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ABSTRACT

Adversarial distillation aims to transfer robustness from a large, robust teacher
network to a compact student. However, existing work often neglects to incorporate
state-of-the-art robust teachers. Through extensive analysis, we find that stronger
teachers do not necessarily yield more robust students—a phenomenon known as
robust saturation. While typically attributed to capacity gaps, we show that such
explanations are incomplete. Instead, we identify adversarial transferability—the
fraction of student-crafted adversarial examples that remain effective against the
teacher—as a key factor in successful robustness transfer. Based on this insight, we
propose Sample-wise Adaptive Adversarial Distillation (SAAD), which reweights
training examples by their measured transferability without incurring additional
computational cost. Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet
show that SAAD consistently improves AutoAttack robustness over prior methods.

1 INTRODUCTION

Deep neural networks have achieved remarkable success across diverse domains, yet they remain
highly susceptible to adversarial perturbations (Goodfellow et al., 2014} |Carlini & Wagner, 2017
Madry et al.|[2017; |Athalye et al.,|2018]), posing significant risks in safety-critical applications (Grig+
orescu et al.,2020; Ma et al., 2021; Wang et al.,[2023a)). In response, a variety of defense strategies
have been proposed (Das et al., [2017; |Cohen et al.l [2019; (Carmon et al.l 2019; Xie et al.l |2019;
Zhang et al.|[2022} Jin et al., 2023), among which adversarial training (AT) (Goodfellow et al.,[2014;
Madry et al.,|2017) has emerged as a leading method. Despite its effectiveness, AT typically requires
large-scale models, resulting in a substantial performance gap for lightweight architectures commonly
deployed in resource-constrained settings (Madry et al.| [2017). To bridge this gap, adversarial
distillation (AD) has been proposed as a promising approach for transferring the robustness of large
teacher models to compact student models (Goldblum et al.; 2020; [Z1 et al.| 2021} Lee et al., 2025).

Despite the promise of AD, many existing studies often neglect to incorporate state-of-the-art
robust teachers from standardized benchmarks such as RobustBench (Croce et al., 2021). A natural
expectation is that a more robust teacher would yield a correspondingly robust student. However, as
illustrated in Figure[Ta] our experiments reveal that employing stronger teachers can in fact degrade
student robustness, contradicting conventional intuition. This surprising result raises a fundamental
question: what factors account for the variability in AD performance across teacher models, and
why does greater teacher robustness not necessarily lead to more effective robustness transfer? In
this work, we address this question by examining the role of adversarial transferability in robust
knowledge distillation.

Previous studies have attributed the failure of robustness transfer in AD to the robust saturation
effect (Zi et al., 2021)), which posits that beyond a certain capacity threshold, further increases in
teacher robustness or model size yield diminishing returns for the student. However, as shown
in Figure even when teachers are ordered by architectural size within the same model family
(e.g., WRN-28-10 in purple and WRN-70-16 in green), student robustness varies significantly. This
suggests that capacity gap alone cannot fully explain the observed discrepancies.

To better understand this limitation, we analyze how the teacher’s output confidence on student-crafted
attacks influences the student’s adversarial variance and overfitting through distillation. We find that
highly confident (i.e., low-entropy) outputs from robust teachers exacerbate student variance under
attack, resulting in unstable training. Our analysis further reveals that this instability arises from
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Figure 1: Adversarial distillation results on CIFAR-10 with a ResNet-18 student. Detailed teacher
information and full experimental results are provided in Section@

a lack of transferable adversarial samples (TAS)—student-generated adversarial inputs that remain
effective against the teacher—whose abundance strongly correlates with successful robustness transfer,
as demonstrated in Figure

Motivated by this insight, we propose Sample-wise Adaptive Adversarial Distillation (SAAD), a novel
approach that emphasizes samples with high adversarial transferability to improve robustness transfer.
SAAD assigns lower weights to non-transferable samples, effectively mitigating their high-variance
effects and improving the student model’s robustness. We further introduce a clean distillation term
weighted by inverse transferability, boosting clean accuracy while preserving robustness. Extensive
experiments demonstrate that our method consistently improves student robustness in cases where
superior teacher models did not translate into enhanced robustness under existing methods. Our
contributions are as follows:

* We identify adversarial transferability as a key factor for effective adversarial distillation,
explaining why stronger teachers can fail to improve student robustness.

* We propose Sample-wise Adaptive Adversarial Distillation (SAAD), which selectively
emphasizes transferable samples to mitigate high-variance effects and improve robustness.

* We show that our method consistently improves both robustness and clean accuracy across
diverse settings, outperforming prior adversarial distillation approaches.

2 RELATED WORKS

Due to space constraints, the full discussion of related work is deferred to Section

Adversarial Training (AT) has become a standard defense against adversarial examples, where
models are explicitly trained on perturbed inputs to improve robustness. PGD-based adversarial
training (Madry et al., 2017) formulates the defense as a min-max optimization over worst-case
perturbations under L,-norm constraints. TRADES (Zhang et al., [2019)) formulates adversarial
training as a trade-off optimization between clean accuracy and robustness.
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Table 1: Comparison of distillation outcomes using different teacher models categorized as Effective
Robust Teachers (ERTs) and Ineffective Robust Teachers (IRTs). AA denotes AutoAttack accuracy
(%) of the teacher (left) and the student (right); RO measures robust overfitting, computed as the gap
between the student’s best and last PGD-20 accuracy on the test set. AVar denotes the adversarial
variance, and TAS refers to the ratio of transferable samples in the training dataset.

Teacher Info Distillation Results
Group RobustBench name Architecture  AA AA RO Avar TAS
ERT Rebuffi2021Fixing WRN-70-16 64.20 50.94 0.20 0.0267 0.677
Chen2021LTD WRN-34-10 56.94 5221 0.15 0.0059 0.981
IRT Bartoldson2024Adversarial WRN-94-16 73.71 44.07 5.44 0.0834 0.199
Gowal2021Improving WRN-28-10 63.38 41.08 7.01 0.3058 0.149

Adpversarial Distillation (AD) extends Knowledge Distillation by aiming to transfer the robustness
of a teacher model. ARD (Goldblum et al.| |2020) shows that adversarially training the student
with teacher supervision improves robustness. RSLAD (Zi et al., [2021)) highlights the role of
smooth teacher outputs during adversarial training, and further reports a robust saturation effect:
a student’s robustness increases with teacher strength only up to a moderately larger teacher and
then declines as teacher capacity outpaces the student. AdaAD (Huang et al) [2023)) enhances
distillation by maximizing teacher—student prediction discrepancy on inner maximization. Most
recently, IGDM (Lee et al.|[2025) proposes an input gradient-level distillation strategy by indirectly
matching logit differences.

3 ROBUST TEACHER FAILURES: ENTROPY, VARIANCE, TRANSFERABILITY

In prior AD works, the teacher models are typically either large networks trained with methods such
as TRADES (Zhang et al.,[2019) or publicly available robust models widely adopted by early AD
research (Zi et al.,[2021; [Huang et al., 2023; [Lee et al.,|[2025). Although stronger robust models are
now readily available through resources such as RobustBench (Croce et al., [2021)), most existing
AD studies still rely on older and less robust teacher networks. One might naturally expect that
leveraging stronger teachers would yield improved student robustness. However, our experiments
across a diverse set of teachers in Figure[I|reveal that existing AD methods are highly susceptible to
teacher choice, with even the most robust teachers leading to poor student robustness.

A simple explanation often given for this phenomenon is the so-called robust saturation effect (Zi
et al.| [2021), which attributes the diminishing gain of adversarial distillation to the capacity gap
between the teacher and student models. However, as shown in Figure @], we find no consistent
trend even when distillation outcomes are sorted by teacher architecture, indicating that the capacity
gap alone cannot fully explain the failure modes. Accordingly, we introduce a new framework by
dividing robust teachers into two categories: Effective Robust Teachers (ERTs) and Ineffective Robust
Teachers (IRTs), defined by whether students distilled from them via recent AD methods, on average,
outperform or underperform AT baselines (TRADES) in robust accuracy. To systematically compare
these groups, we select representative teachers as summarized in Table[I] with additional details
provided in Section For interpretability in subsequent analyses, we adopt RSLAD (Zi1 et al.,
2021) as the baseline AD method and fix the student architecture to ResNet-18 trained on CIFAR-10.

3.1 CHARACTERIZING IRTS: OVERCONFIDENCE AND OVERFITTING

We observe two key distinctions between IRTs and ERTs. First, IRTs tend to produce lower-entropy
outputs than ERTs, particularly on adversarial inputs generated by the student model. Figure[2a]and
Figure [2b|show the density histograms of teacher-logit entropies evaluated on student-generated PGD-
20 adversarial inputs. We find that IRTs yield highly confident predictions with significantly lower
entropy, while ERTs maintain a broader entropy distribution, suggesting a more calibrated uncertainty.
Importantly, a high output entropy does not necessarily imply non-robustness of the teacher model.
Despite exhibiting higher entropy, ERTs can correctly classify adversarial examples crafted on student
models. This suggests that ERTs maintain a level of uncertainty around adversarial inputs without
fully collapsing into overconfident predictions, whereas IRTs often yield overconfident outputs
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Figure 2: (a) Density histograms of teacher-logit entropies on student-generated PGD-20 adversarial
training inputs for two ERTs. (b) Same, but for IRTs. (¢) PGD-20 robust accuracy on training and
test sets across epochs for students distilled from individual teachers within the ERT and IRT groups.
Solid lines indicate group-wise averages, and shaded regions represent standard deviations across
teachers in each group.

aligned closely with the true label, even under attack. Additional analysis of teacher confidence and
prediction accuracy on student-crafted adversarial examples is provided in Section [C.6]

Second, students distilled from IRTs exhibit pronounced robust overfitting, whereas those distilled
from ERTs maintain stable generalization. This effect is visualized in Figure 2| where the PGD-20
robust accuracy on the training and test sets for IRTs diverges significantly after the learning rate
decay—a characteristic pattern of robust overfitting driven by the disruption of the min—max balance
caused by the decay (Wang et al., 2023b). To quantify this, we report robust overfitting (RO) as the gap
between the student’s best and last PGD-20 accuracy on the test set in Table [T} IRT-distilled students
exhibit large RO values, while ERT students show minimal overfitting. These results demonstrate a
clear empirical link between overconfident teacher outputs and robust overfitting in the student. While
the mechanism behind this link remains unclear, the consistency of these patterns across multiple
IRTs suggests a deeper connection. In the next section, we formally investigate this connection by
analyzing adversarial variance as a potential explanatory factor.

3.2 ADVERSARIAL VARIANCE ANALYSIS ON ADVERSARIAL DISTILLATION

To investigate how overconfident soft labels from robust teachers induce robust overfitting in students,
we extend the classical bias—variance decomposition of expected risk to the adversarial distillation
setting by introducing adversarial variance. This formulation unifies earlier decompositions from
adversarial training (Yu et al.|[2021)) and knowledge distillation (Zhou et al., 2021)), and helps account
for teacher-dependent variation in adversarial distillation. We note that fé(D) : X — RY represents
the student model adversarially trained on dataset D under soft-label supervision from a fixed teacher.
While the teacher remains unchanged during training, its output distribution governs the soft labels
used in the distillation process, thus indirectly shaping 6 and the student’s final behavior. For a test
sample x with ground truth label y = #(x) € R, we consider the worst-case perturbation

§(x,y, D) € argmax L (fo(p)(x +9),¥), ey
and define ]
}A’ = fé(D)(X+6(X7Y7D))7 }_’ = Eexp (ED[logy])> (2)

where Z is the normalization constant to ensure y lies in the probability simplex. Then, the expected
adversarial cross-entropy risk admits the following decomposition:

ARisk = Ex p [CE(y, ¥)] = Ex [~y logy] + Ex [y log ﬂ +E«p KLy [ly), 3
————— |
Intrinsic Noise S——— Adversarial Variance
Adversarial Bias

where CE(p, q) = — >, p; log g; is the cross-entropy loss. Detailed explanation and an algorithm
for estimating the adversarial bias and variance are given in the Section[A.2] This decomposition
enables us to empirically analyze how the adversarial variance of student models in adversarial
distillation varies depending on different teacher models.

Overconfident Soft Labels Induce High Adversarial Variance. We observe that adversar-
ial variance increases when the teacher produces low-entropy predictions on student-generated
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Figure 3: (a) Teachers with lower entropy on student-generated PGD inputs induce higher adversarial
variance in the student. (b) Higher adversarial variance is associated with increased robust overfitting.
Orange points show experiments where true labels are mixed into Rebuf£12021Fixing outputs.
The numeric labels indicate the proportion of true label supervision.

PGD inputs. As shown in Figure [3al robust teachers such as Gowal2021Improving and
Bartoldson2024Adversarial—despite their high standalone robustness—exhibit low en-
tropy and correspondingly high student variance, whereas higher-entropy teachers such as
Rebuffi2021Fixing and Chen2021LTD yield more stable behavior. This suggests that over-
confident teacher outputs undermine the regularizing effect of soft labels, amplifying variance during
adversarial training. To probe this effect more directly, we conduct an interpolation experiment using
Rebuffi2021Fixing, gradually injecting the ground-truth label into the teacher’s logits. As il-
lustrated in Figure [3b] adversarial variance increases monotonically with the interpolation coefficient,
indicating that growing confidence in soft labels directly induces instability in the student’s response.

High Adversarial Variance Causes Robust Overfitting. Analogous to classical statistical learning
theory, we find that adversarial variance, measured over perturbed inputs, serves as a strong indicator
of robust overfitting. As shown in Figure[3b] we observe a clear correlation between the magnitude of
adversarial variance and the degree of overfitting to adversarial training data. While AD is generally
expected to reduce variance and thereby mitigate overfitting, we find that this effect depends critically
on the teacher’s output distribution. In earlier AD studies, robust overfitting received limited attention,
likely because ERTs inherently produce soft labels with sufficient uncertainty, resulting in low
adversarial variance. However, as more powerful yet sharper teachers are adopted, understanding and
controlling adversarial variance becomes essential for ensuring stability in robust distillation.

Overconfident soft labels from IRTs induce high adversarial variance in the student model, leading
to robust overfitting. While this explains the mechanism of failure, it raises a deeper question: why
do IRTs fail to provide meaningful supervision on student-generated adversarial examples? In the
following section, we show that this limitation arises from a lack of transferability between the
adversarial behaviors of the student and teacher models.

3.3 SAMPLE-LEVEL TRANSFERABILITY IN ADVERSARIAL DISTILLATION

We identify the lack of transferable adversarial samples (TAS) as the primary cause of failure
in AD under IRT supervision. Specifically, when a student-crafted perturbation fails to induce a
comparable adversarial shift in the teacher’s prediction, the teacher’s supervision signal becomes
misaligned, thereby degrading the efficacy of robustness transfer. To formalize this notion, we
conduct a sample-level analysis of behavioral alignment between student and teacher models under
adversarial perturbations. We define a transferable adversarial sample as an input x for which the
adversarial perturbation dg, crafted by the student, induces a response from the teacher that aligns
more closely with its own adversarial response than with its original (clean) prediction. Formally,
this condition is satisfied if:

KL(fr(x +8s) | fr(x)) = KL(fr(x + ds) || fr(x + d1)), )
indicating that the student’s adversarial perturbation is aligned well with the teacher’s d7.

In Figure fal we compare the output entropy of IRT teachers on student-generated adversarial inputs,
separating samples into TAS vs. non-TAS categories. We observe that the TAS group maintains
higher entropy, while the non-TAS group is concentrated in the low-entropy regime, indicating
overconfident predictions. Furthermore, Figure [4b|presents the adversarial variance observed when
training is continued separately on each sample group following 90 epochs of warm-up on the full
dataset. Non-TAS group results in significantly higher adversarial variance, suggesting that the
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supervision they provide is unstable due to misaligned adversarial behavior. Further, Figure
shows that this instability correlates with degraded generalization: models trained on the non-TAS
group exhibit pronounced robust overfitting, whereas training on the TAS group preserves robust
generalization. Taken together, these findings indicate that non-TAS, characterized by low entropy
and high adversarial variance, induce unstable and misaligned supervision, ultimately leading to
robust overfitting. Consequently, a high proportion of non-transferable examples impairs the efficacy
of adversarial distillation, indicating the importance of TAS for successful robustness transfer.

As shown in Table[T] the proportion of TAS is substantially lower for IRTs compared to ERTs, further
reinforcing the connection between transferability and successful robustness transfer. Moreover,
Figure[TcJdemonstrates a positive correlation between the TAS ratio and the student model’s robustness
under AutoAttack, underscoring the predictive value of this metric. These observations suggest that
the scarcity of TAS is not merely a byproduct of poor distillation but a central cause of IRTs’ inability
to provide effective supervision. Thus, sample-level transferability emerges as a critical factor in
explaining and potentially overcoming the limitations of adversarial distillation.

4 MAIN METHOD: SAMPLE-WISE ADAPTIVE ADVERSARIAL DISTILLATION

Our analysis reveals that the difference in distillation effectiveness between ERTs and IRTs arises from
the entropy distribution of teacher logits and the resulting adversarial variance. ERTs produce higher-
entropy outputs on student-generated adversarial inputs, which lead to lower adversarial variance and
better generalization. In contrast, IRTs yield overconfident, low-entropy predictions that induce high
adversarial variance and robust overfitting. This problem is further pronounced by the large portion of
non-TAS samples under IRTs, where adversarial perturbations fail to meaningfully alter the teacher’s
outputs. These non-TAS samples dominate training, thereby exacerbating variance-driven overfitting.

While existing AD methods can be effective when  Table 2: Study of the impact on adversarial
the teacher provides a sufficient number of trans- distillation for transferable adversarial sample.
ferable samples, they apply the distillation objec-
tive uniformly across all data points, failing to dis-  Setting #of Data Clean AA

tinguish betwe?en transferablp aqd non—tr'ansferable Full Data 50000 8428 44.42
samples. A simple alternative is to train only on Excluding TAS 45161  83.93 43.05
tra}nsferable samples. Howeyer, as shown in Table|Z|, Only on TAS 4839 80.70 44.00
this approach yields inferior overall performance
due to the reduced sample count, despite improved robustness over training only on non-transferable
samples. These findings suggest that entirely discarding non-transferable samples is suboptimal,
especially as adversarial training demands intensive data to achieve robustness (Schmidt et al., 2018]).

Motivated by these insights, we propose Sample-wise Adaptive Adversarial Distillation (SAAD),
which assigns higher weights to transferable adversarial samples during distillation. The weighting
mechanism is derived from the transferable adversarial sample criterion defined in {@). A key
challenge, however, is that computing the teacher-side perturbation d7, which is not required in
standard adversarial distillation, incurs additional computational overhead, particularly for large
teacher models. To address this, we note that from the student’s perspective, the teacher outputs
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Table 3: Performance (%) of the teacher models. Teacher name correspond to ID in RobustBench.

Dataset Teacher name Architecture  Clean AA
CIFAR-10 Bartoldson2024Adversarial WRN-94-16 93.68 73.71
Gowal2021Improving WRN-28-10 87.50 63.38

CIFAR-100 Wang2023Better WRN-70-16 7522 42.66
Tiny-ImageNet Wang2023Better WRN-28-10 65.19 31.30

fr(x) and fr(x + dr) remain fixed, while only the student-induced perturbation dg varies. We
further leverage the empirical observation that the teacher’s output distribution on its own adversarial
input, f7(x + dr), typically exhibits higher entropy than on the clean input fr(x). According to (@),
transferable samples are those for which the student’s perturbation dg sufficiently approximates the
teacher’s own adversarial behavior, thereby inducing a comparable increase in entropy in f7(x + dg).

Based on this insight, SAAD assigns sample-wise weights proportional to the entropy of fr(x + ds),
effectively prioritizing transferable adversarial examples without incurring additional computational
cost. A more detailed justification linking the TAS criterion to the entropy of fr(x + dg) is provided
in Section[A.3.T] The resulting loss function is defined as:

N
1
Lsaap = Nzwi “Lap(fs, fr,xi,0s,:), wi == H (fr(x;+8s,:)), ®)
i=1

where Lap denotes an existing AD method. In our implementation, we adopt IGDM (Lee et al.,
2025)) as the base method; additional details are provided in Section[A.3.2]

By weighting adversarial distillation according to the entropy of the teacher’s perturbed outputs,
non-transferable samples receive negligible weight and are effectively suppressed. Although such
samples exhibit low-entropy teacher logits, indicating limited utility for robustness, they still contain
confident supervision aligned with the true label. To preserve this clean signal, we introduce a
complementary clean distillation loss by assigning inverse weights 1 — w;, where w; = w;/log C
denotes the entropy normalized by the maximum entropy for C' classes:

N

Baarnc = Lanan + 328+ (1= @) KL () | ) ©

for the clean distillation weight 5. The second term thus reintroduces non-transferable samples into
the clean distillation process, allowing the student to learn clean knowledge from the teacher. Such a
clean distillation term has appeared in prior AD methods (Zi et al.} [2021; Huang et al., 2023; |Lee
et al., [2025)), but those works set their coefficient to zero in practice, as robustness losses outweighed
the clean accuracy gains. In contrast, by restricting clean distillation to non-transferable samples, we
achieve substantial improvements in clean accuracy with only marginal robustness degradation.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENT SETUP

Adversarial Distillation Setting. We conduct experiments on CIFAR-10, CIFAR-100 (Krizhevsky
et al.,[2009)), and Tiny-ImageNet (Le & Yang| |2015)), using standard data augmentations (random
crop and horizontal flip). We compare baseline adversarial training methods—PGD-AT (Madry et al.|
2017) and TRADES (Zhang et al., 2019)—with six adversarial distillation approaches: ARD (Gold+
blum et al., [2020), IAD (Zhu et al., 2021), RSLAD (Zi et al.l 2021)), AKD (Maroto et al., 2022),
AdaAD (Huang et al.,|2023)), and IGDM (Lee et al., 2025). Further details are provided in Section E}

Teacher and Student Models. We employ robust teacher models summarized in Table [3] including
state-of-the-art entries from RobustBench (Croce et al., [2021 ﬂ for CIFAR-10 and CIFAR-100. To
broaden our evaluation, we also include a variant with a different architecture for CIFAR-10. All
selected teachers fall under the IRT category defined in Section 3| meaning that despite strong stan-
dalone robustness, they fail to effectively transfer robustness through existing adversarial distillation.

'Accessed Sept 23, 2025: https://robustbench.github.io/
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Table 4: Adversarial distillation results using two teacher and two student models on CIFAR-10.
Clean, FGSM, PGD, C&W, and AA columns report accuracy (%) under each evaluation setting.
Results are averaged over three random seeds.

g Method Bartoldson2024Adversarial Gowal2021lImproving
§ Clean FGSM PGD C&W AA Clean FGSM PGD C&W AA
PGD-AT  84.27 52.10 4234 4229 4085 8427 52.10 4234 4229 40.85
TRADES 82.70 57.14 48.81 48.08 4646 8270 57.14 48.81 48.08 46.46
ARD 84.63 56.57 4448 4344 41.66 8439 5247 4218 4222 40.79
X IAD 84.43 56.64 4482 4347 4180 8428 5225 42.16 42.19 40.70
© RSLAD 84.28 5720 47.17 46.07 4442 83.83 51.59 42.03 4222 40.57
Z AKD 84.62 5629 4442 4343 4179 8432 52.13 4238 4244 40.95
2 AdaAD 85.07 5754 47.16 46.06 4455 85.04 53.85 44.65 4490 43.27
IGDM 84.75 5838 4756 4643 4494 85.67 58.14 4858 4698 44.76
SAAD-C 8554 6192 53.18 52.05 50.14 86.39 60.55 5191 52.06 49.72
SAAD 8427 6144 5339 5239 5034 83.69 59.74 52.89 5236 50.35
PGD-AT 8352 5492 4490 4429 4154 8352 5492 4490 4429 4154
TRADES 81.79 5650 4990 47.54 46.50 81.79 5650 49.90 47.54 46.50
o ARD 83.66 55.09 4471 4349 4124 83.62 54.62 4460 44.18 4147
% IAD 83.85 55.69 4498 4362 4135 83.63 5481 4473 44.19 4151
z RSLAD 83.22 5554 46.09 4480 4256 8341 54.60 4501 4441 41.78
= AKD 83.60 55.13 4431 4329 41.03 8354 5479 4483 44.19 41.55
| AdaAD 84.42 5638 46.16 4499 43.01 84.37 5440 4440 4459 41.95
= IGDM 84.07 5731 4739 4543 4357 84.13 5793 4870 47.43 4483

SAAD-C 8516 60.53 52.72 51.26 49.34 84.81 58.17 51.09 5045 48.08
SAAD 82.04 5948 53.69 51.68 49.88 80.60 56.85 51.78 50.25 48.29

As student architectures, we use ResNet-18 (He et al.,[2016a) and MobileNetV2 (Sandler et al., 2018)
for CIFAR datasets and PreActResNet-18 (He et al.,[2016b) for Tiny-ImageNet.

Evaluation Setting. We evaluate each model using five metrics: Clean, FGSM, PGD, C&W, and
AutoAttack (AA) accuracy. Clean accuracy is measured on the original test set without perturbation.
FGSM and PGD accuracies are obtained using adversarial examples generated by the fast gradient sign
method (Goodfellow et al.,[2014) and a 20-step projected gradient descent attack (Madry et al., 2017),
respectively. C&W accuracy is measured under the optimization-based attack proposed in (Carlini
& Wagner, |2017), while AA reports worst-case accuracy under the AutoAttack ensemble (Croce &
Hein, 2020). All adversarial attacks are conducted under an [.,-norm constraint of 8/255.

5.2 ADVERSARIAL DISTILLATION RESULTS

Table |4] and Table [6] summarize adversarial robustness across datasets and methods. SAAD con-
sistently achieves the best AutoAttack accuracy across all settings, outperforming conventional
adversarial training as well as prior distillation techniques. Unlike existing AD methods whose
performance varies significantly depending on the teacher model, SAAD maintains strong robustness
even under IRT teachers. This suggests that weighting transferable samples during training is crucial
for stable robustness transfer in adversarial distillation. Moreover, SAAD-C, which incorporates
clean supervision, improves clean accuracy while preserving robustness.

5.3 ABLATION STUDIES

Additional experiments (e.g., impact of underconfident labels, compatibility, etc.) appear in Section|C}

Alleviate Robust Overfitting with Low Adversarial Variance and Table 5: Effect of sample-
Increased Transferability We show that robust overfitting arises Wwise weighting with an IRT.
from high adversarial variance in the student’s predictions, particularly

when the teacher produces overconfident soft labels. To address Method AVar RO TAS
this, our method introduces a sample-wise weighting scheme that Baseline 0.0834 5.44 0.199
effectively suppresses variance during training. As shown in Table[5§} SAAD  0.0385 0.93 0.326
SAAD substantially reduces adversarial variance and dramatically
mitigates robust overfitting. We also observe an increased ratio of transferable adversarial samples.
These findings confirm that lowering adversarial variance is essential for improved generalization.
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Table 6: Adversarial distillation results using ResNet-18 and PreActResNet-18 as student models for
CIFAR-100 and Tiny-ImageNet, respectively, with the Wang2023Better teacher (WRN-70-16
for CIFAR-100 and WRN-28-10 for Tiny-ImageNet). Clean, FGSM, PGD, C&W, and AA columns
report accuracy (%) under each evaluation setting. Results are averaged over three random seeds.

CIFAR-100 Tiny-ImageNet
Clean FGSM PGD C&W AA Clean FGSM PGD C&W  AA

PGD-AT  56.17 2474 19.65 19.79 18.66 45.71 15.75 11.67 11.82 1091
TRADES 5337 2872 2512 23.11 2232 4206 1958 17.15 14.03 13.33

Method

ARD 58.13 2971 2497 2222 20.84 5569 30.13 2662 22.09 19.90
IAD 57.59 29.85 2521 2241 21.00 5375 2985 2695 2240 20.56
RSLAD 56.68 30.87 2727 2391 22,66 53.18 30.14 27.69 2286 21.42
AKD 5822 29.14 2435 21.80 20.61 5448 27.62 2359 1956 17.73

AdaAD 5857 31.72 28.00 2440 23.15 57.26 31.81 28.80 23.64 22.11
IGDM 5636 3295 29.68 2591 2481 57.15 3198 29.02 2394 2252
SAAD-C  59.57 36.05 3252 2872 2721 5733 33.06 29.62 24.16 22.69
SAAD 59.11  36.01 32,71 2936 27.58 57.16 3326 2995 24.87 2342

Adversarial Distillation with ERT Table [l Table 7: Adversarial distillation results on
demonstrates SAAD’s performance in a high- ResNet-18 for CIFAR-10 using an ERT
transferability scenario using an ERT. In this set- teacher (Chen2021LTD_WRN34_20).

ting, SAAD matches or slightly exceeds IGDM. This

ﬁniing highlights a key asgpec}t, of our method: even Methed Clean FGSM PGD C&W AA
though SAAD’s primary mechanism targets low- ARD  85.57 61.07 52.13 50.72 48.78
transferability, it maintains strong performance in IAD 84.64 60.78 53.10 50.73 48.67
this favorable scenario—a crucial feature given thata RSLAD 84.12 60.37 54.68 51.96 50.58
teacher’s effectiveness is often unknown in practice. AKD ~ 84.51 60.12 52.17 50.71 49.03
Therefore, this result validates SAAD as a robust AdaAD 85.10 61.89 56.57 53.59 52.43
default: it incurs no performance degradation in fa- IGDM 8531 62.90 57.28 53.91 52.55
vorable settings (with an ERT) while significantly SAAD 8578 62.77 57.25 53.83 52.69
improving robustness when transferability is weak (with an IRT).

OODRobustBench Evaluation. To evaluate the gener- Table 8@ OODRobustBench results on
alization of adversarial robustness beyond in-distribution CIFAR-10 with various AD methods dis-
test sets, we additionally conduct experiments on tjlled from the Gowal2021Improving
OODRobustBench (Lin Lil 2024), a benchmark specif- teacher.

ically designed to assess robustness under distribution
shifts. It includes two major types of shifts: dataset shifts ~Method ~C-OOD,; R-OOD; OOD;

and threat shifts. For OODy, we report both the clean ARD 73.92 2587 18.25
accuracy on naturally shifted datasets (C-OODy) and the  1AD 73.80 2597  18.63
robust accuracy under MM5 adversarial attacks (Gao| RSLAD 74.97 2725  20.77
et al.,|2022) (R-OODy), which encompass corruptions  AKD 73.87 2599 1825

such as noise and blur. On the other hand, OOD; evalu- AdaAD 74.36 2743  20.62
ates robustness against six unseen attack types, including IGDM 71.19 3040 24.83
both large-¢ [,-norm attacks and non-/,, threat models. SAAD-C  76.34 3452 26.06
As shown in Table[8] SAAD consistently outperforms ex- SAAD 74.47 3536 27.19
isting AD methods across both dataset and threat shifts.

6 CONCLUSION

In this paper, we challenged the common assumption that a more robust teacher necessarily yields a
more robust student in adversarial distillation. We showed that the key bottleneck is not the capacity
gap but the transferability of adversarial perturbations between teacher and student. To address this, we
introduced Sample-wise Adaptive Adversarial Distillation (SAAD), which dynamically up-weights
those examples whose adversarial attacks on the student remain effective for the teacher, and proposed
a complementary clean distillation variant (SAAD-C) to recover clean accuracy from non-transferable
samples. We experimentally demonstrated that our approach consistently outperforms existing AD
methods and even standard adversarial training when transferability is limited.
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A IMPLEMENTATION DETAILS

A.1 ROBUST TEACHER AND ANALYSIS DETAILS

Table@] summarizes the teacher models used in our study, all selected from RobustBench (Croce et al.,
2021)+-. Table @]presents the results of adversarial distillation from each teacher into a ResNet-18
student, using six recent distillation methods. For each teacher, we report the student’s AutoAttack
accuracy under each method, the average accuracy across methods (Mean AA), and the transferable
adversarial sample ratio (TAS). As introduced in Section 3] we divide teachers into two groups for
clear interpretation: Effective Robust Teachers (ERTs) and Ineffective Robust Teachers (IRTs). This
categorization is based on the Mean AA value: a teacher is labeled as an ERT if the Mean AA exceeds
the TRADES baseline (46.46%) by more than 3 percentage points, and as an IRT if it falls below that
baseline by more than 3 points. The +3% band and the ERT/IRT split are used only in Section 3] for
analysis, to highlight clearly separated case. All analyses presented in the main paper—including
TAS, adversarial variance (AVar), robust overfitting (RO), and baseline comparisons in Table [5}—are
conducted using RSLAD as the baseline AD method.

Table 9: Summary of teacher models used in our study, selected from RobustBench. ‘Abbr.’
denotes the shorthand identifier used in Figure Bolded entries correspond to the teach-
ers analyzed in Section E]; in that section, their RobustBench names are shown without ar-
chitecture suffixes (e.g., Bartoldson2024Adversarial_WRN-94-16 is referred to as
Bartoldson2024Adversarial)

Abbr. RobustBench name Architecture Size(M) Clean AA

Bart94 Bartoldson2024Adversarial_WRN-94-16 (Bartoldson et al.,[2024) WRN-94-16 365.92 93.68 73.71
Bart82 Bartoldson2024 Adversarial_WRN-82-8 (Bartoldson et al.||2024) WRN-82-8 79.13 93.11 71.59

Wang70 Wang2023Better_ WRN-70-16 (Wang et al.||2023c) WRN-70-16  266.80 93.25 70.69
Cui28 Cui2023Decoupled_WRN-28-10 (Cui et al.{[2023) WRN-28-10 36.48 92.16 67.73
Gowal70 Gowal2020Uncovering_70_16_extra (Gowal et al.|[2020) WRN-70-16 266.80 91.10 65.87

Rebu70 Rebuffi2021Fixing_70_16_cutmix_ddpm (Rebuffi et al./[2021) WRN-70-16  266.80 88.54 64.20
Gowal28 Gowal2021Improving_28_10_ddpm_100m (Gowal et al.[[2021) WRN-28-10 36.48 87.50 63.38

Huang Huang2021Exploring_ema (Huang et al.|[2021) WRN-34-R 68.12 91.23 62.54
Dai Dai2021Parameterizing (Dai et al.||2022) WRN-28-10 36.48 87.02 61.55
Sridhar34  Sridhar2021Robust_34_15 (Sridhar et al.|[2022) WRN-34-15 108.53 86.53 60.41
Carmon Carmon2019Unlabeled (Carmon et al.||2019) WRN-28-10 36.48 89.69 59.53
GowalR18  Gowal2021Improving_R18_ddpm_100m (Gowal et al.|[2021) PreActRN-18 12.55 87.35 58.50
Chen34-20 Chen2021LTD_WRN34_20 (Chen & Lee![2021) WRN-34-20  184.53 86.03 57.71
Chen34-10 Chen2021LTD_WRN34_10 (Chen & Lee![2021) WRN-34-10 46.16 85.21 56.94
SehwagR18 Sehwag2021Proxy_R18 (Sehwag et al.[[2021) RN-18 11.17 84.59 55.54

Table 10: AutoAttack accuracy (%) of student models distilled from each RobustBench teacher
using different methods. Each row corresponds to a teacher model shown, and columns represent
distillation methods in Figure[[] Mean AA denotes the average performance across all methods for a
given teacher. TAS indicates the transferable adversarial sample ratio with RSLAD method. Bold
Mean AA values indicate ERTs, whose students outperform the TRADES baseline (46.46%) by
more than 3 percentage points. Underlined Mean AA values denote IRTs, whose students fall short
of the baseline by more than 3 points.

Abbr. ARD TAD RSLAD AKD AdaAD IGDM Mean AA TAS
Bart94 4194 41.83 44.07 41.73 44.68 44.75 43.17 0.1991
Bart82 4493  45.07 47.59 44.02 48.63 48.80 46.51 0.3779
Wang70 4459 44775 47.38 44.53 48.47 48.66 46.40 0.3656
Cui28 46.16  46.20 49.07 45.87 50.50 50.79 48.10 0.5400
Gowal70 4588 46.84 48.89 45.82 50.82 50.82 48.18 0.5774
Rebu70 4775  47.95 50.94 48.11 52.14 52.28 50.20 0.6770
Gowal28 40.94 40.85 41.08 41.13 43.01 44.26 42.05 0.1494
Huang 46.00 45.81 49.09 45.26 49.20 49.26 47.44 0.4431
Dai 40.64  40.52 42.28 40.61 42.87 43.92 41.81 0.2175
Sridhar34 4772  46.89 49.89 46.29 51.50 52.26 48.84 0.8133
Carmon 46.16 4594 49.56 46.56 51.26 51.53 48.50 0.6450

GowalR18 4412 43.62 46.61 44.41 49.51 50.46 46.72 0.4213
Chen34-20  48.78  48.67 50.58 49.03 52.43 52.55 50.34 0.9262
Chen34-10  50.82  50.55 52.21 50.95 53.24 53.45 51.87 0.9810
SehwagR18 4230 42.28 45.33 43.65 48.95 49.69 45.37 0.3689
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A.2 ADVERSARIAL VARIANCE DETAILS

In this section, we provide further technical details on the computation of adversarial variance and the
associated decomposition of adversarial error. Algorithm [I]outlines the procedure used throughout
the main paper to estimate adversarial variance under AD. This algorithm quantifies how much the
learned student model varies when trained on different subsets of the training data, using a fixed
AD method. As shown in the algorithm, we split the full training dataset D into /N disjoint subsets
and independently train student models on each subset using a fixed AD method. This allows us
to observe how much the resulting models vary in their outputs under adversarial evaluation. For
each trained student, the variation is measured by evaluating each model’s prediction at a fixed test
point (x,y) under its corresponding adversarial input, and computing the KL divergence between
these predictions and their geometric mean, reflecting how much model outputs fluctuate due to data-
induced randomness. Following (Yu et al.,[2021)), we set the number of splits IV = 2, corresponding
to training each student on half of CIFAR-10 (25,000 examples). To obtain more stable estimates, we
repeat this procedure K = 2 times with different random splits.

Algorithm 1 Estimating Adversarial Variance under Adversarial Distillation

Require: Test point (x,y), dataset D = {(x;,y;)}~, , teacher fr, number of splits IV, repetitions
K

1: for k =1to K do N

2:  Randomly split D into {Dj( NN

3 for j =1to N do

4: Adversarially distill student fs(-; ) on Dj(-k) with frp:
H(D™) ~ i L e
6(D;”) ~ arg min o] Zk {EISI}?EXA Lav(fs, fr.xi, 55,0} :

7 liept™
5: Find adversarial perturbation §; = 6(x,y, Dj(.k)) that approximately solves
Igleai( Lmax (fé(DJ(.k)) (X + 6) ) y) )

6: Evaluate the adversarial student prediction y; := fs(x + d;; é(D§k))).

7: end for

8: Aggregate via the geometric mean on the simplex:

yi=—= exp Z logy; |, Zisanormalization constant.

9: Compute the KL-based variance for split k:

N
AVargy, (x,y, D)) = Z (¥ 1135)-
10: end for
11: Return the averaged adversarial variance
AVarKL(x y) ZAVarKL (x y, D(k))

k 1

To further clarify the theoretical interpretation of our measure, we restate and prove a bias—variance
decomposition of the expected adversarial error, following formulations introduced in prior works (Yu
et al.;2021; Zhou et al.| 2021)). We explicitly show how the adversarial prediction error decomposes
into three terms: intrinsic noise, adversarial bias, and adversarial variance. This derivation justifies
our use of KL-based adversarial variance as a meaningful quantity for analyzing robustness under
adversarial training and distillation.
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We aim to show that the expected adversarial error satisfies the following lemma:

Lemma 1 (Decomposition of Expected Adversarial Error). Let (x,y) be a test example, where
y=ly,... ,yc]—r € AC~1is the target class—probability vector over C classes. Let D denote the
training dataset. Define the adversarial prediction

y = fé(D)(X+6(X7y7D))7

where 8(x,y, D) is the worst—case perturbation within the chosen threat model. Let the normalized
geometric mean of predictions across D be

c
1
y = m exp (ED [log y]), Z(x) chosen so ; e = L.
The expected adversarial cross—entropy
c
CE(ya y) == Z Ye 10g yAc
c=1

admits the decomposition

A y TN

Ex,p [CE(y,¥)] = Ex [~y logy] + Ex {y log y} +Exp [KL(y || 9)] - @)
— —

Intrinsic Noise S—————— Adversarial Variance
Adbversarial Bias

Proof. Fix atest point (x,y). By definition,

CE(y,y) = —ylogy.
We add and subtract the term y log y, yielding:

. . y y
CE(y,y) = —ylogy = —ylogy +ylog y Tyleg
Taking expectation over D on both sides gives:
E N y y
p[CE(y,y)] = —ylogy +ylog§ +Ep ylog§ :

The first term corresponds to the intrinsic noise, the second to adversarial bias, and it remains to show
that the third term equals the adversarial variance:

En[ylog ¥] = Ep[KL([)].
To see this, recall that log ¥ = Ep[log ¥] — log Z component-wise. For each class ¢,
Ep [y log %] = Ye (Epllogg.] —log Z) — y. Ep[log §c] = —y.log Z.
Summing over all classes gives:

Ep[ylog Z} = flogZZyc = —log Z.

y
On the other hand:
Ep[KL(y[9)] = Ep |3 gclog ﬂ
¢
=Y 9 (Ep[log jc] — log Z — Epllog g..))
= —logZZgjc = —log Z.
Since ) y. = Y. ¥c = 1, the two expressions are equal, completing the proof. [
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A.3 PROPOSED METHOD DETAILS

A.3.1 FROM TAS TO THE SURROGATE LOSS

Let C be the number of classes and A“~! the probability simplex. For an input x, define the teacher’s
predictive distributions under student- and teacher-crafted adversarial perturbations by

p(x) = fr(x+ds) € A9, q(x) = fr(x+dp) € A1
with components p; = [p(x)]; and ¢; = [g(x)];. We define the TAS score by

TAS(x) = Kl(p(x)| fr(x)) — KL(p(x) | q(x)).
We call x a transferable adversarial sample if TAS(x) > 0, which is equivalent to

KL(fr(x+8s) || fr(x)) > KL(fr(x+ds) || fr(x+ d7)).

In the main text, for analysis, we use TAS(x) >0 to decide whether a sample is TAS; otherwise it
is non-TAS. It cleanly separates samples and reveals how the two groups differ in (i) the entropy
of teacher logits on student-crafted adversarial inputs (Figure [4a)), (ii) adversarial variance when
training on each subset after a warm-up phase (Figure b)), and (iii) robust overfitting trajectories
(Figure [c). These results show that the non-TAS subset concentrates low-entropy, high-variance
supervision and drives robust overfitting, whereas the TAS subset exhibits higher entropy and more
stable generalization.

While the binary split is useful for diagnostics, transferability is not inherently binary for training:
samples lie at different distances from the boundary TAS(x)=0, stochasticity near that boundary
can flip membership, and discarding non-TAS samples is data-inefficient. Therefore, for training we
replace the binary split by a continuous score, which we map to sample weights as in (3)).

For training-time efficiency, we avoid computing the teacher-side perturbation é7 and instead use an
entropy-based proxy on fr(x + dg) in (3). Assuming a strong white-box dr yields a high-entropy,
non-degenerate teacher distribution q(x) = fr(x + d7) (so m = min; ¢; > 0), we have:

Lemma 2 (Entropy-based lower bound on TAS). Assume the teacher’s adversarial output satisfies
m = min; ¢; > 0, where q(x) = fr(x+ dr) and ¢; = [q(x)];. Then

TAS(x) > H(fr(x+ds)) + logm.

Proof. Let H(p) = — ), p; log p;. By the definition of KL divergence,

KL(pllq) = — H(p) — Zpilog%’ < —H(p) — logm.

Since TAS(x) = KL(p|| fr(x)) — KL(p||q), we obtain
TAS(x) > H(p)+logm = H(fr(x + ds)) + logm.
O

This bound justifies using entropy as a surrogate for sample-level transferability: higher teacher
entropy on x + dg increases a lower bound on TAS(x), providing a computation-friendly proxy
without evaluating .

A.3.2 REVISITING PREVIOUS ADVERSARIAL DISTILLATION METHODS

Existing AD methods have largely been designed and evaluated under ERTs, with limited analysis
conducted in the context of IRTs. While overall distillation performance is not effective under IRTs,
as shown in Figure[I] Table ] and Table[6] our analysis reveals that some AD methods still perform
comparatively better than other AD methods even under IRTs. Table[TT|summarizes representative AD
methods, focusing on their inner maximization and outer minimization formulations. The differences
in these formulations determine how each method responds to the adversarial signal provided by the
teacher. Among them, IGDM further refines robustness alignment by implicitly matching gradients
(adversarial direction) through logit difference minimization in the outer optimization. This design
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Table 11: Comparison of inner maximization (L, ax), outer minimization (L,;,) for various AD
methods. As IGDM follows a modular design, Lsp can be any other AD outer minimization loss.

Method Inner Maximization Outer Minimization
ARD CE(y, fs(x +9)) KL(fr(x)| fs(x +9)
RSLAD  KL(fr(x)||fs(x +9)) KL(fr(x)[lfs(x + 9)
AdaAD  KL(fr(x+9)| fs(x +8)) KL(fr(x+9)| fs(x +9))

IGDM  KL(fr(x+8)||fs(x+8)) Lap+aweom-KL(fr(x+ 68)—fr(x—8)|fs(x+8)—fs(x —§))

can be interpreted as encouraging transferability between the student and teacher. Empirically, IGDM
consistently yields improved robustness compared to prior methods, particularly under IRTs, which
motivates our decision to adopt IGDM as our baseline. Since IGDM is a modular design rather than
a complete distillation framework, we adopt it in combination with AdaAD, following the original
implementation (Lee et al.,[2025)). Therefore, the overall SAAD minimization loss is defined as:

N
1
Lsaap = ;wz Lap(fs, fr,xi,6:), wi = H (fr(xi +6;)),
where H (-) denotes the entropy function, and L, represents the base adversarial distillation loss
using AdaAD with IGDM, formulated as:

Lap(fs, fr,xi,0:) = KL (fr(xi + 6:) || fs(xi + d:))
+ argpm - KL (fr(xi + 6;) — fr(xi) || fs(xi +0;5) — fs(xi)) . (8)

In results, our baseline implementation follows AdaAD with the IGDM module, along with an weight
averaging (SWA) (Izmailov et al.| 2018).

A.3.3 FAST INNER MAXIMIZATION VIA LINEAR APPROXIMATION

We also introduce a lightweight inner maximization strategy to reduce computational cost. This
technique is a practical enhancement to the SAAD framework by avoiding repeated teacher back-
propagation, enabling efficient training without compromising robustness. Recent AD methods have
adopted iterative inner maximization procedures involving teacher backpropagation (Huang et al.|
2023} |Lee et al., [2025)), a strategy that has empirically led to stronger robustness in distilled students.
However, as the size of the teacher model increases, this process becomes computationally expensive.
To alleviate this cost, we introduce an approximation technique that reduces the number of teacher
backpropagations from multiple iterations to a single step. Inspired by the locally linear behavior
of adversarially trained models discussed in prior work (Lee et al.,2025)), we linearize the teacher’s
output around the input x using a first-order Taylor expansion:

fT(X + 5) ~ fT(X) + <foT(X)7 6>7
and substitute this into the inner maximization objective:

max KL (fr(x+0)| fs(x+4)),

which results in the following approximation:
max KL (fr(x +6) || fs(x) + (Vxfs(x),6)) . ©)

This formulation enables a technically efficient alternative to conventional inner maximization
by bypassing the need for iterative teacher backpropagation while preserving the gradient-guided
adversarial direction. Algorithm 2]details the procedure. Given a clean input and a true label, we first
compute the teacher logits and the corresponding input gradient. At each step, the KL divergence is
computed between the student output and the corrected teacher logits. By adopting this approximation,
we achieve a nearly 4 x speed-up in the inner maximization step compared to the original AdaAD
formulation in Table|I7} while maintaining comparable robustness and distillation performance.

A.3.4 MAIN ALGORITHM

The overall training procedure for SAAD and SAAD-C is outlined in Algorithm 3]
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Algorithm 2 Fast Inner Maximization with First-Order Teacher Logit Correction

Require: Input x, true label y, student fg, teacher fr, step size 7, perturbation bound e, steps K,
correction weight Ay,

1: Compute teacher logits on x: {1
2: Compute gradient V£%.(x), the input gradient of the logit corresponding to class y
3: Initialize perturbation: § < 0.001 - A°(0, I)
4: fork =1to K do
5: Compute correction term:
ALY < Nip - (Vxli(x), 6)
6:  Construct corrected logits: {7 < £, with £% « €4 4+ A¢Y
7: Compute loss: L7, := KL (softmax(@T) | fs(x+ 6))

Update perturbation:
0 < Projsca (6 +n-sign(VsLki))

9:  Projectx + 46 € [0,1]¢
10: end for
11: returnx + &

Algorithm 3 Training Algorithm for SAAD and SAAD-C

Require: Teacher fr, student fg, training set D, step size 7, total epochs F, perturbation bound ¢,
inner steps K, weights \in, aigpm, 8
1: for epoch = 1to E do
2 for each minibatch {(x;,;)}2., ~ D do
3: Generate §; for each x; using Algorithm 2]
4: Compute per-sample entropy: w; < H(fr(x; + 9;))
5‘
6
7

Normalize: w; < Normalize(w;)
Compute loss Lap as in
Compute total loss for SAAD (3)):

l; < w; - Lap(x,0;)

if SAAD-C then
9: Add clean distillation:

b L+ B (1= ;) - KL(fr(x:) || fs(xi))

o]

10: end if

11 L L3P 4

12: Update fg via gradient descent: 8 <— 6 — nVoL
13: end for

14: if epoch > 95 then

15: Update SWA parameters

16: end if

17: end for

B EXPERIMENTAL DETAILS

B.1 ADVERSARIAL DISTILLATION SETTINGS

We conduct experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet, applying standard data
augmentations (random cropping and horizontal flipping). All student models are trained for 200
epochs using SGD with momentum 0.9, weight decay 5 x 10~%, and an initial learning rate of 0.1,
which is decayed by a factor of 10 at the 100th and 150th epochs. The batch size is fixed to 128
across all experiments.
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We compare two adversarial training baselines—PGD-AT and TRADES—alongside six recent
adversarial distillation methods: ARD, IAD, RSLAD, AKD, AdaAD, and IGDM. As IGDM is a
modular technique, we evaluate its performance in conjunction with AdaAD (i.e., AdaAD+IGDM),
which consistently yields the best results among IGDM-integrated variants. Following the original
design, we set the IGDM hyperparameter aygpnm to 1 for CIFAR-10, 20 for CIFAR-100, and 10 for
Tiny-ImageNet. This configuration is also adopted in our SAAD framework to ensure consistency
across evaluations.

For inner maximization in training, we adopt a standard multi-step attack setup with L., perturbations
bounded by e = 8/255, step size 2/255, and 10 iterations. Each method follows its original inner
maximization formulation, summarized in Table@ Specifically, PGD-AT, ARD, IAD, and AKD
use student-only cross-entropy loss; TRADES employs KL divergence between clean and perturbed
predictions; RSLAD aligns student outputs with teacher predictions on clean inputs; while AdaAD
and IGDM match student and teacher predictions under shared perturbations. Our proposed SAAD
framework follows the inner-outer structure described in Algorithm

B.2 SELECTED HYPERPARAMETERS

We document the selected values of the clean distillation weighting coefficient 3, which controls the
strength of the clean KL divergence term in SAAD-C. To determine /3, we perform a small-scale grid
search aiming to maximize clean accuracy while maintaining comparable AutoAttack robustness to
the SAAD. On CIFAR-10, we set 3 = 0.2 across all combinations of ResNet-18 and MobileNetV2
students with either Bartoldson2024Adversarial or Gowal2021Improving teachers.
On CIFAR-100 and Tiny-ImageNet, we apply a uniform setting of 8 = 0.5.

B.3 ADDITIONAL NOTES ON FIGURES AND TABLES

Due to space constraints in the main text, some experimental settings and message from the figures
are not fully specified. While many details can be inferred from the main text, tables, and appendices,
we restate them here for clarity.

Figure All teacher models consistently achieve AA accuracies above 55%, while the strongest
student reaches only 54%. This ensures that student underperformance cannot be attributed to weak
teacher robustness, and instead reflects the quality of robustness transfer.

Figure @} Colored vertical bands indicate the same teacher architecture. For visual clarity, we
apply a small horizontal jitter within each colored band, so left-right offsets inside a band are purely
for visualization and have no meaning.

Table[I} All distillation results are obtained with RSLAD. Robust overfitting (RO) is defined as the
drop from the best test PGD-20 accuracy during training to the final accuracy at epoch 200. With our
schedule the peak typically occurs around epochs 100—-110.

Figure For Rebuffi2021Fixing, we interpolate the teacher’s soft distribution with the
one-hot label as

ta(x) = (1-a) fr(x) + ae,, acl0,1],
where fr(x) is the teacher’s probability vector and e, is the one-hot vector for class y. When o = 0

the target is the teacher distribution; when v = 1 it is purely one-hot. Orange points correspond to
different ; numeric annotations indicate the one-hot proportion.

Table2l CIFAR-10 with a ResNet-18 student distilled from Bartoldson2024Adversarial
using RSLAD. The first 90 epochs are a warm-up on the full 50,000 examples. At epoch 90, we
partition the training set into TAS and Non-TAS using Equation |4f this split is then fixed for the
remaining epochs.

Table CIFAR-10 with a ResNet-18 student distilled from Bartoldson2024Adversarial.
“Baseline” denotes plain RSLAD (no sample-wise weighting).
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Table 12: Adversarial distillation results using two teacher and two student models on CIFAR-10.
Clean, FGSM, PGD, C&W, and AA columns report accuracy (%) under each evaluation setting.
Results are averaged over three random seeds with standard deviations.

Bartoldson2024Adversarial Gowal2021lImproving
Clean FGSM PGD C&W AA Clean FGSM PGD C&W AA

PGD-AT 84.27+0.10 52.10+034 42.344009 42.29+007 40.85+0.14 84.27+0.10 52.10+034 42.34+0.09 42.294007 40.85+0.14
TRADES 82.70+0.10 57.14+048 48.81+052 48.08+054 46.46+057 82.70+0.10 57.14+048 48.81+052 48.08+054 46.46+057
ARD 84.63+0.15 56.57+045 44.48+026 43.44+045 41.66+053 84.39+028 52.47+035 42.18+032 42.22+021 40.79+040
IAD 84.43+025 56.64+020 44.82+015 43.47+0.11 41.80+0.15 84.28+029 52.25+0.13 42.16+024 42.19+009 40.70+0.10
RSLAD  84.28+0.11 57.20+062 47.17+033 46.07+042 44.42+034 83.83+036 51.59+044 42.03+031 42.22+028 40.57+038
84.62+0.14 56.29+0.08 44.42+009 43.43+0.12 41.79+0.12 84.32+0.19 52.13+034 42.38+007 42.44+0.17 40.95+0.06
AdaAD  85.07+0.07 57.54+021 47.16+021 46.06+0.18 44.55+0.17 85.04+0.11 53.85+023 44.65+028 44.90+0.15 43.27+0.18
IGDM 84.75+0.18 58.38+032 47.56+025 46.43+021 44.94+0.16 85.67+022 58.14+044 48.58+0.18 46.98+040 44.76+0.52
SAAD-C 85.54+001 61.92+0.11 53.18+021 52.05+030 50.14+024 86.39+001 60.55+008 51.91+045 52.06+0.14 49.72+0.16
SAAD 84.27+0.18 61.44+025 53.39+023 52.39+028 50.34+008 83.69+0.18 59.74+0.14 52.89+040 52.36+0.18 50.35+0.22

PGD-AT 83.52+0.19 54.92+024 44.90+043 44.29+0.18 41.54+022 83.52+0.19 54.92+024 44.90+043 44.29+0.18 41.54+0.22
TRADES 81.79+046 56.50+0.19 49.904+0.07 47.54+026 46.50+0.14 81.79+046 56.50+0.19 49.90+0.07 47.54+026 46.50+0.14
ARD 83.66+039 55.09+022 44.71+006 43.49+0.11 41.24+009 83.62+009 54.62+048 44.60+031 44.18+025 41.47+0.17
IAD 83.854027 55.69+0.10 44.98+0.10 43.62+004 41.35+005 83.63+0.12 54.81+0.17 44.73+0.13 44.19+017 41.51+0.03
83.22+0.18 55.54+030 46.09+079 44.80+0.84 42.56+060 83.41+036 54.60+006 45.01+020 44.41+023 41.78+0.16
AKD 83.60+042 55.13+021 44.31+011 43.29+021 41.03+021 83.54+003 54.79+0.11 44.83+0.12 44.19+0.18 41.55+0.05
AdaAD  84.42+0.12 56.38+023 46.164007 44.99+0.12 43.01+0.11 84.37+008 54.40+039 44.40+041 44.59+040 41.95+049
IGDM 84.07+0.09 57.31+0.14 47.39+002 45.43+005 43.57+0.11 84.13+049 57.93+0.10 48.70+033 47.43+0.12 44.83+0.19
SAAD-C 85.16+0.10 60.53+0.18 52.72+0.13 51.26+020 49.34+0.09 84.81+023 58.17+0.15 51.09+035 50.45+029 48.08+0.23
SAAD 82.04+004 59.48+020 53.69+0.19 51.68+028 49.88+0.16 80.60+0.23 56.85+0.02 51.78+005 50.25+0.05 48.29-+0.10

Method

Model

ResNet-18
>
2
w)

MobileNetV2
]
%)
=
>
&)

Table 13: Adversarial distillation results using ResNet-18 and PreActResNet-18 as student models for
CIFAR-100 and Tiny-ImageNet, respectively, with the Wang2023Better teacher (WRN-70-16
for CIFAR-100 and WRN-28-10 for Tiny-ImageNet). Clean, FGSM, PGD, C&W, and AA columns
report accuracy (%) under each evaluation setting. Results are averaged over three random seeds with
standard deviations.

CIFAR-100 Tiny-ImageNet
Clean FGSM PGD C&W AA Clean FGSM PGD C&W AA

PGD-AT 56.17+020 24.74+0.16 19.65+0.18 19.79+020 18.66+0.18 45.714+033 15.75+005 11.67+043 11.82+045 10.91+040
TRADES 53.37+036 28.724026 25.12+0.12 23.11+0.11 22.32+0.14 42.06+0.11 19.58+004 17.15+0.19 14.03+034 13.33+0.29
ARD 58.13+022 29.71+0.14 24.97+0.13 22.22+027 20.84+0.12 55.69+049 30.13+001 26.624007 22.09+0.18 19.90+0.10
IAD 57.59+013 29.85+030 25.21+006 22.41+013 21.00+0.14 53.75+049 29.85+0.14 26.95+0.16 22.40+0.12 20.56+0.30
RSLAD  56.68+034 30.87+0.18 27.27+0.07 23.91+009 22.66+0.19 53.18+0.11 30.14+027 27.69+003 22.86+004 21.4240.13
AKD 58.22+0.16 29.14+0.19 24.35+003 21.80+0.06 20.61+0.13 54.48+037 27.62+004 23.594033 19.56+0.16 17.73+0.12
AdaAD  58.57+049 31.724004 28.00+0.10 24.40+048 23.15+030 57.26+0.11 31.81+0.18 28.80+0.15 23.64+009 22.11+0.05
IGDM 56.36+032 32.95+0.13 29.68+008 25.91+0.12 24.81+028 57.15+008 31.98+0.18 29.02+0.17 23.94+0.04 22.52+40.11
SAAD-C 59.57+066 36.05+038 32.52+031 28.72+038 27.21+034 57.33+0.16 33.06+038 29.62+023 24.16+032 22.69+035
SAAD 59.11+028 36.01+0.13 32.71+021 29.36+0.16 27.58+0.16 57.16+036 33.26+032 29.95+0.13 24.87+029 23.42+0.23

Method

Table[7] CIFAR-10 with a ResNet-18 student distilled from the ERT Chen2021LTD_WRN34_20.
Under this ERT, SAAD matches or slightly exceeds IGDM, which is consistent with our design goal:
SAAD targets failure modes that arise under low transferability, and it does not aim to outperform
existing methods when robustness transfer is already strong. Although one might hope to simply pick
an ERT and avoid transferability issues, in practice it is rarely known in advance whether a given
teacher will behave as an ERT or an IRT, and the teacher is often fixed (e.g., from a model zoo or an
upstream system). SAAD therefore serves as a robust default: it consistently improves robustness
when transferability is weak, while incurring no degradation when transferability is strong.

C ADDITIONAL EXPERIMENTS

C.1 STATISTICAL REPORT

The main paper reports only mean results to preserve readability and avoid excessive font reduction
in dense tables. Here, we provide full results, including standard deviations for three random seeds.
See Table[12)for CIFAR-10 and Table [I3]for CIFAR-100 and Tiny-ImageNet.
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Table 14: Effect of § on CIFAR-10 with  Table 15: AD with SWA results on CIFAR-10
the Gowal2021Improving teacher and  with the Gowal2021Improving teacher and
ResNet-18 student. ResNet-18 student.

S Clean FGSM PGD C&W AA Method Clean FGSM PGD C&W AA

0 83.69 59.74 5245 5236 50.35 ARD 85.33 58.06 48.69 47.68 46.12
0.05|84.72 60.13 52.77 52.32 50.19 IAD 85.01 5839 48.94 47.78 46.10
0.1 8549 59.70 5245 52.18 50.14 RSLAD 84.74 59.96 49.40 48.16 46.60
0.15| 8591 60.21 5245 5221 49.90 AKD 85.20 5795 4851 47.44 46.04
0.2 8639 60.55 5191 52.06 49.72 AdaAD 86.11 56.70 48.08 48.05 46.19
0.25|87.93 5940 49.18 49.36 47.02 IGDM 86.09 58.85 50.13 49.83 48.18
0.3 |88.13 57.79 44.88 45.17 42.65 SAAD-C 86.39 60.55 5191 52.06 49.72
0.5 |88.19 56.44 42.65 43.06 40.78 SAAD 83.69 59.74 52.89 52.36 50.35

Table 16: Compatibility of SAAD weighting with other AD methods. We report test accuracy (%) on
CIFAR-10 with ResNet-18 student distilled from the Gowal2021 Improving teacher.

Method Clean FGSM PGD C&W AA

ARD 84.39 5247 4218 4222 40.79
ARD + SAAD weighting 8195 5648 50.04 5039 48.09
RSLAD 83.83 51.59 42.03 4222 40.57
RSLAD + SAAD weighting 81.74  57.03 50.54 50.46 48.53
AdaAD 85.04 53.85 44.65 4490 43.27
AdaAD + SAAD weighting 84.16 5893 52.16 51.99 49.97
IGDM 85.67 58.14 48.58 4698 44.76
SAAD-C 86.39 60.55 5191 5206 49.72
SAAD 83.69 59.74 52.89 5236 50.35

C.2 IMPACT OF SAMPLE-WISE WEIGHTING HYPERPARAMETERS

As shown in Table[T4] increasing the 3 value enhances clean accuracy by placing greater emphasis
on clean distillation. While small values of (5 lead to modest improvements in clean accuracy with
minimal reduction in adversarial robustness, overly large 3 values cause substantial drops in both
PGD and AutoAttack performance. This trade-off suggests that a moderate value offers the best
balance between clean accuracy and robustness.

C.3 SWA ANALYSIS

To ensure consistency, we apply the SWA technique across all adversarial distillation baselines and
evaluate their performance under identical conditions. As shown in Table[I5] applying SWA generally
improves the robustness of existing AD methods to some extent. Nevertheless, both SAAD and
SAAD-C consistently outperform all baselines, achieving the highest robustness. This indicates that
the observed gains are not merely due to SWA but rather attributable to the design of our proposed
distillation framework.

C.4 COMPATIBILITY OF SAAD WEIGHTING WITH OTHER AD METHODS

SAAD’s entropy-based weighting scheme can be seamlessly integrated into the outer minimization
of existing AD methods, as it does not require any modification to their inner optimization or loss
formulation. To verify this, we apply the SAAD weighting design on top of ARD, RSLAD, and
AdaAD. All experiments follow the same setting in the main paper, i.e., distillation on CIFAR-10
with a ResNet-18 student and the Gowal2021Improving teacher. In Table[T6] applying SAAD
weighting to existing methods consistently improves robustness across all attacks. However, these
variants remain slightly less effective than the full SAAD method.
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Table 17: Throughput (epochs/hour) and peak GPU memory (MB) on CIFAR-10.

Method  Epochs/hour Memory (MB)

ARD 17.76 4670
IAD 10.93 4670
RSLAD 10.93 4670
AKD 17.85 4670
AdaAD 1.23 26795
IGDM 1.17 26795
SAAD-C 4.73 26301
SAAD 4.83 26301

Table 18: Transfer adversarial accuracy (%) of teachers on high-entropy subsets. Even for high-
entropy samples, teacher accuracy remains very high, indicating that underconfident labels still
provide reliable supervision.

Teacher Top20% Top40% Top60% Top80%  Average
Bartoldson2024Adversarial 94.50 97.06 97.99 98.46 98.73
Gowal2021Improving 97.06 98.50 99.00 99.24 99.39

C.5 COMPUTATIONAL RESOURCE

Table [I7]reports throughput and peak memory on an NVIDIA A6000 (Ubuntu, Python 3.8, PyTorch).
The larger memory usage for AdaAD/IGDM/SAAD is primarily due to backpropagating through the
teacher during the inner maximization: IGDM and AdaAD run iterative inner loops with multiple
teacher backward passes, whereas SAAD replaces this loop with a first-order approximation requiring
only a single backward pass, yielding almost four times speedup while keeping peak memory
comparable. By contrast, lighter baselines (ARD/AKD/RSLAD) avoid teacher backpropagation
in the inner loop and therefore use much less memory and train faster. Importantly, the “without
incurring additional computational cost” claim in the main text refers to SAAD’s entropy-based
weighting itself. Applied to gradient-free on teacher for inner-maximization methods such as ARD
and RSLAD, the weighting improves robustness (see Table[I6); the weighting does not increase
memory or computation.

C.6 IMPACT OF UNDERCONFIDENT SOFT LABELS IN ADVERSARIAL DISTILLATION

One potential concern is that underconfident (high-entropy) soft labels may provide noisy supervision
and thus harm adversarial distillation. To evaluate this, we analyze the teacher’s prediction reliability
in high-entropy regions. For each teacher, we distill a student using RSLAD on CIFAR-10. After
training, we generate 10-step PGD adversarial examples on the student from the training set and
compute the entropy of the teacher’s output on these perturbed inputs. We then sort the samples
by teacher-output entropy on student-generated adversarial inputs (transfer attacks) and report the
teacher’s prediction accuracy (transfer adversarial accuracy) on the top 20%, 40%, 60%, and 80%
highest-entropy subsets.

As shown in Table[T8] transfer adversarial accuracy remains consistently above 94% even in high-
entropy regions, suggesting that underconfident soft labels largely provide stable supervision rather
than introducing significant noise. These results support the validity of entropy-based weighting: low-
entropy, overconfident predictions are more indicative of high-variance, overfitting-prone samples,
whereas high-entropy samples help stabilize training by reducing adversarial variance and enabling
more effective knowledge transfer.

While transfer adversarial accuracy is high, it does not reach 100%, implying that a small fraction
of teacher predictions deviate from the ground truth. To investigate whether explicitly correcting
such deviations yields further benefits, we incorporate the Error-Corrective Label Swapping (ELS)
technique proposed in DGAD (Park & Min, 2024), which swaps the true-label and max-logit
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probabilities for misclassified cases on both clean and adversarial examples. We apply ELS on top of
SAAD and evaluate the resulting student on CIFAR-10 with a ResNet-18 student distilled from the
Gowal2021Improving teacher.

Table 19: Evaluation of SAAD with and without ELS on CIFAR-10 with ResNet-18 student distilled
from the Gowal2021Improving teacher. ELS leads to only minor changes across all metrics,
suggesting that correcting underconfident predictions provides limited additional benefit.

Method Clean FGSM PGD C&W AA

SAAD 83.69 59.74 5289 5236 50.35
SAAD +ELS 83.86 59.78 52775 52.22 50.07

The results in Table|19|show that applying ELS yields only marginal changes across all evaluation
metrics. While ELS explicitly corrects teacher outputs in misclassified cases, the gains remain
negligible. This indicates that underconfident soft labels, despite their uncertainty, do not substantially
degrade supervision, and explicit correction offers limited practical benefit.

D FULL RELATED WORKS

Adversarial Training. In response to adversarial attacks (Goodfellow et al.| 2014} Carlin1 & Wagner,
2017; [Madry et al.l 2017; Athalye et al., 2018)), adversarial training (AT) has emerged as one of
the most effective defenses. In its standard form, known as PGD-AT, the model parameters 6 are
optimized via a min-max formulation:

argmin Eey)~p [CE(y, fo(x+8)], where & = argmax CE(y, fo(x+3))  (10)

Here, the inner maximization generates adversarial perturbations that maximize the cross-entropy
loss , while the outer minimization trains the model to minimize this loss under the worst-case
perturbation . To address trade-offs between robustness and accuracy, TRADES (Zhang et al.|
2019) reformulates adversarial training by decoupling the loss into a clean classification term and a
robustness regularization via KL divergence:

argmin By ) [0E<y, fo(x)) + A - max KL(fo (x) | fo x + 6))} an

This formulation explicitly balances natural accuracy and robustness through the hyperparameter
A. MART (Wang et al.l [2020) integrates per-sample weighting based on prediction confidence. Its
objective can be described as:

argmin B y)~p [CE(}’, fo(x+6)) + (1 —wy) - KL(fo(x)[| fo(x + 5))} (12)

where inner maximization to compute J is equal to the PGD-AT and the weight w,, is computed
from the confidence of the true class prediction. This adaptively emphasizes hard examples and
misclassified inputs during training. These variants have inspired a rich line of adversarial training
research (Qin et al., 2019; [Wu et al.| [2020; [Bai et al.| 2021} Jin et al.| 2022; | Tack et al.| 2022} Jin
et al., [2023; |Wei et al.| [2023).

Adversarial Distillation. Adversarial distillation (AD) aims to transfer the robustness of a large,
adversarially trained teacher model into a more compact student model by leveraging teacher signals
under adversarial training conditions (Goldblum et al., 2020; [Zhu et al., 2021} Z1 et al.| 2021} [Maroto
et al., [2022; [Huang et al.| 2023; Kuang et al., |2023} |Lee et al.| 2025)). Unlike standard knowledge
distillation (Hinton et al.l 2015}, which aligns clean predictions, AD explicitly considers adversarially
perturbed inputs during training to preserve robustness in the student.

Adversarial Robustness Distillation (ARD) (Goldblum et al.| [2020) initiates this line of work by
incorporating adversarial examples into the distillation process, showing that robust teachers can
effectively guide student models when both are trained under adversarial settings. RSLAD (Zi et al.,
2021)) builds on this by integrating teacher outputs directly into the generation of adversarial examples,
encouraging smoother teacher logits and more stable student learning, and further reports a robust
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saturation effect: a student’s robustness increases with teacher strength only up to a moderately
larger teacher and then declines as teacher capacity outpaces the student. Introspective Adversarial
Distillation (IAD) (Zhu et al., |2021)) proposes a confidence-based modulation of the teacher signal,
weighting the distillation loss by the estimated reliability of the teacher under adversarial inputs.
AdaAD (Huang et al.,|2023)) introduces a more sophisticated approach where the teacher is actively
involved in the inner maximization step, generating adversarial examples that are optimized with
respect to both the student and the teacher. Most recently, IGDM (Lee et al.| |2025) indirectly distills
the gradient information of the teacher model to enhance the robustness further. Table [IT| summarizes
the inner maximization and outer minimization objectives used by representative AD methods. AD
has also been applied to broader robustness contexts such as class imbalance (Yue et al., [2023; |Zhao
et al.,|2024; (Cho et al., [2025b)), incremental learning (Cho et al.,|2025a)), and self-distillation (Jung
et al., [2024).

E REPRODUCIBILITY, BROADER IMPACT, LIMITATIONS, AND FUTURE WORK

Reproducibility statement We specify all algorithms in[A.3.4]and report the full set of hyperpa-
rameters in[B] Furthermore, the full implementation is provided as a zip file in the Supplementary
Material.

LLM Usage Disclosure We used large language models solely to aid wording and editing—for
example, to check grammar, refine academic word choice, and restructure sentences.

Broad Impact Adversarial vulnerability remains a critical barrier to deploying deep learning
systems in safety-critical applications. By introducing Sample-wise Adaptive Adversarial Distillation
(SAAD), we enable more effective transfer of robustness from large, pretrained teachers to compact
student models, lowering the barrier to entry for robust training in resource-constrained environments.
Therefore, we believe this work has potential for positive societal impact.

Limitations Our experiments focus on CIFAR-10, CIFAR-100, and Tiny-ImageNet with Robust-
Bench teachers; scaling to larger benchmarks (e.g., ImageNet) remains to be evaluated. Moreover, the
ultimate root cause of why some powerful robust models exhibit IRT behavior in the first place (once
again, we reveal such a teacher’s property that induces ineffective adversarial distillation, but we do
not explain why such teachers can exist) remains an open question. Finally, adversarial distillation’s
efficiency in vision does not guarantee success in NLP: robustly training LLMs against prompt or
paraphrase attacks is extremely costly, and it remains unclear how sample-wise weighting will handle
text-specific challenges like tokenization and sequence perturbations.

Future Work A key research direction is to move from diagnostics to causality: identify architec-
tural, optimization, and data-regime conditions under which robust teachers tend to become ERTs
or IRTs. A feature-learning perspective (Allen-Zhu & Lil 2023} |[Li & Lil [2025ab) on adversarial
distillation is especially promising. One possible sample-level hypothesis is that a small, identifiable
subset of intrinsically hard examples elicits noise-like guidance from ERTs (and is thus largely
ignored), whereas IRTs produce confident gradients that drive the student to memorize noise to fit
those hard examples, thereby inducing ineffective adversarial distillation.
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