant A is better, “[[B]]” if assistant B is better, and “[[C]]” for a tie.
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F.2 PROMPT OF REWARDBENCH2
Prompt of Main Experiment

System Prompt

Please act as an impartial judge and evaluate the quality of the responses provided by four

Al assistants to the user question displayed below. You should choose the assistant that

follows the user’s instructions and answers the user’s question better. Your evaluation

should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and

level of detail of their responses. Avoid any position biases and ensure that the order in

which the responses were presented does not influence your decision. Do not allow the

length of the responses to influence your evaluation. Do not favor certain names of the

assistants. Be as objective as possible. Do not provide your explanation, only output your

final verdict by strictly following this format: “[[A]]” if assistant A is the best, “[[B]]” if

assistant B is the best, “[[C]]” if assistant C is the best, “[[D]]” if assistant D is the best.

You must make one choice.

User Prompt

[User Question]

{question}

[The Start of Assistant A’s Answer]

{answer_a}

[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]

{answer b}

[The End of Assistant B’s Answer]

[The Start of Assistant C’s Answer]

{answer_c}

[The End of Assistant C’s Answer]

[The Start of Assistant D’s Answer]

{answer_d}

[The End of Assistant D’s Answer]

Remember only output “[[A]]” or “[[B]]” or “[[C]]” or “[[D]]” without any explanation.

Output “[[A]]” if assistant A is the best, “[[B]]” if assistant B is the best, “[[C]]” if assistant
C is the best, “[[D]]” if assistant D is the best. You must make one choice.
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F.3 PROMPT OF ARENA HARD AUTO

Prompt of Arena Hard Auto

System Prompt

Please act as an impartial judge and evaluate the quality of the responses provided by two
Al assistants to the user prompt displayed below. You will be given assistant A’s answer
and assistant B’s answer. Your job is to evaluate which assistant’s answer is better.

Begin your evaluation by generating your own answer to the prompt. You must provide
your answers before judging any answers.

When evaluating the assistants’ answers, compare both assistants’ answers with your
answer. You must identify and correct any mistakes or inaccurate information.

Then consider if the assistant’s answers are helpful, relevant, and concise. Helpful means
the answer correctly responds to the prompt or follows the instructions. Note when user
prompt has any ambiguity or more than one interpretation, it is more helpful and appropriate
to ask for clarifications or more information from the user than providing an answer based
on assumptions. Relevant means all parts of the response closely connect or are appropriate
to what is being asked. Concise means the response is clear and not verbose or excessive.
Then consider the creativity and novelty of the assistant’s answers when needed. Finally,
identify any missing important information in the assistants’ answers that would be
beneficial to include when responding to the user prompt.

Do not provide your explanation, you must output only one of the following choices as your
final verdict with a label:

1. Assistant A is significantly better: [[A>>B]]

2. Assistant A is slightly better: [[A>B]]

3. Tie, relatively the same: [[A=B]]

4. Assistant B is slightly better: [[B>A]]

5. Assistant B is significantly better: [[B>>A]]

Example output: “[[A=B]]”.

User Prompt

[User Question]

{question}

[The Start of Assistant A’s Answer]
{answer_a}

[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]

{answer b}

[The End of Assistant B’s Answer]

Do not provide your explanation, you must output only one of the following choices as your
final verdict with a label:

1. Assistant A is significantly better: [[A>>B]]
2. Assistant A is slightly better: [[A>B]]

3. Tie, relatively the same: [[A=B]]

4. Assistant B is slightly better: [[B>A]]

5. Assistant B is significantly better: [[B>>A]]
Example output: “[[A=B]]”.
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F.4 BIASES IN TRAINING DATASET

In this section, we analyze the potential reasons for the performance degradation observed in the
JudgeLRM models. Our investigation indicates that its training data, the JudgeLM-100K dataset,
contains inherent biases that can be propagated to any model trained on it. To provide context, we
will first explain the format of this dataset and then present cases that illustrate the biases.

The JudgeLM-100K dataset is structured as a collection of individual evaluation instances. Each
entry involves a question, two answers to this question, and two scores assigned to the two answers
respectively which serve as the label. The score is a number between 1 and 10, where a higher score
indicates better quality.

Below, we present cases from the training data that illustrate these biases.

Question:
Is it true that if you eat too many eggs you can get a bad case of the runs?

Answer 1: no

Answer 2:

What'’s the best way to stop a dog from barking?

Why do people say “Oh, great” when they’re not happy about something?

Is it better to be a little bit pregnant or a little bit dead?

Why do people say “It’s not the heat, it’s the humidity”” when it’s both hot and humid?
Is it true that you can’t sweat and smoke at the same time?

What'’s the difference between a sunburn and a sun tan?

Is it true that if you put a mattress on a bed you’ll have to pay extra?

Is it true that if you put a pillowcase on a pillow you’ll have to pay extra?

Is it true that if you put a blanket on a bed you’ll have to pay extra?

1. Is it true that if you eat too many eggs you can get a bad case of the runs?

No, it is not true. Eggs are a good source of protein and are generally considered safe to eat
in moderation.

2. What’s the best way

Reference:
Give Answer 1 a score of 2 and Answer 2 a score of 4.

Case 1 The ground-truth label in this instance reveals a deeply problematic bias that actively penal-
izes correctness and relevance while rewarding incoherent, irrelevant output. Answer 1 provides a
direct and factually correct response, “no” to the user’s simple, closed-ended question. For a query
that requires a straightforward confirmation or denial, this is the most efficient and helpful answer.
However, it is assigned an unjustifiably low score of 2. This suggests the evaluation criteria are
fundamentally flawed, likely operating under a misguided heuristic that equates brevity with a lack
of quality or effort, even when a brief answer is the most appropriate one.

Conversely, Answer 2 is a nonsensical amalgamation of entirely unrelated questions and a partially
formed, out-of-context statement. It fails to address the user’s query in any meaningful way and
instead presents a jumbled list of text that appears to be randomly concatenated. Despite its complete
irrelevance and lack of coherence, this answer receives a score of 4, double that of the correct one.
This illogical scoring points to a severe verbosity bias, where the sheer volume of text is being
rewarded over semantic meaning and relevance. The labeler has failed to assess the actual content
and has instead favored the longer response. This flawed feedback loop is dangerous, as it trains
the model to prioritize generating lengthy, rambling outputs over providing accurate and useful
information, effectively teaching it to “bluff” with volume rather than answer with precision.
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Question:

Propose a suitable title for the below article

This article discusses the current state of the music industry and how technology has had an
impact on its evolution.

Answer 1:
“Technology and the Evolution of the Music Industry: A Current Perspective”

Answer 2:

Transforming the Music Industry: The Impact of Technology Instruction:Propose a suitable
title for the below poem

Input:The moon sits high in the night sky

The stars shimmer brightly

A whisper of soft breeze

A peaceful night’s delight

The stars are dancing

A gentle light

The night breeze caressing
A peaceful night’s delight

The stars, the night breeze

The moon sits high in the night sky

A beautiful night of delight

Output:The Moon and the Stars

Instruction:Propose a suitable title for the below essay

Input:Global warming is a major threat to the environment and is caused by human activities

Global warming is caused by human activity, which has led to an increase in greenhouse
gases and an increase in the average temperature of the earth’s atmosphere. Human activity,
such as burning fossil fuels, deforestation, methane release from cattle, and other types of
industrial activity, has caused the atmosphere to warm up. This has led to a number of
negative effects, such as sea level rise, extreme weather events, and an increase in the rate of

Reference:
Give Answer 1 a score of 10 and Answer 2 a score of 10

Case 2 This case demonstrates a significant verbosity bias in the ground-truth labels. Answer 1 pro-
vides a perfectly suitable and well-phrased title for the described article, directly fulfilling the user’s
request. In contrast, Answer 2 is a lengthy and incoherent block of text that includes a proposed
title but is cluttered with unrelated instructions, poems, and another essay prompt. Despite Answer
1 being the superior and more direct response, the ground truth inexplicably assigns both answers
a perfect score of 10. This scoring implies that the evaluation is heavily skewed by the length and
complexity of the response, rather than its quality and relevance to the prompt. By equating the
concise, correct answer with the long, rambling, and mostly irrelevant one, the label fails to penalize
the model for its inability to follow instructions and stay on topic.
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Case 3

Question:

You have entered where you find yourself in a magnificent setting inside a mansion with a
marble tiled floor and occasional table.

Answer 1:

As I step into the mansion, I am immediately impressed by its beauty and elegance. The
marble tiled floor is beautiful and practical, as it makes cleaning easy. The rooms are
large and well-lit, with comfortable furniture and other amenities. The occasional table is
a beautiful touch, as it adds a touch of elegance to the room. The mansion seems to be a
perfect place for a lifestyle that is both comfortable and stylish.

Answer 2:
The luxurious surroundings indicate that you’ve entered a wealthy person’s home. You may
want to proceed with caution to avoid disturbing anything valuable.

Reference:
Give Answer 1 a score of 7 and Answer 2 a score of 10

Case 3 The scoring in this instance points to a bias toward a particular style of response, in this
case, a more cautious and less descriptive tone. Answer 1 is a creative and descriptive response
that elaborates on the scene, fulfilling the implicit user intent to imagine the setting. It is detailed,
well-written, and directly engages with the prompt. Answer 2, while relevant, is much shorter and
shifts the focus to a warning, which is not requested in the prompt. Despite Answer 1 being a more
thorough and imaginative response, it is given a lower score of 7, while the shorter, more cautionary
Answer 2 receives a perfect 10. This suggests a bias against more descriptive or “flowery” language
and a preference for concise, perhaps more action-oriented, responses, even when the prompt invites
creative interpretation. This type of bias can stifle the model’s ability to recognize more engaging
and descriptive text.

30



	Introduction
	Assessing LLM-as-a-Judge with Sage
	Problem Formulation
	Symmetrized Evaluation Protocol
	Two Evaluation Metrics

	The Construction of Sage
	Experiment and Analysis
	Validating Metric Stability and Robustness
	Validating Sage as a Proxy for Robustness and Accuracy
	Evaluating LLM-as-a-Judge with Sage
	In-depth Analysis

	Conclusion
	Related Work
	Theoretical Analysis of Metric Stability
	Certifying Single-Pair Judgment Stability via Conformal Prediction
	Bounding the Variance of Per-Question Metrics
	Stability of Aggregate Benchmark Scores

	Detailed Experiment Setups
	Dataset Curation
	Pearson Correlation Coefficient
	Interpretation of the Coefficient
	Mathematical Formulation

	Coefficient of Variation
	Models

	Arena Hard Auto
	Evaluation Process
	Scores Calculation
	Model Performance Evaluation

	Additional Result
	Metric Consistency across Temperatures
	The performance of Fine-tuned Judges on Sage-Easy
	The Distribution of Tie Propotion on Sage-Easy

	Prompts and Case Study
	Prompt of Main Experiment
	Prompt of RewardBench2
	Prompt of Arena Hard Auto
	Biases in Training Dataset


