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Abstract

The output of subword tokenization can be001
very different depending on what algorithm is002
used. It is typically judged as more or less003
plausible, depending on how much it corre-004
sponds to human intuition. A subword vocab-005
ulary overlap between manual and automatic006
segmentation is an indicator of plausibility, but007
it does not reveal much on how the process of008
segmentation compares with human analysis.009
In this study, we propose a new method to an-010
alyze subword segmentation strategies relying011
on a spatial analysis of the distribution of sub-012
words’ lengths. Our experiments on English,013
Finnish and Turkish show that humans tend014
to balance creativity and consistency, while015
algorithms tend to be either strongly biased016
or inconsistent. To imitate humans better, al-017
gorithms need to produce subword segments018
of moderately uneven length, which can be019
achieved by combining complementary strate-020
gies.021

1 Introduction022

Words in natural languages consist of smaller units023

which are traditionally studied in linguistic mor-024

phology. While the exact form of the subword025

structure is still debated in linguistics (Matthews,026

1991; Anderson et al., 1992; Ackerman and Malouf,027

2013), modern NLP increasingly exploits surface028

segmentation of words for subword tokenization029

(e.g. coworking can be split into co|work|ing). All030

pretrained models based on BERT, for instance,031

apply some kind of subword tokenization (Devlin032

et al., 2019). Its purpose is to reduce the vocabulary033

and solve the problem of unknown words.034

Subword tokenization is a preprocessing step per-035

formed by unsupervised algorithms prior to encod-036

ing. Its output might correspond to human intuition037

on how one should split words, but often it does not.038

Agreement between automatic segmentation and039

human intuition is typically regarded as plausibility040

of automatic segmentation. It is widely accepted041

Figure 1: Segmentations’ examples on the words of
length 10: sweetgrass, tranquilly, canterbury.

that more plausible subword segmentation is bene- 042

ficial to downstream tasks. In particular, Park et al. 043

(2021); Bostrom and Durrett (2020) show that lin- 044

guistically motivated segmentation helps language 045

modelling, especially in languages with complex 046

words. 047

Numerous algorithms have been proposed for 048

splitting words into smaller units (Hammarström 049

and Borin, 2011). They can be divided into two 050

big classes: probabilistic models (Creutz and La- 051

gus, 2005; Kudo, 2018) and data compression al- 052

gorithms (Schuster and Nakajima, 2012; Sennrich 053

et al., 2016). Probabilistic models are typically 054

regarded as more capable of reproducing human 055

segmentations and thus yield more plausible seg- 056

ments. 057

The evaluation of segmentation plausibility can 058

be direct or indirect. Direct comparison is typi- 059

cally performed in the context of morphological 060

segmentation (Virpioja et al., 2011) and it consists 061

in measuring the agreement between manual and 062

automatic segments. Indirect evaluation is more 063

common in the context of subword tokenization 064

for downstream tasks: the plausibility of subword 065

segmentation is assessed via the performance on 066

a downstream task. Both of these approaches are 067

focused on the results of the segmentation, not the 068

process. 069

In this paper, we aim to find out how humans and 070
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algorithms come up with divergent results. What071

strategies should algorithms take in order to behave072

more like human annotators? Which algorithms073

are currently more like humans? To answer these074

questions, we introduce a novel method for com-075

paring segmentations by analyzing the length of076

the resulting segments.077

The lengths can be even (all subwords in a word078

have similar lengths) or uneven (some subwords079

are short and some are long) (Figure 1). We map080

distributions of subwords’ lengths to an uneven-081

ness index (one value per word-level token), and082

plot these values in a two-dimensional space (word083

length × unevenness index). This gives us scatter-084

plots that can be analyzed with spatial statistical085

methods and compared across different settings. In086

this way, we can look for segmentation patterns at087

a more abstract level and ask questions such as: Do088

algorithms tend to produce more even segmenta-089

tions than humans? Are segments in long words090

more even than segments in short words?091

Our analysis is intended to improve the current092

understanding of how subword tokenization is done093

and how it can be done better. This stands in con-094

trast to the recent trends in NLP research aiming095

at removing the subword tokenization step from096

the processing pipeline (Xue et al., 2021; Clark097

et al., 2021). We believe that finding the right sub-098

word segmentation is still a valuable task, which099

can eventually save processing time, resources, and100

provide better performance.101

2 Related Work102

Previous works compare the segmentation algo-103

rithms only as a part of improving particular down-104

stream tasks. The general outline in these papers105

consists of segmenting the input by different means,106

and giving conclusions about the algorithms by as-107

sessing the performance on the downstream tasks.108

The majority of them work on neural machine trans-109

lation (NMT) (Saleva and Lignos, 2021; Liu et al.,110

2020; Ortega et al., 2020; Erdmann et al., 2019;111

Scherrer et al., 2019; Ataman and Federico, 2018;112

Banerjee and Bhattacharyya, 2018; Ataman et al.,113

2017), some focus on language modelling (Park114

et al., 2021; Bostrom and Durrett, 2020; Vania and115

Lopez, 2017), and several on syntax, morphology116

and semantics-related tasks, such as dependency117

parsing, tagging and entity typing (Durrani et al.,118

2019; Zhu et al., 2019). Typically, the segmenta-119

tion methods chosen for comparison are BPE and120

Morfessor (or based on them). 121

In general, we can see that there is no clear 122

preference towards BPE or Morfessor across pre- 123

vious works. Some papers claim that Morfessor 124

and Morfessor-like models work better (Park et al., 125

2021; Bostrom and Durrett, 2020; Erdmann et al., 126

2019; Ataman and Federico, 2018; Ataman et al., 127

2017), while others report that better results are 128

obtained with BPE and BPE-based algorithms (Or- 129

tega et al., 2020). Several papers conclude that 130

there is no significant difference between BPE- and 131

Morfessor-like models (Saleva and Lignos, 2021), 132

and that there is no general recipe for subword tok- 133

enization that suits all languages and language pairs 134

(Scherrer et al., 2019; Banerjee and Bhattacharyya, 135

2018; Vania and Lopez, 2017), downstream tasks 136

(Zhu et al., 2019) and data size (Liu et al., 2020). 137

There have been attempts to create a hybrid seg- 138

mentation system, which has both Morfessor and 139

BPE components, hoping to achieve better results 140

on the downstream tasks. Saleva and Lignos (2021) 141

use a model MORSEL, which combines morpho- 142

logical rules together with the BPE algorithm; Or- 143

tega et al. (2020) introduce a BPE-Guided model 144

which uses a filter for morphological affixes ob- 145

tained from Wiktionary together with BPE; Baner- 146

jee and Bhattacharyya (2018) construct a model M- 147

BPE, which first splits words using Morfessor and 148

then applies BPE on the identified segments. While 149

sometimes they work better, the general trend re- 150

mains unstable, similar to the results of the baseline 151

Morfessor and BPE. 152

In addition to these conflicting results, we also 153

notice that the criteria for choosing the algorithms’ 154

hyperparameters and the assessment of their result- 155

ing subwords are often vague and based on the 156

intuition of the authors. For example, the number 157

of BPE merges is often set to several thousands 158

or tens of thousands without particular explana- 159

tion. Vania and Lopez (2017) note that they choose 160

10K merges for their English dataset after trying 161

1K, 10K and 100K and manually examining the 162

resulting segments, because "10K gave the most 163

plausible segmentation" (Vania and Lopez, 2017, 164

p. 3). From the context, we can assume that the 165

plausibility of the segmentation is perceived by the 166

authors as the morphological segmentation they 167

would do by hand, following their linguistic intu- 168

ition. 169

There is less work that assesses the properties 170

of the resulting subwords vocabularies directly, in 171
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addition to the indirect comparison by means of172

downstream tasks (Sennrich et al., 2016; Bostrom173

and Durrett, 2020). The authors compare the size174

of the vocabularies (Sennrich et al., 2016) and the175

frequencies of tokens depending on their length176

(Bostrom and Durrett, 2020), and find that BPE177

reduces vocabulary better than Morfessor, and that178

the unigram LM method (similar to Morfessor)179

tends to produce longer tokens on average and180

makes more tokens of moderate frequency. On181

the contrary, BPE favors shorter tokens of higher182

frequency.183

The work of Bostrom and Durrett (2020) exhibits184

similar intuitions and thoughts on this issue as those185

conveyed in (Vania and Lopez, 2017). In particular,186

Bostrom and Durrett (2020) refer to intermediate187

subwords (before 20K merges) produced by BPE188

as "junk" and "meaningless single-character units",189

implying that human-identified subwords are more190

desirable (Bostrom and Durrett, 2020, p. 4619–191

4620).192

Our analysis offers a new way of reasoning about193

segmentation methods. It reveals high-level strate-194

gies that characterize human vs. automatic seg-195

mentation and shows where they diverge. These196

insights can be useful for making automatic meth-197

ods more human-like when this is the goal.198

3 Data and Methods199

For this study, we need manually segmented texts200

of a reliable quality and with a high number of word201

types. To our knowledge, the best freely available202

dataset according to these criteria, is Aalto Morpho203

project1, which provides segmentations for English,204

Finnish and Turkish. The dataset provides more205

than 1500 manually segmented word types in each206

language as well as unsegmented corpora with mil-207

lions of tokens (see more details in Appendix A).208

We use this data set for both extracting manual209

segmentation and training the algorithms. We train210

the models on the full word lists, where we multiply211

each word by its frequency, thus reconstructing the212

original corpora. Once the models are trained, we213

apply them to the unsegmented version of the gold214

standard list.215

In total, we use four different settings in our ex-216

periments. In the first setting, we analyze the given217

segmentations produced by human annotators and218

call it Manual.219

1http://morpho.aalto.fi/events/morphochallenge2010/
datasets.shtml

For the second setting, we use the Morfessor 220

Baseline model with the default hyperparameters 221

and refer to this setting as Morfessor. 222

Next, we define two settings using the BPE al- 223

gorithm with different stopping criteria. The first 224

BPE setting follows standard approaches with a 225

high number of BPE merges, defined as a function 226

of the initial vocabulary size. In particular, we fol- 227

low the approach introduced in (Mielke et al., 2019) 228

and used in (Park et al., 2021), which maximizes 229

the performance of the observed language models 230

on a sample of 64 languages. The number of BPE 231

merges is calculated as 0.4× |V |, where |V | is the 232

size of the word types vocabulary in a tokenized 233

raw text (training data). The exact number of types, 234

tokens and BPE merges per language are listed in 235

Appendix A, B. We call this setting BPE-V. 236

The second BPE setting follows Gutierrez- 237

Vasques et al. (2021) in defining a low number 238

of merges, which gives similar information theo- 239

retic properties across languages. The idea is to 240

stop merging at the 200th iteration step, because 241

languages tend to minimize redundancy of their 242

subwords’ vocabularies at that step. We make this 243

method more equivalent to BPE-V by grouping to- 244

gether the remaining consecutive single units after 245

the merge 200. For example: 246

p@@ h@@ il@@ i@@ p@@ p@@ in@@ es 247

ph@@ il@@ ipp@@ in@@ es 248

The sequence in the first line is the original BPE 249

segmentation after 200 merges and the sequence in 250

the second line is our modification. 251

Typically, NLP practitioners do not use fewer 252

than 1K merges, however we consider this set- 253

ting to be especially contrasting to the standard, 254

vocabulary-based approach, and it suits well to our 255

purposes. We refer to this setting as BPE-200. 256

For BPE training and testing, we use a well- 257

known subword-nmt library (Sennrich et al., 2016), 258

and for Morfessor, we use the baseline model pro- 259

vided in the Morfessor 2.0 library (Smit et al., 260

2014). 261

3.1 Unevenness Index (UI) 262

The gist of our approach lies in abstracting from 263

the actual words to their underlying structure rep- 264

resented as a sequence of subword lengths. We 265

assume the universal measure of word length to be 266

characters. Once we map characters to numbers, 267

where each character has a length of 1, we can 268

operate with mathematical notations. 269
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In particular, we observe the resulting sequences270

of segments as line segments. By envisioning each271

segment as a line segment, we can measure their272

lengths and relative proportions. We distinguish273

between even and uneven sequences of segments274

and compare their distributions across languages.275

For example, given several words consisting of276

10 characters, we can get segmentations, which277

are characterized by different evenness: 1) one278

segment of length 7 and two segments of length279

2 and 1, 2) 5 segments each of length 2 or 3) 10280

segments of lengths within a narrow range [1, 2, 3,281

1, 2, 1] (Figure 1).282

In order to formalize the property of even-283

ness, we introduce the following unevenness index284

(UI): UI = max(segments)−min(segments),285

where segments is a set of segments’ lengths for286

a given word. The lower the UI, the more even287

the segmentation. When the UI equals zero, all288

segments are of equal length, the segmentation is289

strictly even. The segmentations on the Figure 1290

are quantified by the UI as: (1) 7 − 1 = 6, (2)291

2− 2 = 0 and (3) 3− 1 = 2.292

Despite its seeming simplicity, our measure rep-293

resents the intended properties well. It is highly294

correlated with more complex measures, such as295

variance. Pearson correlation between variance296

and the UI lies in the range from 0.561 (Finnish,297

BPE-200) to 0.947 (English, Morfessor). All corre-298

lations are provided in Appendix B.299

Our main analysis consists of establishing a rela-300

tionship between segmentation evenness and word301

length. We observe the properties of the distri-302

bution and formalize them by applying specific303

metrics.304

Since the UI depends on word length, it has an305

upper bound. The highest value for a certain word306

length L is calculated as (L−1)−1 = L−2, where307

(L− 1) is the biggest possible segment length for a308

given word length and 1 is the smallest one. Thus,309

the whole distribution has a linear bound y = x−2,310

where x is the word length and y is the UI.311

3.2 UI Density Analysis with Kernel Density312

Estimation (KDE)313

To compare UI distributions across different set-314

tings and languages, we create a scatter plot (word315

length × UI). We first identify the density areas316

using Kernel Density Estimation (KDE) and then317

extract a single numerical attribute (KDE upper an-318

gle) for each distribution. In the remainder of this319

section, we describe these two steps in more detail. 320

First, we find the densest area by applying the 321

KDE algorithm, which provides a non-parametric 322

way to estimate the probability density function of a 323

distribution. Since we do not know the properties of 324

our distribution in advance, KDE is a good choice 325

to estimate the density function and thus highlight 326

the most densely populated areas. 327

After applying the kernel function to every sin- 328

gle point in the data, all the n kernel functions are 329

summed and divided by the number of data points. 330

The Equation 1 describes the standard KDE proce- 331

dure. The standard KDE algorithm operates on one 332

dimension, and uses kernel as a weighting function: 333

f̂(x) =
1

nb

n∑
j=1

K(
x− xj

b
) (1) 334

where x1, ..., xn are the data points, K is a ker- 335

nel function and b is a bandwidth (Ripley, 2002, 336

pp. 126). 337

The only parameters to be chosen in KDE are 338

the kernel function and the bandwidth. The kernel 339

function K is typically chosen to be a probabil- 340

ity density function. The bandwidth b determines 341

the width of the smoothing window. Since our 342

data is two-dimensional (capturing the dependence 343

between the UI and word length), we perform a 344

two-dimensional kernel density estimation: 345

f̂(x, y) =

∑n
j=1K((x− xj)/bx)K((y − yj)/by)

nbxby
(2) 346

where K is the kernel, bx and by are bandwidths 347

in both directions. The kernel is aligned to the 348

axes and evaluated on a square grid. (Ripley, 2002, 349

pp. 130–131) 350

We use the R implementation of the two- 351

dimensional KDE, in particular the function 352

kde2d() from the MASS package2 with the de- 353

fault kernel and bandwidth settings. The kernel 354

we use is the standard normal density function. 355

The bandwidth values are the same for bx and by, 356

and are estimated using Silverman’s rule-of-thumb 357

(Silverman, 1986, p. 48, eqn. 3.31), which de- 358

pends on the interquartile range and the standard 359

deviation of the kernel. For visualization, we use 360

the package ggplot2 in R, in particular the func- 361

tion geom_density_2d_filled, which invokes the 362

2https://cran.r-project.org/web/packages/MASS/index.html
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function kde2d(). The function performs a two-363

dimensional kernel density estimation and, depend-364

ing on the level of density, fills the identified areas365

with different colors. We set three bins of density,366

where the areas of our interest show the density367

core and its outline. The resulting plots are shown368

in Figure 2.369

3.2.1 KDE upper angle370

Once the density area is identified, we fit to it two371

diagonals (consider the diagonal lines in Figure372

2). The left diagonal is determined by the upper373

bound function y = x− 2. For the right diagonal,374

we first identify the two extreme points inside the375

dense region: the point with the maximum x and376

the maximum y values. If there are several points377

with the maximum value, we take the first point378

in the dataset. Once the two points are found, we379

construct another linear function.380

The angle resulting from the intersection of the381

diagonals is our measure of the UI preferences in382

longer words. The more obtuse the upper angle, the383

more dense the region of low UI values in longer384

words, meaning that there is a strong preference for385

even segmentations. In contrast, when the angle is386

less obtuse, the longer words with low UI values are387

rare, and the preference for the UI in longer words388

is either undefined or inclined towards uneven seg-389

mentations. The choice of this particular angle is390

also motivated by the Menzerath-Altmann’s law391

(Menzerath, 1954, p. 101), according to which the392

longer a word, the smaller the parts. Thus, the UI393

values for longer words are expected to be low.394

Note that we introduce a slight noise in the cal-395

culation of the KDE upper angle, so the value can396

differ in +-3 degrees. For this reason, we take the397

measurements 100 times and report the mean re-398

sults. The plots in Figure 2 represent the closest399

value to the mean, found during 100 iterations.400

3.3 UI Surface Coverage401

Another way of analyzing the UI distribution is to402

observe all the manifested pairs of the UI and word403

length values versus all the combinatorial possibili-404

ties. This concept we call the surface coverage.405

In order to establish the space of all the combina-406

torial possibilities of the UI and word length values,407

we first identify the point with the maximum word408

length for a given language (the rightmost point in409

Figure 2). This point serves to identify the right ver-410

tical side of the surface coverage triangle, that is, an411

x-intercept line x = max(x). The left side of this412

triangle is determined by the linear upper bound 413

function y = x − 2. This is the diagonal upper 414

bound on the UI distribution described above. 415

Once the sides of the triangle are established, 416

we can quantify the filled area. The value of the 417

surface coverage is calculated as a division of the 418

manifested points by all the points inside the tri- 419

angle. Thus, the highest possible value is 1, when 420

the whole triangle is filled, and the lowest value 421

is close to 0. The resulting triangle shows the ten- 422

dency of a particular setting and language to occupy 423

the combinatorial possibilities of the UI and word 424

lengths. 425

3.4 UI Frequency Analysis 426

The last analysis that we introduce captures the seg- 427

mentations’ properties independent of word length, 428

and continues the work presented in (Bostrom and 429

Durrett, 2020). We fit the function y = ax−b from 430

the power law family to the UI values and their fre- 431

quencies, across all word lengths. The parameter 432

a describes the slope of the curve, and the parame- 433

ter b is connected to the concaveness of the curve. 434

Since the parameter a is highly correlated to the 435

overall frequency, we concentrate on the parameter 436

b and refer to it as to a frequency parameter. 437

The parameter b shapes the tail of the distribu- 438

tion and makes the turn of the curve more or less 439

convex. In our case, we observe only negative val- 440

ues of b (decreasing curves), thus, we incorporate 441

the minus sign already in the formula, and discuss 442

the absolute values of b. When the value of b is 443

close to zero, the frequencies in the tail of the dis- 444

tribution get higher, the shape of the turn is less 445

convex. The bigger the value of b, the lower the tail 446

of the distribution, and the more convex the turn of 447

the curve. 448

Since shorter words have few combinations of 449

possible subword splits, the lowest values of the UI 450

are expected to be the most frequent: both shorter 451

and longer words fall into this category of values. 452

In contrast, larger values of the UI can only be 453

present in longer words (indicating uneven segmen- 454

tations). Thus, the frequency in the tail region of 455

the UI distribution is of more interest for us. Note 456

that shorter words tend to be the most frequent 457

in general (Zipf, 1935), which also supports our 458

choice of the function. 459
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(a) English (b) Finnish (c) Turkish

Figure 2: KDE upper angle measured on (a) English, (b) Finnish and (c) Turkish data. From up to down: BPE-200,
BPE-V, Morfessor and Manual. The size of the points depends on the frequency of the given UI for the given word
length. The colors depict the levels of density: the most densely populated area is in yellow, the second dense area
is in blue, and the least dense area is in purple.

4 Results460

4.1 Human segmentations are moderately461

uneven462

The main outcome of our experiments is that none463

of the usual algorithms patterns with human seg-464

mentation. We can see in Figure 2 what makes man-465

ual segmentation optimal. The longer the words,466

the more consistent the UI values: they neither467

stick to the bottom as BPE-200 (predominantly468

even splits), nor go too high as in the case of Mor-469

fessor (predominantly uneven splits).470

We observe an interesting pattern regarding the471

different levels of density. Here, manual segmenta-472

tion patterns with BPE-200 in well-defined density473

regions (large yellow, small blue areas), while rel-474

atively big blue areas in BPE-V and Morfessor475

indicate poor density, i.e. little consistency.476

Figure 3 shows the distribution of the KDE upper 477

angle values. It confirms that the manual setting is 478

indeed somewhere in the middle compared to the 479

algorithms: smaller than BPE-200 and bigger than 480

the other two. Very uneven segments result in the 481

lowest values for Morfessor here, and especially for 482

Finnish and Turkish, which is somewhat surprising 483

given that Morfessor is originally conceived for 484

processing such languages. 485

Figure 4 shows the UI surface coverage, where 486

the manual setting again seems remarkable. It has 487

the highest values of the UI surface coverage across 488

settings. This means that humans use the most ver- 489

satile splits for subword segmentations, thus filling 490

the combinatorial space the most. Apparently, hu- 491

mans are more creative in how to deal with longer 492

words, and allow subwords of various lengths. 493

In this sense, Morfessor seems to be the closest 494
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Figure 3: Distribution of the KDE upper angle values.

Figure 4: Distribution of the UI surface coverage val-
ues.

to manual segmentations, yet it does not reach the495

UI surface coverage of humans.496

Figure 5 shows the frequency analysis indicat-497

ing that manual segmentations fit the power law498

function the least (the curve is least convex), while499

algorithms show better fits. Here too, Morfessor is500

the closest to humans, especially on English and501

Turkish. While the patterns apply across languages502

in all the other settings, the manual annotation of503

Finnish in this setting looks different. It shows that504

human annotators choose uneven splits more of-505

ten, causing the tail of the frequency function to be506

higher.507

From our results, we can see that the general508

recipe for getting closer to human linguistic intu-509

ition is to seek uneven segmentations but not allow510

too much variation. A way to achieve this could be511

by means of parameter tuning or by hybrid strate-512

gies combining first BPE merges (as in BPE-200)513

with some additional models or strategies for longer514

subwords.515

4.2 BPE-V is closer to Morfessor, than to516

BPE-200517

The second major outcome of our study, which518

sheds light on the absence of "one-fit-all" solu-519

tion, is the similarity of BPE-V and Morfessor’s520

segmentation strategies. From the Figure 2 we 521

can notice that both of these methods are prone 522

to noise, especially in the agglutinative languages 523

Finnish and Turkish. This is particularly unex- 524

pected, since the morphological structure of these 525

languages allows finding more regular subwords, 526

yielding better-defined density regions. We specu- 527

late that fine-tuning of Morfessor could reduce the 528

noisy zone (blue area) and provide better results on 529

Turkish, as shown in (Ataman et al., 2017; Ataman 530

and Federico, 2018). 531

English processed by BPE-V and Morfessor 532

looks the most distinct: Morfessor creates much 533

more frequent uneven splits, while BPE-V shows a 534

stronger tendency towards even splits (sticking to 535

the x-axis). Manual segmentation is, as discussed 536

in Section 4.1, somewhere in between. 537

In terms of the UI surface coverage, all of the 538

algorithms are close to each other, showing only 539

minimal differences. When it comes to the UI 540

frequency parameter, BPE-V and Morfessor are 541

much closer to each other (mean values 0.86 and 542

0.61) than to BPE-200 (mean value 1.28). One 543

more statistic that confirms this pattern is the mean 544

subword length. Here too, BPE-V and Morfessor 545

pattern together (mean subword length across lan- 546

guages is 6.974 in BPE-V and 6.709 in Morfessor) 547

and opposite to BPE-200 (1.894). As expected 548

from the other results, the manual setting is in be- 549

tween with the value of 3.673. (Full details in 550

Appendix A.) 551

From this analysis, we conclude that it is highly 552

unlikely to see a consistent winner when comparing 553

BPE-V and Morfessor (or similar models). They 554

are alike in many respects, yet both rather incon- 555

sistent and unpredictable. The same suggestions 556

as in 4.1 should improve the consistency in their 557

evaluation too. 558

4.3 BPE-200 as a new strategy 559

BPE-200 stands out in comparison to the other al- 560

gorithms. Its UI density is well-defined, as in the 561

manual setting, but its position is very different 562

from both manual and other algorithms. Compared 563

to humans, BPE-200 exaggerates on even splits, 564

making the majority of segmentations look like the 565

middle pattern in Figure 1 (pattern 2). This prop- 566

erty sheds new light on the findings by Gutierrez- 567

Vasques et al. (2021). At the same time, Figure 568

3 shows that BPE-200 produces the most similar 569

and predictable distributions of the UI across lan- 570
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guages, which is behavior that can be expected571

from the information-theoric properties discussed572

by Gutierrez-Vasques et al. (2021). This suggests573

that the number of BPE merges should be lower574

than 1K when working on multilingual samples.575

The BPE-200 setting shows an interesting dif-576

ference in the UI frequency analysis as well. In577

all the languages, the parameter b of the function578

y = ax−b gets the highest absolute values. This579

means that the smallest values of the UI are the580

most frequent, the tail of the distribution is low581

and infrequent, and the turn of the curve is promi-582

nently convex. Such curves are typical for natural583

distributions, such as in Zipf’s law applied to word584

tokens (Zipf, 1935). In manual segmentation, we585

do not see this effect because of the poor function586

fit: the most frequent UI in this setting is not 0, as587

expected for a peak in the power law function, but588

is situated on the UI of 3 (English, Turkish) and 4589

(Finnish) (see plots example in Appendix C, Figure590

6). While the UI value of 0 is the most frequent591

in all of the algorithms, BPE-200 is the only one592

showing a clear peak in frequencies, while BPE-V593

and Morfessor tend to smooth out the peak and594

lengthen the tail.595

We conclude from this analysis that BPE-200596

might be a fruitful subword tokenization method597

on multilingual datasets, but further experiments598

on downstream tasks are needed in order to confirm599

this.600

5 Discussion601

All our analyses are based on measuring the length602

of subwords in characters. One might argue that603

this works well only for alphabetic scripts. We604

underline that the same approach can be applied605

to other scripts as well if the same convention is606

defined for measuring subwords’ length across all607

the settings.608

Thus, if we analyze Hindi, and our length unit609

is a syllable, we can compare it to other languages610

with Brahmic scripts with no problem. It might be611

more problematic to compare languages of differ-612

ent scripts to each other, however. The bigger the613

unit of measure in the sense of information load614

(character < syllable < logograph), the smaller the615

possible combinatorial space for the analysis. Thus,616

Chinese would take only the UI values up to 4-5617

because words consisting of more than 5-6 charac-618

ters are extremely rare. However, we do not expect619

the findings established in our analyses to change620

Figure 5: Distribution of the UI frequency parameter
values.

much due to these differences; if needed, they can 621

be measured (Sproat and Gutkin, 2021) and added 622

to the calculations. 623

This limitation might impact more fine-grained 624

analyses in future work. For now, we note that 625

the majority of languages use alphabetic writing 626

systems. In the future, we plan to extend our ap- 627

proach to the other scripts and try to find smaller, 628

more comparable units in non-alphabetic scripts 629

(e.g. strokes in Chinese characters (Prün, 1994)). 630

Another direction of our work includes extrac- 631

tion of the other attributes, e.g. KDE right angle. 632

This metric can help to compare segmentations in 633

more detail and quantify humans’ moderate choice 634

of uneven splits. 635

6 Conclusion 636

In our study, we introduced a novel method to 637

analyze and compare various approaches to sub- 638

word segmentation using spatial analysis of the 639

subwords’ lengths. We demonstrated that humans 640

produce indeed the most optimal segmentation, in 641

contrast to all algorithms which tend to be biased 642

towards some values and are also inconsistent. We 643

argue that human segmentation, which is neither 644

too even nor too uneven (Figure 1 (3)), can be imi- 645

tated better by means of hyperparameters tuning in 646

combination with the low-noise solution shown by 647

BPE-200. 648

We discovered that the usual BPE settings (BPE- 649

V) are close to Morfessor and tend to produce un- 650

even splits (Figure 1 (1)), while BPE-200 strongly 651

prefers even splits (Figure 1 (2)). The even patterns 652

produced by BPE-200 make subword lengths very 653

similar across languages. This could be exploited 654

for better cross-linguistic representations in future 655

work. 656
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A Data Metrics814

Language
Word list
(tokens)

Word list
(types)

Gold
standard

English 221,715,953 878,036 1686
Finnish 65,734,026 2,928,030 1835
Turkish 12,862,393 617,298 1760

Table 1: Number of tokens and types in the dataset.

Language BPE-200 BPE-V Morf Man
English 1.894 6.974 6.709 3.673
Finnish 1.993 9.184 8.159 3.813
Turkish 1.991 7.011 6.573 3.149

Table 2: Mean length of subwords in the different set-
tings. Morf stands for Morfessor, Man stands for Man-
ual.

B Calculation Details815

Language BPE-V merges
English 351,214
Finnish 1,171,212
Turkish 246,919

Table 3: Number of calculated BPE merges for the set-
ting BPE-V. The values are rounded to integers.

Language BPE-200 BPE-V Morf Man
English 0.788 0.876 0.947 0.869
Finnish 0.561 0.914 0.924 0.784
Turkish 0.716 0.925 0.929 0.827

Table 4: Correlation of the UI with variance across lan-
guages and settings.

Language BPE-200 BPE-V Morf Man
English 45,660 2,212 2,349 105,437
Finnish 377,727 11,001 14,048 198,374
Turkish 149,425 8,206 13,535 121,346

Table 5: Residual sum of squares for the frequency
function fit, lower is better.

C Results: Additional Tables and816

Figures817

Language BPE-200 BPE-V Morf Man
English 126.134 104.750 87.052 93.307
Finnish 121.247 83.498 71.706 102.895
Turkish 118.110 87.552 60.754 91.871

Table 6: KDE upper angle values in English, Finnish
and Turkish.

Language BPE-200 BPE-V Morf Man
English 0.319 0.275 0.346 0.443
Finnish 0.170 0.190 0.247 0.317
Turkish 0.215 0.212 0.271 0.339

Table 7: UI surface coverage values in English, Finnish
and Turkish.

Language BPE-200 BPE-V Morf Man
English 1.643 0.985 0.503 0.482
Finnish 1.022 0.723 0.714 0.344
Turkish 1.177 0.883 0.613 0.681

Table 8: UI frequency parameter (b) values in English,
Finnish and Turkish.
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Figure 6: UI surface coverage and UI frequency parameter distribution in English across different settings. From
up to down: BPE-200, BPE-V, Morfessor and Manual. On the right, real data is shown in blue, function ax−b in
red.
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