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Abstract

The output of subword tokenization can be
very different depending on what algorithm is
used. It is typically judged as more or less
plausible, depending on how much it corre-
sponds to human intuition. A subword vocab-
ulary overlap between manual and automatic
segmentation is an indicator of plausibility, but
it does not reveal much on how the process of
segmentation compares with human analysis.
In this study, we propose a new method to an-
alyze subword segmentation strategies relying
on a spatial analysis of the distribution of sub-
words’ lengths. Our experiments on English,
Finnish and Turkish show that humans tend
to balance creativity and consistency, while
algorithms tend to be either strongly biased
or inconsistent. To imitate humans better, al-
gorithms need to produce subword segments
of moderately uneven length, which can be
achieved by combining complementary strate-
gies.

1 Introduction

Words in natural languages consist of smaller units
which are traditionally studied in linguistic mor-
phology. While the exact form of the subword
structure is still debated in linguistics (Matthews,
1991; Anderson et al., 1992; Ackerman and Malouf,
2013), modern NLP increasingly exploits surface
segmentation of words for subword tokenization
(e.g. coworking can be split into colworkling). All
pretrained models based on BERT, for instance,
apply some kind of subword tokenization (Devlin
etal., 2019). Its purpose is to reduce the vocabulary
and solve the problem of unknown words.
Subword tokenization is a preprocessing step per-
formed by unsupervised algorithms prior to encod-
ing. Its output might correspond to human intuition
on how one should split words, but often it does not.
Agreement between automatic segmentation and
human intuition is typically regarded as plausibility
of automatic segmentation. It is widely accepted
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Figure 1: Segmentations’ examples on the words of
length 10: sweetgrass, tranquilly, canterbury.

that more plausible subword segmentation is bene-
ficial to downstream tasks. In particular, Park et al.
(2021); Bostrom and Durrett (2020) show that lin-
guistically motivated segmentation helps language
modelling, especially in languages with complex
words.

Numerous algorithms have been proposed for
splitting words into smaller units (Hammarstrom
and Borin, 2011). They can be divided into two
big classes: probabilistic models (Creutz and La-
gus, 2005; Kudo, 2018) and data compression al-
gorithms (Schuster and Nakajima, 2012; Sennrich
et al., 2016). Probabilistic models are typically
regarded as more capable of reproducing human
segmentations and thus yield more plausible seg-
ments.

The evaluation of segmentation plausibility can
be direct or indirect. Direct comparison is typi-
cally performed in the context of morphological
segmentation (Virpioja et al., 2011) and it consists
in measuring the agreement between manual and
automatic segments. Indirect evaluation is more
common in the context of subword tokenization
for downstream tasks: the plausibility of subword
segmentation is assessed via the performance on
a downstream task. Both of these approaches are
focused on the results of the segmentation, not the
process.

In this paper, we aim to find out how humans and



algorithms come up with divergent results. What
strategies should algorithms take in order to behave
more like human annotators? Which algorithms
are currently more like humans? To answer these
questions, we introduce a novel method for com-
paring segmentations by analyzing the length of
the resulting segments.

The lengths can be even (all subwords in a word
have similar lengths) or uneven (some subwords
are short and some are long) (Figure 1). We map
distributions of subwords’ lengths to an uneven-
ness index (one value per word-level token), and
plot these values in a two-dimensional space (word
length x unevenness index). This gives us scatter-
plots that can be analyzed with spatial statistical
methods and compared across different settings. In
this way, we can look for segmentation patterns at
a more abstract level and ask questions such as: Do
algorithms tend to produce more even segmenta-
tions than humans? Are segments in long words
more even than segments in short words?

Our analysis is intended to improve the current
understanding of how subword tokenization is done
and how it can be done better. This stands in con-
trast to the recent trends in NLP research aiming
at removing the subword tokenization step from
the processing pipeline (Xue et al., 2021; Clark
et al., 2021). We believe that finding the right sub-
word segmentation is still a valuable task, which
can eventually save processing time, resources, and
provide better performance.

2 Related Work

Previous works compare the segmentation algo-
rithms only as a part of improving particular down-
stream tasks. The general outline in these papers
consists of segmenting the input by different means,
and giving conclusions about the algorithms by as-
sessing the performance on the downstream tasks.
The majority of them work on neural machine trans-
lation (NMT) (Saleva and Lignos, 2021; Liu et al.,
2020; Ortega et al., 2020; Erdmann et al., 2019;
Scherrer et al., 2019; Ataman and Federico, 2018;
Banerjee and Bhattacharyya, 2018; Ataman et al.,
2017), some focus on language modelling (Park
et al., 2021; Bostrom and Durrett, 2020; Vania and
Lopez, 2017), and several on syntax, morphology
and semantics-related tasks, such as dependency
parsing, tagging and entity typing (Durrani et al.,
2019; Zhu et al., 2019). Typically, the segmenta-
tion methods chosen for comparison are BPE and

Morfessor (or based on them).

In general, we can see that there is no clear
preference towards BPE or Morfessor across pre-
vious works. Some papers claim that Morfessor
and Morfessor-like models work better (Park et al.,
2021; Bostrom and Durrett, 2020; Erdmann et al.,
2019; Ataman and Federico, 2018; Ataman et al.,
2017), while others report that better results are
obtained with BPE and BPE-based algorithms (Or-
tega et al., 2020). Several papers conclude that
there is no significant difference between BPE- and
Morfessor-like models (Saleva and Lignos, 2021),
and that there is no general recipe for subword tok-
enization that suits all languages and language pairs
(Scherrer et al., 2019; Banerjee and Bhattacharyya,
2018; Vania and Lopez, 2017), downstream tasks
(Zhu et al., 2019) and data size (Liu et al., 2020).

There have been attempts to create a hybrid seg-
mentation system, which has both Morfessor and
BPE components, hoping to achieve better results
on the downstream tasks. Saleva and Lignos (2021)
use a model MORSEL, which combines morpho-
logical rules together with the BPE algorithm; Or-
tega et al. (2020) introduce a BPE-Guided model
which uses a filter for morphological affixes ob-
tained from Wiktionary together with BPE; Baner-
jee and Bhattacharyya (2018) construct a model M-
BPE, which first splits words using Morfessor and
then applies BPE on the identified segments. While
sometimes they work better, the general trend re-
mains unstable, similar to the results of the baseline
Morfessor and BPE.

In addition to these conflicting results, we also
notice that the criteria for choosing the algorithms’
hyperparameters and the assessment of their result-
ing subwords are often vague and based on the
intuition of the authors. For example, the number
of BPE merges is often set to several thousands
or tens of thousands without particular explana-
tion. Vania and Lopez (2017) note that they choose
10K merges for their English dataset after trying
1K, 10K and 100K and manually examining the
resulting segments, because "10K gave the most
plausible segmentation" (Vania and Lopez, 2017,
p. 3). From the context, we can assume that the
plausibility of the segmentation is perceived by the
authors as the morphological segmentation they
would do by hand, following their linguistic intu-
ition.

There is less work that assesses the properties
of the resulting subwords vocabularies directly, in



addition to the indirect comparison by means of
downstream tasks (Sennrich et al., 2016; Bostrom
and Durrett, 2020). The authors compare the size
of the vocabularies (Sennrich et al., 2016) and the
frequencies of tokens depending on their length
(Bostrom and Durrett, 2020), and find that BPE
reduces vocabulary better than Morfessor, and that
the unigram LM method (similar to Morfessor)
tends to produce longer tokens on average and
makes more tokens of moderate frequency. On
the contrary, BPE favors shorter tokens of higher
frequency.

The work of Bostrom and Durrett (2020) exhibits
similar intuitions and thoughts on this issue as those
conveyed in (Vania and Lopez, 2017). In particular,
Bostrom and Durrett (2020) refer to intermediate
subwords (before 20K merges) produced by BPE
as "junk" and "meaningless single-character units",
implying that human-identified subwords are more
desirable (Bostrom and Durrett, 2020, p. 4619—
4620).

Our analysis offers a new way of reasoning about
segmentation methods. It reveals high-level strate-
gies that characterize human vs. automatic seg-
mentation and shows where they diverge. These
insights can be useful for making automatic meth-
ods more human-like when this is the goal.

3 Data and Methods

For this study, we need manually segmented texts
of areliable quality and with a high number of word
types. To our knowledge, the best freely available
dataset according to these criteria, is Aalto Morpho
project!, which provides segmentations for English,
Finnish and Turkish. The dataset provides more
than 1500 manually segmented word types in each
language as well as unsegmented corpora with mil-
lions of tokens (see more details in Appendix A).

We use this data set for both extracting manual
segmentation and training the algorithms. We train
the models on the full word lists, where we multiply
each word by its frequency, thus reconstructing the
original corpora. Once the models are trained, we
apply them to the unsegmented version of the gold
standard list.

In total, we use four different settings in our ex-
periments. In the first setting, we analyze the given
segmentations produced by human annotators and
call it Manual.

"http://morpho.aalto.fi/events/morphochallenge2010/
datasets.shtml

For the second setting, we use the Morfessor
Baseline model with the default hyperparameters
and refer to this setting as Morfessor.

Next, we define two settings using the BPE al-
gorithm with different stopping criteria. The first
BPE setting follows standard approaches with a
high number of BPE merges, defined as a function
of the initial vocabulary size. In particular, we fol-
low the approach introduced in (Mielke et al., 2019)
and used in (Park et al., 2021), which maximizes
the performance of the observed language models
on a sample of 64 languages. The number of BPE
merges is calculated as 0.4 x |V|, where |V| is the
size of the word types vocabulary in a tokenized
raw text (training data). The exact number of types,
tokens and BPE merges per language are listed in
Appendix A, B. We call this setting BPE-V.

The second BPE setting follows Gutierrez-
Vasques et al. (2021) in defining a low number
of merges, which gives similar information theo-
retic properties across languages. The idea is to
stop merging at the 200th iteration step, because
languages tend to minimize redundancy of their
subwords’ vocabularies at that step. We make this
method more equivalent to BPE-V by grouping to-
gether the remaining consecutive single units after
the merge 200. For example:

pP@@ hEPRIICE@ iIQRE@ p@CE@ P@RE IN@@ es
ph@@ il@@ ipp@@ in@@ es

The sequence in the first line is the original BPE
segmentation after 200 merges and the sequence in
the second line is our modification.

Typically, NLP practitioners do not use fewer
than 1K merges, however we consider this set-
ting to be especially contrasting to the standard,
vocabulary-based approach, and it suits well to our
purposes. We refer to this setting as BPE-200.

For BPE training and testing, we use a well-
known subword-nmt library (Sennrich et al., 2016),
and for Morfessor, we use the baseline model pro-
vided in the Morfessor 2.0 library (Smit et al.,
2014).

3.1 Unevenness Index (UI)

The gist of our approach lies in abstracting from
the actual words to their underlying structure rep-
resented as a sequence of subword lengths. We
assume the universal measure of word length to be
characters. Once we map characters to numbers,
where each character has a length of 1, we can
operate with mathematical notations.



In particular, we observe the resulting sequences
of segments as line segments. By envisioning each
segment as a line segment, we can measure their
lengths and relative proportions. We distinguish
between even and uneven sequences of segments
and compare their distributions across languages.

For example, given several words consisting of
10 characters, we can get segmentations, which
are characterized by different evenness: 1) one
segment of length 7 and two segments of length
2 and 1, 2) 5 segments each of length 2 or 3) 10
segments of lengths within a narrow range [1, 2, 3,
1, 2, 1] (Figure 1).

In order to formalize the property of even-
ness, we introduce the following unevenness index
(UD): UI = max(segments) — min(segments),
where segments is a set of segments’ lengths for
a given word. The lower the UI, the more even
the segmentation. When the UI equals zero, all
segments are of equal length, the segmentation is
strictly even. The segmentations on the Figure 1
are quantified by the Ul as: (1) 7 — 1 = 6, (2)
2—2=0and(3)3—-1=2.

Despite its seeming simplicity, our measure rep-
resents the intended properties well. It is highly
correlated with more complex measures, such as
variance. Pearson correlation between variance
and the Ul lies in the range from 0.561 (Finnish,
BPE-200) to 0.947 (English, Morfessor). All corre-
lations are provided in Appendix B.

Our main analysis consists of establishing a rela-
tionship between segmentation evenness and word
length. We observe the properties of the distri-
bution and formalize them by applying specific
metrics.

Since the UI depends on word length, it has an
upper bound. The highest value for a certain word
length L is calculated as (L—1)—1 = L—2, where
(L — 1) is the biggest possible segment length for a
given word length and 1 is the smallest one. Thus,
the whole distribution has a linear bound y = z —2,
where x is the word length and y is the UL

3.2 Ul Density Analysis with Kernel Density
Estimation (KDE)

To compare Ul distributions across different set-
tings and languages, we create a scatter plot (word
length x UI). We first identify the density areas
using Kernel Density Estimation (KDE) and then
extract a single numerical attribute (KDE upper an-
gle) for each distribution. In the remainder of this

section, we describe these two steps in more detail.

First, we find the densest area by applying the
KDE algorithm, which provides a non-parametric
way to estimate the probability density function of a
distribution. Since we do not know the properties of
our distribution in advance, KDE is a good choice
to estimate the density function and thus highlight
the most densely populated areas.

After applying the kernel function to every sin-
gle point in the data, all the n kernel functions are
summed and divided by the number of data points.
The Equation 1 describes the standard KDE proce-
dure. The standard KDE algorithm operates on one
dimension, and uses kernel as a weighting function:
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where x4, ..., x, are the data points, K is a ker-
nel function and b is a bandwidth (Ripley, 2002,
pp- 126).

The only parameters to be chosen in KDE are
the kernel function and the bandwidth. The kernel
function K is typically chosen to be a probabil-
ity density function. The bandwidth b determines
the width of the smoothing window. Since our
data is two-dimensional (capturing the dependence
between the UI and word length), we perform a
two-dimensional kernel density estimation:

. =1 K ((z — ;) /ba) K ((y — y;)/by)
flz,y) = i nb;by

2

where K is the kernel, b, and b, are bandwidths

in both directions. The kernel is aligned to the

axes and evaluated on a square grid. (Ripley, 2002,
pp. 130-131)

We use the R implementation of the two-
dimensional KDE, in particular the function
kde2d() from the MASS package’ with the de-
fault kernel and bandwidth settings. The kernel
we use is the standard normal density function.
The bandwidth values are the same for b, and b,,
and are estimated using Silverman’s rule-of-thumb
(Silverman, 1986, p. 48, eqn. 3.31), which de-
pends on the interquartile range and the standard
deviation of the kernel. For visualization, we use
the package ggplot2 in R, in particular the func-
tion geom_density_2d_filled, which invokes the

Zhttps://cran.r-project.org/web/packages/MASS/index.html



function kde2d(). The function performs a two-
dimensional kernel density estimation and, depend-
ing on the level of density, fills the identified areas
with different colors. We set three bins of density,
where the areas of our interest show the density
core and its outline. The resulting plots are shown
in Figure 2.

3.2.1 KDE upper angle

Once the density area is identified, we fit to it two
diagonals (consider the diagonal lines in Figure
2). The left diagonal is determined by the upper
bound function y = x — 2. For the right diagonal,
we first identify the two extreme points inside the
dense region: the point with the maximum x and
the maximum y values. If there are several points
with the maximum value, we take the first point
in the dataset. Once the two points are found, we
construct another linear function.

The angle resulting from the intersection of the
diagonals is our measure of the UI preferences in
longer words. The more obtuse the upper angle, the
more dense the region of low UI values in longer
words, meaning that there is a strong preference for
even segmentations. In contrast, when the angle is
less obtuse, the longer words with low UI values are
rare, and the preference for the UI in longer words
is either undefined or inclined towards uneven seg-
mentations. The choice of this particular angle is
also motivated by the Menzerath-Altmann’s law
(Menzerath, 1954, p. 101), according to which the
longer a word, the smaller the parts. Thus, the Ul
values for longer words are expected to be low.

Note that we introduce a slight noise in the cal-
culation of the KDE upper angle, so the value can
differ in +-3 degrees. For this reason, we take the
measurements 100 times and report the mean re-
sults. The plots in Figure 2 represent the closest
value to the mean, found during 100 iterations.

3.3 UI Surface Coverage

Another way of analyzing the UI distribution is to
observe all the manifested pairs of the UI and word
length values versus all the combinatorial possibili-
ties. This concept we call the surface coverage.

In order to establish the space of all the combina-
torial possibilities of the Ul and word length values,
we first identify the point with the maximum word
length for a given language (the rightmost point in
Figure 2). This point serves to identify the right ver-
tical side of the surface coverage triangle, that is, an
x-intercept line x = max(x). The left side of this

triangle is determined by the linear upper bound
function y = x — 2. This is the diagonal upper
bound on the UI distribution described above.

Once the sides of the triangle are established,
we can quantify the filled area. The value of the
surface coverage is calculated as a division of the
manifested points by all the points inside the tri-
angle. Thus, the highest possible value is 1, when
the whole triangle is filled, and the lowest value
is close to 0. The resulting triangle shows the ten-
dency of a particular setting and language to occupy
the combinatorial possibilities of the UI and word
lengths.

3.4 Ul Frequency Analysis

The last analysis that we introduce captures the seg-
mentations’ properties independent of word length,
and continues the work presented in (Bostrom and
Durrett, 2020). We fit the function y = ax~b from
the power law family to the UI values and their fre-
quencies, across all word lengths. The parameter
a describes the slope of the curve, and the parame-
ter b is connected to the concaveness of the curve.
Since the parameter a is highly correlated to the
overall frequency, we concentrate on the parameter
b and refer to it as to a frequency parameter.

The parameter b shapes the tail of the distribu-
tion and makes the turn of the curve more or less
convex. In our case, we observe only negative val-
ues of b (decreasing curves), thus, we incorporate
the minus sign already in the formula, and discuss
the absolute values of b. When the value of b is
close to zero, the frequencies in the tail of the dis-
tribution get higher, the shape of the turn is less
convex. The bigger the value of b, the lower the tail
of the distribution, and the more convex the turn of
the curve.

Since shorter words have few combinations of
possible subword splits, the lowest values of the Ul
are expected to be the most frequent: both shorter
and longer words fall into this category of values.
In contrast, larger values of the UI can only be
present in longer words (indicating uneven segmen-
tations). Thus, the frequency in the tail region of
the Ul distribution is of more interest for us. Note
that shorter words tend to be the most frequent
in general (Zipf, 1935), which also supports our
choice of the function.
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Figure 2: KDE upper angle measured on (a) English, (b) Finnish and (c) Turkish data. From up to down: BPE-200,
BPE-V, Morfessor and Manual. The size of the points depends on the frequency of the given UI for the given word

length. The colors depict the levels of density:
is in blue, and the least dense area is in purple.

4 Results

4.1 Human segmentations are moderately
uneven

The main outcome of our experiments is that none
of the usual algorithms patterns with human seg-
mentation. We can see in Figure 2 what makes man-
ual segmentation optimal. The longer the words,
the more consistent the UI values: they neither
stick to the bottom as BPE-200 (predominantly
even splits), nor go too high as in the case of Mor-
fessor (predominantly uneven splits).

We observe an interesting pattern regarding the
different levels of density. Here, manual segmenta-
tion patterns with BPE-200 in well-defined density
regions (large yellow, small blue areas), while rel-
atively big blue areas in BPE-V and Morfessor
indicate poor density, i.e. little consistency.

is in yellow, the second dense area

Figure 3 shows the distribution of the KDE upper
angle values. It confirms that the manual setting is
indeed somewhere in the middle compared to the
algorithms: smaller than BPE-200 and bigger than
the other two. Very uneven segments result in the
lowest values for Morfessor here, and especially for
Finnish and Turkish, which is somewhat surprising
given that Morfessor is originally conceived for
processing such languages.

Figure 4 shows the UI surface coverage, where
the manual setting again seems remarkable. It has
the highest values of the Ul surface coverage across
settings. This means that humans use the most ver-
satile splits for subword segmentations, thus filling
the combinatorial space the most. Apparently, hu-
mans are more creative in how to deal with longer
words, and allow subwords of various lengths.

In this sense, Morfessor seems to be the closest
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to manual segmentations, yet it does not reach the
UI surface coverage of humans.

Figure 5 shows the frequency analysis indicat-
ing that manual segmentations fit the power law
function the least (the curve is least convex), while
algorithms show better fits. Here too, Morfessor is
the closest to humans, especially on English and
Turkish. While the patterns apply across languages
in all the other settings, the manual annotation of
Finnish in this setting looks different. It shows that
human annotators choose uneven splits more of-
ten, causing the tail of the frequency function to be
higher.

From our results, we can see that the general
recipe for getting closer to human linguistic intu-
ition is to seek uneven segmentations but not allow
too much variation. A way to achieve this could be
by means of parameter tuning or by hybrid strate-
gies combining first BPE merges (as in BPE-200)
with some additional models or strategies for longer
subwords.

4.2 BPE-V is closer to Morfessor, than to
BPE-200

The second major outcome of our study, which
sheds light on the absence of "one-fit-all" solu-
tion, is the similarity of BPE-V and Morfessor’s

segmentation strategies. From the Figure 2 we
can notice that both of these methods are prone
to noise, especially in the agglutinative languages
Finnish and Turkish. This is particularly unex-
pected, since the morphological structure of these
languages allows finding more regular subwords,
yielding better-defined density regions. We specu-
late that fine-tuning of Morfessor could reduce the
noisy zone (blue area) and provide better results on
Turkish, as shown in (Ataman et al., 2017; Ataman
and Federico, 2018).

English processed by BPE-V and Morfessor
looks the most distinct: Morfessor creates much
more frequent uneven splits, while BPE-V shows a
stronger tendency towards even splits (sticking to
the x-axis). Manual segmentation is, as discussed
in Section 4.1, somewhere in between.

In terms of the UI surface coverage, all of the
algorithms are close to each other, showing only
minimal differences. When it comes to the Ul
frequency parameter, BPE-V and Morfessor are
much closer to each other (mean values 0.86 and
0.61) than to BPE-200 (mean value 1.28). One
more statistic that confirms this pattern is the mean
subword length. Here too, BPE-V and Morfessor
pattern together (mean subword length across lan-
guages is 6.974 in BPE-V and 6.709 in Morfessor)
and opposite to BPE-200 (1.894). As expected
from the other results, the manual setting is in be-
tween with the value of 3.673. (Full details in
Appendix A.)

From this analysis, we conclude that it is highly
unlikely to see a consistent winner when comparing
BPE-V and Morfessor (or similar models). They
are alike in many respects, yet both rather incon-
sistent and unpredictable. The same suggestions
as in 4.1 should improve the consistency in their
evaluation too.

4.3 BPE-200 as a new strategy

BPE-200 stands out in comparison to the other al-
gorithms. Its Ul density is well-defined, as in the
manual setting, but its position is very different
from both manual and other algorithms. Compared
to humans, BPE-200 exaggerates on even splits,
making the majority of segmentations look like the
middle pattern in Figure 1 (pattern 2). This prop-
erty sheds new light on the findings by Gutierrez-
Vasques et al. (2021). At the same time, Figure
3 shows that BPE-200 produces the most similar
and predictable distributions of the UI across lan-



guages, which is behavior that can be expected
from the information-theoric properties discussed
by Gutierrez-Vasques et al. (2021). This suggests
that the number of BPE merges should be lower
than 1K when working on multilingual samples.

The BPE-200 setting shows an interesting dif-
ference in the Ul frequency analysis as well. In
all the languages, the parameter b of the function
y = ax~ b gets the highest absolute values. This
means that the smallest values of the UI are the
most frequent, the tail of the distribution is low
and infrequent, and the turn of the curve is promi-
nently convex. Such curves are typical for natural
distributions, such as in Zipf’s law applied to word
tokens (Zipf, 1935). In manual segmentation, we
do not see this effect because of the poor function
fit: the most frequent Ul in this setting is not 0, as
expected for a peak in the power law function, but
is situated on the UI of 3 (English, Turkish) and 4
(Finnish) (see plots example in Appendix C, Figure
6). While the UI value of O is the most frequent
in all of the algorithms, BPE-200 is the only one
showing a clear peak in frequencies, while BPE-V
and Morfessor tend to smooth out the peak and
lengthen the tail.

We conclude from this analysis that BPE-200
might be a fruitful subword tokenization method
on multilingual datasets, but further experiments
on downstream tasks are needed in order to confirm
this.

5 Discussion

All our analyses are based on measuring the length
of subwords in characters. One might argue that
this works well only for alphabetic scripts. We
underline that the same approach can be applied
to other scripts as well if the same convention is
defined for measuring subwords’ length across all
the settings.

Thus, if we analyze Hindi, and our length unit
is a syllable, we can compare it to other languages
with Brahmic scripts with no problem. It might be
more problematic to compare languages of differ-
ent scripts to each other, however. The bigger the
unit of measure in the sense of information load
(character < syllable < logograph), the smaller the
possible combinatorial space for the analysis. Thus,
Chinese would take only the UI values up to 4-5
because words consisting of more than 5-6 charac-
ters are extremely rare. However, we do not expect
the findings established in our analyses to change
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settings

much due to these differences; if needed, they can
be measured (Sproat and Gutkin, 2021) and added
to the calculations.

This limitation might impact more fine-grained
analyses in future work. For now, we note that
the majority of languages use alphabetic writing
systems. In the future, we plan to extend our ap-
proach to the other scripts and try to find smaller,
more comparable units in non-alphabetic scripts
(e.g. strokes in Chinese characters (Priin, 1994)).

Another direction of our work includes extrac-
tion of the other attributes, e.g. KDE right angle.
This metric can help to compare segmentations in
more detail and quantify humans’ moderate choice
of uneven splits.

6 Conclusion

In our study, we introduced a novel method to
analyze and compare various approaches to sub-
word segmentation using spatial analysis of the
subwords’ lengths. We demonstrated that humans
produce indeed the most optimal segmentation, in
contrast to all algorithms which tend to be biased
towards some values and are also inconsistent. We
argue that human segmentation, which is neither
too even nor too uneven (Figure 1 (3)), can be imi-
tated better by means of hyperparameters tuning in
combination with the low-noise solution shown by
BPE-200.

We discovered that the usual BPE settings (BPE-
V) are close to Morfessor and tend to produce un-
even splits (Figure 1 (1)), while BPE-200 strongly
prefers even splits (Figure 1 (2)). The even patterns
produced by BPE-200 make subword lengths very
similar across languages. This could be exploited
for better cross-linguistic representations in future
work.
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A Data Metrics

Word Tist Word Tist Gold
Language | (tokens) (types) standard
English 221,715,953 | 878,036 1686
Finnish 65,734,026 2,928,030 | 1835
Turkish 12,862,393 617,298 1760

Table 1: Number of tokens and types in the dataset.

Language | BPE-200 | BPE-V | Morf | Man
English 1.894 6.974 6.709 | 3.673
Finnish 1.993 9.184 8.159 | 3.813
Turkish 1.991 7.011 6.573 | 3.149

Table 2: Mean length of subwords in the different set-
tings. Morf stands for Morfessor, Man stands for Man-
ual.

B Calculation Details

Language | BPE-V merges
English 351,214
Finnish 1,171,212
Turkish 246,919

Table 3: Number of calculated BPE merges for the set-
ting BPE-V. The values are rounded to integers.

Language | BPE-200 | BPE-V | Morf | Man
English 0.788 0.876 0.947 | 0.869
Finnish 0.561 0.914 0.924 | 0.784
Turkish 0.716 0.925 0.929 | 0.827

Table 4: Correlation of the Ul with variance across lan-
guages and settings.

Language | BPE-200 | BPE-V | Morf Man

English 45,660 2,212 2,349 105,437
Finnish 371,727 11,001 14,048 | 198,374
Turkish 149,425 8,206 13,535 | 121,346

Table 5: Residual sum of squares for the frequency
function fit, lower is better.

C Results: Additional Tables and

Figures
Language | BPE-200 | BPE-V | Morf Man
English 126.134 104.750 | 87.052 | 93.307
Finnish 121.247 83.498 71.706 | 102.895
Turkish 118.110 87.552 60.754 | 91.871

Table 6: KDE upper angle values in English, Finnish
and Turkish.
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Language | BPE-200 | BPE-V | Morf | Man
English 0.319 0.275 0.346 | 0.443
Finnish 0.170 0.190 0.247 | 0.317
Turkish 0.215 0.212 0.271 | 0.339

Table 7: Ul surface coverage values in English, Finnish
and Turkish.

Language | BPE-200 | BPE-V | Morf | Man
English 1.643 0.985 0.503 | 0.482
Finnish 1.022 0.723 0.714 | 0.344
Turkish 1.177 0.883 0.613 | 0.681

Table 8: UI frequency parameter (b) values in English,
Finnish and Turkish.
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