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ABSTRACT

The detection of deepfakes continues to grapple with challenges arising from the
rapid evolution of generative models and the intricate characteristics of real-world
data. Current detection frameworks frequently exhibit overfitting to particular
artifacts, which constrains their effectiveness against novel manipulation tech-
niques. While many models demonstrate high accuracy on standardized bench-
mark datasets, their performance often deteriorates when confronted with authen-
tic deepfake instances. This study investigated the integration of biometric data,
explicitly addressing the limitations of deepfake generation in mirroring the sub-
tle biometric variations present in human faces. By segmenting facial regions into
mesh representations, we analyzed the correlation between RGB features and bio-
metric signals, particularly focusing on heart rate data. This approach enabled the
development of Color-Based Spatial-Temporal (CST) feature maps, which pro-
vide a more nuanced depiction of the interactions between visual attributes and
biometric inputs. The goal of this study was to propose a novel feature map and
evaluate its performance. We assessed the effectiveness of these biosignal feature
maps in conjunction with established detection models on the FaceForensics++
and Celeb-DF datasets. The incorporation of these feature maps resulted in re-
markable outcomes, achieving nearly 99% accuracy (ACC) and an area under
the curve (AUC) nearing 1. Importantly, our method demonstrates strong effec-
tiveness in detecting low-quality deepfakes images with high compression level.
Transitioning to a transfer learning framework, while retaining the biosignal fea-
ture maps, yielded further enhancements in performance metrics. These findings
underscore the considerable value of integrating biometric information to bolster
deepfake detection capabilities, often surpassing the results of prior research while
remaining anchored in fundamental learning principles. The model exhibited con-
sistent performance across diverse cross-testing scenarios, highlighting its robust-
ness and adaptability.

1 INTRODUCTION

Deepfake technology leverages sophisticated artificial intelligence and deep learning techniques to
generate hyper-realistic synthetic media, encompassing images, audio, and video content. Central
to its functionality are neural networks, which facilitate tasks such as face swapping and voice
imitation Alanazi et al. (2025). The evolution of deepfakes was catalyzed by the original use of
autoencoders Kingma et al. (2013) for data compression, which were subsequently enhanced by
Generative Adversarial Networks (GANs) Goodfellow et al. (2020) and Diffusion models Dhariwal
& Nichol (2021), significantly elevating the realism of produced visuals and sounds Amerini et al.
(2025).

Deepfakes exploit statistical patterns in authentic media, making reliable detection increasingly dif-
ficult. Their growing realism enables misuse in political manipulation, nonconsensual adult content,
and disinformation, raising critical security concerns. In 2023, an estimated 500,000 deepfakes cir-
culated on social media, underscoring the urgency of this challenge Alanazi et al. (2025); Kaur et al.
(2024).
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As AI-generated media blurs reality, risks of identity theft and cyber threats rise. A notable incident
in 2019 showed a C220,000 fraud using AI voice cloning J. Damiani (2019). Ethical issues like
consent, privacy, and misinformation remain critical.

These challenges have sparked discussions around regulatory frameworks, digital literacy enhance-
ments, and advanced detection methodologies. The rapid proliferation of deepfakes threatens to
undermine public trust in digital media, potentially leading to a phenomenon known as the ’Liar’s
Dividend,’ wherein the veracity of authentic content is called into question, endangering social co-
hesion and the integrity of democratic processes Schiff et al. (2023).

Detection strategies for deepfakes can be categorized into several methodologies Alrashoud (2025):

• Visual artifact analysis detects anomalies in deepfake images and videos, while tem-
poral methods (RNNs, LSTMs, optical flow) capture time-based inconsistencies. Key
approaches include the Recurrent Convolutional Model (RCN) and Temporally Aware
Pipelines. Single-frame analysis targets facial distortions and 3D head pose issues, and
PRNU identifies device-specific signatures Lukas et al. (2006). Deep Features-based Meth-
ods Hsu et al. (2020); Guo et al. (2021) automate feature extraction, while shallow classi-
fiers (e.g., SVMs, random forests) distinguish authentic from manipulated content.

• Audio deepfake detection focuses on spectral and acoustic analysis of TTS and voice
cloning but struggles to generalize beyond academic datasets Schäfer et al. (2024).

• Multimodal detection integrates visual, audio, and behavioral cues—such as lip-sync in-
consistencies—to enhance robustness over single-modality approaches Muppalla et al.
(2023); Wang & Huang (2024).
Biometric Signal Analysis Patil et al. (2023) examines subtle physiological cues that deep-
fakes often fail to mimic. Eye blinking Agrawal & Haneef (2025), eye movement Li et al.
(2021), eyebrow traits Nguyen & Derakhshani (2020), and ear–mouth dynamics Gerst-
ner & Farid (2022) reveal irregularities introduced by synthetic generation. Heartbeat de-
tection via rPPG Hernandez-Ortega et al. (2020) further captures inconsistencies in skin-
tone–based pulse signals.

In this paper Kim et al. (2025), the authors present novel forgery detection approach based on
pixel-wise temporal frequency. Unlike conventional approaches that stack frequency spectra across
frames, their method applies a 1D Fourier transform along the time axis at each pixel to extract
features sensitive to unnatural movements.

FakeTransformer exploits pixel-level blood volume variations, enhanced with multi-scale Eulerian
Video Magnification to generate MEMSTmaps from averaged YUV channels of 15 ROIs. A Vision
Transformer then learns spatio-temporal descriptors for classification, achieving 98.98%, 98.50%,
98.49%, and 86.50% accuracy on DeepFakes, Face2Face, FaceSwap, and NeuralTextures, respec-
tively, in intra-dataset evaluation Sun et al. (2022).

However, these approaches frequently struggle under high compression levels, where critical visual
cues are heavily degraded and compression lowers detection accuracy, and social-media processing
further masks manipulation cues Wu et al. (2022). Therefore, we propose a novel methodology for
generating feature maps that embed biometric information and validate their effectiveness on public
datasets. The maps incorporate the heart rate derived from facial skin and spatial and temporal
information. An AI model trained on the proposed maps achieves impressive performance in high
compression level of dataset FF++, demonstrating the utility of physiological features in addressing
limitations of prior work.

2 METHODOLOGY

2.1 DATASET

We conducted extensive experiments on two widely-used deepfake detection bench-
marks—FaceForensics++, and Celeb-DF (v1) to rigorously assess the performance and gen-
eralization ability of our proposed method across both in-dataset and cross-dataset settings.
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FaceForensics++ (FF++) Rossler et al. (2019) provides a balanced dataset with 1000 real and
1000 fake videos, manipulated through four distinct methods: Deepfakes (DF), Face2Face (F2F),
FaceSwap (FS), and NeuralTextures (NT). We utilize the heavy compression (c40) version to ensure
reliable evaluation under visually consistent conditions and also compare in light compression (c23)
level.

Celeb-DF (v1) (CDFv1) Li et al. (2020b) addresses the quality limitations of prior datasets by
including 408 real and 795 fake videos generated with improved synthesis techniques. It covers
59 celebrity subjects under a wide range of facial expressions, head poses, and lighting conditions,
allowing us to test robustness under realistic scenarios.

2.2 COLOR-BASED SPATIAL-TEMPORAL FEATURE MAP GENERATION

Figure 1: A Color-based Spatial-Temporal (CST) feature map embedding process.

Video analysis detection methods are typically grouped into spatial (frame-level), temporal
(sequence-level), and multimodal (cross-modal) approaches. Some address spatial biases within
frames, while others mitigate temporal artifacts across sequences Ramanaharan et al. (2025). Re-
cent advances often employ transformers and hybrid architectures. We propose a novel Color-based
Spatial-Temporal (CST) feature map, derived from the RGB values of facial images, to capture
physiological signals correlated with biometric data. Remote heart rate estimation relies on detect-
ing subtle color variations in facial skin over time, which reflect blood volume changes and can be
used to extract remote photoplethysmography (rPPG) signals Xiao et al. (2024). Our CST feature
map encodes these color fluctuations, effectively representing the rPPG component and enabling
accurate non-contact heart rate measurement, a mechanism that has been validated in prior studies
Verkruysse et al. (2008); Xiao et al. (2024); Hassan et al. (2017); Liu et al. (2024).

The embedding process for the CST feature map is depicted in Figure 1. It begins by extracting
frames from video content using the Mediapipe face landmark detector, which identifies key facial
landmarks. A total of 468 keypoints are captured, allowing us to crop images around the facial
region. These cropped images are resized to dimensions H ×W before being divided into N ×N
patches. For this study, the value of N is held constant, and its effect on performance is not the
focus here. Each patch is generated from the facial frame, where each video frame Ft ∈ RH×W×3

is segmented into uniform N × N non-overlapping patches. The patches represent sub-regions of
size H

N × W
N located at specific grid coordinates (i,j), with i, j ∈ {0, 1, . . . , N − 1}.

For each patch P t
k, defined by the flattened index k = i.N + j, the mean RGB values are computed

using the formula:

stk =
1

|P t
k|

∑
(x,y)∈P t

k

Ft(x, y), (1)

where stk ∈ R3 represents the average RGB vector for patch k at frame t, and Ft(x, y) ∈ R3 denotes
the RGB values at the pixel coordinates (x, y) within the frame Ft.

By iterating this process through a sequence of T frames, a 3D tensor is constructed:
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S ∈ RK×T×3, (2)

where K = N2 denotes the total number of patches. Each tensor entry, Sk,t,:, captures the RGB
signal for patch k at frame t.

The CST map is then formulated by flattening the patch and channel dimensions, followed by trans-
posing the tensor:

M = reshape(S, (T, 3K))⊤ ∈ R3K×T . (3)

This resulting matrix M effectively encapsulates the temporal progression of color values across
each patch-channel combination.

For practical applications, we normalize M to a range of [0, 255] and resize it to a standard resolution
(e.g., 224× 224) using bilinear interpolation:

Mnorm = resize
(
norm[0,255](M)

)
. (4)

This CST map explicitly encodes temporal changes of RGB values across frames, often including
spatial aggregation. It transforms the raw RGB sequences into a structured representation where
subtle color fluctuations corresponding to blood volume changes are highlighted, making it easier for
a model to learn rPPG-related patterns and suitable for diverse applications, including physiological
signal analysis and deepfake detection.

Deepfake detection methods that utilize raw RGB signals can be classified into three main cate-
gories: techniques focused on pixel-level inconsistencies and artifacts, those analyzing the statistical
characteristics of texture and color channels, and methods investigating the frequency domain of raw
RGB data. The approach presented here is unique in that it simultaneously evaluates both spatial
and temporal attributes of the RGB signals, delivering a more thorough analysis.

Deepfake detection methodologies are increasingly using biometric signals, particularly remote pho-
toplethysmography (rPPG) from RGB video. These methods assume that heart rates from genuine
and manipulated faces differ significantly. The DeepFakesON-Phys Hernandez-Ortega et al. (2020)
framework employs a convolutional attention network (CAN) to extract features, achieving over
98% AUC on datasets like Celeb-DF v2. However, a recent study (2025) challenges the idea that
deepfake generation compromises rPPG signals, showing that high-quality deepfakes can produce
authentic heart rates. This suggests that pulse detection alone is insufficient, highlighting the need
for new detection strategies that analyze blood flow patterns and the importance of advanced rPPG
techniques in identifying subtle abnormalities in biometric data. Thus, the trial in this study is to
evaluate comprehensive raw RGB signals, including all biometric information.

2.3 MODEL ARCHITECTURES

In this study, we evaluate our proposed method utilizing the Xception architecture Chollet (2017),
which is a lightweight yet powerful convolutional neural network that incorporates depthwise
separable convolutions. Each separable convolution operation consists of a depthwise convolu-
tion—performing spatial convolutions independently across each channel—followed by a 1×1 point-
wise convolution that captures inter-channel correlations. This architecture is predicated on the
premise that spatial and cross-channel feature dependencies can be disentangled and learned se-
quentially as a 2D mapping followed by a 1D mapping, rather than being handled jointly in a 3D
context.

The Xception model consists of 36 convolutional layers grouped into 14 modules, with residual
connections implemented in all modules except the first and the last. A softmax output layer is
employed to facilitate classification tasks. For our evaluations, both intra-dataset comparisons and
cross-manipulation assessments are conducted using the standard Xception model (batchsize =
32, learningrate = 0.001) to contrast performance variations between frame-level datasets and
color-based spatial-temporal (CST) feature map datasets.

In our cross-dataset evaluation, we employ child Xception model on dataset without CST with pre-
trained weights from a parent Xception model, which was previously trained on a CST feature map
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Dataset (w/o) CST (videos) (w/) CST (images)

FF++

Real: 1000 Real: 1000
DF: 1000 DF: 1000
F2F: 1000 F2F: 1000
FS: 1000 FS: 1000
NT: 1000 NT: 1000

CDFv1 Real: 408 Real: 408
Fake: 795 Fake: 795

Table 1: The details of the evaluation datasets, including the dataset without(w/o) CST feature map
dataset and with(w/) CST feature map.

for deepfake detection. We specifically load the parent model’s checkpoint and selectively transfer
only those layers that have matching shapes with the child model. The classifier head is reconfig-
ured to output two classes (real and fake), enabling fine-tuning on the frame dataset. This strategy
capitalizes on the rich feature representations acquired by the parent model, thereby enhancing con-
vergence speed and performance in the target domain.

2.4 FUNCTION LOSS

In our approach, we utilize cross-entropy loss as the objective function to enhance classification
performance. This loss function is a standard choice for both binary and multi-class classification
tasks, as it quantifies the divergence between the predicted probability distributions and the actual
labels. For binary classification, the cross-entropy loss is expressed as follows:

LCE = − [y log(ŷ) + (1− y) log(1− ŷ)] , (5)

where y denotes the actual label of the sample (0 or 1) and ŷ represents the predicted probability of
the positive class (class 1). Extending to multi-class classification with C possible classes, the loss
is defined as:

LCE = −
C∑
i=1

yi log(ŷi). (6)

Here, yi corresponds to the actual probability for class i, typically encoded as 1 for the correct
class and 0 for all others. At the same time, ŷi indicates the predicted probability for class i. This
formulation effectively captures the model’s predictive accuracy across multiple classes.

3 EXPERIMENTS

3.1 EXPERIMENT SETTINGS

All experiments were rigorously performed on an NVIDIA GeForce RTX 4090 GPU, utilizing driver
version 550.54.14 and equipped with 24GB of memory. The deep learning framework employed was
PyTorch 2.1.1, with CUDA 11.8 support, executed within a Python 3.8.18 environment.

3.2 EXPERIMENT RESULTS

3.2.1 CST FEATURE MAP DATASETS:

Table 1 outlines the evaluation datasets, which encompass dataset without(w/o) CST feature map
and the proposed CST feature map representations derived from FF++ and CDFv1. The dataset
without(w/o) CST feature map is composed of isolated video frames, whereas the CST feature map
dataset integrates our CST embedding methodology. In Figure 2, an example from the FF++ dataset
is showcased, displaying both the dataset without(w/o) CST feature map and its associated CST
feature map. Notably, the CST feature maps exhibit distinctive patterns that effectively differentiate
authentic videos from those altered by a range of manipulation techniques.
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Figure 2: The example of dataset without(w/o) CST feature map and the corresponding dataset
with(w/) CST feature map of the video on FF++ dataset.

Dataset Metrics Deepfakes Face2Face FaceSwap NeuralTextures FF++ CDFv1

(w/o) CST ACC
AUC

93.94
98.66

85.12
93.50

88.78
95.54

59.31
95.49

77.20
75.07

94.41
99.58

(w/) CST ACC
AUC

99.75
100

98.13
99.86

98.53
99.93

98.62
99.91

99.9
100

100
100

Table 2: The results of intra-dataset evaluation between the dataset without(w/o) CST feature map
and the with(w/) CST feature map on Xception model.

3.2.2 INTRA-DATASET EVALUATION

Table 2 summarizes the results of the intra-data set evaluation, contrasting the performance of the
dataset without CST with that of the CST feature map dataset. The bold font indicates the highest
AUC and ACC. In particular, the Xception model exhibits a marked improvement when applied to
the CST feature map dataset, consistently achieving accuracy scores close to 100%, significantly
surpassing its performance on the dataset without CST. The proposed method boosts accuracy from
75.07% to 100% on FF++ (c40) and from 94.41% to 100% on CDFv1 using CST maps. Overfitting
does not occur, as the model performs well on both the training and validation sets. Furthermore,
cross-manipulation and cross-dataset evaluations are presented in the following sections to further
demonstrate this.

In Table 3, we detail the accuracy (%) results for dataset with CST and without CST feature map
datasets across various architectures, including Xception, ResNet50 He et al. (2016), EfficientNet
Tan & Le (2019), and ViT Dosovitskiy et al. (2020). The best ACC scores are highlighted in
bold. The models were trained on FF++ (c40), encompassing five classes: “real,” “deepfakes,”
“face2face,” “faceswap,” and “neuraltextures”. The CST feature map representation shows a con-
siderable enhancement in performance for CNN-based models relative to the dataset without CST,
registering accuracy increases of +26.45% for Xception, +21.00% for ResNet50, and +23.93% for
EfficientNet. However, these gains are not reflected in the ViT-based model, which shows a perfor-
mance decrease of 7. 71% compared to the dataset without CST.

To further underscore the efficacy of the CST feature map, we present t-SNE visualizations Maaten
& Hinton (2008) in Figure 3. These visualizations depict the feature distributions of the Xception,
ResNet50, EfficientNet, and ViT models in both datasets. Each color corresponds to one of the
five classes: “real,” “deepfakes,” “face2face,” “faceswap,” and “neuraltextures.” In the dataset with
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Dataset Xception ResNet50 EffNet ViT
(w/o) CST 73.05 72.27 71.57 44.23
(w/) CST 99.5 93.27 95.50 36.52

Table 3: The ACC (%) results of the without(w/o) CST dataset and with(w/) CST feature map
dataset on Xception, ResNet50, EfficientNet (EffNet), and ViT. The detectors are trained on FF++
(c40) with 5 classes: “real”, “deepfakes”, “face2face”, “faceswap”, “neuraltextures”.

Figure 3: The t-SNE visualization on intra-dataset scenario of Xception, EfficientNet, ResNet50,
ViT. The detector is trained on FF++ (c40), and different colors represent different subsets (corre-
sponding to 5 classes).

CST, the CNN models exhibit moderate separation between forgery types, with significant over-
lap between authentic and manipulated images, which poses a heightened risk of misclassification.
Conversely, the CST feature map representation facilitates more apparent inter-class separation and
tighter intra-class clustering, particularly among distinct forgery types. This indicates that the CST
representation not only enhances the model’s capacity to differentiate real from fake but also fos-
ters improved clustering of samples from the same manipulation class. The results suggest that
integrating such discriminative representations could further elevate the generalisation capabilities
of deepfake detectors by leveraging manipulation-specific features. The t-SNE results reveal poor
class clustering for ViT, reflecting weak discriminative features. ViT emphasises global patterns, but
lacks the local feature sensitivity that CNNs provide.

3.2.3 CROSS-MANIPULATION EVALUATION

Table 4 reports cross-manipulation results for the dataset without CST and with CST feature map,
measured by accuracy ACC (%) and AUC (%). The best scores are highlighted in bold. In first four
settings, models are trained on one manipulation type and tested on others; in the fifth, one type
is held out for validation and the remaining three type is for training. Across all cases, with CST
achieves ACC and AUC above 90%, approaching 100% in some, and consistently outperforms with-
out CST dataset by factors of 2–3 times, demonstrating the strength of the proposed representation.

3.2.4 COMPARISION IN DIFFERENT COMPRESSION LEVELS

Table 5 compares the AUC (%) performance of our CST feature map (both c23 and c40) represen-
tation with existing methods under cross-manipulation and cross-dataset evaluations. The best and
second-best results are marked in bold and underlined, respectively. In cross-manipulation, CST in
c40 level attains an average AUC of 99.97%, outperforming all baselines, including a 0.43% gain
over CST on c23 level and a 2.32% gain over UCF. Figure 4 further illustrates this strength: (a) con-
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Train set
Test set Data Type Metrics DF F2F FS NT

DF
(w/o) CST ACC – 50.93 48.77 47.87

AUC – 52.89 52.87 49.84

(w/) CST ACC – 89.25 97.17 97.25
AUC – 98.26 99.75 99.78

F2F
(w/o) CST ACC 52.47 – 47.72 46.73

AUC 58.56 – 46.95 39.72

(w/) CST ACC 100 – 100 99.75
AUC 100 – 100 100

FS
(w/o) CST ACC 59.43 48.27 – 47.28

AUC 66.10 41.34 – 36.16

(w/) CST ACC 99.75 99.75 – 100
AUC 100 99.94 – 100

NT
(w/o) CST ACC 46.69 42.39 39.60 –

AUC 46.32 33.75 30.58 –

(w/) CST ACC 100 99.75 100 –
AUC 100 99.94 100 –

FF++
(w/o) CST ACC 71.86 58.51 55.41 33.20

AUC 60.53 45.66 50.01 40.06

(w/) CST ACC 99.83 99.67 99.75 99.58
AUC 100 99.99 99.98 99.92

Table 4: The results of cross-manipulation evaluations between the dataset without(w/o) CST and
the with(w/) CST feature map in ACC(%) and AUC(%) in FF++ (c40) dataset (Deepfakes (DF),
FaceSwap (FS), Face2Face (F2F), and NeuralTextures (NT)) on Xception model.

Model Reference Cross-manipulation Cross-dataset
DF F2F FS NT Avg. CDFv1

Xception CVPR2017 60.53 45.66 50.01 40.06 49.06 77.43
EfficientB4 Tan & Le (2019) PMLR2019 97.57 97.58 97.97 93.08 96.55 79.09
CNN-Aug Wang et al. (2020) CVPR2020 90.48 87.88 90.26 73.13 85.44 74.20
X-ray Li et al. (2020a) CVPR-2020 97.94 98.72 98.71 92.90 97.06 70.93
SPSL Liu et al. (2021) CVPR2021 97.81 97.54 98.29 92.99 96.66 81.50
SRM Luo et al. (2021) CVPR2021 97.33 96.96 97.40 92.95 96.16 79.26
CORE Ni et al. (2022) CVPRW2022 97.87 98.03 98.23 93.39 96.88 77.98
Recce Cao et al. (2022) CVPR2022 97.97 97.79 97.85 93.57 96.79 76.80
UCF Yan et al. (2023) ICCV2023 98.83 98.40 98.96 94.41 97.65 77.90
TCAN Amin et al. (2024) ERA(2024) 99.16 98.93 99.03 98.15 98.82 –
RAE Tian et al. (2024) ECCV2024 99.60 99.10 99.20 97.60 98.90 –
FreqBlender Hanzhe et al. (2024) NeurIP2024 99.18 96.76 97.68 90.88 96.13 –
BSF Kim et al. (2025) ICCV2025 99.90 97.10 99.80 96.90 98.42 –
Ours-Xception trained with CST – 98.22 99.92 100 100 99.54 58.59
Ours-Xception trained with CST (c40) – 100 99.99 99.98 99.92 99.97 80.34

Table 5: AUC(%) on the cross-manipulation and cross-dataset evaluation. Deepfakes (DF),
FaceSwap (FS), Face2Face (F2F), and NeuralTextures (NT). The models are trained on FF++(c23).
The ‘Avg.’ column denotes the mean AUC computed over various datasets. The final line is the
result of our CST evaluated on FF++(c40).

fusion matrices show only 1–3 errors per class, and (b) t-SNE embeddings reveal clearly separated
trajectories for real (yellow) and fake (purple) samples.

For cross-dataset evaluation, CST on c40 improves AUC by 2.92% over without(w/o) dataset base-
line and ranks second overall, just 1.16% behind SPSL. Figure 5 highlights this advantage with
GradCAM visualizations, where Xception misclassifies a without CST sample (red box), but CST
yields correct predictions.

4 CONCLUSIONS

This study presented a novel methodology for generating color-based spatio-temporal (CST) feature
maps by analyzing RGB facial features and heart rate data. The integration of these feature maps
into existing models has led to impressive results:
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Figure 4: (a) Confusion matrix and (b) t-SNE visualization from cross-manipulation evaluation
using the CST feature map. Trained on three manipulations, tested on the remaining one (FF++
c40).

Figure 5: GradCAM visualizations on some samples with CST feature map dataset and without CST
dataset in cross-dataset evaluation. Red rectangle marks misclassification.

• Intra-dataset evaluation: Using CST feature maps with the Xception architecture, model
achieved nearly 100% accuracy and an AUC close to 1, significantly improving from
77.20% accuracy without CST data to 99.9% with CST maps in full FF++ (c40) dataset.
And achieving an improvement from 94.41% to 100% on the CDFv1 dataset.

• Cross-manipulation evaluation: CST feature maps showcased strong performance in heavy
compression across various manipulation types (DF, F2F, FS, NT), achieving over 90%
accuracy and AUC values, with averages reaching 99.97%, greatly surpassing baseline
models.

The key contributions are follows:

• Enhanced Generalization: CST feature maps improve model adaptability to new deepfake
types, reducing overfitting issues common in previous research.

• Raw RGB Data Utilization: The method captures discrepancies directly from raw RGB
signals, identifying forgery indicators that processed images might miss.

• Practical Model Feasibility: Transfer learning enhances performance, offering a solution
to challenges associated with data scarcity in deepfake detection with heavy compression
media.

In conclusion, this research significantly advances deepfake detection technology, demonstrating
that CST feature maps combined with biometric data improve generalization and robustness in real-
world applications, laying a foundation for future detection strategies.
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