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Abstract

Sharpness-Aware Minimization (SAM) has attracted significant attention for its
effectiveness in improving generalization across various tasks. However, its un-
derlying principles remain poorly understood. In this work, we analyze SAM’s
training dynamics using the maximum eigenvalue of the Hessian as a measure of
sharpness and propose a third-order stochastic differential equation (SDE), which
reveals that the dynamics are driven by a complex mixture of second- and third-
order terms. We show that alignment between the perturbation vector and the top
eigenvector is crucial for SAM’s effectiveness in regularizing sharpness, but find
that this alignment is often inadequate in practice, which limits SAM’s efficiency.
Building on these insights, we introduce Eigen-SAM, an algorithm that explicitly
aims to regularize the top Hessian eigenvalue by aligning the perturbation vector
with the leading eigenvector. We validate the effectiveness of our theory and the
practical advantages of our proposed approach through comprehensive experiments.
Code is available at https://github.com/RitianLuo/EigenSAM.

1 Introduction

Understanding the generalization of deep learning algorithms is one of the core challenges in modern
machine learning. Overparameterization makes the loss landscape of neural networks highly non-
convex, often featuring numerous global optima, while simple gradient-based algorithms surprisingly
tend to find solutions that generalize well. A body of empirical and theoretical work suggests that the
"flatness" or "sharpness" of the minima is a promising explanation for generalization (Hochreiter and
Schmidhuber, 1997; Keskar et al., 2016; Dinh et al., 2017; Jiang et al., 2019; Xie et al., 2020; Liu
et al., 2023b), and the implicit bias of optimization algorithms drives them toward flatter solutions,
thereby ensuring good generalization (Blanc et al., 2020; Wen et al., 2022; Arora et al., 2022; Damian
et al., 2022; Ahn et al., 2023; Tahmasebi et al., 2024).

Inspired by research on flatness and generalization, recent work by Foret et al. (2021) proposed
Sharpness-Aware Minimization (SAM), a dual optimization method that perturbs parameters before
performing gradient descent to enhance generalization performance by minimizing sharpness. Al-
though SAM has demonstrated empirical success across various fields (Foret et al., 2021; Kaddour
et al., 2022), theoretical analysis of the principles underlying its success remains limited. The work
by Compagnoni et al. (2023) explains SAM’s generalization advantage as an implicit minimization of
the gradient norm, while Wen et al. (2022) suggests that SAM regularizes the Hessian spectrum near
the minima manifold. However, existing theories are either somewhat simplified or rely on overly
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idealized assumptions, leading to a noticeable gap between theory and practice. This gap limits their
ability to fully explain the advantages of SAM (see Appendix A or contemporaneous work Song et al.
(2024) for empirical evidence).

In this paper, we consider a widely used measure of sharpness: the largest eigenvalue of the Hessian
matrix (Lyu et al., 2022; Arora et al., 2022; Wen et al., 2022; Damian et al., 2022). We extend
the previous PAC-Bayes theory to demonstrate the importance of this measure for generalization.
Our main contribution is an in-depth analysis of the training dynamics of SAM, expanding on the
second-order Stochastic Differential Equation (SDE) proposed by Compagnoni et al. (2023) and
revealing that the complex third-order terms play a crucial role in shaping SAM’s implicit bias. Under
ideal conditions, where the perturbation vector aligns well with the top eigenvector of the Hessian
matrix, these terms effectively reduce the sharpness of the loss function. However, our experiments
show that this alignment does not hold in real-world settings, limiting SAM’s ability to effectively
regularize sharpness. Based on our theoretical findings and experimental observations, we propose a
new algorithm, Eigen-SAM, which intermittently estimates the top eigenvector of the Hessian matrix
and incorporates its component orthogonal to the gradient into the perturbation, enabling explicit
regularization of the top Hessian eigenvalue.

We summarize our contributions as follows:

• We prove a new theorem (Theorem 3.1) to establish the relationship between the top
eigenvalue and generalization error, building on the general PAC-Bayes theorem (Alquier
et al., 2016).

• We propose a third-order SDE (Theorem 4.1) to model the dynamics of SAM. This approach
achieves a lower approximation error compared to the previous second-order SDE by
Compagnoni et al. (2023) and additionally infers a close relationship between perturbation-
eigenvector alignment and sharpness reduction (Corollary 4.1.1).

• We introduce a novel algorithm, Eigen-SAM, based on our theoretical insights and ex-
perimental observations (Section 5). This method aims to enhance alignment between
the perturbation vector and the top eigenvector, resulting in a more effective reduction of
sharpness.

• We validate our theory and the effectiveness of the proposed algorithm through comprehen-
sive experiments (Section 6).

2 Related work

Theoretical understanding of SAM. SAM has garnered widespread attention for its significant
improvements in generalization performance; however, the theoretical analysis provided in the
original paper (Foret et al., 2021) is limited. The authors only presented a PAC-Bayes generalization
bound, which is effective only for 0-1 loss. Subsequently, Andriushchenko and Flammarion (2022)
attempted to further understand the success of SAM by restricting the network structure to diagonal
linear networks and providing an implicit bias for SAM. They also established the first convergence
result for SAM. Bartlett et al. (2023) conducted a detailed study of SAM’s dynamics for quadratic
loss, suggesting that it oscillates between the two sides of the minimum in the direction of greatest
curvature and drifts toward flatter minima. However, the assumption of quadratic or locally quadratic
loss settings is not realistic for practical deep learning models. More recently, Wen et al. (2022)
extended the analysis of SAM’s dynamics to general loss functions, assuming that all global minima
form a connected manifold. Given sufficient training time and infinitesimally small η and ρ, they
rigorously proved that SAM’s dynamics would track the trajectory of a Riemannian flow with respect
to sharpness, achieving the same sharpness-reducing effect. On a different front, Compagnoni et al.
(2023) applied the continuous-time approximation framework from Li et al. (2017) to analyze SAM
dynamics, concluding that SAM implicitly minimizes the norm of the gradient scaled by ρ.

Continuous-time approximations for discrete algorithms. Substantial research demonstrates that
the trajectory of stochastic discrete iterations with decaying step sizes will ultimately follow the
solution of certain Ordinary Differential Equations (ODEs) (Harold et al., 1997; Borkar et al., 2009;
Duchi and Ruan, 2018). Further developments in understanding deep learning algorithms were made
by Li et al. (2017), who proposed a general and rigorous mathematical framework for continuous-time
approximations, deriving SDEs for SGD and its various variants. They also provided experimental
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evidence supporting the reasonableness of continuous-time approximations in real-world models (Li
et al., 2021). In this paper, we follow this mathematical framework, reusing some of its notations and
definitions.

3 Preliminaries

3.1 Notations

We start by introducing the notation used throughout our paper. Let S denote the training set, sampled
from the true data distribution D. For a given mini-batch γ, we define the mini-batch loss as fγ(x)
with parameters x ∈ Rd. The generalization loss is defined as fD (x) = Eγ∼D [fγ(x)], while the
empirical loss is defined as fS (x) = Eγ∼S [fγ(x)]. Since we primarily analyze and discuss the
empirical loss in this paper, we drop the dependency on S for simplicity, denoting the empirical loss
as f(x) when no ambiguity arises.

We use ∥ · ∥ to denote the Euclidean norm. The k-th order derivative of the loss f at x is denoted
by ∇kf(x), which is a symmetric k-tensor in (Rd)⊗k when x ∈ Rd. We denote by λ1(∇2f(x)) the
largest eigenvalue of the Hessian matrix ∇2f(x) and v1(∇2f(x)) its corresponding unit eigenvector,
with ∥v1(∇2f(x))∥ = 1. Additionally, we use ∇3f(x)(u, v) ∈ Rd to represent the application of
the symmetric 3-tensor∇3f(x) along directions u and v.

3.2 Sharpness-Aware Minimization

SAM (Foret et al., 2021) seeks flat minima by minimizing the perturbed loss:
min
x

max
∥ϵ∥≤1

f(x+ ρϵ),

where ρ is a predefined hyperparameter controlling the radius of the perturbation. Solving the inner
maximization problem leads to ϵSAM (x) = ∇f(x)

∥∇f(x)∥ . Differentiating the perturbed loss with respect
to x, we get:

∇f(x+ ρϵSAM (x)) =
d(x+ ρϵSAM (x))

dx
∇f(x)|x+ρϵSAM (x)

≈ ∇f(x)|x+ρϵSAM (x).

In the last approximation, Foret et al. (2021) ignore the dependency of ϵSAM (x) on x, leading
to faster computational efficiency and higher generalization performance. Applying SAM in the
stochastic case, the SAM iteration for mini-batch γk is summarized as:

xk+1 = xk − η∇fγk

(
xk + ρ

∇fγk

∥∇fγk
∥

)
. (1)

We use ∇fγk
(·) and ∇fγk

to distinguish between those needing and not needing backpropagation of
gradients, matching the algorithm in practice. Thus, the perturbation vector of mini-batch SAM can
be written as:

ϵSAM
γ =

∇fγ
∥∇fγ∥

. (2)

3.3 SDE approximation for SGD and SAM

Li et al. (2017) developed the following SDE to approximate discrete SGD:

dXt = −∇f(Xt)dt+
√
η(Σ1,1(Xt))

1
2 dWt,

where Wt is standard Brownian motion. Compagnoni et al. (2023) applied this framework to analyze
the dynamics of SAM, deriving the following second-order SDE for SAM:

dXt =

(
−∇f(Xt)− ρE

[
∇2fγ(Xt)∇fγ
∥∇fγ∥2

])
dt+

√
η
(
Σ1,1(Xt) + ρ(Σ1,2(Xt) + Σ1,2(Xt)

⊤)
) 1

2

dWt,

(3)

where Σa,b denotes the covariance matrix of the a-th and b-th terms in the Taylor expansion of the
perturbed loss (see Appendix B for the full expression). We refer to Eq.3 as the second-order SDE
since it includes up to second-order partial derivatives in both the drift and diffusion coefficients.
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3.4 Choice of sharpness measure

In this paper, we use the largest eigenvalue λ1(∇2f(x)) as a measure of sharpness, similar to prior
works (Lyu et al., 2022; Arora et al., 2022; Wen et al., 2022; Damian et al., 2022). Geometrically, the
top eigenvalue of the Hessian matrix at a given point represents the maximal curvature of the loss
function along any direction. Moreover, it is closely related to the concept of sharpness (defined as
the maximum perturbed loss difference) used by Foret et al. (2021) at the minima. Note that at the
minima, ∇f(x) = 0; thus,

max
∥ϵ∥≤1

f(x+ ρϵ)− f(x) ≈ max
∥ϵ∥≤1

ρϵ⊤∇f(x) + ρ2

2
ϵ⊤∇2f(x)ϵ

=
ρ2λ1(∇2f(x))

2
.

Another possible choice is the trace of the Hessian matrix. However, the trace of the Hessian scales
with the dimensionality of the parameters, complicating cross-model comparisons and limiting this
measure’s applicability.

We further establish a PAC-Bayes theorem that bounds the generalization error through the top
eigenvalue of the Hessian matrix. This theorem is based on the general PAC-Bayes theorem Alquier
et al. (2016) and applies to bounded losses, not limited to 0-1 loss as in the work of Foret et al. (2021);
Zhuang et al. (2022).
Theorem 3.1. (Generalization Bound) Assume that the loss function is bounded by L, and the
third-order partial derivative of the loss function is bounded by C. Additionally, we assume fD(x) ≤
Eϵ∼N (0,σ2Id)fD(x+ ϵ), as in Foret et al. (2021). For any δ ∈ (0, 1) and σ > 0, with a probability
over 1− δ over the choice of S ∼ Dn, we have

fD (x) ≤ fS (x) +
dσ2

2
λ1

(
∇2fS (x)

)
+

Cd3σ3

6

+
L

2
√
n

√
d log

(
1 +
∥x∥2
dσ2

)
+O(1) + 2 log

1

δ
+ 4 log (n+ d).

where n is the number of samples.

We defer the proof to Appendix C. Theorem 3.1 suggests that minimizing the top eigenvalue of the
Hessian matrix is crucial for improving generalization ability.

4 Third-order SDE reveals implicit regularization in SAM

In this section, we delve into the discussion and derivation of the third-order SDE continuous-time
approximation for SAM. In Section 4.1, we present heuristic derivations that provide intuitive insights
into our approach. Following this, Section 4.2 offers a formal third-order SDE approximation for
SAM, establishing the mathematical rigor of our framework. Finally, in Section 4.3, we propose a
corollary linking perturbation-eigenvector alignment with eigenvalue regularization, furthering our
understanding of the implicit regularization effects inherent in SAM.

4.1 Heuristic derivations for the third-order SDE

We begin by examining the drift coefficient in Compagnoni et al. (2023) (Eq. 3):

−∇f(Xt)− ρE
[
∇2fγ(Xt)∇fγ
∥∇fγ∥

]
= −∇f(Xt)− ρ∇E∥∇fγ(Xt)∥,

where the second term indicates that SAM penalizes trajectories with large loss gradients. However,
this formulation does not reveal an implicit regularization effect concerning sharpness, specifically
regarding the top eigenvalue of the Hessian matrix. Thus, understanding the implicit bias on the
Hessian matrix requires a third-order Taylor expansion. The missing cubic term in the Taylor
expansion is:

ρ2

2
E
[
∇3fγ(Xt)(∇fγ ,∇fγ)

∥∇fγ∥2

]
=

ρ2

2
∇E
[∇f⊤

γ ∇2fγ(Xt)∇fγ
∥∇fγ∥2

]
.
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The equality holds because ∇fγ is treated as a perturbation vector independent of Xt, as SAM’s
implementation does not involve differentiating with respect to it (See Section 3.2 for a detailed
description of this part). This third-order term suggests that SAM employs an additional gradient
measurement to compute a specific third derivative: the gradient of the second derivative along the
direction of the gradient.

Hessian-gradient alignment during training. Recent findings indicate that during training, the
gradient implicitly aligns with the top eigenvector of the Hessian matrix under certain conditions: (1)
training with normalized full-batch gradient descent (Arora et al., 2022); (2) a locally quadratic loss
landscape (Bartlett et al., 2023); (3) training with SAM when very close to the minimizer manifold
(Wen et al., 2022). This alignment phenomenon is crucial for interpreting the third-order term in our
drift coefficient. Specifically, when the gradient is highly aligned with the top eigenvector, we have:

ρ2

2
E

[
∇3fγ(Xt)(∇fγ ,∇fγ)

∥∇fγ∥2

]
≈ ρ2

2
E∇3fγ(Xt)(v1(∇2fγ(Xt)), v1(∇2fγ(Xt)))

=
ρ2

2
E∇λ1(∇2fγ(Xt)),

where the final equality follows from the properties of differentiating eigenvalues (see Magnus (1985)
for a detailed discussion).

If this alignment phenomenon holds, we can conclude that the implicit bias of the drift coefficient
aligns with the gradient of the top eigenvalue of the Hessian, thereby implicitly minimizing sharpness.

4.2 Formal third-order SDE approximation for SAM

In this subsection, we present the general formulation of the SDE for SAM. We refer to our SDE
(Eq. 4) as the third-order SDE, to distinguish it from the second-order SDE (Eq. 3). For the complete
statements and proofs, we refer the reader to Appendix B.
Theorem 4.1. (Third-order SDE for SAM, Informal Statement of Theorem B.4) Let 0 < η < 1, T >
0, N = ⌊T/η⌋, and {xk : k ≥ 0} denote the sequence of discrete SAM iterations defined by Eq. 1.
Define {Xt : t ∈ [0, T ]} as the stochastic process satisfying the SDE

dXt = −∇f̃SAM (Xt)dt+
√
η(ΣSAM (Xt))

1
2 dWt, X0 = x0 (4)

with f̃SAM (Xt) := f(Xt) + ρE∥∇fγ(Xt)∥+ ρ2

2 E∇f⊤
γ ∇2fγ(Xt)∇fγ

∥∇fγ∥2 ,

ΣSAM (Xt) := Σ1,1(Xt) + ρ(Σ1,2(Xt) + Σ1,2(Xt)
⊤) + ρ2

(
Σ2,2(Xt) +

1

2
(Σ1,3(Xt) + Σ1,3(Xt)

⊤)
)
,

where Σa,b denotes the covariance matrix of the a-th and b-th terms in the Taylor expansion of the
perturbed loss (see Appendix B for the full expression).

Under sufficient regularity conditions, let ρ = O(η 1
3 ). Then, {Xt : t ∈ [0, T ]} is an order-1 weak

approximation of {xk : k ≥ 0}, i.e., for any test function g of at most polynomial growth, there exists
a constant C independent of η such that

max
k=0,1,...,N

|Eg(xk)− Eg(Xkη)| ≤ Cη.

Our proof relies on the third-order Taylor expansion of fγk

(
Xt + ρ

∇fγk
∥∇fγk∥

)
, carefully matching the

first- and second-order conditional moments and quantifying the errors for higher-order terms. Our
third-order SDE reveals that SAM’s implicit bias includes a complex combination of second-order
and third-order terms, with scales of ρ and ρ2

2 , respectively. Compared to Compagnoni et al. (2023),
our theorem offers two main advantages: first, we allow ρ to take larger values (η

1
3 compared to η

1
2

in Compagnoni et al. (2023)), which is more consistent with real-world settings; equivalently, our
SDE achieves a lower approximation error for a fixed ρ. Second, our SDE explicitly captures SAM’s
implicit bias on the Hessian matrix, manifesting as the gradient of the Hessian in the gradient’s
direction. Additionally, the diffusion coefficient in Eq. 4 implies that SAM injects additional noise
in the form of the covariance of the higher-order terms in the Taylor expansion of the perturbed
loss. This curvature-dependent noise aligns with recent studies (Gatmiry et al., 2024a,b), which
demonstrate that label noise in SGD exhibits similar behavior to SAM.
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4.3 Perturbation-eigenvector alignment and eigenvalue regularization

The implicit bias introduced by the third term in the drift coefficient of the SDE (Eq. 4), i.e.,
ρ2

2 E∇3fγ(Xt)(∇fγ ,∇fγ)

∥∇fγ∥2 , remains difficult to understand. As discussed in Section 4.1, if we assume
that the perturbation vector is well-aligned with the top eigenvector, we can interpret the cubic term
as the gradient of the top eigenvalue, leading to an implicit bias that decreases sharpness. Next, we
quantify and formalize this heuristic approach. Define Align(ϵ, v1) := 1−mins∈{±1} ∥ ϵ

∥ϵ∥ − s · v1∥
as a measure of alignment between the perturbation vector ϵ and the top eigenvector v1. It is worth
noting that +v1 and −v1 are equivalent eigenvectors, which is why we define alignment as the
maximum over both +v1 and −v1.
Corollary 4.1.1. Recall that ϵSAM

γ is defined in Eq. 2. Let s∗ denote the direction scalar, i.e.,
s∗ = argmins∈{±1} ∥ ϵ

∥ϵ∥ − s · v1∥. Under the same conditions as in Theorem 4.1, and assuming a
positive eigenvalue gap (see Assumption B.2 for a definition), we have the following:
1. If Align(ϵSAM

γ , v1(∇2fγ(Xt))) ≥ 1−O(ρ), then the SDE (Eq. 4) becomes

dXt = −∇f̃SAM
ρ (Xt)dt+

√
η(ΣSAM )

1
2 dWt, (5)

where∇f̃SAM
ρ (Xt) := ∇f(Xt) + ρ∇E∥∇fγ(Xt)∥+ ρ2

2 ∇Eλ1(∇2fγ(Xt));

2. If Align(ϵSAM
γ , v1(∇2fγ(Xt))) ≥ 1−O(ρ2), then the SDE (Eq. 4) becomes

dXt = −∇f̃SAM
ρ2 (Xt)dt+

√
η(ΣSAM )

1
2 dWt, (6)

where∇f̃SAM
ρ2 (Xt) := ∇f(Xt) + ρE

[
s∗ · λ1(∇2fγ(Xt))v1(∇2fγ(Xt))

]
+ ρ2

2 ∇Eλ1(∇2fγ(Xt)).

The proof is deferred to Appendix B. In Corollary 4.1.1, we rigorously formalize our intuition from
Section 4.1. If the alignment is at least 1−O(ρ), we conclude that the SAM trajectory comprises
three components: the gradient of the loss, the gradient of the gradient norm, and the gradient of
the top eigenvalue, with respective scales 1, ρ, and ρ2

2 . Under this well-aligned condition, the SAM
trajectory minimizes the loss while implicitly regularizing both the gradient norm and sharpness. This
demonstrates SAM’s complex implicit bias, which is not solely influenced by second- or third-order
terms, as summarized in previous work (Wen et al., 2022; Compagnoni et al., 2023). For empirical
evidence supporting this observation, we refer readers to Appendix A.

Furthermore, if the alignment is at least 1−O(ρ2), then the gradient of the gradient norm oscillates
in the direction of the top eigenvector. Notably, Bartlett et al. (2023) derived a similar discrete SAM
dynamic under specific conditions (Theorem 20), where the parameter trajectory oscillates in the
direction of the top eigenvector while regularizing the leading eigenvalue. However, their conditions
are stricter than ours, assuming that the parameters are already close to the minimum and requiring a
specific initialization. When these conditions are met, they require an alignment of the gradient with
the top eigenvector of at least 1−O(ηρ) = 1−O(ρ4). In comparison, our SDE framework is more
general.

Comparison with Wen et al. (2022). Wen et al. (2022) derived an implicit bias similar to our cubic
term in the third-order SDE (Eq. 5) for SAM through the analysis of the Riemannian flow near the
minimizer manifold. However, our work fundamentally differs from theirs. First, their theory requires
a much longer training time Θ(η−1ρ−2) compared to our Θ(η−1). Thus, our SDE corresponds to the
initial phase of their analysis regarding time scale, during which they do not conclude any implicit
bias. In contrast, our SDE (Eq. 5), which indicates that the implicit bias comprises three components
with different scales, provides richer insights in this phase. Second, they require ηln(1/ρ) to be
sufficiently small, causing ρ to be exponentially smaller than η, whereas our theory accommodates a
more practical range, ρ = O(η 1

3 ).

5 Eigen-SAM: an explicit regularization method for the top eigenvalue of the
Hessian

5.1 Failure of perturbation-eigenvector alignment in practice

Within the theoretical framework of Section 4, a natural question arises: Is the perturbation-
eigenvector alignment sufficient in practice for SAM to effectively minimize sharpness? Unfortunately,
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(a) Perturbation-eigenvector alignment (b) Top eigenvalue of Hessian

Figure 1: Alignment and top eigenvalue for a 6-layer CNN model trained on CIFAR-10. The left panel
shows the trend of alignment during SAM training; the shaded area represents the 95% confidence
interval. The right panel displays the trend of the top eigenvalue over the course of training.

we have empirically verified that such alignment may be poor in practice, even for relatively simple
models. As a result, the regularization effect on the largest eigenvalue, as discussed in Corollary
4.1.1, may not be clearly observable in practical scenarios.

To investigate this phenomenon, we trained a 6-layer SimpleCNN model, as used in Jastrzebski et al.
(2021); Deng et al. (2024), on CIFAR-10 (Krizhevsky et al., 2009). Figure 1 illustrates two key
findings from our experiments. The left panel shows that the alignment between the perturbation
vector and the top eigenvector is indeed poor during training. Consequently, the right panel reveals
that SAM is unable to efficiently minimize the top eigenvalue when alignment is weak. These results
highlight the limitations of SAM in real-world scenarios where ideal alignment cannot be assumed.

5.2 Proposed method: Eigen-SAM

To address the issue of poor alignment, we propose a novel algorithm called Eigen-SAM, which aims
to explicitly align the perturbation vector with the top eigenvector. This approach makes SAM’s
update closer to the SDE approximation in Eq. 5, where the third-order term in the drift coefficient can
effectively minimize the largest eigenvalue. To achieve this alignment, we estimate the top eigenvector
of the Hessian matrix once every p mini-batch steps (with p = 100 in our implementation) using the
power method for q iterations (with q = 5 in our implementation). This strategy of intermittently
estimating the Hessian matrix has been shown to be effective in practice (Liu et al., 2023a).

After obtaining an estimate v̂ of the top eigenvector, we decompose it into components parallel and
perpendicular to the gradient direction, then add the perpendicular component to the perturbation
vector to enhance alignment explicitly:

v̂ = v̂∥ + v̂⊥ (7)

ϵEigen-SAM
γ =

∇fγ
∥∇fγ∥

+ α · sign(⟨∇fγ , v̂⟩)v̂⊥, (8)

where α is a hyperparameter that controls the strength of the explicit alignment. Since +v and −v
are equivalent eigenvectors, we include sign(⟨∇fγ(x), v̂⟩) to determine the direction of v̂. Here,
we always choose v̂ to have a smaller angle with the gradient. The full algorithm is presented in
Algorithms 1 and 2. In Appendix D, we provide an in-depth discussion of the theoretical properties
of Eigen-SAM, including sufficient conditions for improving alignment (Proposition D.1) and its
convergence rate (Theorem D.2), which is comparable to that of SAM.
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Algorithm 1 Power iteration to estimate the top
eigenvector

1: Initialize v̂ as a random unit vector
2: for t2 = 1, 2, . . . , q do
3: Compute Hessian-vector product v̂ =
∇2f(x) · v̂

4: Normalize v̂: v̂ ← v̂/∥v̂∥
5: end for
6: return v̂

Algorithm 2 Eigen-SAM

1: for t1 = 1, 2, . . . , T do
2: Compute mini-batch loss fγ(xk)
3: if t1 mod p = 1 then
4: Use Algorithm 1 to estimate v̂
5: end if
6: Compute the perturbation ϵt per Eq. 7

and 8
7: Perturb the model: x̃t = xk + ρϵt
8: Update parameters: xk+1 = xk −

η∇fγ(x̃k)
9: end for

10: return xk

5.3 Analysis of additional computational overhead

The additional overhead in Eigen-SAM arises from running the Hessian-vector product q times
every p steps to estimate the top eigenvector. The Hessian-vector product requires roughly 1 − 2
times the time needed to compute the gradient, so the overhead of our algorithm is approximately
2 + q

p to 2 + 2q
p times that of SGD, compared to 2 times for standard SAM. For larger models, the

computation time for the Hessian-vector product remains nearly constant. For a detailed analysis of
the computation cost of Hessian-vector products, we refer readers to Dagréou et al. (2024).

6 Experiments

6.1 Numerical simulation of the third-order SDE

In this subsection, we validate the approximation error between our proposed SDE (Eq. 4) and
the discrete SAM algorithm (Eq. 1). We trained a fully-connected network with one hidden layer,
consisting of 784 hidden units and using GeLU activation, on the MNIST dataset (Deng, 2012). The
training was conducted with η = 0.01 and ρ = 0.2 (where ρ ≈ η

1
3 ). During training, we carefully

tracked several key metrics, including training loss, test loss, test accuracy, parameter norm, gradient
norm, and the top eigenvalue of the Hessian, as shown in Figure 2.

Our results demonstrate that the approximation error of our third-order SDE is significantly lower
than that of the previous second-order SDE. Specifically, the curves of our SDE closely match those
of the discrete SAM across all tracked metrics, underscoring the accuracy and reliability of our
approximation. This close alignment suggests that our proposed continuous-time approximation
provides a more precise representation of the discrete SAM dynamics, thus enhancing the theoretical
understanding of SAM.

6.2 Image classification from scratch

To evaluate the effectiveness of Eigen-SAM, we applied it to several image classification tasks on
benchmark datasets, including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,
2009), Fashion-MNIST (Xiao et al., 2017), and SVHN (Netzer et al., 2011). For these tasks, we used
ResNet-18 (He et al., 2016), ResNet-50 (He et al., 2016), and WideResNet-28-10 (Zagoruyko and
Komodakis, 2016) models.

We selected SGD as the base optimizer and applied basic data augmentation techniques, including
horizontal flips, padding by four pixels, and random cropping. The batch size was set to 256,
with training conducted for 200 epochs. We used an initial learning rate of 0.1 for CIFAR-10,
Fashion-MNIST, and CIFAR-100, and 0.01 for SVHN, adjusting the learning rate over time with
a cosine schedule. The weight decay was set to 5 × 10−5, and the momentum was 0.9. Detailed
hyperparameter settings are provided in Appendix E.

The test set performance, reported in Table 1 along with the 95% confidence interval, shows that
Eigen-SAM consistently achieves state-of-the-art performance across various datasets and models,
validating its effectiveness and robustness.
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(a) Training Loss (b) Test Loss (c) Test Accuracy

(d) Parameter Norm (e) Gradient Norm (f) Top Eigenvalue

Figure 2: Training dynamics of discrete SAM, second-order SDE, and third-order SDE during
training. Metrics include training loss, test loss, test accuracy, parameter norm, gradient norm, and
the top Hessian eigenvalue. Each plot illustrates how each approach affects loss dynamics and key
stability metrics.

Table 1: Test accuracy on CIFAR-10, CIFAR-100, Fashion-MNIST, SVHN.
Architecture Method CIFAR-10 CIFAR-100 Fashion-MNIST SVHN

ResNet18 SGD 94.8±0.2 74.6±0.2 94.9±0.2 96.1±0.1

SAM 95.5±0.1 77.4±0.2 95.4±0.1 96.3±0.1

Eigen-SAM 95.9±0.2 78.3±0.2 95.6±0.2 96.5±0.1

ResNet50 SGD 95.0±0.1 76.6±0.2 94.8±0.1 96.1±0.1

SAM 95.6±0.2 79.0±0.2 95.4±0.1 96.4±0.1

Eigen-SAM 96.2±0.1 79.7±0.1 95.7±0.1 96.6±0.1

WideResNet-28-10 SGD 95.7±0.1 79.8±0.2 95.1±0.1 96.2±0.1

SAM 96.5±0.1 82.0±0.2 95.6±0.1 96.4±0.1

Eigen-SAM 96.8±0.1 82.8±0.1 95.9±0.1 96.7±0.1

6.3 Finetuning

We evaluated performance by fine-tuning a ViT-B-16 model Dosovitskiy et al. (2020) pre-trained on
ImageNet for CIFAR-10 and CIFAR-100. We used the checkpoint provided by PyTorch’s official
repository1. For SAM and Eigen-SAM, we used an initial learning rate of 0.01 and trained for 4k
steps, while for SGD, we trained for 8k steps. Table 2 shows the test accuracy, where Eigen-SAM
consistently outperforms the baselines.

Table 2: Test accuracy for fine-tuning ViT-B-16 pretrained on ImageNet-1K on CIFAR-10 and
CIFAR-100.

Architecture Method CIFAR-10 CIFAR-100

ViT-B-16 SGD 98.0±0.1 88.6±0.1

SAM 98.4±<0.1 89.5±0.1

Eigen-SAM 98.5±0.1 89.8±0.1

1https://pytorch.org/vision/main/models/generated/torchvision.models.vit_b_16.html
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6.4 Sensitivity analysis

We investigated the impact of varying the hyperparameter α on the test accuracy of Eigen-SAM.
We conducted experiments on ResNet-18 with CIFAR-100, testing a range of α values, as shown in
Figure 3. We observed that the test accuracy peaks at α = 0.2, yielding a 0.9% improvement in test
accuracy compared to α = 0, which corresponds to the standard SAM. These results suggest that α
is a robust hyperparameter, as its variations do not cause significant performance fluctuations, while
consistently enhancing performance.

In Table 3 and Table 4 in Appendix F, we demonstrate how larger values of p affect generalization
performance and observe that setting p to 1000 (resulting in less than 1% additional overhead) retains
most of the performance gains. In Figure 5 in Appendix F, we demonstrate the convergence speed of
Algorithm 1, which typically requires only a few steps to converge.
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(a) Sensitivity Analysis of α (b) Spectrum of Hessian

Figure 3: Left: Sensitivity analysis of α; the blue lines indicate the confidence interval. Right:
Spectrum of the Hessian at the end of training.

6.5 Hessian spectrum

Figure 3 shows the Hessian spectrum at the 200th epoch for ResNet-18 trained on CIFAR-100 using
SAM and Eigen-SAM. We observe that the model trained with Eigen-SAM has both a smaller top
eigenvalue and trace, with more eigenvalues concentrated near zero. This observation aligns with our
motivation for proposing Eigen-SAM and explains why Eigen-SAM generalizes better than SAM.

7 Conclusion

In this work, we analyzed the training dynamics of SAM using a third-order SDE, identifying the
alignment between the perturbation vector and the top eigenvector as a crucial factor for effective
sharpness regularization. However, our empirical analysis showed that this alignment is often poor
in practice. Building on our theoretical framework and experimental insights, we proposed Eigen-
SAM, an algorithm that intermittently estimates the top eigenvector of the Hessian matrix and
incorporates its component orthogonal to the gradient into the perturbation, explicitly regularizing
the top Hessian eigenvalue. Extensive experiments demonstrated that our third-order SDE yields
a smaller approximation error than previous models and that Eigen-SAM achieves state-of-the-art
performance across various tasks, validating both its accuracy and effectiveness.
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Appendix

A Additional empirical evidence

In this section, we present empirical evidence highlighting discrepancies between existing theories
and practical observations. We demonstrate this by designing several "counterexample" algorithms
and comparing their performance with SAM.

First, the theory developed by Wen et al. (2022) suggests that SAM’s implicit regularization primarily
occurs near the minima manifold, where ∇f(x) ≈ 0 and the quadratic term dominates the perturbed
term. To test this, we designed a counterexample algorithm called Reverse-SAM, which applies
SAM’s ascent step using a negative normalized gradient, i.e., ϵ = − ∇fγ(x)

∥∇fγ(x)∥ . If this theory holds in
practice, then Reverse-SAM should perform similarly to SAM, as the sign of the perturbation vector
would not affect the implicit bias induced by the quadratic term.

The second counterexample algorithm we consider is Explicit Gradient Regularization (EGR), a
regularization method with a long history, tracing back to the works of Barrett and Dherin (2020) and
Drucker and Le Cun (1991). The second-order SDE proposed by Compagnoni et al. (2023) suggests
that SAM’s implicit bias is equivalent to optimizing the objective f(x) + ρ∥∇f(x)∥. Therefore, if
this second-order SDE model is accurate in practice, EGR with a regularization coefficient equal to ρ
should exhibit performance comparable to SAM.

We trained ResNet-18 on CIFAR-10 to compare the performance of these two counterexample
algorithms with SAM. Figure 4 shows the training and test losses. Additionally, the test accuracies for
SAM, EGR, and Reverse-SAM were 95.5%±0.1%, 95.0%±0.2%, and 94.4%±0.2%, respectively.
Both counterexample algorithms show noticeable performance gaps from SAM across all metrics,
highlighting the limitations of existing theories in explaining SAM’s practical outcomes.
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Figure 4: Comparison of training loss and test loss metrics across algorithms.

B Proofs for SDEs (Section 4)

We follow the notation of multi-index, which is commonly used in SDE literature:

• A multi-index is an n-tuple of non-negative integers α = (α1, α2..., αn)

• |α| := α1 + α2 + ...+ αn

• α! := α1!α2!...αn!

• For x = (x1, x2..., xn) ∈ Rn, xα := xα1
1 xα2

2 ...xαn
n

• For a multi-index β, ∂|β|
β f(x) := ∂|β|

∂x
β1
1 ∂x

β2
2 ...∂xβn

n

f(x)

We denote the partial derivative with respect to xi by ∂ei .

Following the SDE framework by Mil’shtein (1986); Li et al. (2017); Compagnoni et al. (2023), we
have the following definitions and assumptions:

14



Definition B.1. Let G denote the set of continuous functions Rd → R of at most polynomial growth,
i.e. g ∈ G if there exists positive integers κ1, κ2 > 0 such that

|g(x)| ≤ κ1(1 + ∥x∥2κ2)

for all x ∈ Rd. Moreover, for each integer α ≥ 1 we denote by Gα the set of α-times continuously
differentiable functions Rd → R which, together with its partial derivatives up to and including order
α, belong to G.

This definition originates from the field of numerical analysis of SDEs (Mil’shtein, 1986). In the case
of g(x) = ||x||j , the bound restricts the difference between the j-th moments of the discrete process
and those of the continuous process. We write O(ρα1ηα2) to denote that there exists a function
K ∈ G independent with ρ, η, such that the error terms are bounded by Kρα1ηα2 .

Assumption B.1. Assume that the following conditions on f , fi and their gradients are satisfied:

• ∇f ,∇fi satisfy a Lipschitz condition: there exists L > 0 such that

∥∇f(x)−∇f(y)∥+
n∑

i=1

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥;

• f , fi and its partial derivatives up to order 7 belong to G;

• ∇f ,∇fi satisfy a growth condition: there exists M > 0 such that

∥∇f(x)∥+
n∑

i=1

∥∇fi(x)∥ ≤M(1 + ∥x∥);

• g and its partial derivatives up to order 6 belong to G;

See Li et al. (2017) for a detailed discussion on Assumption B.1.

To prove the Corollary 4.1.1, we need an additional assumption to ensure that the top eigenvalue is
differentiable. Note that this assumption is common in recent works (Damian et al., 2022; Wen et al.,
2022) and easy to satisfy.

Assumption B.2. (Eigenvalues gap) For all k > 0, λ1(∇2f(xk)) > λ2(∇2f(xk)), and
λ1(∇2f(Xkη)) > λ2(∇2f(Xkη)).

In the proof of our main theorem, we will utilize the following two auxiliary lemmas.

Lemma B.1. (Lemma 1 (Li et al., 2017)) Let 0 < η < 1. Consider a stochastic process {Xt : t > 0}
satisfying the SDE

dXt = b(Xt)dt+ η
1
2σ(Xt)dWt

with X0 = x ∈ Rd and b, σ together with their derivatives belong to G. Define the one-step difference
∆ = Xη − x, then we have

E∆i = biη +
1

2

 d∑
j=1

bj∂ej bi

 η2 +O
(
η3
)
∀i = 1, . . . , d; (9)

E∆i∆j =
[
bibj + σσT

(ij)

]
η2 +O

(
η3
)
∀i, j = 1, . . . , d; (10)

E
s∏

j=1

∆(ij) = O
(
η3
)
∀s ≥ 3, ij = 1, . . . , d. (11)

all the functions are evaluated at x.

Lemma B.2. (Theorem 2 and Lemma 5 (Mil’shtein, 1986) )Under Assumption B.1, we define the one-
step difference for the stochastic process ∆ = Xη−x. if in addition there exists K1,K2,K3,K4 ∈ G

15



so that ∣∣E∆i − E∆̄i

∣∣ ≤ K1(x)η
2, ∀i = 1, . . . , d; (12)∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(x)η
2, ∀i, j = 1, . . . , d; (13)∣∣∣∣∣∣E

s∏
j=1

∆ij − E
s∏

j=1

∆̄ij

∣∣∣∣∣∣ ≤ K3(x)η
2, ∀s ≥ 3, ∀ij ∈ {1, . . . , d}; (14)

E
3∏

j=1

∣∣∆̄ij

∣∣ ≤ K4(x)η
2, ∀ij ∈ {1, . . . , d}. (15)

Then, for each g ∈ G, there exists a constant C such that

max
k=0,1,...N

|Eg(xk)− Eg(Xkη)| ≤ Cη

Next, we will prove a lemma that controls the moments of the discrete process for SAM:

Lemma B.3. Under Assumption B.1, let 0 < η < 1. We define:

∂ei f̃
SAM (x) := ∂eif(x)+ρE

[∑
j ∂

2
ei+ejfγ(x)∂ejfγ(x)

∥∇fγ(x)∥

]
+
ρ2

2
E

[∑
jk ∂

3
ei+ej+ek

fγ(x)∂ejfγ(x)∂ekfγ(x)

∥∇fγ(x)∥2

]
.

In addition, we define the one-step difference for the discrete-time algorithm as ∆̄ = x1 − x. Then
we have:

1. E∆̄i = −∂ei f̃SAM (x)η +O
(
ηρ3
)
, ∀i = 1, . . . , d; (16)

2. E∆̄i∆̄j = ∂ei f̃
SAM (x)∂ej f̃

SAM (x)η2 +ΣSAM
(ij) η2 +O

(
η2ρ3

)
, ∀i, j = 1, . . . , d; (17)

3. E
s∏

j=1

∆̄ij = O
(
η3
)
, ∀s ≥ 3, ij ∈ {1, . . . , d}. (18)

All functions are evaluated at x.

Proof. To evaluate E∆̄i = −E
[
∂eifγ

(
x+ ρ

∥∇fγ(x)∥∇fγ(x)
)]

, we start by analyzing

∂eifγ

(
x+ ρ

∥∇fγ(x)∥∇fγ(x)
)

, which is the partial derivative in the direction ei. Taking the Taylor
expansion, we have:

∂eifγ

(
x+

ρ

∥∇fγ(x)∥
∇fγ(x)

)
= ∂eifγ(x) +

∑
|α|=1

∂2
ei+αfγ(x)ρ

∂αfγ(x)

∥∇fγ(x)∥

+
1

2

∑
|α|=2

∂3
ei+αfγ(x)ρ

2

(
∂αfγ(x)

∥∇fγ(x)∥

)α

+R∂ei
fγ(x)

x,1

(
ρ
∇fγ(x)
∥∇fγ(x)∥

)
, (19)

where the residual term is defined in Folland (2005). For some constant c ∈ (0, 1), it holds that

R∂ei
fγ(x)

x,1

(
ρ
∇fγ(x)
∥∇fγ(x)∥

)
=
∑
|α|=3

∂4
ei+αfγ

(
x+ cρ

∇fγ(x)
∥∇fγ(x)∥

)
ρ|α|

(
∇fγ(x)

∥∇fγ(x)∥

)α
α!

. (20)

Now, we observe that

Ki(x) :=
∂4
ei+αfγ

(
x+ cρ

∇fγ(x)
∥∇fγ(x)∥

)
ρ|α|

(
∇fγ(x)

∥∇fγ(x)∥

)α
α!
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is a finite sum of products of functions that, by assumption, are in G. We can rewrite Equation (19) as

∂eifγ

(
x+

ρ

∥∇fγ(x)∥
∇fγ(x)

)
= ∂eifγ(x) +

∑
|α|=1

∂2
ei+αfγ(x)ρ

∂αfγ(x)

∥∇fγ(x)∥

+
1

2

∑
|α|=2

∂3
ei+αfγ(x)ρ

2

(
∂αfγ(x)

∥∇fγ(x)∥

)α

+ ρ3Ki(x), (21)

which implies that

E∂eifγ
(
x+

ρ

∥∇fγ(x)∥
∇fγ(x)

)
= ∂eif(x) + ρE

[∑
j ∂

2
ei+ejfγ(x)∂ejfγ(x)

∥∇fγ(x)∥

]

+
ρ2

2
E

[∑
jk ∂

3
ei+ej+ek

fγ(x)∂ejfγ(x)∂ekfγ(x)

∥∇fγ(x)∥2

]
+ ρ3K̄i(x), (22)

where K̄i(x) = EKi(x).

Therefore, we have ∀i = 1, 2, . . . , d,

E∆̄i = −∂ei f̃SAM (x)η +O
(
ηρ3
)
.

To prove the second statement, by definition, we have

Cov(∆̄i, ∆̄j) = η2
(
Σ1,1

i,j (x) + ρ(Σ1,2
i,j (x) + Σ1,2

i,j (x)
⊤)

+ ρ2(Σ2,2
i,j +

1

2
(Σ1,3

i,j (x) + Σ1,3
i,j (x)

⊤))
)
+O(η2ρ3) (23)

= η2ΣSAM (x) +O(η2ρ3). (24)

E∆̄i∆̄j =E∆̄iE∆̄j +Cov(∆̄i, ∆̄j) (25)

= ∂ei f̃
SAM (x)∂ej f̃

SAM (x)η2 + η2ΣSAM (x) +O(η2ρ3). (26)

Finally, it is clear that

E
s∏

j=1

∆̄ij = O (ηs) , ∀s ≥ 3, ij ∈ {1, . . . , d} (27)

= O
(
η3
)
, ∀s ≥ 3, ij ∈ {1, . . . , d}. (28)

Now we are ready to state the theorem and prove it.

Theorem B.4. (Stochastic modified equations) Under Assumption B.1, let 0 < η < 1, T > 0, N =
⌊T/η⌋. Let xk ∈ Rd, 0 ≤ k ≤ N denote the sequence of SAM iterations defined by Equation 1.
Define {Xt} as the stochastic process satisfying the SDE

dXt = −∇f̃SAM (Xt)dt+
√
η(ΣSAM (Xt))

1
2 dWt (29)

where f̃SAM (Xt) := f(Xt) + ρE||∇fγ(Xt)||+ ρ2

2 E∇f⊤
γ ∇2fγ(Xt)∇fγ

∥∇fγ∥2

ΣSAM (Xt) := Σ1,1(Xt)+ρ(Σ1,2(Xt)+Σ1,2(Xt)
⊤)+ρ2(Σ2,2(Xt)+

1

2
(Σ1,3(Xt)+Σ1,3(Xt)

⊤))
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Σ1,1(Xt) := E
[
(∇f(Xt)−∇fγ(Xt)) (∇f(Xt)−∇fγ(Xt))

⊤
]

Σ1,2(Xt) := E

[
(∇f(Xt)−∇fγ(Xt))

(
E
[
∇2fγ(Xt)∇fγ
∥∇fγ∥

]
− ∇

2fγ(Xt)∇fγ
∥∇fγ∥

)⊤]

Σ2,2(Xt) := E

[(
E
[
∇2fγ(Xt)∇fγ
∥∇fγ∥

]
− ∇

2fγ(Xt)∇fγ
∥∇fγ∥

)(
E
[
∇2fγ(Xt)∇fγ
∥∇fγ∥

]
− ∇

2fγ(Xt)∇fγ
∥∇fγ∥

)⊤]

Σ1,3(Xt) := E

(∇f(Xt)−∇fγ(Xt))

(
E

[
∇3fγ(Xt)(∇fγ ,∇fγ)

∥∇fγ∥2

]
−

[
∇3fγ(Xt)(∇fγ ,∇fγ)

∥∇fγ∥2

])⊤


Additionally, let us take
ρ = O(η 1

3 )

Then, {Xt : t ∈ [0, T ]} is an order-1 weak approximation of {xk : k ≥ 0}, i.e. for each g ∈ G, there
exists a constant C independent of η such that

max
k=0,1,...N

|Eg(xk)− Eg(Xkη)| ≤ Cη

Proof. We will check the conditions in Lemma B.2. As we apply Lemma B.1, we make the following
choices:

b(x) = −∇f̃SAM (x)

σ(x) = ΣSAM (x)
1
2

First, for ∀i = 1, ..., d, we have

E∆i
LemmaB.1

= −∂ei f̃SAM (x)η +O
(
ηρ3
)

(30)

E∆̄i
LemmaB.3

= −∂ei f̃SAM (x)η +O
(
ηρ3
)

(31)

Therefore, we have that for some K1(x) ∈ G∣∣E∆i − E∆̄i

∣∣ ≤ K1(x)η
2 (32)

Second, for ∀i, j = 1, ..., d, it holds that

E∆i∆j
LemmaB.1

= ∂ei f̃
SAM (x)∂ej f̃

SAM (x)η2 +ΣSAM
(ij) η2 +O

(
η2ρ3

)
(33)

E∆̄i∆̄j
LemmaB.3

= ∂ei f̃
SAM (x)∂ej f̃

SAM (x)η2 +ΣSAM
(ij) η2 +O

(
η2ρ3

)
(34)

Consequently, we have for some K2(x) ∈ G∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(x)η
2 (35)

Third, for ∀ij = 1, ..., d, we have

E
s∏

j=1

∆(ij)
LemmaB.1

= O
(
η3
)

(36)

E
s∏

j=1

∆̄(ij)
LemmaB.3

= O
(
η3
)

(37)

Therefore, for some K3(x) ∈ G, we have∣∣∣∣∣∣E
s∏

j=1

∆ij − E
s∏

j=1

∆̄ij

∣∣∣∣∣∣ ≤ K3(x)η
2, ∀s ≥ 3 (38)
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Additionally, for some K4(x) ∈ G, ∀ij = 1, ..., d,

E
3∏

j=1

∣∣∆̄ij

∣∣ LemmaB.3
≤ K4(x)η

2 (39)

By combining the four equations, Eq. 32, Eq. 35, Eq. 38, Eq. 39, we complete the proof.

Proof of Corollary 4.1.1 1. Under the supposition, the first statement is immediately followed by
using the fact:∣∣∣∣∣ρ22 E

∇f⊤
γ ∇2fγ(Xt)∇fγ
∥∇fγ∥2

− ρ2

2
E
[
v1(∇2fγ(Xt))

⊤∇2fγ(Xt)v1(∇2fγ(Xt))
]∣∣∣∣∣ = O(ρ3) (40)

2. Under the supposition, the second statement is immediately followed by using the fact:∣∣∣∣∣ρ22 E
∇f⊤

γ ∇2fγ(Xt)∇fγ
∥∇fγ∥2

− ρ2

2
E
[
v1(∇2fγ(Xt))

⊤∇2fγ(Xt)v1(∇2fγ(Xt))
]∣∣∣∣∣ = O(ρ4) (41)

, and ∣∣∣∣ρE [∇2fγ(x)∇fγ
∥∇fγ∥

]
− ρE

[
s∗ · ∇2fγ(x) v1

(
∇2fγ(x)

)]∣∣∣∣ = O(ρ3), (42)∣∣∣∣ρE [∇2fγ(x)∇fγ
∥∇fγ∥

]
− ρE

[
s∗ · λ1

(
∇2fγ(x)

)
v1
(
∇2fγ(x)

)]∣∣∣∣ = O(ρ3) (43)

C Proof of Theorem 3.1

Theorem C.1. (Generalization Bound) Assume that the loss function is bounded by L, and the
third-order derivative of the loss function is bounded by C. Additionally, we assume fD(x) ≤
Eϵ∼N (0,σ2Id)fD(x + ϵ), similar to Foret et al. (2021). For any δ ∈ (0, 1) and σ > 0, with a
probability over 1− δ over the choice of S ∼ Dn, we have

fD (x) ≤ fS (x) +
dσ2

2
λ1

(
∇2fS (x)

)
+

Cd3σ3

6

+
L

2
√
n

√
d log

(
1 +
∥x∥2
dσ2

)
+O(1) + 2 log

1

δ
+ 4 log (n+ d).

Proof. We use the PAC-Bayes theory in this proof. In PAC-Bayes theory, x follows a distribution,
denoted by P , and we express the expected loss over x as follows:

fD(P ) = Ex∼P

[
fD(x)

]
fS(P ) = Ex∼P

[
fS(x)

]
For any distribution P = N (0, σ2

P Id) and Q = N (x, σ2Id) over x ∈ Rd, where P is the prior
distribution and Q is the posterior distribution, use the general PAC-Bayes theorem in Alquier et al.
(2016), for all β > 0, with a probability at least 1− δ, we have

fD(Q) ≤ fS(Q) +
1

β

[
KL(Q∥P ) + log

1

δ
+Ψ(β, n)

]
, (44)

where Ψ is defined as

Ψ(β, n) = logEx∼PES

[
exp

{
β
[
fD(x)− fS(x)

]}]
.

When the loss function is bounded by L, then by using the Hoeffding’s inequality we have:

Ψ(β, n) ≤ β2L2

8n
.

19



The task is to minimize the second term of RHS of (44), we thus choose β =

√
8n(KL(Q∥P )+log 1

δ )
L .

Then the second term of RHS of (44) is equal to√
KL(Q∥P ) + log 1

δ

2n
× L.

The KL divergence between Q and P , when they are Gaussian, is given by formula

KL(Q∥P ) =
1

2

[
dσ2 + ∥x∥2

σ2
P

− d+ d log
σ2
P

σ2

]
.

For given posterior distribution Q with fixed σ2, to minimize the KL term, the σ2
P should be equal to

σ2 + ∥x∥2/d. In this case, the KL term is no less than

d log
(
1 +
∥x∥2

dσ2

)
.

Thus, the second term of RHS is√
KL(Q∥P ) + log 1

δ

2n
× L ≥

√
d log

(
1 + ∥x∥2

dσ2

)
4n

× L ≥ L

when ∥x∥22 > σ2
{
exp(4n/d)− 1

}
. Hence, for any ∥x∥2 > σ2

{
exp(4n/d)− 1

}
, we have the RHS

is greater than the LHS, the inequality is trivial. In the remainder of the proof, we only consider the
case:

∥x∥2 < σ2
(
exp(4n/d)− 1

)
. (45)

Distribution P is Gaussian centered around 0 with variance σ2
P = σ2 + ∥x∥2/d, which is unknown

at the time we set up the inequality, since x is unknown. Meanwhile we have to specify P in advance,
since P is the prior distribution. To deal with this problem, we apply the union bound technique
(Dziugaite and Roy, 2017; Foret et al., 2021). We set

c = σ2
(
1 + exp(4n/d)

)
Pj = N

(
0, c exp

(
1− j

d

)
Id
)

P :=
{
Pj : j = 1, 2, . . .

}
Then the following inequality holds for a particular distribution Pj with probability 1 − δj with
δj =

6δ
π2j2

fD
(
Q
)
≤ fS

(
Q
)
+

1

β

[
KL(Q∥Pj) + log

1

δj
+Ψ(β, n)

]
.

Use the well-known equation:
∑∞

j=1
1
j2 = π2

6 , then with probability 1 − δ, the above inequality
holds with every j. We pick

j∗ :=

⌊
1− d log

σ2 + ∥x∥2/d
c

⌋
=

⌊
1− d log

σ2 + ∥x∥2/d
σ2(1 + exp{4n/d})

⌋
.

Therefore,

1− j∗ =

⌈
d log

σ2 + ∥x∥2/d
c

⌉
⇒ log

σ2 + ∥x∥2/d
c

≤ 1− j∗

d
≤ log

σ2 + ∥x∥2/d
c

+
1

d

⇒ σ2 + ∥x∥2/d ≤ c exp

(
1− j∗

d

)
≤ exp(1/d)

[
σ2 + ∥x∥2/d

]
⇒ σ2 + ∥x∥2/d ≤ σ2

Pj∗
≤ exp(1/d)

[
σ2 + ∥x∥2/d

]
.
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Thus the KL term could be bounded as follow

KL(Q∥Pj∗) =
1

2

[
dσ2 + ∥x∥2

σ2
Pj∗

− d+ d log
σ2
Pj∗

σ2

]

≤ 1

2

[
d(σ2 + ∥x∥2/d)
σ2 + ∥x∥2/d

− d+ d log
exp(1/d)

(
σ2 + ∥x∥2/d

)
σ2

]

=
1

2

[
d log

exp(1/d)
(
σ2 + ∥x∥2/d

)
σ2

]
=

1

2

[
1 + d log

(
1 +
∥x∥2

dσ2

)]
For the term log 1

δj∗
, with recall that c = σ2

(
1 + exp(4n/d)

)
and

j∗ =
⌊
1− d log σ2+∥x∥2/d

σ2(1+exp{4n/d})

⌋
, we have

log
1

δj∗
= log

(j∗)2π2

6δ
= log

1

δ
+ log

(π2

6

)
+ 2 log(j∗)

≤ log
1

δ
+ log

π2

6
+ 2 log

(
1 + d log

σ2
(
1 + exp(4n/d)

)
σ2 + ∥x∥2/d

)
≤ log

1

δ
+ log

π2

6
+ 2 log

(
1 + d log

(
1 + exp(4n/d)

))
≤ log

1

δ
+ log

π2

6
+ 2 log

(
1 + d

(
1 +

4n

d

))
≤ log

1

δ
+ log

π2

6
+ log(1 + d+ 4n).

Hence, the inequality

fD (Q) ≤ fS (Q) +

√
KL(Q∥Pj∗) + log 1

δj∗

2n
× L

≤ fS

(
Q
)

+
L

2
√
n

√
1 + d log

(
1 +
∥x∥2
dσ

)
+ 2 log

π2

6δ
+ 4 log(n+ d)

≤ fS

(
Q
)

+
L

2
√
n

√
d log

(
1 +
∥x∥2
dσ2

)
+O(1) + 2 log

1

δ
+ 4 log(n+ d).

Eϵ∼N (0,σ2Id)

[
fD

(
x+ ϵ

)]
≤ Eϵ∼N (0,σ2Id)

[
fS

(
x+ ϵ

)]
+

L

2
√
n

√
d log

(
1 +
∥x∥2
dσ2

)
+O(1) + 2 log

1

δ
+ 4 log(n+ d).

Using the assumption that fD(x) ≤ Eϵ∼N (0,σ2Id)

[
fD

(
x+ ϵ

)]
, we reach

fD (x) ≤ Eϵ∼N (0,σ2Id)

[
fS

(
x+ ϵ

)]
+

L

2
√
n

√
d log

(
1 +
∥x∥2
dσ2

)
+O(1) + 2 log

1

δ
+ 4 log(n+ d).
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Using the second-order Taylor expansion for fS
(
x+ ϵ

)
, we obtain

fS
(
x+ ϵ

)
= fS

(
x
)
+ ϵT∇xfS

(
x
)
+

1

2
ϵT∇2fS (x) ϵ+

1

6

∑
i1,i2,i3

∂3fS (x+ tϵ)

∂xi1∂xi2∂xi3

ϵi1ϵi2ϵi3

≤fS
(
x
)
+ ϵT∇xfS

(
x
)
+

1

2
λ1

(
∇2fS (x)

)
∥ϵ∥22 +

1

6

∑
i1,i2,i3

∂3fS (x+ tϵ)

∂xi1∂xi2∂xi3

ϵi1ϵi2ϵi3 ,

where t ∈ [0, 1]. Thanks to Eϵ∼N (0,σ2Id)
[
∥ϵ2
]
≤ Eϵ∼N (0,Id)

[
∥ϵ2
]
= dσ2, we have

Eϵ∼N (0,σ2Id)

[
fS

(
x+ ϵ

)]
≤ fS

(
x
)
+

dσ2

2
λ1

(
∇2fS (x)

)
+

Cd3

6
Eϵ1∼N (0,σ2) [|ϵ1|]Eϵ2∼N (0,σ2) [|ϵ2|]Eϵ3∼N (0,σ2) [|ϵ3|]

≤ fS

(
x
)
+

dσ2

2
λ1

(
∇2fS (x)

)
+

Cd3

6

(
Eϵ1∼N (0,σ2)

[
ϵ21
]1/2)3

= fS

(
x
)
+

dσ2

2
λ1

(
∇2fS (x)

)
+

Cd3σ3

6
.

By the assumption fD(x) ≤ Eϵ∼N (0,σ2Id)fD(x+ ϵ), we reach

fD (x) ≤ fS

(
x
)
+

dσ2

2
λ1

(
∇2fS (x)

)
+

Cd3σ3

6

+
L

2
√
n

√
d log

(
1 +
∥x∥2
dσ2

)
+O(1) + 2 log

1

δ
+ 4 log(n+ d).

D Theoretical Properties of Eigen-SAM

In this subsection, first we show that Eq. 8 can indeed improve the alignment for moderate α. Let
ω := cos(

∇fγ(x)
∥∇fγ(x)∥ , v), without loss of generalization, we suppose ω > 0. We only consider the case

ω >
√
2
2 , since in the case 0 < ω ≤

√
2
2 , any α > 0 will enhance the alignment. Using fundamental

mathematics to solve the inequality, we obtain

Proposition D.1. Let ω >
√
2
2 , for any α ∈

(
0, 2ω

√
1−ω2

2ω2−1

)
, we have cos(

∇fγ(x)
∥∇fγ(x)∥ + αv⊥, v) > ω.

Proposition D.1 shows our update can indeed improve the alignment for a wide range of α. For
example, if cos(∇fγ(x), v) = 0.8, then α can be any value in (0, 3.43); if cos(∇fγ(x), v) = 0.9,
then α can be any value in (0, 1.27).

Next, inspired by Si and Yun (2024), we have the following convergence rate for stochastic Eigen-
SAM on non-convex function:

Theorem D.2. (Convergence rate) Consider a β-smooth function f satisfying f∗ = infx f(x) > −∞,
let ∆ := f(x0) − f∗, and assume the mini-batch variance is bounded by σ2. Under Eigen-SAM,
starting at x0 with any perturbation size ρ > 0 and step size η = min{ 1

2β ,
√
∆√

βσ2T
} to minimize f ,

we have

1

T

T−1∑
t=0

E ∥∇fγ (xt)∥2 ≤ O

(
β∆

T
+

√
βσ2∆√
T

)
+ β2(ρ2 + α2)
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Proof. By the definition of β-smoothness, we have

Ef(xt+1) ≤ Ef(xt)− ηE⟨∇f(xt),∇f(xt + ρϵ)⟩+ βη2

2
E∥∇f(xt + ρϵ)∥2

≤ Ef(xt)− ηE⟨∇f(xt),∇f(xt + ρϵ)⟩
+ βη2

(
E∥∇f(xt + ρϵ)∥2 + E∥∇f(xt + ρϵ)−∇f(xt)∥2

)
≤ Ef(xt)− ηE⟨∇f(xt),∇f(xt + ρϵ)⟩+ βη2

(
E∥∇f(xt + ρϵ)∥2 + σ2

)
= Ef(xt)−

η

2
E∥∇f(xt)∥2 −

η

2
E∥∇f(xt + ρϵ)∥2

+
η

2
E∥∇f(xt)−∇f(xt + ρϵ)∥2 + βη2

(
E∥∇f(xt + ρϵ)∥2 + σ2

)
≤ Ef(xt)−

η

2
E∥∇f(xt)∥2 +

β2η

2
E∥xt − (xt + ρϵ)∥2 + βσ2η2

= Ef(xt)−
η

2
E∥∇f(xt)∥2 +

β2η(ρ2 + α2)

2
+ βσ2η2.

Rearranging this inequality and deviding both sides by ηT
2 , we have

1

T

T−1∑
t=0

E∥∇f(xt)∥2 ≤
2

ηT
(Ef(x0)− Ef(xT )) + β2(ρ2 + α2) + 2βσ2η

≤ 2∆

ηT
+ β2(ρ2 + α2) + 2βσ2η.

By using η = min{ 1
2β ,

√
∆√

βσ2T
}, we complete the proof.

E Additional Experimental Details

For hyperparameter ρ, we follow the guidelines by Foret et al. (2021), setting ρ to 0.05 for CIFAR-10
and Fashion-MNIST, 0.01 for SVHN, and 0.1 for CIFAR-100. We ensure that SAM and Eigen-SAM
use the same ρ for a fair comparison. Additionally, we tune the hyperparameter α for Eigen-SAM
over {0.05, 0.1, 0.2} using 10% of the training set as a validation set. We find that α = 0.2 works
the best for almost all cases. Therefore, we report the performance with α = 0.2 for all experiments
to demonstrate that Eigen-SAM does not require extensive hyperparameter tuning. We run three
independent repeat experiments with different weight initializations and data shuffling. Because
SAM and Eigen-SAM require twice the runtime, we allow SGD to train for twice the number of
epochs. All our experiments were conducted on NVIDIA RTX 4090 24GB GPUs.

F Additional experiment results

Table 3: Test accuracy on CIFAR-10 for different values of p (interval steps for estimating eigenvec-
tors) using Eigen-SAM.

Architechture p=100 p=200 p=500 p=1000 SAM

ResNet18 95.9±0.2 95.9±0.1 95.7±0.2 95.8±0.1 95.5±0.1

WideResNet-28-10 96.8±0.1 96.7±0.1 96.8±0.1 96.7±0.1 96.5±0.1

23



Table 4: Test accuracy on CIFAR-100 for different values of p (interval steps for estimating eigenvec-
tors) using Eigen-SAM.

Architechture p=100 p=200 p=500 p=1000 SAM

ResNet18 78.3±0.2 78.2±0.2 78.2±0.2 78.3±0.1 77.4±0.2

WideResNet-28-10 82.8±0.1 82.7±0.2 82.7±0.1 82.6±0.1 82.0±0.2

(a) ResNet18 (b) WideResNet-28-10

Figure 5: The effect of the number of Hessian-vector product steps in Algorithm 1 (power iteration)
on the alignment of the estimated vector with the top eigenvalue. The dataset is CIFAR-100, and the
models are ResNet18 and WideResNet-28-10 at mid-training stage (100th epoch).

G Limitaions

A limitation of this work is the additional memory and time required to estimate the top eigenvalue of
the Hessian matrix. Improving the efficiency of Eigen-SAM is a direction for future research.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide all assumptions and our proof is complete.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all details for experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Yes, our code is open source.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify them in the main paper. Additional details are provided in the
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We give a confidence level of 95%.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information of the computational resource.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conduct with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper focuses on fundamental research in deep learning theory and
algorithms.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We only use public datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We correctly cite authors for models and data.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We communicate the details of the dataset/code/model.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not contain human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not contain human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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