

# 000 001 DEEPFAKE DETECTION THROUGH COLOR-BASED 002 SPATIAL-TEMPORAL FEATURE MAPPING WITH BIO- 003 METRIC INFORMATION 004 005

006 **Anonymous authors**

007 Paper under double-blind review  
008  
009  
010  
011  
012

## ABSTRACT

013 The detection of deepfakes continues to grapple with challenges arising from the  
014 rapid evolution of generative models and the intricate characteristics of real-world  
015 data. Current detection frameworks frequently exhibit overfitting to particular  
016 artifacts, which constrains their effectiveness against novel manipulation tech-  
017 niques. While many models demonstrate high accuracy on standardized bench-  
018 mark datasets, their performance often deteriorates when confronted with authen-  
019 tic deepfake instances. This study investigated the integration of biometric data,  
020 explicitly addressing the limitations of deepfake generation in mirroring the sub-  
021 tle biometric variations present in human faces. By segmenting facial regions into  
022 mesh representations, we analyzed the correlation between RGB features and bio-  
023 metric signals, particularly focusing on heart rate data. This approach enabled the  
024 development of Color-Based Spatial-Temporal (CST) feature maps, which pro-  
025 vide a more nuanced depiction of the interactions between visual attributes and  
026 biometric inputs. The goal of this study was to propose a novel feature map and  
027 evaluate its performance. We assessed the effectiveness of these biosignal feature  
028 maps in conjunction with established detection models on the FaceForensics++  
029 and Celeb-DF datasets. The incorporation of these feature maps resulted in re-  
030 markable outcomes, achieving nearly 99% accuracy (ACC) and an area under  
031 the curve (AUC) nearing 1. Importantly, our method demonstrates strong effec-  
032 tiveness in detecting low-quality deepfakes images with high compression level.  
033 Transitioning to a transfer learning framework, while retaining the biosignal fea-  
034 ture maps, yielded further enhancements in performance metrics. These findings  
035 underscore the considerable value of integrating biometric information to bolster  
036 deepfake detection capabilities, often surpassing the results of prior research while  
037 remaining anchored in fundamental learning principles. The model exhibited con-  
038 sistent performance across diverse cross-testing scenarios, highlighting its robust-  
039 ness and adaptability.

## 040 1 INTRODUCTION 041

042 Deepfake technology leverages sophisticated artificial intelligence and deep learning techniques to  
043 generate hyper-realistic synthetic media, encompassing images, audio, and video content. Central  
044 to its functionality are neural networks, which facilitate tasks such as face swapping and voice  
045 imitation Alanazi et al. (2025). The evolution of deepfakes was catalyzed by the original use of  
046 autoencoders Kingma et al. (2013) for data compression, which were subsequently enhanced by  
047 Generative Adversarial Networks (GANs) Goodfellow et al. (2020) and Diffusion models Dhariwal  
048 & Nichol (2021), significantly elevating the realism of produced visuals and sounds Amerini et al.  
049 (2025).

050 Deepfakes exploit statistical patterns in authentic media, making reliable detection increasingly dif-  
051 ficult. Their growing realism enables misuse in political manipulation, nonconsensual adult content,  
052 and disinformation, raising critical security concerns. In 2023, an estimated 500,000 deepfakes cir-  
053 culated on social media, underscoring the urgency of this challenge Alanazi et al. (2025); Kaur et al.  
(2024).

054 As AI-generated media blurs reality, risks of identity theft and cyber threats rise. A notable incident  
 055 in 2019 showed a €220,000 fraud using AI voice cloning J. Damiani (2019). Ethical issues like  
 056 consent, privacy, and misinformation remain critical.

057 These challenges have sparked discussions around regulatory frameworks, digital literacy enhance-  
 058 ments, and advanced detection methodologies. The rapid proliferation of deepfakes threatens to  
 059 undermine public trust in digital media, potentially leading to a phenomenon known as the 'Liar's  
 060 Dividend,' wherein the veracity of authentic content is called into question, endangering social co-  
 061 hesion and the integrity of democratic processes Schiff et al. (2023).

062 Detection strategies for deepfakes can be categorized into several methodologies Alrashoud (2025):

- 064 • Visual artifact analysis detects anomalies in deepfake images and videos, while tem-  
 065 poral methods (RNNs, LSTMs, optical flow) capture time-based inconsistencies. Key  
 066 approaches include the Recurrent Convolutional Model (RCN) and Temporally Aware  
 067 Pipelines. Single-frame analysis targets facial distortions and 3D head pose issues, and  
 068 PRNU identifies device-specific signatures Lukas et al. (2006). Deep Features-based Meth-  
 069 ods Hsu et al. (2020); Guo et al. (2021) automate feature extraction, while shallow classi-  
 070 fiers (e.g., SVMs, random forests) distinguish authentic from manipulated content.
- 071 • Audio deepfake detection focuses on spectral and acoustic analysis of TTS and voice  
 072 cloning but struggles to generalize beyond academic datasets Schäfer et al. (2024).
- 073 • Multimodal detection integrates visual, audio, and behavioral cues—such as lip-sync in-  
 074 consistencies—to enhance robustness over single-modality approaches Muppalla et al.  
 075 (2023); Wang & Huang (2024).

077 Biometric Signal Analysis Patil et al. (2023) examines subtle physiological cues that deep-  
 078 fakes often fail to mimic. Eye blinking Agrawal & Haneef (2025), eye movement Li et al.  
 079 (2021), eyebrow traits Nguyen & Derakhshani (2020), and ear-mouth dynamics Gerst-  
 080 ner & Farid (2022) reveal irregularities introduced by synthetic generation. Heartbeat de-  
 081 tection via rPPG Hernandez-Ortega et al. (2020) further captures inconsistencies in skin-  
 082 tone-based pulse signals.

083 In this paper Kim et al. (2025), the authors present novel forgery detection approach based on  
 084 pixel-wise temporal frequency. Unlike conventional approaches that stack frequency spectra across  
 085 frames, their method applies a 1D Fourier transform along the time axis at each pixel to extract  
 086 features sensitive to unnatural movements.

087 FakeTransformer exploits pixel-level blood volume variations, enhanced with multi-scale Eulerian  
 088 Video Magnification to generate MEMSTmaps from averaged YUV channels of 15 ROIs. A Vision  
 089 Transformer then learns spatio-temporal descriptors for classification, achieving 98.98%, 98.50%,  
 090 98.49%, and 86.50% accuracy on DeepFakes, Face2Face, FaceSwap, and NeuralTextures, respec-  
 091 tively, in intra-dataset evaluation Sun et al. (2022).

092 However, these approaches frequently struggle under high compression levels, where critical visual  
 093 cues are heavily degraded and compression lowers detection accuracy, and social-media processing  
 094 further masks manipulation cues Wu et al. (2022). Therefore, we propose a novel methodology for  
 095 generating feature maps that embed biometric information and validate their effectiveness on public  
 096 datasets. The maps incorporate the heart rate derived from facial skin and spatial and temporal  
 097 information. An AI model trained on the proposed maps achieves impressive performance in high  
 098 compression level of dataset FF++, demonstrating the utility of physiological features in addressing  
 099 limitations of prior work.

## 101 2 METHODOLOGY

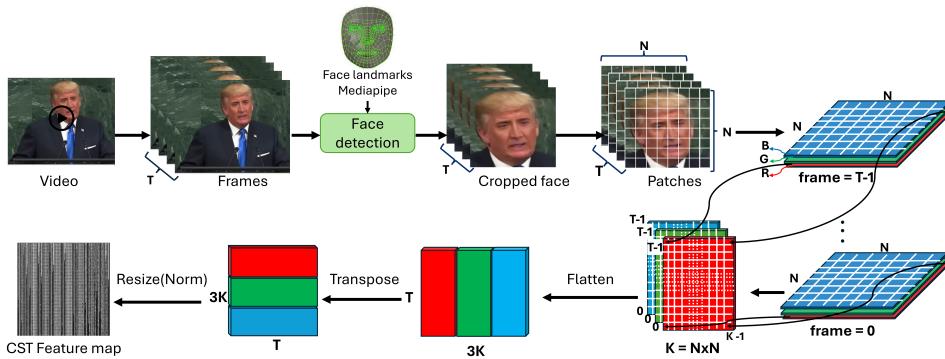
### 102 2.1 DATASET

103 We conducted extensive experiments on two widely-used deepfake detection bench-  
 104 marks—FaceForensics++, and Celeb-DF (v1) to rigorously assess the performance and gen-  
 105 eralization ability of our proposed method across both in-dataset and cross-dataset settings.

108 **FaceForensics++ (FF++)** Rossler et al. (2019) provides a balanced dataset with 1000 real and  
 109 1000 fake videos, manipulated through four distinct methods: Deepfakes (DF), Face2Face (F2F),  
 110 FaceSwap (FS), and NeuralTextures (NT). We utilize the heavy compression (c40) version to ensure  
 111 reliable evaluation under visually consistent conditions and also compare in light compression (c23)  
 112 level.

113 **Celeb-DF (v1) (CDFv1)** Li et al. (2020b) addresses the quality limitations of prior datasets by  
 114 including 408 real and 795 fake videos generated with improved synthesis techniques. It covers  
 115 59 celebrity subjects under a wide range of facial expressions, head poses, and lighting conditions,  
 116 allowing us to test robustness under realistic scenarios.  
 117

118 **2.2 COLOR-BASED SPATIAL-TEMPORAL FEATURE MAP GENERATION**  
 119



133 Figure 1: A Color-based Spatial-Temporal (CST) feature map embedding process.  
 134

135 Video analysis detection methods are typically grouped into spatial (frame-level), temporal  
 136 (sequence-level), and multimodal (cross-modal) approaches. Some address spatial biases within  
 137 frames, while others mitigate temporal artifacts across sequences Ramanaharan et al. (2025). Re-  
 138 cent advances often employ transformers and hybrid architectures. We propose a novel Color-based  
 139 Spatial-Temporal (CST) feature map, derived from the RGB values of facial images, to capture  
 140 physiological signals correlated with biometric data. Remote heart rate estimation relies on detect-  
 141 ing subtle color variations in facial skin over time, which reflect blood volume changes and can be  
 142 used to extract remote photoplethysmography (rPPG) signals Xiao et al. (2024). Our CST feature  
 143 map encodes these color fluctuations, effectively representing the rPPG component and enabling  
 144 accurate non-contact heart rate measurement, a mechanism that has been validated in prior studies  
 145 Verkruyse et al. (2008); Xiao et al. (2024); Hassan et al. (2017); Liu et al. (2024).

146 The embedding process for the CST feature map is depicted in Figure 1. It begins by extracting  
 147 frames from video content using the Mediapipe face landmark detector, which identifies key facial  
 148 landmarks. A total of 468 keypoints are captured, allowing us to crop images around the facial  
 149 region. These cropped images are resized to dimensions  $H \times W$  before being divided into  $N \times N$   
 150 patches. For this study, the value of  $N$  is held constant, and its effect on performance is not the  
 151 focus here. Each patch is generated from the facial frame, where each video frame  $F_t \in \mathbb{R}^{H \times W \times 3}$   
 152 is segmented into uniform  $N \times N$  non-overlapping patches. The patches represent sub-regions of  
 153 size  $\frac{H}{N} \times \frac{W}{N}$  located at specific grid coordinates  $(i, j)$ , with  $i, j \in \{0, 1, \dots, N - 1\}$ .

154 For each patch  $P_k^t$ , defined by the flattened index  $k = i.N + j$ , the mean RGB values are computed  
 155 using the formula:

$$s_k^t = \frac{1}{|P_k^t|} \sum_{(x,y) \in P_k^t} F_t(x, y), \quad (1)$$

159 where  $s_k^t \in \mathbb{R}^3$  represents the average RGB vector for patch  $k$  at frame  $t$ , and  $F_t(x, y) \in \mathbb{R}^3$  denotes  
 160 the RGB values at the pixel coordinates  $(x, y)$  within the frame  $F_t$ .  
 161

By iterating this process through a sequence of  $T$  frames, a 3D tensor is constructed:

162

163

$$\mathbf{S} \in \mathbb{R}^{K \times T \times 3}, \quad (2)$$

164

165

where  $K = N^2$  denotes the total number of patches. Each tensor entry,  $\mathbf{S}_{k,t,:}$ , captures the RGB signal for patch  $k$  at frame  $t$ .

166

167

The CST map is then formulated by flattening the patch and channel dimensions, followed by transposing the tensor:

168

169

$$\mathbf{M} = \text{reshape}(\mathbf{S}, (T, 3K))^{\top} \in \mathbb{R}^{3K \times T}. \quad (3)$$

170

171

This resulting matrix  $\mathbf{M}$  effectively encapsulates the temporal progression of color values across each patch-channel combination.

172

173

For practical applications, we normalize  $\mathbf{M}$  to a range of  $[0, 255]$  and resize it to a standard resolution (e.g.,  $224 \times 224$ ) using bilinear interpolation:

174

175

$$\mathbf{M}_{\text{norm}} = \text{resize}(\text{norm}_{[0, 255]}(\mathbf{M})). \quad (4)$$

176

177

This CST map explicitly encodes temporal changes of RGB values across frames, often including spatial aggregation. It transforms the raw RGB sequences into a structured representation where subtle color fluctuations corresponding to blood volume changes are highlighted, making it easier for a model to learn rPPG-related patterns and suitable for diverse applications, including physiological signal analysis and deepfake detection.

178

Deepfake detection methods that utilize raw RGB signals can be classified into three main categories: techniques focused on pixel-level inconsistencies and artifacts, those analyzing the statistical characteristics of texture and color channels, and methods investigating the frequency domain of raw RGB data. The approach presented here is unique in that it simultaneously evaluates both spatial and temporal attributes of the RGB signals, delivering a more thorough analysis.

179

180

Deepfake detection methodologies are increasingly using biometric signals, particularly remote photoplethysmography (rPPG) from RGB video. These methods assume that heart rates from genuine and manipulated faces differ significantly. The DeepFakesON-Phys Hernandez-Ortega et al. (2020) framework employs a convolutional attention network (CAN) to extract features, achieving over 98% AUC on datasets like Celeb-DF v2. However, a recent study (2025) challenges the idea that deepfake generation compromises rPPG signals, showing that high-quality deepfakes can produce authentic heart rates. This suggests that pulse detection alone is insufficient, highlighting the need for new detection strategies that analyze blood flow patterns and the importance of advanced rPPG techniques in identifying subtle abnormalities in biometric data. Thus, the trial in this study is to evaluate comprehensive raw RGB signals, including all biometric information.

181

182

### 2.3 MODEL ARCHITECTURES

183

In this study, we evaluate our proposed method utilizing the Xception architecture Chollet (2017), which is a lightweight yet powerful convolutional neural network that incorporates depthwise separable convolutions. Each separable convolution operation consists of a depthwise convolution—performing spatial convolutions independently across each channel—followed by a  $1 \times 1$  pointwise convolution that captures inter-channel correlations. This architecture is predicated on the premise that spatial and cross-channel feature dependencies can be disentangled and learned sequentially as a 2D mapping followed by a 1D mapping, rather than being handled jointly in a 3D context.

184

185

The Xception model consists of 36 convolutional layers grouped into 14 modules, with residual connections implemented in all modules except the first and the last. A softmax output layer is employed to facilitate classification tasks. For our evaluations, both intra-dataset comparisons and cross-manipulation assessments are conducted using the standard Xception model ( $\text{batchsize} = 32$ ,  $\text{learningrate} = 0.001$ ) to contrast performance variations between frame-level datasets and color-based spatial-temporal (CST) feature map datasets.

186

187

In our cross-dataset evaluation, we employ child Xception model on dataset without CST with pre-trained weights from a parent Xception model, which was previously trained on a CST feature map

| Dataset | (w/o) CST (videos) | (w/) CST (images) |
|---------|--------------------|-------------------|
| FF++    | Real: 1000         | Real: 1000        |
|         | DF: 1000           | DF: 1000          |
|         | F2F: 1000          | F2F: 1000         |
|         | FS: 1000           | FS: 1000          |
|         | NT: 1000           | NT: 1000          |
| CDFv1   | Real: 408          | Real: 408         |
|         | Fake: 795          | Fake: 795         |

Table 1: The details of the evaluation datasets, including the dataset without(w/o) CST feature map dataset and with(w/) CST feature map.

for deepfake detection. We specifically load the parent model’s checkpoint and selectively transfer only those layers that have matching shapes with the child model. The classifier head is reconfigured to output two classes (real and fake), enabling fine-tuning on the frame dataset. This strategy capitalizes on the rich feature representations acquired by the parent model, thereby enhancing convergence speed and performance in the target domain.

## 2.4 FUNCTION LOSS

In our approach, we utilize cross-entropy loss as the objective function to enhance classification performance. This loss function is a standard choice for both binary and multi-class classification tasks, as it quantifies the divergence between the predicted probability distributions and the actual labels. For binary classification, the cross-entropy loss is expressed as follows:

$$\mathcal{L}_{CE} = -[y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})], \quad (5)$$

where  $y$  denotes the actual label of the sample (0 or 1) and  $\hat{y}$  represents the predicted probability of the positive class (class 1). Extending to multi-class classification with  $C$  possible classes, the loss is defined as:

$$\mathcal{L}_{CE} = - \sum_{i=1}^C y_i \log(\hat{y}_i). \quad (6)$$

Here,  $y_i$  corresponds to the actual probability for class  $i$ , typically encoded as 1 for the correct class and 0 for all others. At the same time,  $\hat{y}_i$  indicates the predicted probability for class  $i$ . This formulation effectively captures the model’s predictive accuracy across multiple classes.

## 3 EXPERIMENTS

### 3.1 EXPERIMENT SETTINGS

All experiments were rigorously performed on an NVIDIA GeForce RTX 4090 GPU, utilizing driver version 550.54.14 and equipped with 24GB of memory. The deep learning framework employed was PyTorch 2.1.1, with CUDA 11.8 support, executed within a Python 3.8.18 environment.

### 3.2 EXPERIMENT RESULTS

#### 3.2.1 CST FEATURE MAP DATASETS:

Table 1 outlines the evaluation datasets, which encompass dataset without(w/o) CST feature map and the proposed CST feature map representations derived from FF++ and CDFv1. The dataset without(w/o) CST feature map is composed of isolated video frames, whereas the CST feature map dataset integrates our CST embedding methodology. In Figure 2, an example from the FF++ dataset is showcased, displaying both the dataset without(w/o) CST feature map and its associated CST feature map. Notably, the CST feature maps exhibit distinctive patterns that effectively differentiate authentic videos from those altered by a range of manipulation techniques.

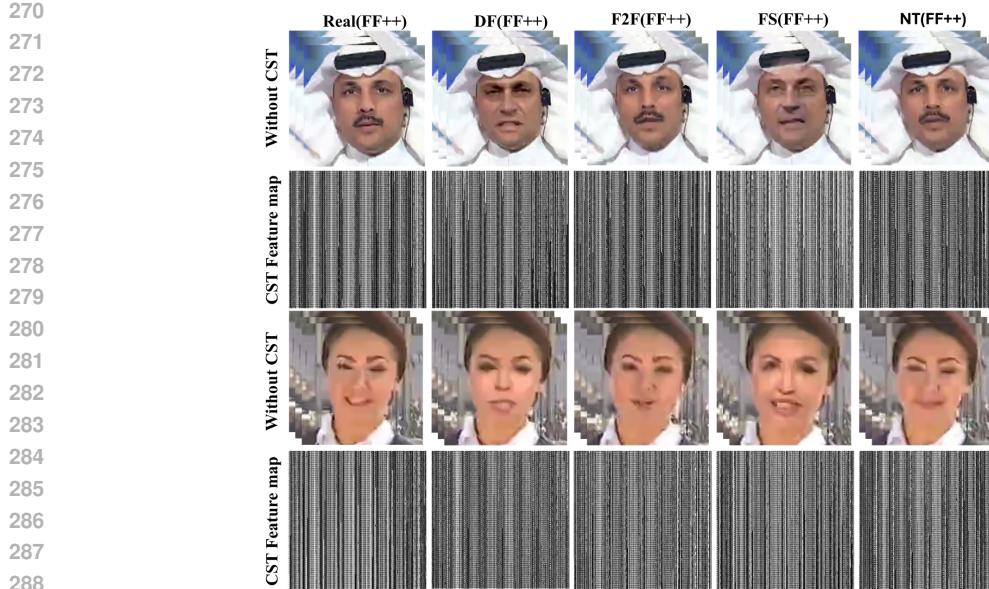


Figure 2: The example of dataset without(w/o) CST feature map and the corresponding dataset with(w/) CST feature map of the video on FF++ dataset.

| Dataset   | Metrics | Deepfakes    | Face2Face    | FaceSwap     | NeuralTextures | FF++        | CDFv1      |
|-----------|---------|--------------|--------------|--------------|----------------|-------------|------------|
| (w/o) CST | ACC     | 93.94        | 85.12        | 88.78        | 59.31          | 77.20       | 94.41      |
| (w/o) CST | AUC     | 98.66        | 93.50        | 95.54        | 95.49          | 75.07       | 99.58      |
| (w/) CST  | ACC     | <b>99.75</b> | <b>98.13</b> | <b>98.53</b> | <b>98.62</b>   | <b>99.9</b> | <b>100</b> |
| (w/) CST  | AUC     | <b>100</b>   | <b>99.86</b> | <b>99.93</b> | <b>99.91</b>   | <b>100</b>  | <b>100</b> |

Table 2: The results of intra-dataset evaluation between the dataset without(w/o) CST feature map and the with(w/) CST feature map on Xception model.

### 3.2.2 INTRA-DATASET EVALUATION

Table 2 summarizes the results of the intra-data set evaluation, contrasting the performance of the dataset without CST with that of the CST feature map dataset. The bold font indicates the highest AUC and ACC. In particular, the Xception model exhibits a marked improvement when applied to the CST feature map dataset, consistently achieving accuracy scores close to 100%, significantly surpassing its performance on the dataset without CST. The proposed method boosts accuracy from 75.07% to 100% on FF++ (c40) and from 94.41% to 100% on CDFv1 using CST maps. Overfitting does not occur, as the model performs well on both the training and validation sets. Furthermore, cross-manipulation and cross-dataset evaluations are presented in the following sections to further demonstrate this.

In Table 3, we detail the accuracy (%) results for dataset with CST and without CST feature map datasets across various architectures, including Xception, ResNet50 He et al. (2016), EfficientNet Tan & Le (2019), and ViT Dosovitskiy et al. (2020). The best ACC scores are highlighted in bold. The models were trained on FF++ (c40), encompassing five classes: “real,” “deepfakes,” “face2face,” “faceswap,” and “neuraltextures”. The CST feature map representation shows a considerable enhancement in performance for CNN-based models relative to the dataset without CST, registering accuracy increases of +26.45% for Xception, +21.00% for ResNet50, and +23.93% for EfficientNet. However, these gains are not reflected in the ViT-based model, which shows a performance decrease of 7. 71% compared to the dataset without CST.

To further underscore the efficacy of the CST feature map, we present t-SNE visualizations Maaten & Hinton (2008) in Figure 3. These visualizations depict the feature distributions of the Xception, ResNet50, EfficientNet, and ViT models in both datasets. Each color corresponds to one of the five classes: “real,” “deepfakes,” “face2face,” “faceswap,” and “neuraltextures.” In the dataset with

| Dataset   | Xception    | ResNet50     | EffNet       | ViT          |
|-----------|-------------|--------------|--------------|--------------|
| (w/o) CST | 73.05       | 72.27        | 71.57        | <b>44.23</b> |
| (w/) CST  | <b>99.5</b> | <b>93.27</b> | <b>95.50</b> | 36.52        |

Table 3: The ACC (%) results of the without(w/o) CST dataset and with(w/) CST feature map dataset on Xception, ResNet50, EfficientNet (EffNet), and ViT. The detectors are trained on FF++ (c40) with 5 classes: “real”, “deepfakes”, “face2face”, “faceswap”, “neuraltextures”.

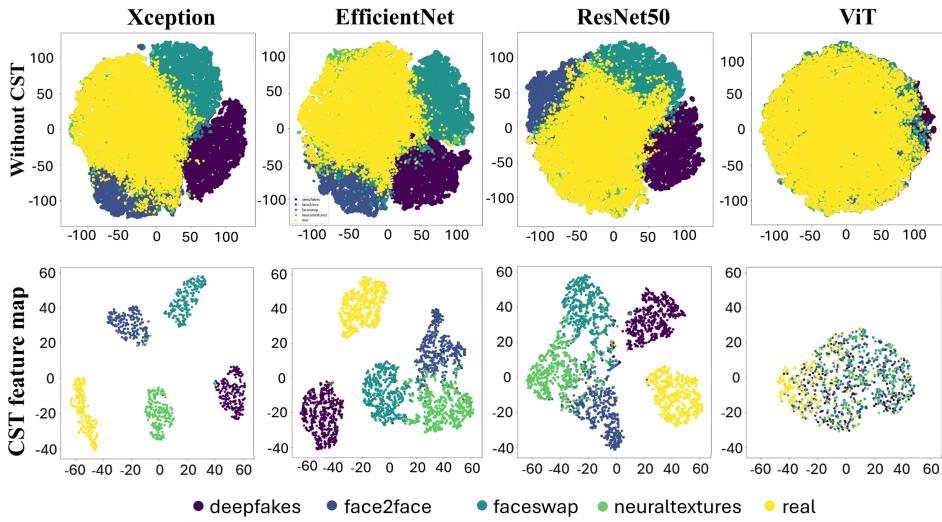


Figure 3: The t-SNE visualization on intra-dataset scenario of Xception, EfficientNet, ResNet50, ViT. The detector is trained on FF++ (c40), and different colors represent different subsets (corresponding to 5 classes).

CST, the CNN models exhibit moderate separation between forgery types, with significant overlap between authentic and manipulated images, which poses a heightened risk of misclassification. Conversely, the CST feature map representation facilitates more apparent inter-class separation and tighter intra-class clustering, particularly among distinct forgery types. This indicates that the CST representation not only enhances the model’s capacity to differentiate real from fake but also fosters improved clustering of samples from the same manipulation class. The results suggest that integrating such discriminative representations could further elevate the generalisation capabilities of deepfake detectors by leveraging manipulation-specific features. The t-SNE results reveal poor class clustering for ViT, reflecting weak discriminative features. ViT emphasises global patterns, but lacks the local feature sensitivity that CNNs provide.

### 3.2.3 CROSS-MANIPULATION EVALUATION

Table 4 reports cross-manipulation results for the dataset without CST and with CST feature map, measured by accuracy ACC (%) and AUC (%). The best scores are highlighted in bold. In first four settings, models are trained on one manipulation type and tested on others; in the fifth, one type is held out for validation and the remaining three type is for training. Across all cases, with CST achieves ACC and AUC above 90%, approaching 100% in some, and consistently outperforms without CST dataset by factors of 2–3 times, demonstrating the strength of the proposed representation.

### 3.2.4 COMPARISON IN DIFFERENT COMPRESSION LEVELS

Table 5 compares the AUC (%) performance of our CST feature map (both c23 and c40) representation with existing methods under cross-manipulation and cross-dataset evaluations. The best and second-best results are marked in bold and underlined, respectively. In cross-manipulation, CST in c40 level attains an average AUC of 99.97%, outperforming all baselines, including a 0.43% gain over CST on c23 level and a 2.32% gain over UCF. Figure 4 further illustrates this strength: (a) con-

| Train set \ Test set | Data Type | Metrics   | DF           | F2F          | FS           | NT           |
|----------------------|-----------|-----------|--------------|--------------|--------------|--------------|
| DF                   | (w/o) CST | ACC       | —            | 50.93        | 48.77        | 47.87        |
|                      |           | AUC       | —            | 52.89        | 52.87        | 49.84        |
|                      | (w/) CST  | ACC       | —            | <b>89.25</b> | <b>97.17</b> | <b>97.25</b> |
|                      |           | AUC       | —            | <b>98.26</b> | <b>99.75</b> | <b>99.78</b> |
|                      | F2F       | (w/o) CST | ACC          | 52.47        | —            | 47.72        |
|                      |           |           | AUC          | 58.56        | —            | 46.95        |
|                      |           | (w/) CST  | ACC          | <b>100</b>   | —            | <b>100</b>   |
|                      |           | AUC       | <b>100</b>   | —            | <b>100</b>   | <b>100</b>   |
| FS                   | (w/o) CST | ACC       | 59.43        | 48.27        | —            | 47.28        |
|                      |           | AUC       | 66.10        | 41.34        | —            | 36.16        |
|                      | (w/) CST  | ACC       | <b>99.75</b> | <b>99.75</b> | —            | <b>100</b>   |
|                      |           | AUC       | <b>100</b>   | <b>99.94</b> | —            | <b>100</b>   |
| NT                   | (w/o) CST | ACC       | 46.69        | 42.39        | 39.60        | —            |
|                      |           | AUC       | 46.32        | 33.75        | 30.58        | —            |
|                      | (w/) CST  | ACC       | <b>100</b>   | <b>99.75</b> | <b>100</b>   | —            |
|                      |           | AUC       | <b>100</b>   | <b>99.94</b> | <b>100</b>   | —            |
| FF++                 | (w/o) CST | ACC       | 71.86        | 58.51        | 55.41        | 33.20        |
|                      |           | AUC       | 60.53        | 45.66        | 50.01        | 40.06        |
|                      | (w/) CST  | ACC       | <b>99.83</b> | <b>99.67</b> | <b>99.75</b> | <b>99.58</b> |
|                      |           | AUC       | <b>100</b>   | <b>99.99</b> | <b>99.98</b> | <b>99.92</b> |

Table 4: The results of cross-manipulation evaluations between the dataset without(w/o) CST and the with(w/) CST feature map in ACC(%) and AUC(%) in FF++ (c40) dataset (Deepfakes (DF), FaceSwap (FS), Face2Face (F2F), and NeuralTextures (NT)) on Xception model.

| Model                                | Reference  | Cross-manipulation |              |            |            |              | Cross-dataset<br>CDFv1 |
|--------------------------------------|------------|--------------------|--------------|------------|------------|--------------|------------------------|
|                                      |            | DF                 | F2F          | FS         | NT         | Avg.         |                        |
| Xception                             | CVPR2017   | 60.53              | 45.66        | 50.01      | 40.06      | 49.06        | 77.43                  |
| EfficientB4 Tan & Le (2019)          | PMLR2019   | 97.57              | 97.58        | 97.97      | 93.08      | 96.55        | 79.09                  |
| CNN-Aug Wang et al. (2020)           | CVPR2020   | 90.48              | 87.88        | 90.26      | 73.13      | 85.44        | 74.20                  |
| X-ray Li et al. (2020a)              | CVPR-2020  | 97.94              | 98.72        | 98.71      | 92.90      | 97.06        | 70.93                  |
| SPSL Liu et al. (2021)               | CVPR2021   | 97.81              | 97.54        | 98.29      | 92.99      | 96.66        | <b>81.50</b>           |
| SRM Luo et al. (2021)                | CVPR2021   | 97.33              | 96.96        | 97.40      | 92.95      | 96.16        | 79.26                  |
| CORE Ni et al. (2022)                | CVPRW2022  | 97.87              | 98.03        | 98.23      | 93.39      | 96.88        | 77.98                  |
| Recce Cao et al. (2022)              | CVPR2022   | 97.97              | 97.79        | 97.85      | 93.57      | 96.79        | 76.80                  |
| UCF Yan et al. (2023)                | ICCV2023   | 98.83              | 98.40        | 98.96      | 94.41      | 97.65        | 77.90                  |
| TCAN Amin et al. (2024)              | ERA(2024)  | 99.16              | 98.93        | 99.03      | 98.15      | 98.82        | —                      |
| RAE Tian et al. (2024)               | ECCV2024   | 99.60              | 99.10        | 99.20      | 97.60      | 98.90        | —                      |
| FreqBlender Hanzhe et al. (2024)     | NeurIP2024 | 99.18              | 96.76        | 97.68      | 90.88      | 96.13        | —                      |
| BSF Kim et al. (2025)                | ICCV2025   | 99.90              | 97.10        | 99.80      | 96.90      | 98.42        | —                      |
| Ours-Xception trained with CST       | —          | 98.22              | <b>99.92</b> | <b>100</b> | <b>100</b> | 99.54        | 58.59                  |
| Ours-Xception trained with CST (c40) | —          | <b>100</b>         | <b>99.99</b> | 99.98      | 99.92      | <b>99.97</b> | 80.34                  |

Table 5: AUC(%) on the cross-manipulation and cross-dataset evaluation. Deepfakes (DF), FaceSwap (FS), Face2Face (F2F), and NeuralTextures (NT). The models are trained on FF++(c23). The ‘Avg.’ column denotes the mean AUC computed over various datasets. The final line is the result of our CST evaluated on FF++(c40).

fusion matrices show only 1–3 errors per class, and (b) t-SNE embeddings reveal clearly separated trajectories for real (yellow) and fake (purple) samples.

For cross-dataset evaluation, CST on c40 improves AUC by 2.92% over without(w/o) dataset baseline and ranks second overall, just 1.16% behind SPSL. Figure 5 highlights this advantage with GradCAM visualizations, where Xception misclassifies a without CST sample (red box), but CST yields correct predictions.

## 4 CONCLUSIONS

This study presented a novel methodology for generating color-based spatio-temporal (CST) feature maps by analyzing RGB facial features and heart rate data. The integration of these feature maps into existing models has led to impressive results:

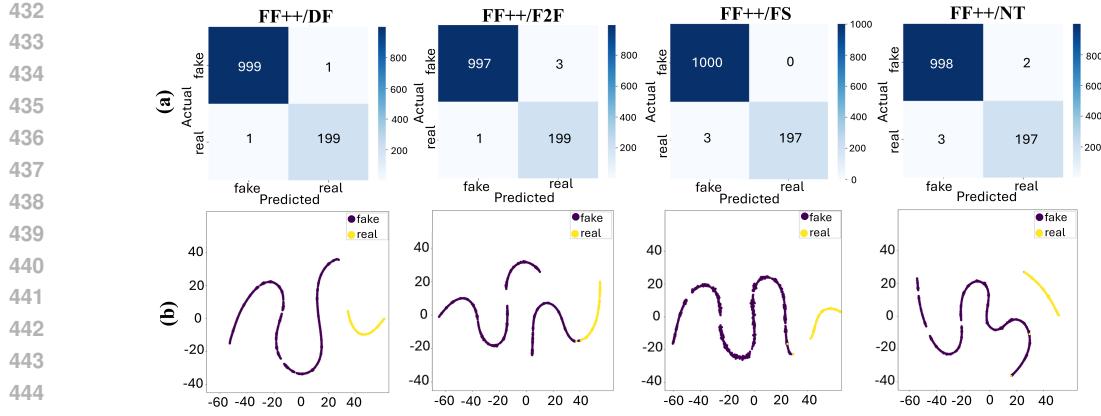


Figure 4: (a) Confusion matrix and (b) t-SNE visualization from cross-manipulation evaluation using the CST feature map. Trained on three manipulations, tested on the remaining one (FF++ c40).

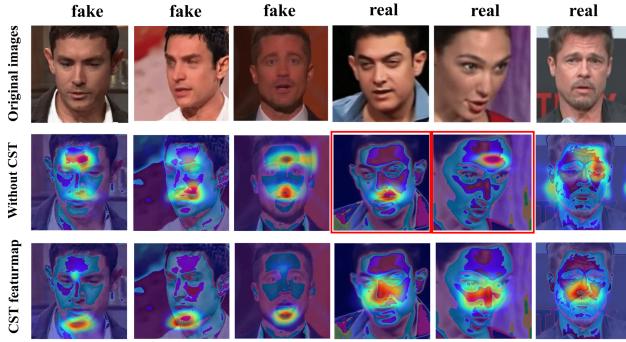


Figure 5: GradCAM visualizations on some samples with CST feature map dataset and without CST dataset in cross-dataset evaluation. Red rectangle marks misclassification.

462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473

- Intra-dataset evaluation: Using CST feature maps with the Xception architecture, model achieved nearly 100% accuracy and an AUC close to 1, significantly improving from 77.20% accuracy without CST data to 99.9% with CST maps in full FF++ (c40) dataset. And achieving an improvement from 94.41% to 100% on the CDFv1 dataset.
- Cross-manipulation evaluation: CST feature maps showcased strong performance in heavy compression across various manipulation types (DF, F2F, FS, NT), achieving over 90% accuracy and AUC values, with averages reaching 99.97%, greatly surpassing baseline models.

474 The key contributions are follows:

475  
476  
477  
478  
479  
480  
481  
482  
483

- Enhanced Generalization: CST feature maps improve model adaptability to new deepfake types, reducing overfitting issues common in previous research.
- Raw RGB Data Utilization: The method captures discrepancies directly from raw RGB signals, identifying forgery indicators that processed images might miss.
- Practical Model Feasibility: Transfer learning enhances performance, offering a solution to challenges associated with data scarcity in deepfake detection with heavy compression media.

484 In conclusion, this research significantly advances deepfake detection technology, demonstrating  
485 that CST feature maps combined with biometric data improve generalization and robustness in real-  
world applications, laying a foundation for future detection strategies.

486 REFERENCES  
487

488 Dipesh Ramulal Agrawal and Farha Haneef. Eye blinking feature processing using convolutional  
489 generative adversarial network for deep fake video detection. *Transactions on Emerging Telecom-  
490 munications Technologies*, 36(3):e70083, 2025.

491 Sami Alanazi, Seemal Asif, Antoinette Caird-daley, and Irene Moultsas. Unmasking deepfakes:  
492 a multidisciplinary examination of social impacts and regulatory responses. *Human-Intelligent  
493 Systems Integration*, pp. 1–23, 2025.

494 Mubarak Alrashoud. Deepfake video detection methods, approaches, and challenges. *Alexandria  
495 Engineering Journal*, 125:265–277, 2025.

496 Irene Amerini, Mauro Barni, Sebastiano Battiato, Paolo Bestagini, Giulia Boato, Vittoria Bruni,  
497 Roberto Caldelli, Francesco De Natale, Rocco De Nicola, Luca Guarnera, et al. Deepfake media  
498 forensics: Status and future challenges. *Journal of Imaging*, 11(3):73, 2025.

499 Muhammad Ahmad Amin, Yongjian Hu, and Jiankun Hu. Analyzing temporal coherence for deep-  
500 fake video detection. *Electronic Research Archive*, 32(4), 2024.

501 Junyi Cao, Chao Ma, Taiping Yao, Shen Chen, Shouhong Ding, and Xiaokang Yang. End-to-end  
502 reconstruction-classification learning for face forgery detection. In *Proceedings of the IEEE/CVF  
503 conference on computer vision and pattern recognition*, pp. 4113–4122, 2022.

504 François Chollet. Xception: Deep learning with depthwise separable convolutions. In *Proceedings  
505 of the IEEE conference on computer vision and pattern recognition*, pp. 1251–1258, 2017.

506 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances  
507 in neural information processing systems*, 34:8780–8794, 2021.

508 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
509 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An  
510 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint  
511 arXiv:2010.11929*, 2020.

512 Candice R Gerstner and Hany Farid. Detecting real-time deep-fake videos using active illumination.  
513 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.  
514 53–60, 2022.

515 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,  
516 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the  
517 ACM*, 63(11):139–144, 2020.

518 Zhiqing Guo, Lipin Hu, Ming Xia, and Gaobo Yang. Blind detection of glow-based facial forgery.  
519 *Multimedia Tools and Applications*, 80(5):7687–7710, 2021.

520 LI Hanzhe, Jiaran Zhou, Yuezun Li, Baoyuan Wu, Bin Li, and Junyu Dong. Freqblender: Enhancing  
521 deepfake detection by blending frequency knowledge. In *The Thirty-eighth Annual Conference  
522 on Neural Information Processing Systems*, 2024.

523 Mohamed Abul Hassan, Aamir Saeed Malik, David Fofi, Naufal Saad, Babak Karasfi, Yasir Salih  
524 Ali, and Fabrice Meriaudeau. Heart rate estimation using facial video: A review. *Biomedical  
525 Signal Processing and Control*, 38:346–360, 2017.

526 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-  
527 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.  
528 770–778, 2016.

529 Javier Hernandez-Ortega, Ruben Tolosana, Julian Fierrez, and Aythami Morales. Deepfakeson-  
530 phys: Deepfakes detection based on heart rate estimation. *arXiv preprint arXiv:2010.00400*,  
531 2020.

532 Chih-Chung Hsu, Yi-Xiu Zhuang, and Chia-Yen Lee. Deep fake image detection based on pairwise  
533 learning. *Applied Sciences*, 10(1):370, 2020.

540 J. Damiani. A voice deepfake was used to scam a ceo out of 243,000.  
 541 <https://www.forbes.com/sites/jessedamiani/2019/09/03/a-voicedeepfake-was-used-to-scam-a-ceo-out-of-243000/?sh=469532a72241>, 2019. Accessed: 2025-06-06.

544 Achhardeep Kaur, Azadeh Noori Hoshyar, Vidya Saikrishna, Selena Firmin, and Feng Xia. Deep-  
 545 fake video detection: challenges and opportunities. *Artificial Intelligence Review*, 57(6):159,  
 546 2024.

548 Taehoon Kim, Jongwook Choi, Yonghyun Jeong, Haeun Noh, Jaejun Yoo, Seungryul Baek, and  
 549 Jongwon Choi. Beyond spatial frequency: Pixel-wise temporal frequency-based deepfake video  
 550 detection. *arXiv preprint arXiv:2507.02398*, 2025.

551 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

553 Lingzhi Li, Jianmin Bao, Ting Zhang, Hao Yang, Dong Chen, Fang Wen, and Baining Guo. Face  
 554 x-ray for more general face forgery detection. In *Proceedings of the IEEE/CVF conference on*  
 555 *computer vision and pattern recognition*, pp. 5001–5010, 2020a.

556 Meng Li, Beibei Liu, Yongjian Hu, and Yufei Wang. Exposing deepfake videos by tracking eye  
 557 movements. In *2020 25th International Conference on Pattern Recognition (ICPR)*, pp. 5184–  
 558 5189. IEEE, 2021.

559 Yuezun Li, Xin Yang, Pu Sun, Honggang Qi, and Siwei Lyu. Celeb-df: A large-scale challenging  
 560 dataset for deepfake forensics. In *Proceedings of the IEEE/CVF conference on computer vision*  
 561 *and pattern recognition*, pp. 3207–3216, 2020b.

563 Honggu Liu, Xiaodan Li, Wenbo Zhou, Yuefeng Chen, Yuan He, Hui Xue, Weiming Zhang, and  
 564 Nenghai Yu. Spatial-phase shallow learning: rethinking face forgery detection in frequency do-  
 565 main. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,  
 566 pp. 772–781, 2021.

567 Yanrui Liu, Chunlong Xu, Lin Qi, and Yongchun Li. A robust non-contact heart rate estimation from  
 568 facial video based on a non-parametric signal extraction model. *Biomedical Signal Processing*  
 569 *and Control*, 93:106186, 2024.

571 Jan Lukas, Jessica Fridrich, and Miroslav Goljan. Digital camera identification from sensor pattern  
 572 noise. *IEEE Transactions on Information Forensics and Security*, 1(2):205–214, 2006.

573 Yuchen Luo, Yong Zhang, Junchi Yan, and Wei Liu. Generalizing face forgery detection with high-  
 574 frequency features. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*  
 575 *recognition*, pp. 16317–16326, 2021.

577 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*  
 578 *learning research*, 9(Nov):2579–2605, 2008.

579 Sneha Muppalla, Shan Jia, and Siwei Lyu. Integrating audio-visual features for multimodal deepfake  
 580 detection. In *2023 IEEE MIT Undergraduate Research Technology Conference (URTC)*, pp. 1–5.  
 581 IEEE, 2023.

583 Hoang Mark Nguyen and Reza Derakhshani. Eyebrow recognition for identifying deepfake videos.  
 584 In *2020 international conference of the biometrics special interest group (BIOSIG)*, pp. 1–5.  
 585 IEEE, 2020.

586 Yunsheng Ni, Depu Meng, Changqian Yu, Chengbin Quan, Dongchun Ren, and Youjian Zhao. Core:  
 587 Consistent representation learning for face forgery detection. In *Proceedings of the IEEE/CVF*  
 588 *conference on computer vision and pattern recognition*, pp. 12–21, 2022.

589 Kundan Patil, Shruti Kale, Jaivanti Dhokey, and Abhishek Gulhane. Deepfake detection using  
 590 biological features: a survey. *arXiv preprint arXiv:2301.05819*, 2023.

592 Ramcharan Ramanaharan, Deepani B Guruge, and Johnson I Agbinya. Deepfake video detection:  
 593 Insights into model generalisation—a systematic review. *Data and Information Management*, pp.  
 100099, 2025.

594 Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias  
 595 Nießner. Faceforensics++: Learning to detect manipulated facial images. In *Proceedings of the*  
 596 *IEEE/CVF international conference on computer vision*, pp. 1–11, 2019.

597

598 Karla Schäfer, Jeong-Eun Choi, and Sascha Zmudzinski. Explore the world of audio deepfakes:  
 599 A guide to detection techniques for non-experts. In *Proceedings of the 3rd ACM International*  
 600 *Workshop on Multimedia AI against Disinformation*, pp. 13–22, 2024.

601

602 Kaylyn Jackson Schiff, Daniel S Schiff, and Natalia Bueno. The liar’s dividend: The impact of  
 603 deepfakes and fake news on trust in political discourse. Technical report, Center for Open Science,  
 604 2023.

605

606 Yuyang Sun, Zhiyong Zhang, Changzhen Qiu, Liang Wang, Lu Sun, and Zekai Wang. Faketrans-  
 607 former: Exposing face forgery from spatial-temporal representation modeled by facial pixel vari-  
 608 ations. In *2022 7th International Conference on Intelligent Computing and Signal Processing*  
 609 (*ICSP*), pp. 705–713, 2022. doi: 10.1109/ICSP54964.2022.9778420.

610

611 Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-  
 612 works. In *International conference on machine learning*, pp. 6105–6114. PMLR, 2019.

613

614 Jiahe Tian, Cai Yu, Xi Wang, Peng Chen, Zihao Xiao, Jiao Dai, Jizhong Han, and Yesheng Chai.  
 615 Real appearance modeling for more general deepfake detection. In *European Conference on*  
 616 *Computer Vision*, pp. 402–419. Springer, 2024.

617

618 Wim Verkruyse, Lars O Svaasand, and J Stuart Nelson. Remote plethysmographic imaging using  
 619 ambient light. *Optics express*, 16(26):21434–21445, 2008.

620

621 Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A Efros. Cnn-generated  
 622 images are surprisingly easy to spot... for now. In *Proceedings of the IEEE/CVF conference on*  
 623 *computer vision and pattern recognition*, pp. 8695–8704, 2020.

624

625 Yujia Wang and Hua Huang. Audio–visual deepfake detection using articulatory representation  
 626 learning. *Computer Vision and Image Understanding*, 248:104133, 2024.

627

628 Nan Wu, Xin Jin, Qian Jiang, Puming Wang, Ya Zhang, Shaowen Yao, and Wei Zhou. Multisemantic  
 629 path neural network for deepfake detection. *Security and Communication Networks*, 2022(1):  
 4976848, 2022.

630

631 Hanguang Xiao, Tianqi Liu, Yisha Sun, Yulin Li, Shiyi Zhao, and Alberto Avolio. Remote pho-  
 632 toplethysmography for heart rate measurement: A review. *Biomedical Signal Processing and*  
 633 *Control*, 88:105608, 2024.

634

635

636 Zhiyuan Yan, Yong Zhang, Yanbo Fan, and Baoyuan Wu. Ucf: Uncovering common features for  
 637 generalizable deepfake detection. In *Proceedings of the IEEE/CVF international conference on*  
 638 *computer vision*, pp. 22412–22423, 2023.

639

640

641

642

643

644

645

646

647