
Under review as submission to TMLR

A Survey of Optimization Methods for Training DL Models:
Theoretical Perspective on Convergence and Generalization

Anonymous authors
Paper under double-blind review

Abstract

As data sets grow in size and complexity, it is becoming more di�cult to pull useful features
from them using hand-crafted feature extractors. For this reason, deep learning (DL)
frameworks are now widely popular. DL frameworks process input data using multi-layer
networks. Importantly, DL approaches, as opposed to traditional machine learning (ML)
methods, automatically find high-quality representation of complex data useful for a particular
learning task. The Holy Grail of DL and one of the most mysterious challenges in all of
modern ML is to develop a fundamental understanding of DL optimization and generalization.
While numerous optimization techniques have been introduced in the literature to navigate
the exploration of the highly non-convex DL optimization landscape, many survey papers
reviewing them primarily focus on summarizing these methodologies, often overlooking
the critical theoretical analyses of these methods. In this paper, we provide an extensive
summary of the theoretical foundations of optimization methods in DL, including presenting
various methodologies, their convergence analyses, and generalization abilities. This paper
not only includes theoretical analysis of popular generic gradient-based first-order and second-
order methods, but it also covers the analysis of the optimization techniques adapting to
the properties of the DL loss landscape and explicitly encouraging the discovery of well-
generalizing optimal points. Additionally, we extend our discussion to distributed optimization
methods that facilitate parallel computations, including both centralized and decentralized
approaches. We provide both convex and non-convex analysis for the optimization algorithms
considered in this survey paper. Finally, this paper aims to serve as a comprehensive
theoretical handbook on optimization methods for DL, o�ering insights and understanding
to both novice and seasoned researchers in the field.

1 Introduction

The rapid evolution of DL models (LeCun et al., 2015; Goodfellow et al., 2016; Vaswani et al., 2017; OpenAI,
2023; Achiam et al., 2023; Touvron et al., 2023), combined with the exponential growth of available data (Chen
& Lin, 2014), has pushed the field of machine learning into new frontiers. As these models grow in complexity
and scale (Kasneci et al., 2023; Chang et al., 2024), optimizing their performance becomes paramount to
harnessing their full potential. Consequently, the goal of improving the existing optimization methods for
training DL models has attracted significant attention among researchers who aim at developing e�cient
(fast-converging), accurate (well-generalizing), scalable (applicable to large data sets and models and heavily
parallelizable), and consistent (minimizing the e�ect of non-deterministic calculations in heavily parallelized
systems) DL optimization strategies (Sutskever et al., 2013; Kingma & Ba, 2014; You et al., 2019; Shoeybi
et al., 2019; Yang et al., 2023), and furthermore designing DL model architectures that properly condition
the optimization problem such that a high-quality solution is easier to find (He et al., 2016; Io�e & Szegedy,
2015; Klambauer et al., 2017; Vaswani et al., 2017; OpenAI, 2023).

While the existing literature contains plethora of optimization techniques designed for DL applications, there
remains a conspicuous gap in the theory of DL optimization. Many survey papers and studies mainly focus on
summarizing the methodologies that are employed (Sun, 2020; Ruder, 2016; Le et al., 2011), and often overlook
their theoretical foundations. This oversight limits the comprehensive understanding of DL optimization

1

Under review as submission to TMLR

techniques, which hinders the progress in the field of DL. This papers fills the existing theoretical gap and
provides an extensive summary of the theoretical foundations of optimization methods in DL, including
describing methodologies, providing convergence analyses, and showing generalization abilities.

Next we summarize the optimizers that have been used in a DL setting to train DL models.

Gradient-based optimization methods are widely used for their computational e�ciency in enhancing the
performance of DL models. These methods can generally be categorized into two categories: i) First-order
methods (Robbins & Monro, 1951; Nesterov, 1983; Liu et al., 2020), which are extensively employed in
stochastic versions to reduce the computational burden associated with large datasets and complex model
architectures in DL (Bottou, 2010; Sekhari et al., 2021; Tian et al., 2023); ii) Second-order methods (Broyden,
1967; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970; Liu & Nocedal, 1989; Yuan, 1991; Yuan et al., 2022;
2024), which utilize second-order information, such as the Hessian matrix, to inform the search direction
during optimization and are applied in DL (Bollapragada et al., 2018; Wang & Choromanska, 2020; Yousefi &
Martínez Calomardo, 2022; Niu et al., 2023). In recent years, some advancements have been made in first-order
optimization algorithms. (Jin et al., 2021; Huang & Becker, 2020; Yang et al., 2022) focuses on introducing
stochastic perturbations to the gradients, which helps the first-order method escape saddle points—flat regions
where optimization may stagnate. This is particularly beneficial in non-convex landscapes commonly found
in deep learning. By e�ectively navigating the geometry of the loss surface, pretubed SGD allows for more
e�cient exploration and exploitation of the parameter space, leading to faster and more reliable convergence
to optimal solutions. (Raginsky et al., 2017; Dalalyan & Karagulyan, 2019; Huang & Becker, 2021) focuses
on the integration of Langevin dynamics into first-order optimization methods. These works investigate the
theoretical underpinnings and practical implementations of Langevin dynamics, highlighting its potential to
improve convergence rates and robustness in the presence of noise. Compared with the first-order methods,
second-order methods exhibit faster convergence rates in terms of iterations. Popular Newton’s method
achieves a quadratic convergence rate, which is much faster that the linear convergence rate of first-order
gradient descent (GD) method. However, the requirement of computing the inverse of the Hessain matrix
reslts in the time complexity that is cubic in the number of parameters, which makes it quite challenging to use
in practical DL settings. In order to decrease the time complexity of second-order methods and at the same
time preserve its fast convergence rate, quasi-Newton’s methods (Dennis & Moré, 1977) have been proposed.
Broyden–Fletcher–Goldfarb–Shannon (BFGS) (Broyden, 1967; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970)
algorithm is the most famous quasi-Newton’s method that decreases the time complexity from cubic to
quadratic while keeps superlinear convergence rate. However, BFGS still su�ers from infavorable memory
requirements due to the necessity of storing large dimenssional pseudo-Hessian matrix. In order to reduce
the memory storage and the computation load more, (Liu & Nocedal, 1989) proposed the limited-memory
BFGS (LBFGS) which decreases the time complexity to linear by compressing the pseudo-Hessian matrix.
These second-order methods are also used as optimizers in training DL networks (Bollapragada et al., 2018;
Wang & Choromanska, 2020; Yousefi & Martínez Calomardo, 2022; Niu et al., 2023). In this paper, we
discuss the convergence rate of all the aforementioned second-order methods. Except for the (quasi-)Newton’s
methods we mentioned before, there is another track of second-order algorithm, the Hessian-free (Martens
et al., 2010; Martens & Sutskever, 2011) algorithm. While quasi-Newton methods rely on constructing an
approximate Hessian matrix to guide parameter updates, Hessian-free optimization avoids this by directly
estimating curvature through iterative processes, such as conjugate gradient methods. This results in reduced
computational and memory requirements, making it particularly suitable for the high-dimensional landscapes
often encountered in deep neural networks. We do not focus on Hessain-free methods in our review, because
works on this track come with no theoretical guarantees in the literature, they are purely empirical.

Furthermore, our exploration extends beyond conventional gradient-based first-order and second-order
optimization methods. We delve into the analysis of innovative techniques grounded in the understanding of
the properties of the DL loss landscape (Li et al., 2018; Cooper, 2018; Chaudhari & Soatto, 2015; Keskar
et al., 2017b; Bisla et al., 2022; Orvieto et al., 2022). They aim at identifying optimal points located in the
flat valleys in the DL optimization landscape, which, as they argue, correspond to lower generalization errors.
The landscape-aware DL optimization methods provides valuable insights into the underlying mechanisms
that govern the exploration of non-convex loss surfaces, contributing to the the development of more e�ective
and robust DL optimization strategies.

2

Under review as submission to TMLR

Figure 1: The DL optimization methods discussed in this survey paper.

The approaches adapting the DL optimization strategy to the properties of the loss landscape and encouraging
the recovery of flat optima could be generally classified as follows: i) regularization-based methods that regu-
larize gradient descent strategy with sharpness measures such as the Minimum Description Length (Hochreiter
& Schmidhuber, 1997), local entropy (Chaudhari et al., 2017), or variants of ‘-sharpness (Foret et al., 2021;
Keskar et al., 2017b), low-pass-filter-based norm (Bisla et al., 2022) ii) surrogate methods that evolve the
objective function according to the di�usion equation (Mobahi, 2016), iii) averaging strategies that average
model weights across training epochs (Izmailov et al., 2018; Cha et al., 2021), and iv) smoothing strategies
that smooth the loss landscape by introducing noise in the model weights and average model parameters across
multiple workers run in parallel (Wen et al., 2018; Haruki et al., 2019; Lin et al., 2020) (such methods focus
on distributed training of DL models with an extremely large batch size). In this paper, we choose four most
representative methods from among the above mentioned ones: Sharpness-Aware Minimization (SAM) (Foret
et al., 2021; Li et al., 2023), Entropy-SGD (Chaudhari et al., 2017), Low-pass filter SGD (LPF-SGD) (Bisla
et al., 2022) and SmoothOut (Wen et al., 2018). We discuss principles of these methodologies and theoretically
analyze their generalization abilities.

Our investigation of DL optimization further continues to distributed optimization schemes, which facilitate
parallel computations. Our survey includes a thorough summary of both centralized and decentralized
approaches, highlighting their respective advantages and limitations in optimizing DL models across distributed
computing environments.

For centralized methods, we start with the Downpour SGD (Dean et al., 2012; Ben-Nun & Hoefler, 2018;
Gholami et al., 2018), an e�cient data-paralleled distributed optimization technique with a central worker
gathering and leveraging the information from local distributed workers to coordinate the optimization
process. The method relies on frequent information exchange between the center worker and local workers
and overlooks the potential variations in problem settings arising from di�ering data shards across each local
worker. In order to solve this, (Zhang et al., 2015) propose the Elastic Averaging SGD (EASGD) algorithm
which introduces an elastic force between the center worker and local workers to encourage more exploration
within each local worker by allowing their parameters to fluctuate further from the center parameter. The
Leader Stochastic Gradient Decent (LSGD) (Teng et al., 2019) algorithm further improves over EASGD.
LSGD is well-aligned with current hardware architecture, where local workers forming a group lie within
a single computational node and di�erent groups correspond to di�erent nodes. The algorithm introduces
multiple local leaders for each group of local workers, and occasionally pulls all the local workers towards

3

Under review as submission to TMLR

Method
Assumptions

Convergence rate Comment
Convex

Lip.
smooth

Hessian
bound

Variance
bound

Step size

F
ir

st
-o

rd
er

M
et

ho
ds

SGD

strongly
convex

✓ ∝
1

k+1 sub-linear: O(1
K+1)

The step size of
SGD/SGD-M is
inversely proportional
to the iteration counter
while that of Adaptive
methods is constant or
bounded, which makes
it hard theoretically to
compare these methods
in terms of
converegence speed.
However, several
studies (Kingma & Ba,
2014; Reddi et al.,
2019; Schmidt et al.,
2021) have empirically
shown that Adaptive
methods converge
faster time- and
iteration-wise and
achieve lower training
loss in fewer iterations
than SGD in various
applications.

✓ ✓ ∝
1√
k

sub-linear: O(1√
K
)

SGD-M

convex ✓ ∝
1√
k+1 sub-linear: O(1√

K+1)

✓ ✓ ∝
1√
k

sub-linear: O(1√
K
)

Adagrad ✓ ✓ Const. sub-linear: O(ln K√
K
)

Adam ✓ ✓ ∝

�
1−—k

2

1−—2

sub-linear: O(ln K√
K
)

Se
co

nd
-o

rd
er

M
et

ho
d

Newton’s
Method

✓ quadratic
Although second-order
methods converge
faster than first-order
methods iteration-wise,
the computation of the
Hessian is expensive,
which makes these
methods slower and
less preferred than
first-order techniques,
especially in massive
data and model
settings typical for
deep learning.

BFGS ✓ ✓ super-linear

LBFGS convex ✓ R-linear

Table 1: Comparison of convergence results for di�erent optimization methods (Part 1).

the current local leader as well as global leader to ensure fast convergence. Finally, inspired by EASGD and
LSGD, Gradient-based Weighted Averaging (GRAWA) Dimlioglu & Choromanska (2024) applies a pulling
force on all workers towards the center worker, but using the weighted average computed across local workers

4

Under review as submission to TMLR

Method
Assumptions

Convergence rate Comment
Convex

Lip.
smooth

Hessian
bound

Variance
bound

Step size

D
is

tr
ib

ut
ed

M
et

ho
ds

(C
en

tr
al

iz
ed

)

Downpo
ur-SGD

Strongly
convex

✓ ✓ ∝
1√
k

sub-linear: O(1
K
)

✓ ✓ ∝
1√
k

sub-linear: O(1√
K
)

The literature
theoretically shows
that centralized
distributed
optimization methods
have constant
di�erence convergence
rate. However, (Teng
et al., 2019; Dimlioglu
& Choromanska, 2024)
empirically show that
LSGD and GRAWA
achieve faster
convergence time-wise
and iteration-wise and
recover better quality
and flatter local
optima.

EASGD

Strongly
convex

✓ ✓ ∝
1√
k

sub-linear: O(1
K
)

✓ ✓ ∝
1√
k

sub-linear: O(1√
K
)

LSGD

Strongly
convex

✓ ✓ ∝
1√
k

sub-linear: O(1
K
)

✓ ✓ ∝
1√
k

sub-linear: O(1√
K
)

GRAWA

Strongly
convex

✓ ✓ ∝
1√
k

sub-linear: O(1
K
)

✓ ✓ ∝
1√
k

sub-linear: O(1√
K
)

D
is

tr
ib

ut
ed

M
et

ho
ds

(D
ec

en
tr

al
iz

ed
)

D-PSGD ✓ ✓ ∝

�
m
k

sub-linear:
O(

1√
mK
) +O(

m
K
)

m is the number of
local workers in the
system. Although
AL-DSGD theoretically
converges slower than
D-PSGD and
MATCHA (though
they are all sub-linear),
it empirically shows
comparable
generalization results.

MATCHA ✓ ✓ ∝

�
m
k

sub-linear:
O(

1√
mK
) +O(

m
K
)

AL-
DSGD

✓ ✓ ∝

�
m
k

sub-linear: O(1√
mK
) +

O(

�
m
K
) +O(

�
m

K3)

Table 2: Comparison of convergence results for di�erent optimization methods (Part 2).

based on their gradients. In our survey we summarize the centralized methods and provide their theoretical
convergence guarantees.

Di�erent from centralized methods, decentralized methods eliminate the need for a central worker, distributing
tasks among multiple workers that communicate according to a certain topology. Decentralized Parallel SGD
(D-PSGD) (Lian et al., 2017; 2018) is the most fundamental decentralized method which performs local
gradient updates and averages parameters of each worker with its neighbors given by the topology. Since the

5

Under review as submission to TMLR

Method
Assumptions

Generalization Error Bound
Convex

Lip.
Cont.

Lip.
smooth

Others
F

ir
st

-o
rd

er
M

et
ho

ds

SGD
convex M-Lip. L-smooth Step size: –k ≤

2
L ‘SGD �

M2

n ∑
K
k=1 –k

M-Lip. L-smooth step size: –k ≤
1
k ‘SGD �

1
n

M
1

1+L K
L

L+1

SGD-M
µ-strongly

convex
M-Lip. L-smooth

Step size: –k = –,
momentum —

‘SGD-M �
–M2(L+µ)

n(–Lµ−3—(L+µ))

M-Lip. L-smooth –k =
1
k

, momentum — ‘SGD-M �
exp(—)K(1−1�n)L

n

La
nd

sc
ap

e-
aw

ar
e

M
et

ho
ds

SAM No theoretical, only empirical generalization guarantees in literature.

Entropy-
SGD

M-Lip. L-smooth
step size: –k ≤

1
k

,
Hessain bounded

‘Entropy-SGD

‘SGD

� �
M
K
�

L

LPF-
SGD

M-Lip. L-smooth
step size: –k ≤

1
k

, kernel:
µ ∼ N (0, ‡2I), ‡ > M

L

‘LPF-SGD

‘SGD

�
1

K
1

M�‡+1
− 1

L+1

Smooth
Out

M-Lip. L-smooth
step size: –k ≤

1
k

, kernel:
µ ∼ U[−a, a], a > M

√
d

L

‘SmoothOut

‘SGD

�
1

K
1

M
√

d�‡+1
− 1

L+1

C
om

m
en

t

The generalization ability of optimization methods is closely related to the Lipschitz continuity and Lipschitz
smoothness properties of the loss function. Landscape-aware optimization methods yield tighter generalization
error bounds when the number of iterations K is su�ciently large.

Table 3: The comparison of the generalization results for di�erent optimization methods.

topology is fixed, D-PSGD encounters the error-runtime trade-o� issue. In particular, note that the extremely
dense topology will cause a large communication load while too sparse topology will face the problem of
poor model performance. In order to solve this issue, MATCHA (Wang et al., 2019) provides a win-win
strategy by utilizing the matching decomposition technique on a dense topology, which carries the potential
to reduce the per-node communication complexity for each iteration while keeping the good performance at
the same time. Adjacent Learder Decentralized SGD (AL-DSGD) (He et al., 2024) furthermore improves
this approach by proposing dynamic communication graphs instead of the fixed topology and applying a
corrective force on the workers dictated by both the currently best-performing neighbor and the neighbor
with the maximal degree. In this paper, we discuss all the mentioned decentralized methods and provide
theoretical convergence proofs for these schemes.

By synthesizing these diverse perspectives on DL optimization, this paper aims to serve as a comprehensive
theoretical handbook of optimization methods for DL. We provide convex and/or non-convex analysis for
the optimization algorithms considered in this survey paper. In the context of non-convex optimization,
our analysis goes beyond DL setting, and in many cases can be applied more broadly in other, simpler,
non-convex scenarios. We however dedicate this manuscript specifically to general DL optimization, since
our non-convex analysis makes no simplifying assumptions on the network architecture, as opposed to many
past works (Dauphin et al., 2014; Baldi & Hornik, 1989; Saxe et al., 2014; Baldassi et al., 2015; 2016a;b).
Finally, with this work we endeavor to provide a general proof framework that not only summarizes existing
knowledge but also fosters new insights and avenues for future research.

Figure 1 provides a chart containing methods analyzed in this paper. Table 1 & 2 summarize the convergence
results for the first and second-order optimization methods and distributed (centralized and decentralized)
optimization methods. Table 3 summarizes the generalization results for the first-order methods and landscape-

6

Under review as submission to TMLR

aware optimization methods. This survey paper is primarily a theoretical review of optimization methods for
deep learning. The theory-experiment gap however often arises in real-world scenarios because theoretical
guarantees are based on idealized conditions that may not hold in practice. Below let us briefly mention
several representative assumptions required for the theoretical guarantees we discuss in this survey paper and
comment whether they are commonly satisfied in applications.

1. Convexity: Deep learning often deals with non-convex loss landscapes. All methods we mention
except for BFGS have the theoretical guarantees under nonconvex assumption.

2. Smoothness: All methods we listed require the smoothness of the loss function. In practice, loss
functions may not be smooth, especially in the presence of noise or irregular data distributions. To
solve this problem, deep learning researchers use techniques that improve the smoothness of the loss,
among them regularization, dropout, batch normalization and so on.

3. Variance Bound: All the stochastic methods assume that the variance of the gradient estimates is
bounded. In practice, training loss functions may not always satisfy this assumption, particularly in
scenarios involving noisy or heterogeneous data. For instance, datasets with outliers or imbalanced
classes can lead to higher gradient variance, complicating the training process. In order to solve this
problem, we could implement mini-batch training instead of point-wise stochastic training to average
out noise and stabilize gradient estimates. This is indeed done in practice.

4. Step Size: The step size used in practice often di�ers from that in the convergence proof. For
instance, in the proof of SGD and SGD-momentum for nonconvex settings, we assume a learning
rate that decreases inversely proportionally (–t = 1�t). However, in empirical applications, decreasing
the learning rate too quickly can terminate the learning process too early, resulting in suboptimal
solutions. Instead of an inversely proportional learning rate, practitioners typically employ step-wise,
linear, or cosine annealing rates, which drop much slower.

We can approach the assumptions for convergence guarantees from a di�erent perspective than viewing soft
assumptions as the ones implying more useful bounds and strict assumptions as the ones implying worse
bounds. Instead, these assumptions should be viewed as indicators of the specific conditions under which an
algorithm is likely to perform optimally. For example, the smoothness assumption is crucial for convergence
guarantees of all methods, it implies we could achieve better performance by smoothing the loss landscape of
deep learning models. This is also the motivation of landscape-aware optimization methods we introduced in
this paper (e.g. SAM, Entropy-SGD, etc) which could reach better generalization ability.

This survey paper is organized as follows: Section 2 discusses di�erent first-order and second-order gradient-
based methods and provides their convergence analysis and generalization abilitie. Section 3 discusses
optimization methods adapting to the properties of the DL loss landscape and provides their generalization
guarantees. Section 4 discusses both centralized and decentralized distributed optimization along with their
convergence analysis. Section 5 concludes the paper.

2 Gradient-based Optimization methods

Neural networks play a pivotal role in machine learning due to their ability to e�ectively approximate a broad
range of functions, denoted as f(x). The method of backpropagation, derived from the application of the
chain rule, enables easy computation of gradients of the loss function across network layers and facilitates
gradient-based DL optimization algorithms. This section specifically explores the theoretical guarantees
(convergence and/or generalizaqtion guarantees) associated with state-of-the-art gradient-based optimization
algorithms. Notably, it investigates the applicability and reliability of the first-order methods like SGD,
Momentum methods, AdaGrad, and Adam, as well as second-order methods such as BFGS and L-BFGS.

2.1 Preliminaries

We begin by introducing important definitions.

7

Under review as submission to TMLR

2.1.1 Preliminaries for the Convergence Analysis

One of the most fundamental way of describing any optimization method is through convergence guarantee.
This guarantee is of vital importance since it assures that the algorithm will reach a global/local optimum
under certain conditions. A typical way to compare the performance of di�erent algorithms is to compare
their rates of convergence. Following (Schatzman, 2002), below we define four rates of convergence that we
will focus on — sub-linear, linear, superlinear, and quadratic. They are ordered from the slowest to the
fastest one.
Definition 1 (Sublinear convergence rate). Suppose we have a sequence {xk} ⊂ Rd such that xk → x

∗ when
k →∞. We say that the convergence is sub-linear if

lim sup
k→∞

�xk+1 − x
∗
�

�xk − x∗� = 1

Remark. If �xk+1−x∗��xk−x∗� ≤ � k
k+1
�

1

p where p is a constant, by Definition 1 {xk} is sub-linearly convergent. Then
�xk − x

∗
� ≤

1

k
1

p
�x0 − x

∗
� = O(

1

k
1

p
) also implies sub-linear rate.

Definition 2 (Linear convergence rate). Suppose we have a sequence {xn} ⊂ Rd such that xn → x
∗ when

n→∞. We say that the convergence is linear if there exists r ∈ (0, 1) such that

�xk+1 − x
∗
�

�xk − x∗� ≤ r

for all k su�ciently large.
Definition 3 (Superlinear convergence rate). Suppose we have a sequence {xk} ⊂ Rd such that xk → x

∗ when
n→∞. We say that the convergence is superlinear if

lim
k→∞

�xk+1 − x
∗
�

�xk − x∗� = 0

Definition 4 (Quadratic convergence rate). Suppose we have a sequence {xk} ⊂ Rd such that xk → x
∗ when

n→∞. We say that the convergence is quadratic if there exists 0 <M <∞ such that

�xk+1 − x
∗
�

�xk − x∗�2 ≤M

for all k su�ciently large.

Second-order methods exhibit faster convergence rates in terms of iterations compared to the first-order
techniques. Specifically, Newton’s method, a prominent second-order optimization algorithm, achieves a
quadratic convergence rate. Quasi-Newton techniques attempt to avoid time consuming computations of the
Hessian matrix of the Newton’s method by approximating this matrix with a second-order term that can
however be derived from the first-order information about the function (its value and gradient). Consequently,
time-wise they are faster than the Newton’s method, but still less e�cient that the first-order methods
that do not rely on the computations of the second-order term at all. Note however that using low-rank
representation of the second-order term and utilizing Sherman–Morrison formula to compute its inverse, one
can significantly accelerate the implementation of the Quasi-Newton methods. Iteration-wise, Quasi-Newton
methods, including BFGS and L-BFGS, demonstrate a superlinear convergence rate, which is worst than the
Newton method, but still better than in the case of the first-order optimization tools.

In contrast, first-order methods such as the gradient descent (GD) method are characterized by a linear
convergence rate. Stochastic methods like Stochastic Gradient Descent (SGD), SGD-momentum, and Adam,
on the other hand, exhibit a sublinear convergence rate. Instead of computing the exact gradient at each
iteration by averaging over the whole data set, stochastic first-order methods compute its noisy approximation
with respect to a single data sample or a mini-batch of samples. This implies that they converge more slowly

8

Under review as submission to TMLR

than their full-batch counterparts when considering the number of iterations alone. In practice however they
are much faster time-wise. The trade-o� between convergence speed and time complexity highlights the
nuanced considerations in selecting the most suitable optimization approach for specific applications.

A comprehensive discussion of the convergence rates of di�erent methods will be presented in Sections 2.2
and 2.3.

2.1.2 Preliminaries for the Generalization Error

Let S = {›1,�, ›n} denotes the set of samples of size n drawn i.i.d from some space Z with unknown
distribution D. We assume a learning model parametrized with the parameters x. Let f(x; ›) denote the loss
of the model for a specific data example ›.

Our ultimate goal is to minimize the true risk:

F (x) ∶= E›∼Df(x; ›). (2.1)

Since the distribution D is unknown, it is common to replace the objective by the empirical risk:

FS(x) ∶= 1
n

n

�

i=1

f(x; ›i). (2.2)

We assume x = A(S) for a potentially randomized algorithm A(⋅). In order to find an upper-bound on the
true risk, we consider the generalization error, which is the expected di�erence of the empirical and the true
risk:

‘g ∶= ES,A[F (A(S)) − FS(A(S))] (2.3)

In order to find an upper-bound on the generalization error of algorithm A, we consider the uniform stability
property.
Definition 5 (‘s-uniform stability). Let S and S ′ denote two datasets from the space Zn such that S and S ′
di�er in at most one example. Algorithm A is ‘s-uniformly stable if and only if for all data sets S and S ′ we
have

sup
z

E[f(A(S); ›) − f(A(S); ›
′
)] ≤ ‘s. (2.4)

Theorem 6 ((Ramezani-Kebrya et al., 2018)). If A is an ‘s-uniformly stable algorith, then the generalization
error (2.3) of A is upper-bounded by ‘s.

Above we have established a fundamentals of the theoretical framework that will be used to analyze the
algorithms considered in this survey paper. Convergence and generalization properties will be considered
through the lenses of the above established definitions.

2.2 First-order methods

First-order methods are optimization algorithms that rely on gradient information to find the minimum or
maximum of a function. They are widely used in machine learning and optimization due to their simplicity
and e�ciency. These methods are particularly e�ective in high-dimensional and large-scale problems, making
them fundamental tools for various applications in data analysis and model training. In this section, we discuss
Stochstic Gradient Descent (SGD), Stochastic Gradient Descent with Momentum (SGD-Momentum) and
adaptive learning rate methods. Hyperparameter settings vary widely for first-order methods, but common
choices include using a learning rate of 0.001 for Adam and a learning rate of 0.01 or 0.1 for SGD. Other
parameters, like momentum (typically set around 0.9) for SGD, can also significantly a�ect performance.
Recent studies (Robbins & Monro, 1951; Nesterov, 1983; Liu et al., 2020) emphasize the need for careful
tuning in practical applications.

9

Under review as submission to TMLR

2.2.1 Stochastic Gradient Decent

Recall the update formula of SGD:

xk+1 = xk − –kg(xk; ›k), (2.5)

where g(xk; ›k) is a stochastic gradient (resp. subgradient) of F (x) at xk depends on a random variable ›k

such that E[g(xk; ›k)] = ∇F (xk) (resp. E[g(xk; ›k)] ∈ ∇F (xk)). In this section, we are going to prove the
sublinear convergence rate of SGD and show the generalization error of SGD.

Covergence Analysis We are going to discuss the convergence rate of SGD for the convex setting first
and then our analysis will extend to the non-convex setting.
Theorem 7 (Convergence of SGD; Convex Setting). Suppose F(x) is µ-strongly convex,
E [�g(x; ›) −E[g(x; ›)]�] ≤ ”

2 and �∇F (x)� ≤ G for any x. Let the update

xk+1 = xk − –kg(xk; ›k) (2.6)

run for K iterations. Set –k = –0�ks + 1 and –0 >
1

2µ . Then for all k > 0

E[�xk − x
∗
�

2

2
] ≤

Q(–0)

k + 1
, (2.7)

where Q(–0) =max{�x0 − x
∗
�

2

2
,
(G2+”2)–2

0

2µ–0−1
}.

Proof.

�xk+1 − x
∗
�

2

2
= �xk − –kg(xk; ›k) − x

∗
�

2 (2.8)

= �xk − x
∗
�

2

2
− 2–k(xk − x

∗
)

T
g(xk; ›k) + –

2

k �g(xk; ›k)�
2

2
.

Furthermore,

E[(xk − x
∗
)

T
g(xk; ›k)] = E[E[(xk − x

∗
)

T
g(xk; ›k)�›1,�, ›k−1]] (2.9)

= E[(xk − x
∗
)

TE[g(xk; ›k)�›1,�, ›k−1]]

= E[(xk − x
∗
)

T
∇F (xk)].

f is µ-strongly convex and x
∗ is the optimal point, thus

(xk − x
∗
)

T
∇F (xk) = [∇F (xk) −∇F (x

∗
)]

T
(xk − x

∗
) ≥ µ �xk − x

∗
�

2

2
. (2.10)

From formula (2.9) and (2.10), we conclude

E[(xk − x
∗
)

T
g(xk; ›k)] ≥ µ �xk − x

∗
�

2

2
. (2.11)

Compute expectation on the left-hand side and right-hand side of Equation (2.97) to obtain

E[�xk+1 − x
∗
�

2

2
] (2.12)

=E[�xk − x
∗
�

2

2
] − 2–kE[(xk − x

∗
)

T
g(xk; ›k)] + –

2

kE[�g(xk; ›k)�
2

2
]

≤E[�xk − x
∗
�

2

2
] − 2–kE[(xk − x

∗
)

T
g(xk; ›k)] + –

2

k �E[�g(xk; ›k) −E[g(xk; ›k)]�
2

2
] +E[�g(xk; ›k)�

2

2
]�

≤(1 − 2µ–k)E[�xk − x
∗
�

2

2
] + –

2

k(G
2
+ ”

2
)

We are going to prove the bound with mathematical induction. Define „t = E[�xk − x
∗
�

2

2
] and Q(–0) =

max{�x0 − x
∗
�

2

2
,
(G2+”2)–2

0

2µ–0−1
}. When t = 0, note that

„0 = E[�x0 − x
∗
�

2

2
] = �x0 − x

∗
�

2

2
≤ Q(–0)�1.

10

Under review as submission to TMLR

Assume that „k ≤
Q(–0)

k+1
, we are going to show „k+1 ≤

Q(–0)
k+2

. By Formula (2.12)

„k+1 ≤(1 − 2µ–k)„k + –
2

k(G
2
+ ”

2
) (2.13)

=�1 − 2µ–0

1
k + 1

�„k + –
2

0
(G

2
+ ”

2
)�

1
k + 1

�

2

.

.

Therefore we can simplify (2.13) as

„k+1 ≤(1 −
2µ–0

k + 1
)

Q(–0)

k + 1
+

–
2

0
(G

2
+ ”

2
)

(k + 1)2
(2.14)

=
k + 1 − 2µ–0

(k + 1)2
Q(–0) +

–
2

0
(G

2
+ ”

2
)

(k + 1)2

=
t

(k + 1)2
Q(–0, k) −

2µ–0 − 1
(k + 1)2

Q(–0) +
–

2

0
(G

2
+ ”

2
)

(k + 1)2

≤
t

(k + 1)2
Q(–0) −

2µ–0 − 1
(k + 1)2

×
(G

2
+ ”

2
)–

2

0

2µ–0 − 1
+

–
2

0
(G

2
+ ”

2
)

(k + 1)2

=
t

(k + 1)2
Q(–0)

≤
1

k + 2
Q(–0)

By mathematical induction we have „t ≤
Q(–0,k)

k+1
for all k > 0, which is equivalent to

E[�xk − x
∗
�

2

2
] ≤

Q(–0)

k + 1
, (2.15)

where Q(–0) =max{�x0 − x
∗
�

2

2
,
(G2+”2)–2

0

2µ–0−1
}.

Remark. According to Theorem 7, SGD has O(1

K) sublinear convergence rate in the convex setting.
Theorem 8 (Convergence of SGD; Nononvex Setting). Suppose the objective function F (x) is L-smooth,
E [�g(x; ›) −E[g(x; ›)]�] ≤ ”

2 and �∇F (x)� ≤ G for any x. Let the update

xk+1 = xk − –g(xk; ›k) (2.16)

run for K iterations. If – <
1

L , Then for all t > 0

1
K

K−1

�

k=0

E[�∇F (xk)�
2
] ≤

2E[F (x0) − F (xK)]

–K
+ –L”

2
. (2.17)

When setting the learning rate as – =

�
1

K , we obtain sublinear convergence rate O(
�

1

K).

Proof. For notation simplicity, we omit ›k in stochastic gradient and denote g(xk; ›k) as g(xk). Since function
F (x) is L-smooth, we have:

F (xk+1) =F (xk − –g(xk))

≤F (xk) − –�∇F (xk), g(xk)� +
–

2
L

2
�g(xk)�

2

≤F (xk) − –�∇F (xk), g(xk)� +
÷

2
L

2
�∇F (xk)�

2
+

–
2
L

2
�g(xk) −∇F (xk)�

2 (2.18)

11

Under review as submission to TMLR

Take the expectation on both sides to obtain:

E[F (xk+1)] ≤F (xk) − –(1 − –L

2
)E[�∇F (xk)�

2
] +

–
2
L”

2

2
. (2.19)

Since ÷ <
1

L , we have:

E[F (xk+1) − F (xk)] ≤ −
1
2
E[�∇F (xk)�

2
] +

–
2
L”

2

2
. (2.20)

Summing k = 0, ..., K − 1 and divide over K, we have

1
K

K−1

�

k=1

E[�∇F (xk)�
2
] ≤

2E[F (x0) − F (xK)]

–K
+ –L”

2
. (2.21)

Remark. According to Theorem 8, SGD is of characterized by the O(1√
K
) sublinear convergence rate in the

nonconvex setting.

Generalization Ability We are next going to discuss the generalization error of SGD under first the
convex and then nonconvex assumptions. We organize the theorems and proofs in (Hardt et al., 2016) in this
section.
Theorem 9 (Generalization Guarantee of SGD; Convex Setting). (Theorem 3.7 in (Hardt et al., 2016))
Assume that f(⋅; ›) ∈ [0, 1] is a convex, M -Lipschitz and L-smooth loss function for every example ›. Suppose
that we run SGD for K steps with step size –k ≤ 2�L. Then SGD has uniform stability with

‘s ≤
2M

2

n

K

�

k=1

–k. (2.22)

Proof. Let S and S
′ be two samples of size n that di�er on at most one example. Consider the sequence of

gradient updates g1, ..., gK and g
′
1
, ..., g

′
K induced by running SGD on sample set S and S

′, repectively. Let
xk and x

′
k denote corresponding outputs of SGD.

We now fix an example › and apply the Lipschitz condition on f(⋅; ›) to get

E�f(xk; ›) − f(x
′
k; ›)� ≤ME[”K],

where ”k = �xk − x
′
k�. Observe that at step t; with probability 1− 1

n the example selected by SGD is the same
in both S and S

′, where gk = g
′
k. Otherwise, with probability 1

n the selected example is di�erent. By the
property that f is L-lipschitz continuous we have

E[”k+1] ≤ (1 −
1
n
)E[”k] +

1
n
E[”k] +

2–kM

n
= E[”k] +

2–kM

n
.

Therefore,

E�f(xK ; ›) − f(x
′
K ; ›)� ≤ME[”K] ≤

2M
2

n

K

�

k=1

–k.

Theorem 10 (Generalization Guarantee of SGD; Nonconvex Setting). (Theorem 3.8 in (Hardt et al.,
2016))Assume that f(⋅; ›) ∈ [0, 1] is a M -Lipschitz and L-smooth loss function for every example ›. Suppose
that we run SGD for K steps with monotonically non-increasing step size –k ≤ c�k. Then SGD has uniform
stability with

‘s ≤
1 + 1�Lc

n − 1
(2cM

2
)

1

Lc+1 K
Lc

Lc+1 . (2.23)

12

Under review as submission to TMLR

Proof. Let S and S
′ be two samples of size n that di�er on at most one example. Consider the gradient

update g1, ..., gK and g
′
1
, ..., g

′
K induced by running SGD on sample set S and S

′, repectively. Let xK and x
′
K

denote corresponding outputs of SGD.

E�f(xK ; ›) − f(x
′
K ; ›)� ≤

k0

n
+ME[”K �”k0

= 0], (2.24)

where ”K = �xK − x
′
K�. To simplify the notation, let �k = E[”k �”k0

= 0]. We will bound �k as function of k0

and then minimize for k0.

Observe that at step k; with probability 1 − 1

n the example selected by SGD is the same in both S and S
′,

where gt = g
′
t. Otherwise, with probability 1

n the selected example is di�erent. By the property that f is
L-lipschitz continuous we have

�k+1 ≤(1 −
1
n
)(1 + –kL)�k +

1
n

�k +
2–kM

n

≤�
1
n
+ (1 − 1

n
)(1 + cL�k)��k +

2cM

kn

=�1 + (1 − 1
n
)cL�k��k +

2cM

kn

≤ exp�(1 − 1
n
)

cL

k
��k +

2cM

kn
,

Therefore,

�K ≤

K

�

k=k0+1

�

T

�

m=k+1

exp�(1 − 1
n
)

cL

m
��

2cM

kn

=

K

�

k=k0+1

exp�(1 − 1
n
)cL

T

�

m=k+1

1
m
�

2cM

kn

≤

K

�

k=k0+1

exp�(1 − 1
n
)cL log(K

k
)�

2cM

kn

=
2cM

n
K

Lc(1−1�n) K

�

k=k0+1

k
−Lc(1−1�n)−1

≤
1

(1 − 1�n)Lc

2cM

n
�

K

k0

�

Lc(1−1�n)

≤
2M

L(n − 1)
�

K

k0

�

Lc

Plugging the pobtained Inequlity into the Equation (2.24), we have

E�f(xK ; ›) − f(x
′
K ; ›)� ≤

k0

n
+

2M
2

L(n − 1)
�

K

k0

�

Lc

.

The right-hand side is approximately minimized by k0 = (2cM
2
)

1

Lc+1 T
Lc

Lc+1 , and then we have

E�f(xK ; ›) − f(x
′
K ; ›)� ≤

1 + 1�Lc

n − 1
(2cM

2
)

1

Lc+1 K
Lc

Lc+1 .

2.2.2 Stochastic Gradient Descent with Momentum

SGD faces di�culties when moving through valleys in the optimization landscape (Ruder, 2016), which are
the areas where the curvature sharply inclines in one direction, often near the local optimal points. In these

13

Under review as submission to TMLR

scenarios, SGD tends to oscillate along the steep slopes of the valley, resulting in slow progress towards the
local optimum at the bottom, as depicted in Figure (2a).

The introduction of the momentum term successfully addresses this issue by accelerating SGD in the pertinent
direction and mitigating oscillations, as depicted in Figure (2b). Momentum method follows the gradient
direction augmented by the term that corresponds to the fraction of the direction from the previous time step.

(a) SGD without momentum (b) SGD with momentum

Figure 2: Figures for SGD with and without momentum. This Figure is taken from Ruder (2016) (Figure 2).

In this section, we consider the two most popular types of momentum methods: Heavy-Ball (HB) method
and Nestrov accelerated gradient (NAG) method. The di�erence between these methods lies in how the
momentum term —mk is used to move the parameter xk when computing the gradient. In this paper, we only
consider the stochastic versions of Momentum methods, stochastic Heavey-Ball (SHB) and stochastic Nestrov
accelerated gradient (SNAG) As depicted in (Yang et al., 2016), the update rules for SHB and SNAG can be
represented as:

SHB:�
mk+1 = —mk + –∇g(xk; ›k)

xk+1 = xk −mk+1,
SNAG:�

mk+1 = —mk + –∇g(xk − —mk; ›k)

xk+1 = xk −mk+1,

which can be rewritten as

SHB: xk+1 = xk − –g(xk; ›k) + —(xk − xk−1) (2.25)

SNAG: �
yk+1 = xk − –g(xk)

xk+1 = yk+1 + —(yk+1 − yk).
(2.26)

Both formulas can be unified in the form of the stochastic unified momentum (SUM), as suggested by (Yang
et al., 2016), as follows:

SUM ∶

�
����
�
����
�

yk+1 = xk − –g(xk)

y
s
k+1
= xk − s–g(xk)

xk+1 = yk+1 + —(y
s
k+1
− y

s
k).

(2.27)

Note that when s = 0 SUM method becomes SHB and when s = 1 it reduces to SNAG.

Covergence Analysis As was done for SGD, the convergence analysis of stochastic Momentum methods
will first consider convex assumptions, and will then be generalized to the nonconvex setting.
Assumption 11 (Convex Setting). The following properties holds for objective function F :

• F (x) is convex function.

• (Variance bounded) E ��g(x; ›) −E[g(x; ›)]
2
�� ≤ ”

2.

• (Subgradient Bounded) �∇F (x)� ≤ G.
Theorem 12 (Convergence of Unified Momentum; Convex Setting). (Theorem 1 in (Yang et al., 2016))
Suppose function F satisfies Assumption 11. Let the update of the UM method be run for K iterations with
stochastic gradients g(xk; ›k). By setting –=

C√
K+1

one can obtain

E[F (x̂K) − F (x
∗
)] ≤

—(F (x̂0) − F (x
∗
))

(1 − —)(K + 1)
+
(1 − —) �x0 − x

∗
�

2

2C
√

K + 1
+

C(1 + 2s—)(G
2
+ ”

2
)

2(1 − —)
√

k + 1
, (2.28)

where C is a positive constant, x̂K = ∑
K
k=0

xk�(K + 1), and x
∗ is optimal solution.

14

Under review as submission to TMLR

Proof. For notation simplicity, we denote g(xk; ›k) = g(xk) = gk. The update Formula (2.27) implies the
following recursions:

xk+1 + pk+1 =xk + pk −
–

1 − —
g(xk) (2.29)

vk+1 =—vk + ((1 − —)s − 1)–g(xk), (2.30)

where vk =
1−—

— pk and pk is given by

pk =

�
���
�
���
�

—

1 − —
(xk − xk−1 + s–g(xk−1)), k ≥ 1

0, k = 0.

(2.31)

Define ”k = gk −∇F (xk) and recall that x
∗ is the optimal point. From the above recursions we have

�xk+1 + pk+1 − x
∗
�

2 (2.32)

= �xk + pk − x
∗
�

2
−

2–

1 − —
(xk + pk − x

∗
)

T
gk + �

–

1 − —
�

2

�gk�
2

= �xk + pk − x
∗
�

2
−

2–

1 − —
(xk − x

∗
)

T
gk −

2–—

(1 − —)2
(xk − xk−1)

T
gk

−
2s–

2
—

(1 − —)2
g

T
k−1

gk + �
–

1 − —
�

2

�gk�
2

= �xk + pk − x
∗
�

2
−

2–

1 − —
(xk − x

∗
)

T
(”k +∇F (xk)) −

2–—

(1 − —)2
(xk − xk−1)

(
”k +∇F (xk))

−
2s–

2
—

(1 − —)2
(”k−1 +∇F (xk−1))

T
(”k +∇F (xk)) + �

–

1 − —
�

2

�”k +∇F (xk)�
2

.

(2.33)

Note that

E[(xk − x
∗
)

T
(”k +∇F (xk))] = E[(xk − x

∗
)

T
∇F (xk)]

E[(xk − xk−1)
T
(”k +∇F (xk))] = E[(xk − xk−1)

∇
F (xk)]

E[(”k−1 +∇F (xk−1))
T
(”k +∇F (xk))] = E[(”k−1 +∇F (xk−1))

T
∇F (xk)] = E[gT

k−1
∇F (xk)]

E[�”k +∇F (xk)�
2
] = E[�”k�

2
] +E[�∇F (xk)�

2
].

Taking expectation on both sides gives

E[�xk+1 + pk+1 − x
∗
�

2
]

=E[�xk + pk − x
∗
�

2
] −

2–

1 − —
E[(xk − x

∗
)

T
∇F (xk)] −

2–—

(1 − —)2
E[(xk − xk−1)

T
∇F (xk)]

−
2s–

2
—

(1 − —)2
E[gT

k−1
∇F (xk)] + �

–

1 − —
�

2

(E[�”k�
2
] +E[�∇F (xk)�

2
]). (2.34)

Moreover, since F is convex and E [�g(x; ›) −E[g(x; ›)]�] ≤ ”
2 and �∇F (x)� ≤ G for any x, we have that

F (xk) − F (x
∗
) ≤ (xk − x

∗
)

T
∇F (xk)

F (xk) − F (xk−1) ≤ (xk − xk−1)
T
∇F (xk)

−E[gT
k−1
∇F (xk)] ≤

E[�gk−1�
2
+ �∇F (xk)�

2
]

2
≤ ”

2
�2 +G

2
≤ ”

2
+G

2

E[�”k�
2
] ≤ ”

2
, E[�∇F (xk)�

2
] ≤ G

2
.

15

Under review as submission to TMLR

Therefore, (2.34) can be rewritten as

E[�xk+1 + pk+1 − x
∗
�

2
] ≤E[�xk + pt − x

∗
�

2
] −

2–

1 − —
E[F (xk) − F (x

∗
)] (2.35)

−
2–—

(1 − —)2
E[F (xk) − F (xk−1)] + �

–

1 − —
�

2

(2s— + 1)(G2
+ ”

2
)

Let x−1 = x0, then Inequality (2.35) also holds for k = 0. In all, (2.35) holds for all k ≥ 0. Summing the
Inequality (2.35) for k = 0,�, K, we obtain

2–

1 − —

K

�

k=0

E[F (xk) − F (x
∗
)]

≤
2–—

(1 − —)2
(F (x0) − F (xK)) + �x0 − x

∗
�

2
+ �

–

1 − —
�

2

(2s— + 1)(G2
+ ”

2
). (2.36)

Define x̂K = ∑
K
k=0

xk, by convexity of L we have ∑K
k=0

E[F (xk)] ≤ E[F (x̂K)]. Therefore

E[F (x̂K) − F (x
∗
)] ≤

—(F (x0) − F (x
∗
))

(1 − —)(K + 1)
+
(1 − —) �x0 − x

∗
�

2

2–(K + 1)
+

–(2s— + 1)(G2
+ ”

2
)

2(1 − —)
. (2.37)

Since – =
C√
K+1

,

E[F (x̂K) − F (x
∗
)] ≤

—(F (x̂0) − F (x
∗
))

(1 − —)(K + 1)
+
(1 − —) �x0 − x

∗
�

2

2C
√

K + 1
+

C(1 + 2s—)(G
2
+ ”

2
)

2(1 − —)
√

K + 1
. (2.38)

Remark. The convergence rate for UM methods is O(1�
√

K). This is a sublinear convergence rate.
Assumption 13 (Nonconvex Setting). The following properties holds for objective function F :

• (Lipschitz gradient) Loss function F(x) is L-smooth.

�∇F (x) −∇F (y)� ≤ L �x − y� .

• (Variance bounded) E ��g(x; ›) −E[g(x; ›)]
2
�� ≤ ”

2.

• (Gradient Bound) �∇F (x)� ≤ G.

Theorem 14 (Convergence of SUM; Nonconvex Setting). (Theorem 3 in (Yang et al., 2016)) Suppose L

satisfies Assumption 13. Let the UM update run for K iterations with stochastic gradients g(xk; ›k). By
setting – =min {1−—

2L ,
C√
K
} we have that

1
K

K−1

�

k=0

E[�∇F (xk)�
2
] ≤

2(F (x0)−L
∗
)(1−—)

K
max { 2L

1−—
,

√
K

C
}

+
C
√

K

L—
2
((1−—)s−1)2(G2

+”
2
)+L”

2
(1−—)

2

(1 − —)3
, (2.39)

where L
∗ is the minimal value of the loss function.

Proof. The following two useful lemmas will be needed to conduct the proof. Proofs for Lemma 15 and
Lemma 16 could be found in the Appendix of (Yang et al., 2016).

16

Under review as submission to TMLR

Lemma 15. Let zk = xk + pk. For SUM, we have that for any k ≥ 0:

E[F (zk+1) − F (zk)] ≤
1

2L
E[�∇F (zk+1 −∇F (zk)�

2
]

+ �
L–

2

(1 − —)2
−

–

—
�E[�∇F (xk)�

2
] +

L
2
–

2

2(1 − —)2
‡

2
.

Lemma 16. For SUM, we have that for any k ≥ 0,

E[�∇F (zk) −∇F (xk)�
2
] ≤

L
2
—

2
((1 − —)s − 1)2–

2
(G

2
+ ‡

2
)

(1 − —)4

Then continue the proof for Theorem 14. Let B and B
′ be defined as

B =
–

1 − —
−

L–
2

(1 − —)2
,

B
′
=

L—
2
((1 − —)s − 1)2–

2
(G

2
+ ‡

2
)

2(1 − —)4
+

L–
2
‡

2

2(1 − —)2
.

Lemma 15 and 16 imply that

E[F (zk+1) − F (zk)] ≤ −BE[�∇F (xk)�
2
] +B

′
.

By summing the above inequalities for k = 0, ..., K and noting that – <
1−—

L , one can obtain

B

K−1

�

k=0

E[�∇F (xk)�
2
] ≤ E[F (x0) − F (xK)] +KB

′
≤ E[F (x0) − F (x

∗
)] +KB

′
.

Then, rearranging terms yields

1
K

K−1

�

k=0

E[�∇F (xk)�
2
] ≤

F (x0) − F (x
∗
)

BK
+

B
′

B
.

Assuming – ≤
1−—
2L gives

B =
–

1 − —
−

L–
2

(1 − —)2
=

–

1 − —
�1 − –L

1 − —
� ≥

–

2(1 − —)
.

Thus:
1
K

K−1

�

k=0

E[�∇F (xk)�
2
] ≤

2(F (z0) −L
∗
)(1 − —)

–K
+

2(1 − —)

–
B
′
.

Assume – =min {1−—
2L ,

C√
K
} and let z0 = x0. We obtain:

1
K

K−1

�

k=0

E[�∇F (xk)�
2
] ≤

2(F (x0)−F (x
∗
))(1−—)

K
max { 2L

1−—
,

√
K

C
}

+
C
√

K

L—
2
((1−—)s−1)2(G2

+”
2
)+L”

2
(1−—)

2

(1 − —)3
. (2.40)

Remark. We could draw the following two conclusions from Theorem 14: (i) Convergence rate O(1�
√

K)

implies stochastic momentum methods maintains the sublinear convergence rate even if objective function f

is non-convex.(ii) SHB and SNAG have di�erent variants regarding the term L—
2
((1−—)s−1)2(G2

+”
2
) in the

convergence bound of SUM because of the di�erent choices of parameter s for the update rule (2.27) of SUM:
L—

2 for SHB (s = 0), L—
4 for SNAG (s = 1) and 0 for SGD (s = 1�(1 − —)).

17

Under review as submission to TMLR

Generalization guarantees. For the generalization guarantees of SGD with momentum methods, we
focus on the Stochastic Heavy-Ball (SHB) method since we only find generalization guarantee for SHB in the
literature. Recall the SHB update rule:

xk+1 = xk − –g(xk; ›k) + —(xk − xk−1), (2.41)

where – is the learning rate and — is the momentum value. We are going to show the generalization ability of
HB method first under convex and then under nonconvex setting.
Assumption 17 (Convex Setting). The following properties holds for the objective function f :

• f(x; ›) is µ-strongly convex.

• L-smooth: �∇f(x; ›) −∇f(x; ›)� ≤ L �x − y�.

• M -Lipchitz continuous: �∇f(x; ›) −∇f(y; ›)� ≤M �x − y�.

Theorem 18 (Generalization Guarantee of SHB; Convex Setting). (Theorem 18 in (Ramezani-Kebrya et al.,
2021)) Let the loss function f(x; ›) satisfies the Assumption 17. Suppose that the HB momentum methods is
run for K steps with constant learning rate – and momentum —. Provided that –Lµ

L+µ −
1

2
≤ — <

–Lµ
3(L+µ) and

– ≤
2

L+µ , the HB momentum method satisfies ‘s-uniformly stability with

‘s ≤
2–M

2
(L + µ)

n(–Lµ − 3—(L + µ))
. (2.42)

Proof. Let S and S
′ be two samples of size n with at most one example di�erence. Let xk and x

′
k denote

corresponding outputs of SGD momentum on S and S
′. We consider the update xk+1 = Gk(xk)+—(xk −xk−1)

and x
′
k+1
= G

′
k(x

′
k)+ —k(x

′
k − xk′−1), where Gk(xk) ∶= xk −–g(xk; ›k) and G′k(x′k) ∶= x

′
k −–g(x

′
k; ›
′
k) We denote

”k = �xk − x
′
k�. Suppose x0 = x

′
0

and ”0 = 0.

With probability 1− 1

n , the seleted examples in S and S
′ are the same. Because Gk is (1− –Lµ

L+µ)-expansive for
≤

2

L+µ , we have

”k+1 = �—(xk − x
′
k) − —(xk−1 − x

′
k−1
) + Gk(xk) − G

′
k(x

′
k)�

≤— �xk − x
′
k� + — �xk−1 − x

′
k−1
� + �Gk(xk) − G

′
k(x

′
k)�

≤(1 + — −
–Lµ

L + µ
)”k + —”k−1.

With probability 1

n , the selected examples in S and S
′ are di�erent. Hence, we have

”k+1 = �—(xk − x
′
k) − —(xk−1 − x

′
k−1
) + Gk(xk) − G

′
k(x

′
k)�

≤— �xk − x
′
k� + — �xk−1 − x

′
k−1
� + �Gk(xk) − G

′
k(x

′
k)� + �Gk(x

′
k) − G

′
t(x
′
k)�

≤(1 + — −
–Lµ

L + µ
)”k + —”k−1 + �G

′
k(x

′
k) − G

′
t(x
′
k)�

≤(1 + — −
–Lµ

L + µ
)”k + —”k−1 + �x

′
k − Gk(x

′
t)� + �x

′
k − G

′
k(x

′
k)�

≤(1 + — −
–Lµ

L + µ
)”k + —”k−1 + 2–M,

Therefore

E[”k+1] ≤(1 −
1
n
)�(1 + — −

–Lµ

L + µ
)E[”k] + —E[”t−1]�

+
1
n
�(1 + — −

–Lµ

L + µ
)E[”k] + —E[”k−1] + 2–M�

=(1 + — −
–Lµ

L + µ
)E[”k] + —E[”k−1] +

2–M

n

18

Under review as submission to TMLR

Let us consider the recursion

E[”̃t+1] = (1 + — −
–Lµ

L + µ
)E[”̃k] + —E[”̃k−1] +

2–M

n
(2.43)

Formular (2.43) implies
E[”k+1] ≥ (1 + — −

–Lµ

L + µ
)E[”̃k],

hence we have

E[”̃t+1] ≤(1 + — +
—

1 + — −
–Lµ
L+µ

)E[”̃k] +
2–M

n

≤(1 + 3— −
–Lµ

L + µ
)E[”̃k] +

2–M

n
.

Since E[”̃t+1] ≥ E[”k+1] for all k, we have

E[”K] ≤
2–M

n

K

�

k=1

�1 + 3— +
–Lµ

L + µ
�

k

≤
2–M(L + µ)

n(–Lµ − 3—(L + µ))
.

Remark. Proof for Theorem 18 (Generalization guarantee of SHB) resembles the proof of Theorem 9
(Generalization guarantee of SGD). From Theorem 18, we could draw the following two conclusions: i) when
n increases, ‘s decreases and algorithm A becomes more stable. It consists with the common sense. When we
includes more samples in the training data set, the generalizaton error will be smaller, the algorithm will be
more stable. When ii) When — decreases, ‘s decreases and algorithm A becomes more stable The smaller
momentum parameter — leads to smaller generalization error. When — = 0, the SHB method becomes the
vanilla SGD method. Therefore, SGD generalizes better than SHB. It also coincides with the common sense.
Although the momentum term have the potential to accelerate SGD, collecting the gradient information from
the previous steps introduces the bias to the estimation of the update direction and may cause algorithm’s
instability.
Assumption 19 (Nonconvex Setting). Assume that the following properties hold for the objective function f :

• L-smooth: �∇f(x; ›) −∇f(x; ›)� ≤ L �x − y�.

• M -Lipchitz continuous: �∇f(x; ›) −∇f(y; ›)� ≤M �x − y�.

Theorem 20 (Generalization Guarantee of SHB; Nonconvex Setting). (Theorem 10 in (Ramezani-Kebrya
et al., 2021)) Let the loss function f(x; ›) satisfy Assumption 19. Suppose that the HB momentum method is
executed for K steps with the learning rate –k = –0�k and some constant momentum —d ∈ (0, 1] in the first kd

steps. Then, for any 1 ≤ k̃ ≤ kd ≤K, the momentum method satisfies ‘s stability with:

‘s ≤
2–0M

n
K
(1− 1

n)–0L
h̃(—d, kd) +

k̃B

n
+

2M

L(n − 1)
�

K

k̃
�

(1− 1

n)–0L

, (2.44)

where h̃(—d, kd) = exp(2—d(kd − k̃))(ln(1 + 1

2—dk̃
) −

1

2
ln(1 + 2

—dkd
)) and B = sup f(x; ›).

Proof. Let S and S
′ be two samples of size n with at most one example di�erence. Let xk and x

′
k denote

corresponding outputs of SGD momentum on S and S
′. We consider the update xk+1 = Gk(xk)+—k(xk−xk−1)

and x
′
k+1
= G

′
k(x

′
k) + —k(x

′
k − xk′−1), where —k ∶= —dI(k ≤ kd), Gk(xk) ∶= xk − –kg(xk; ›k) and G′k(x′k) ∶=

x
′
k − –kg(x

′
k; ›

′
k) We denote ”k = �xk − x

′
k�. Suppose x0 = x

′
0

and ”0 = 0.

First, as a preliminary step, we observe that the expected loss di�erence under xK and x
′
K for every x and

every k̃ ∈ {1, ..., K} is bounded by:

E[f(xK ; ›) − f(x
′
K ; ›)] ≤

k̃B

n
+LE[”K �”k̃ = 0]. (2.45)

19

Under review as submission to TMLR

where B = sup f(x;).This follows from (Hardt et al., 2016). Not let define �k,k̃ ∶= E[”k �”k̃ = 0]. Our goal is to
find a bound on �K,k̃ and then minimize over k̃.

At step k, with probability 1 − 1

n , the seleted examples in S and S
′ are the same.

”k+1 = �(—k(xk − x
′
k) − —k(xk−1 − x

′
k−1
) + Gk(xk) − G

′
k(x

′
k)�

≤—k �xk − x
′
k� + —k �xk−1 − x

′
k−1
� + �Gk(xk) − G

′
k(x

′
k)�

≤(1 + —k − –L–kL)”k + —k”k−1.

The last inequality holds by l is L-smooth. With probability 1

n , the selected examples in S and S
′ are di�erent.

Hence, we have

”k+1 = �—k(xk − x
′
k) − —k(xk−1 − x

′
k−1
) + Gk(xk) − G

′
k(x

′
k)�

≤ �(1 + —k)(xk − x
′
k) − —k(xk−1 − x

′
k−1
) − –k(∇f(xk; ›k) −∇f(x

′
k, ›

′
k))�

≤(1 + —k)”k + —k”k−1 + 2–kM

After taking the expectation, for every k ≥ k̃, we have

�k+1,k̃ ≤ (1 + —k + (1 −
1
n
)–kL)�k,k̃ + —k�k−1,k̃ + 2–kM�n.

Consider the following recursion:

�̃k+1,k̃ = (1 + —k + (1 −
1
n
)–kL)�̃k,k̃ + —k�k−1,k̃ + 2–kM�n.

Note that the definition of recursion guarantees �̃k+1,k̃ ≥ �̃k,k̃. Then, we have the following inequality:

�̃k+1,k̃ = (1 + 2—k + (1 −
1
n
)–kL)�̃k,k̃ + 2–kM�n.

Note that �̃k,k̃ ≥�k,k̃, we have E[�T,k̃] ≤ S1 + S2, where:

S1 =

kd

�

k=k̃+1

K

�

p=k+1

�1 + 2—p + (1 −
1
n
)

–0L

p
�

2–0M

nk

and

S2 =

K

�

k=kd+1

K

�

p=k+1

�1 + 2—p + (1 −
1
n
)

–0L

p
�

2–0M

nk
.

Substituting —p = —d for p = 1, ..., kd, we have

S1 =

kd

�

k=k̃+1

K

�

p=k+1

�1 + 2—p + (1 −
1
n
)

–0L

p
�

2–0M

nk

≤

kd

�

k=k̃+1

K

�

p=k+1

exp�2—p + (1 −
1
n
)

–0L

p
�

2–0M

nk

≤

kd

�

k=k̃+1

exp�2—d(kd − k) + (1 − 1
n
)–0L log(K

k
)�

2–0M

nk

≤
2–0M

n
K
(1− 1

n)–0L exp(2—dkd)�

kd

k̃
h1(k)k

−(1− 1

n)–0L
dk

≤
2–0M

n
K
(1− 1

n)–0L exp(2—dkd)�

kd

k̃
h1(k)dk

≤
2–0M

n
K
(1− 1

n)–0L exp(2—dkd)(E1(2—dk̃) −E1(2—dkd)) (2.46)

20

Under review as submission to TMLR

where h1(x) =
exp(−2—dx)

x and the integral:

E1 = �

∞
x

− exp(x)
x

dx.

From (Abramowitz & Stegun, 1948), the following bound holds:

1
2

exp(−x) ln(1 + 2
x
) < E1(x) < exp(−x) ln(1 + 1

x
).

Therefore, we could upper bound S1 as:

S1 ≤
2–0M

n
K
(1− 1

n)–0L
h̃(—d, kd), (2.47)

where h̃(—d, kd) = exp(2—d(kd − k̃))(ln(1 + 1

2—dk̃
) −

1

2
ln(1 + 2

—dkd
)).

Similarly, we could also upper bound S2 as:

S2 =

K

�

k=kd+1

K

�

p=k+1

�1 + 2—p + (1 −
1
n
)

–0L

p
�

2–0M

nk

≤
2M

L(n − 1)
�

K

kd
�

(1− 1

n)–0L

≤
2M

L(n − 1)
�

K

k̃
�

(1− 1

n)–0L

(2.48)

Regarding to the bound of terms S1 and S2, if we plugging back to (2.45), we have:

‘s ≤
2–0M

n
K
(1− 1

n)–0L
h̃(—d, kd) +

k̃B

n
+

2M

L(n − 1)
�

K

k̃
�

(1− 1

n)–0L

. (2.49)

Remark. Proof for Theorem 20 (Generalization guarantee of SHB) resembles the proof of Theorem 10
(Generalization guarantee of SGD). Theorem 20 suggests that the stability bound decreases inversely with
the size of the training set. It also increases as the momentum parameter —d increases.

2.2.3 Adaptive learning rate methods

Adaptive optimization methods, such as AdaGrad (Duchi et al., 2011), RMSprop (Tieleman & Hinton, 2012),
AdaDelta (Zeiler, 2012), and Adam (Kingma & Ba, 2014) significantly improved gradient-based optimization
algorithms. They revolutionized gradient descent approaches by incorporating two key perspectives: i)
adapt the learning rate to the parameters by performing smaller updates (i.e., using low learning rates)
for parameters associated with frequently occurring features, and larger updates (i.e., using high learning
rates) for parameters associated with infrequent features. Note that this strategy is well-suited for sparse
data. ii) introduce a variable, denoted as vk, to capture the exponentially decaying sum/average of past
squared gradients. vk can be viewed as an approximation of the Hessian matrix of the loss function and
thus it encapsulates a valuable second-order information about the loss function. Traditionally, second-order
methods, like Newton’s and quasi-Newton’s methods, exhibit faster convergence rates than their first-order
counterparts, owing to the additional Hessian information in the update formula. Consequently, adaptive
optimization methods converge faster than vanilla first-order gradient-based methods.

In this section, we provide a unified formulation, denoted as Unified Adaptive (UA), for adaptive methods:
AdaGrad, Adam and AdaDelta. Suppose we have hyperparameters —1 and —2 such that 0 ≤ —1 < —2 ≤ 1, and
a sequence of learning rates {–k}k∈N. —1 is a heavy-ball momentum parameter and —2 controls the rate at
which the past norms of gradients are forgotten. We define three variables: xk, mk, vk ∈ Rd, which respectively

21

Under review as submission to TMLR

correspond to the parameters of the model, the exponentially decaying sum of gradients at each iteration,
and the exponentially decaying sum of squared gradients at each iteration. Given the initial parameter x0,
m0 = 0 and v0 = 0, the update rule of UA method at iteration t can be formulated as

UA ∶

�
�������
�
�������
�

mk,i = —1mk−1,i + g(xk; ›k) i = 1, ..., d

vk,i = —2vk−1,i + (gi(xk; ›k))
2

i = 1, ..., d

xk,i = xk−1,i − –k
mk,i
√

vk,i + ‘
i = 1, ..., d,

(2.50)

where gi(xk; ›k) = E›k[F (xk)] is the unbiased stochastic estimation of the gradient.

Taking —1 = 0, —2 = 1 and –k = – (– represents a constant learning rate), UA results in the AdaGrad algorithm.

AdaGrad ∶

�
����
�
����
�

vk,i = vk−1,i + (gi(xk; ›k))
2

xk,i = xk−1,i − –
gi(xk; ›k)
√

vk,i + ‘
,

(2.51)

Then we are going to verify UA could generate Adam. Taking —1, —2 ∈ (0, 1), —1 < —2, and the learning rate
–k as

–
Adam

k = –
1 − —1
√

1 − —2

⋅
1

1 − —k
1

�����������������

corrective term for mk

⋅

�

1 − —k
2

�������������������������������

corrective term for vk

,

UA results in the Adam algorithm:

Adam ∶

�
�������
�
�������
�

mk,i = —1mk−1,i + g(xk; ›k) i = 1, ..., d

vk,i = —2vk−1,i + (gi(xk; ›k))
2

i = 1, ..., d

xk,i = xk−1,i − –
1 − —1
√

1 − —2

⋅
1

1 − —k
1

⋅

�

1 − —k
2

mk,i
√

vk,i + ‘
i = 1, ..., d,

(2.52)

The formulation (2.52) is di�erent from the standard formulation (2.54) of Adam at first glance. We are
going to show that both formulations are equivalent with each other. By simple mathematical manipulation,
formulation 2.52 could be written as:

�
���������
�
���������
�

(1 − —1)mk,i = —1 ⋅ (1 − —1)mk−1,i + (1 − —1)g(xk; ›k) i = 1, ..., d

(1 − —2)vk,i = —2 ⋅ (1 − —2)vk−1,i + (1 − —2) (gi(xk; ›k))
2

i = 1, ..., d

xk,i = xk−1,i − –

1−—1

1−—k
1

mk,i

1−—2

1−—k
2

√
vk,i + ‘

i = 1, ..., d,

(2.53)

In UA, mk,i and vk,i are weighted sum of gradients and squared gradents, respectively. However, the standrad
formulation for Adam use the weighted average (defined as m̂k,i and v̂k,i in this paper) of gradients and
squared gradents, where:

m̂k,i = —1m̂k−1,i + (1 − —1)gi(xk)

v̂k,i = —2v̂k−1,i + (1 − —2)(gi(xk))
2

22

Under review as submission to TMLR

By simple mathematical manipulation, the weighted average and weighted sum could be transferred from
each other as:

m̂k,i = —1m̂k−1,i + (1 − —1)gi(xk) = � = (1 − —1)

k

�

l=1

—
k−l
1

gi(xk) = (1 − —1)mk,i

v̂k,i = —2v̂k−1,i + (1 − —2)(gi(xk))
2
= � = (1 − —2)

t

�

l=1

—
k−l
1

gi(xk) = (1 − —2)vk,i

The Adam algorithm also introduces two corrective terms to account for the fact that the weighted average
m̂t and v̂t are biased towards 0 for the first few iterations, i.e.,

m̂
corr

k,i =
m̂k,i

1 − —k
1

, v̂
corr

k,i =
v̂k,i

1 − —k
2

.

Since the ‘ term is just a small constant to guarantee that the denominator is larger than zero and the update
rule is valid, which does not matter much in the update formulation. Therefore, formula (2.53) could be
rewritten as:

Adam ∶

�
��������������
�
��������������
�

m̂k,i = —1m̂k−1,i + (1 − —1)gi(xk; ›k)

v̂k,i = —2v̂k−1,i + (1 − —2) (gi(xk; ›k))
2

m̂
corr

k,i =
m̂k,i

1 − —k
1

, v̂
corr

k,i =
v̂k,i

1 − —k
2

xk,i = xk−1,i − –
m̂

corr

k,i
�

v̂corr

k,i + ‘

,

(2.54)

Formula (2.54) is exactly the standard update rule for Adam. We already show that our unified formulation
UA could represents the Adam algorithm. Moreover, AdaDelta is a special case of Adam when —1 = 0, thus
the momentum term is removed. Obviously, UA could also represent the AdaDelta algorithm.

Convergence Analysis (Défossez et al., 2022) provides convergence the proof for the UA algorithm. The
proof sketch is a little bit di�erent from the previous ones. f function here represents the loss of individual
training examples or minibatches, F here is the full training objective function. Therefore, E[∇f(x)] = F (x).
The goal is to find the critical point of the function F .

In this section, we focus on the convergence proof for UA with 0 ≤ —1 < —2 ≤ 1 under the following Assumption
21. We focus on the nonconvex setting because the existing literature primarily provides convergence proofs
under nonconvex assumptions for the considered family of algorithms. ALso note that nonconvex assumptions
are more general than convex ones.
Assumption 21 (Nonconvex Setting). The following properties hold for the objective functions f of individual
training examples or minibatches and the full training objective function F , where E[f(x)] = F (x):

• (Lipschitz gradient.) Loss function F(x) is L-smooth.

�∇F (x) −∇F (y)� ≤ L �x − y� .

• (Gradient Bound.) �∇f(x)� ≤ R −
√

‘.

• (Bounded value.) F (x) ≥ F
∗
, ∀x.

Theorem 22 (Convergence of AdaGrad with momentum; Nonconvex Setting). (Theorem 3 in (Défossez
et al., 2022)) Under Assumption 21, consider the UA method defined in (2.50) with hyper-parameters —2 = 1,

23

Under review as submission to TMLR

–k = – with – > 0, and 0 ≤ —1 < 1. For a number of iterations K define · to be a random index from the index
set {0, ..., K − 1} such that:

∀j ∈ N,P[· = j] ∼ 1 − —
N−j
1

,

(thus if —1 = 0, it is equivalent to sampling · uniformly in {0, ..., K − 1}). We have that for any K ∈ N∗ such
that K >

—1

1−—1

,

E ��∇F (x·)�
2
� ≤ 2R

√

K
F (x0) − F

∗
–K̃

+

√
K

K̃
E ln�1 + KR

2

‘
� , (2.55)

with K̃ =K −
—1

1−—1

, and,

E = –dRL +
12dR

2

1 − —1

+
2–

2
dL

2
—1

1 − —1

.

Theorem 23 (Convergence of Adam with momentum; Nonconvex Setting). (Theorem 4 in (Défossez et al.,
2022)) Under Assumption 21, conisder the UA method defined in (2.50) with hyper-parameters 0 < —2 < 1,

0 ≤ —1 < —2, and –k = –(1 − —1)

�
1−—k

2

1−—2

with – > 0. For a number of iterations K define · to be a random
index from the index set {0, ..., K − 1} such that:

∀j ∈ N,P[· = j] ∼ 1 − —
N−j
1

(2.56)

(thus if —1 = 0, it is equivalent to sampling · uniformly in {0, ..., K − 1}). We have that for any K ∈ N∗ such
that K >

—1

1−—1

,

E ��∇F (x·)�
2
� ≤ 2R

F (x0) − F
∗

–K̃
+E �

1
K̃s

ln�1 + R
2

(1 − —2)‘
� −

K

K̃
ln(—2)� (2.57)

with K̃ =K −
—1

1−—1

and

E =
–dRL(1 − —1)

(1 − —1�—2)(1 − —2)
+

12dR
2
√

1 − —1

(1 − —1�—2)
3�2√1 − —2

+
2–

2
dL

2
—1

(1 − —1�—2)(1 − —2)
3�2 .

Proof for Theorem 22 and 23. We are going to prove the convergence of Adagrad and Adam jointly. Firstly,
we provide the general bound 2.65 that holds for both algorithms, we then split the proof for either algorithm.

Common part of the proof. Let us take an iteration k ∈ N∗. Define Gk,i = ∇iF (xk−1), gk,i =

∇ifk(xk−1), uk,i =
mk,i√
‘+vk,i

, and Uk,i =
gk,i√
‘+vk,i

. Gk = (Gk,1, Gk,2, .., Gk,d), uk = (uk,1, uk,2, ..., uk,d),
Uk = (Uk,1, Uk,2, ..., Uk,d).

Using the smoothness of F defined in Assumption 21, we have

F (xk) ≤ F (xk−1) − –nG
T
k uk +

–
2

kL

2
�uk�

2

2
.

Taking the full expectation and using Lemma 67 (Shown in Appendix A),

E [F (xk)] ≤ E [F (xk−1)] −
–k

2
�

�
�

i∈[d]
k−1

�

l=0

—
l
1
E
�
�
�
�
�

G
2

k−l,i

2
�

‘ + ṽk,l+1,i

�
�
�
�
�

�

�
+

–
2

kL

2
E ��uk�

2

2
�

+
–

3

kL
2

4R

�

1 − —1

�

�

k−1

�

l=1

�uk−l�
2

2

k−1

�

p=l

—
p
1

√
p
�

�
+

3–nR
√

1 − —1

�

k−1

�

l=0

�
—1

—2

�

l√
l + 1 �Uk−l�

2

2
� . (2.58)

Notice that because of the bound on the ¸∞ norm of the stochastic gradients at the iterates in Assumption
21, we have for any l ∈ N, l < k, and any coordinate i ∈ [d],

�
‘ + ṽk,l+1,i ≤ R

�

∑
k−1

j=0
—

j
2
. Introducing

24

Under review as submission to TMLR

�k =

�

∑
k−1

j=0
—

j
2
, we have

E [F (xk)] ≤ E [F (xk−1)] −
–k

2R�n

k−1

�

l=0

—
l
1
E ��Gk−l�

2

2
� +

–
2

kL

2
E ��uk�

2

2
�

+
–

3

kL
2

4R

�

1 − —1

�

�

k−1

�

l=1

�uk−l�
2

2

n−1

�

p=l

—
p
1

√
p
�

�
+

3–kR
√

1 − —1

�

k−1

�

l=0

�
—1

—2

�

l√
l + 1 �Uk−l�

2

2
� . (2.59)

Now summing over all iterations k ∈ [K] for K ∈ N∗, and using that for both Adam and Adagrad, –k is
non-decreasing, as well the fact that L is bounded below by F

∗ from Assumption 21, we get

1
2R

K

�

k=1

–k

�k

k−1

�

l=0

—
l
1
E ��Gk−l�

2

2
�

��

A

≤ F (x0) − F
∗
+

–
2

KL

2

K

�

k=1

E ��uk�
2

2
�

���

B

+
–

3

KL
2

4R

�

1 − —1

K

�

k=1

k−1

�

l=1

E ��uk−l�
2

2
�

k−1

�

p=l

—
p
1

√
p

��

C

+
3–KR
√

1 − —1

K

�

k=1

k−1

�

l=0

�
—1

—2

�

l√
l + 1E ��Uk−l�

2

2
�

���

D

. (2.60)

First looking at B, we have using Lemma 69,

B ≤
–

2

KL

2(1 − —1)(1 − —1�—2)
�

i∈[d]
�ln�1 +

vK,i

‘
� −K log(—2)� . (2.61)

Then looking at C and introducing the change of index j = k − l,

C =
–

3

KL
2

4R

�

1 − —1

K

�

k=1

k

�

j=1

E ��uj�
2

2
�

k−1

�

l=k−j

—
l
1

√

l

=
–

3

KL
2

4R

�

1 − —1

K

�

j=1

E ��uj�
2

2
�

K

�

k=j

k−1

�

l=k−j

—
l
1

√

l

=
–

3

KL
2

4R

�

1 − —1

K

�

j=1

E ��uj�
2

2
�

K−1

�

l=0

—
l
1

√

l

j+l

�

k=j

1

=
–

3

KL
2

4R

�

1 − —1

K

�

j=1

E ��uj�
2

2
�

K−1

�

k=0

—
k
1

√

k(k + 1)

≤
–

3

KL
2

R

K

�

j=1

E ��uj�
2

2
�

—1

(1 − —1)
2

, (2.62)

using Lemma 71. Finally, using Lemma 69, we get

C ≤
–

3

KL
2
—1

R(1 − —1)
3(1 − —1�—2)

�

i∈[d]
�ln�1 +

vK,i

‘
� −K log(—2)� . (2.63)

Finally, introducing the same change of index j = n − k for D, we get

D =
3–KR
√

1 − —1

K

�

k=1

k

�

j=1

�
—1

—2

�

k−j�
1 + k − jE ��Uj�

2

2
�

=
3–KR
√

1 − —1

K

�

k=1

E ��Uj�
2

2
�

K

�

k=j

�
—1

—2

�

k−j�
1 + k − j

≤
6–KR
√

1 − —1

K

�

k=1

E ��Uj�
2

2
�

1
(1 − —1�—2)

3�2 , (2.64)

25

Under review as submission to TMLR

using Lemma 70. Finally, using Lemma 69, we get

D ≤
6–KR

√
1 − —1(1 − —1�—2)

3�2 �
i∈[d]
�ln�1 +

vK,i

‘
� −K ln(—2)� . (2.65)

This is as far as we can get without having to use the specific form of –K given by either equation 2.54 for
Adam or equation 2.51 for Adagrad. We will now split the proof for either algorithm.

Adagrad. For Adagrad, we have –n = (1 − —1)–, —2 = 1 and �n ≤
√

N so that,

A =
1

2R

K

�

k=1

–n

�n

n

�

j=1

—
n−j
1

E ��Gj�
2

2
�

≥
–(1 − —1)

2R
√

N

N

�

j=1

E ��Gj�
2

2
�

N

�

n=j

—
n−j
1

=
–

2R
√

N

N

�

j=1

(1 − —
N−j+1

1
)E ��Gj�

2

2
�

=
–

2R
√

N

N

�

j=1

(1 − —
N−j+1

1
)E ��∇F (xj−1)�

2

2
�

=
–

2R
√

N

N−1

�

j=0

(1 − —
N−j
1
)E ��∇F (xj)�

2

2
� . (2.66)

Reusing equation 2.71 and equation 2.72 from the Adam proof, and introducing · as in equation 2.56, we
immediately have

A ≥
–K̃

2R
√

N
E ��∇F (x·)�

2

2
� . (2.67)

Further notice that for any coordinate i ∈ [d], we have vN ≤ NR
2, besides –N = (1 − —1)–, so that putting

together equation 2.60, equation 2.67, equation 2.61, equation 2.63 and equation 2.65 with —2 = 1, we get

E ��∇F (x·)�
2

2
� ≤ 2R

√

K
F0 − F∗

–K̃
+

√
K

K̃
E ln�1 + KR

2

‘
� , (2.68)

with
E = –dRL +

2–
2
dL

2
—1

1 − —1

+
12dR

2

1 − —1

. (2.69)

This conclude the proof of Theorem 22.

Adam. For Adam, using equation 2.54, we have –k = (1 − —1)�k–. Thus, we can simplify the A term from
equation 2.60, also using the usual change of index j = k − l, to get

A =
1

2R

K

�

k=1

–k

�n

k

�

j=1

—
k−j
1

E ��Gj�
2

2
�

=
–(1 − —1)

2R

K

�

j=1

E ��Gj�
2

2
�

K

�

k=j

—
k−j
1

=
–

2R

K

�

j=1

(1 − —
K−j+1

1
)E ��Gj�

2

2
�

=
–

2R

K

�

j=1

(1 − —
K−j+1

1
)E ��∇F (xj−1)�

2

2
�

=
–

2R

K−1

�

j=0

(1 − —
K−j
1
)E ��∇F (xj)�

2

2
� . (2.70)

26

Under review as submission to TMLR

If we now introduce · as in the theorem, we can first notice that

K−1

�

j=0

(1 − —
K−j
1
) =K − —1

1 − —
K
1

1 − —1

≥K −
—1

1 − —1

. (2.71)

Introducing
K̃ =K −

—1

1 − —1

, (2.72)

we then have

A ≥
–K̃

2R
E ��∇F (x·)�

2

2
� . (2.73)

Further notice that for any coordinate i ∈ [d], we have vK,i ≤
R2

1−—2

, besides –K ≤ –
1−—1�
1−—2

, so that putting
together equation 2.60, equation 2.73, equation 2.61, equation 2.63 and equation 2.65 we get

E ��∇F (x·)�
2

2
� ≤ 2R

F (x0) − F
∗

–K̃
+

E

K̃
�ln�1 + R

2

‘(1 − —2)
� −N log(—2)� , (2.74)

with
E =

–dRL(1 − —1)

(1 − —1�—2)(1 − —2)
+

2–
2
dL

2
—1

(1 − —1�—2)(1 − —2)
3�2 +

12dR
2
√

1 − —1

(1 − —1�—2)
3�2√1 − —2

. (2.75)

This conclude the proof of Theorem 23.

Remark. The AdaGrad and Adam is of O(1√
K

ln(K)) sublinear convergence rate. Increasing —1 (adding
momentum) always deteriorates the bounds.

Generalization Ability. It should be noted that theoretical guarantees for generalization are not commonly
found in the literature concerning adaptive learning rate methods. Some empirical studies (Wilson et al.,
2017; Keskar et al., 2017b; Luo et al., 2019) indicate that adaptive learning rate methods can generalize
worse than standard SGD. While (Zhou et al., 2020; Zou et al., 2021) o�er some theoretical insights into
why Adam may generalize less e�ectively than SGD, these works do not provide detailed stability bounds for
adaptive methods. Given that our survey focuses primarily on theoretical proofs of generalization bounds for
optimization methods, we will not explore this issue in depth.

2.3 Second-order methods

For the theoretical analysis of the second-order methods, di�erently than was the case for the previously
analysed first-order methods, we focus on the full-batch version instead of the stochastic version. Let
F ∶ Rn

→ R be the continuously di�erentiable objective function. Consider an unconstrained optimization
problem:

min F (x), x ∈ Rn
.

In this section, we discuss the covergence guarantee of Newton’s method and BFGS under nonconvex setting
and L-BFGS under convex setting.

2.3.1 Newton’s method

In the Newton’s method (2.77), we compute the inverse of Hessian matrix ∇2
F (xk) directly to formulate the

update rule:
xk+1 = xk −∇

2
F (xk)

−1
∇F (xk). (2.76)

Theorem 24 (Convergence of Newton’s Method; Nonconvex Setting). Let F ∈ C
3 and Hessian matrix

statisfies
�∇

2
F (xt)

−1
� ≤ h.

27

Under review as submission to TMLR

x
∗ is the optimal point such that ∇F (x

∗
) = 0. Given a proper initial point x0 ∈ Rd, there exists – such that

the Newton’s method iterates
xk+1 = xk −∇

2
F (xk)

−1
∇F (xk), (2.77)

converge according to
�xk+1 − x

∗
� ≤ – �xk − x

∗
�

2
.

Proof. For the k-th iteration, perform second-order Taylor expansion of the function F as:

F (x)=F (xk)+∇F (xk)
T
(x−xk)+

1
2
(x−xk)

T
∇

2
F (xk)(x−xk). (2.78)

By Talyor expansion

∇F (x
∗
) −∇F (xk) −∇

2
F (xk)

−1
(x
∗
− xt) = O(�x

∗
− xt�

2
),

then there exits ‘ > 0, c > 0 such that if �x0 − x
∗
� < ‘,

∇F (x
∗
) −∇F (xk) −∇

2
F (xk)

−1
(x
∗
− xt) ≤ c �x

∗
− xk�

2
.

�xk+1−x
∗
� = �xk−x

∗
−∇

2
F (xk)

−1
∇F (xk)�

≤ �∇
2
F (xk)

−1
� �∇F (x

∗
) −∇F (xk)−

∇
2
F (xk)

−1
(x
∗
− xk)�

≤ch �x
∗
− xk�

2

Although Newton’s method demonstrates a quadratic convergence rate (Theorem 24), surpassing all first-order
methods, the computation of the inverse of the Hessian matrix, denoted as ∇2

F (xt)
−1, incurs a cubic time

complexity of O(d3
). This results in significant computational burdens, particularly when dealing with large

model sizes. The heavy computation load associated with the cubic time complexity of computing the inverse
Hessian compromises e�ciency and scalability of the method.

2.3.2 Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS)

To decrease the time complexity of the Newton’s method, but at the same time benefit from the second-order
information, Broyden, Fletcher, Goldfarb and Shanno approximate Hessian matrix with pseudo-Hessian
matrix Bk, to reduce the time complexity of the method from cubic to quadratic in the dimension d (the
time complexity is dictated by the operation of matrix inversion). In this section, we are going to show the
motivation and mathematical proof of convergence for BFGS.

Let F ∶ Rn
→ R be continuously di�erentiable. Consider an unconstrained optimization problem:

min F (x), x ∈ Rn
.

For the k-th iteration, perform second-order Taylor expansion of the function F :

F (x)=F (xk)+∇F (xk)
T
(x−xk)+

1
2
(x−xk)

T
∇

2
F (xk)(x−xk). (2.79)

Define the update of parameter as p = x− xk and construct a quadratic function mk(p) for the k-th iteration
based on the Taylor expansion (2.79):

mk(p) = F (xk) +∇F (xk)
T p + 1

2
pT Bkp. (2.80)

28

Under review as submission to TMLR

We can get the update direction by minimizing (2.80):

pk = −B−1

k ∇F (xk).

Then
xk+1 = xk + –kpk,

where step size –k comes from backtracking line search.

Now we have xk+1 and we can construct the quadratic function for (k+1)-th iteration:

mk+1(p) = F (xk+1) +∇F (xk+1)
T p + 1

2
pT Bk+1p. (2.81)

Because mk+1(p) should have the same gradient as function F at point xk,

∇mk+1(−–kpk) = ∇F (xk+1) − –kBk+1pk = ∇F (xk).

Let sk =xk+1−xk =−–kpk, yk =∇F (xk+1)−∇F (xk),

Bk+1sk = yk. (2.82)

Lets express the relation between Bk+1 and Bk as follows

Bk+1 =Bk +Ek,

where Ek is a rank 2 matrix. Define
Ek = –uku

T
k + —vkv

T
k , (2.83)

and combine it with (2.82) to obtain:

(Bk +k u
T
k + —vkv

T
k)sk = yk

–(u
T
k sk)uk + —(v

T
k yk)vk = yk −Bksk. (2.84)

Equation (2.84) implies that uk and vk are not unique. Assume uk and vk are parallel with Bksk and yk,
respectively, and denote uk = “Bksk and vk = ◊yk. Substitute them into (2.83) and (2.84):

Ek = –“
2Bksks

T
k Bk + —◊

2
yky

T
k , (2.85)

(–“
2
s

T
k Bksk + 1)Bksk + (—◊

2
y

T
k sk − 1)yk = 0. (2.86)

Therefore,

–“
2
s

T
k Bksk + 1 = 0�⇒ –“

2
= −

1
sT

k Bksk
,

—◊
2
y

T
k sk − 1 = 0�⇒ —◊

2
=

1
ykyT

k

.

Further substitute this into (2.85) to obtain

Bk+1 =Bk −
Bksks

T
k Bk

sT
k Bksk

+
yky

T
k

yT
k sk

. (2.87)

29

Under review as submission to TMLR

Inverse Bk+1 with Sherman Morrison formula (A+uCv)
−1
=A−1−(A−1uvA−1)�(C−1 + vA−1u) (below we remove

subscripts to simplify the notation):

�B−Bss
T B

sT Bs
+

yy
T

yT s
�

−1

=�B+ yy
T

yT s
�

−1
+

�B+ yyT

yT s�
−1

Bss
T B �B+ yyT

yT s�
−1

sT Bs−sT B(B + yT B−1y)Bs
. (2.88)

Since

�B+ yy
T

yT s
�

−1
Bss

T B�B+ yy
T

yT s
�

−1

=�B−1− B−1yy
T B−1

yT s+yT B−1y
�Bss

T B�B−1− B−1yy
T B−1

yT s+yT B−1y
�

=ss
T
−
(y

T
s)(sy

T B−1+B−1ys
T
)

yT s+yT B−1y
+
(y

T
s)

2B−1yy
T B−1

(yT s+yT B−1y)2
, (2.89)

and

s
T Bs−s

T B(B + y
T B−1y)Bs

=s
T Bs−s

T B�B−1− B−1yy
T B−1

yT s+yT B−1y
�Bs

=
(y

T
s)

2

yT s+yT B−1y
, (2.90)

we can now combine (2.88), (2.102) and (2.90) to obtain

�B−Bss
T B

sT Bs
+

yy
T

yT s
�

−1

=B−1+ ss
T

yT s
+

ss
T

y
T B−1y

(yT s)2
−

sy
T B−1
yT s

−
B−1ys

T

yT s

=B−1�I− ys
T

yT s
�−

sy
T B−1
yT s

�I− ys
T

yT s
�+

ss
T

yT s

=�B−1 − sy
T B−1
yT s

��I− ys
T

yT s
�+

ss
T

yT s

=�I− sy
T

yT s
�B−1 �I− ys

T

yT s
�+

ss
T

yT s
. (2.91)

Therefore,

B−1

k+1
= �I−

sky
T
k

yT
k sk
�B−1

k �I−
yks

T
k

yT
k sk
�+

sks
T
k

yT
k sk

. (2.92)

Let Hk =B−1

k and fl =
1

yT
k sk

. We finally conclude the update formula for BFGS to be

xk+1 = xk − –kHk∇F (xk) (2.93)
Hk+1 = �I − flsky

T
k �Hk �I − flyks

T
k � + flsks

T
k . (2.94)

30

Under review as submission to TMLR

Convergence Analysis We are going to show that BFGS is superlinear. The proof in this section is based
on the work (Broyden et al., 1973) and is reorganized for easy reading.

The following Dennis-Moré theorem is widely used to prove superlinear convergence rate because it is su�cient
and necessary. We show it below but omit the proof.
Theorem 25 (Dennis-Moré(Dennis & Moré, 1974)). Suppose F is strictly twice di�erentiable at x

∗, a zero
of F , the Jacobian mapping ∇2

F (x
∗
) is nonsigular. Let {Bk} be a sequence of matrices. The sequence {xk}

updating parameters as
xk+1 = xk −B−1

k ∇F (xk)

converges to x
∗ superlinearly if and only if

lim
k→∞

�(Bk −∇
2
F (x

∗
))(xk − x

∗
)�

�xk − x∗� .

The following Corollary is equivalent to Dennis-Moré Theorem.
Corollary 26. Suppose F is strictly twice di�erentiable at x

∗, a zero of F , and the Jacobian mapping
∇

2
F (x

∗
) is nonsigular. Let {Hk} be a sequence of matrices. The sequence {xk} updating parameters as

xk+1 = xk −Hk∇F (xk)

converges to x
∗ superlinearly if and only if

��Hk−∇
2
F (x

∗
)
−1
� (∇F (xk+1)−∇F (xk))�

�∇F (xk+1)−∇F (xk)�
= 0. (2.95)

In order to prove BFGS satisfies Corollary 26, we need the following assumption.
Assumption 27 (Nonconvex Setting). Assume F ∶ Rn

→ R is twice di�erentiable in an open set D and
suppose that for some x

∗
∈ D and p > 0

�∇
2
F (x) −∇

2
F (x

∗
)� ≤K �x − x

∗
�

p
.

Then for each u, v ∈D, define ‡=max {�v−x
∗
�

p
, �u−x

∗
�} and assume

�∇F (v) −∇F (u)−∇
2
F (x

∗
)(v−u)�≤K‡ �v−u� .

Moreover, if ∇2
F (x

∗
) is invertible, there exists ‘ > 0 and fl > 0 such that max {�v−x

∗
�

p
, �u−x

∗
�} ≤ ‘ implies

that

(1�fl) �v−u� ≤ �∇F (v) −∇F (u)� ≤ fl �v−u� . (2.96)

Theorem 28 (Convergence of BFGS; Nonconvex Setting). Let the loss function F satisfies Assumption 27.
Then for the update rule of BFGS:

xk+1 = xk − –kHk∇F (xk) (2.97)
Hk+1 = �I − flsky

T
k �Hk �I − flyks

T
k � + flsks

T
k , (2.98)

the approximate Hessian matrix satisfies

��Hk−∇
2
F (x

∗
)
−1
� (∇F (xk+1)−∇F (xk))�

�∇F (xk+1)−∇F (xk)�
= 0. (2.99)

Therefore, the parameter xk generated by BFGS converges superlinearly to the optimal point x
∗.

Proof. We first introduce two lemmas that will be used in the final proof. The proof for the following two
lemmas could be found in Appendix B.

31

Under review as submission to TMLR

Lemma 29. If H, H ∈ L(Rn
), s, y, d ∈ Rn satisfy

H =H + (s −Hy)d
T
+ d(s −Hy)

T

dT y
−

y
T
(s −Hy)dd

T

(dT y)2
(2.100)

and M ∈ £(Rn
) is a non-singular symmetric matrix, then for all A ∈ L(Rn

) it follows that

E = PT EP +M(s −Ay)(Md)
T

dT y
+

Md(s −Ay)
T MP

dT y
,

P = I − (M
−1

y)(Md)
T

dT y
,

where E =M(H −A)M, E =M(H −A)M.

Lemma 30. Let M ∈ £(Rn
) be a non-singular symmetric matrix such that

�Md −M−1
y� ≤ — �M−1

y� (2.101)

for some — ∈ [0,
1

3
] and d, y ∈ Rn with y ≠ 0. Then

a) (1 − —) �M−1
y�

2

≤ d
T

y ≤ (1 + —) �M−1
y�

2,

for non-zero E ∈ L(Rn
)

b) �E�I − (M−1y)(M−1y)T
dT y ��

F
≤
√

1 − –◊2 �E�F ,

c) �EP�F ≤�
√

1−–◊2+(1−—)
−1 �Md−M−1y��M−1y� � �E�F ,

where

P=I − (M
−1

y)(Md)
T

dT y
, –=

1−2—

1−—2
, ◊=

�EM−1
�y

�E�F �M
−1

y�
,

moreover, for ∀s ∈ Rn and ∀A ∈ L(Rn
)

d) � (s−Ay)(Md)T
dT y �

F
≤ 2 �s−Ay��M−1y� .

After introducing Lemma 29 and 30, we start with the detailed proof. For easy notation, we remove subscripts
in approximate Hessian update (2.97) and (2.98) and denote Hk+1 and xk+1 as H and x. Then update
formulas can be rewritten as

x = x − –kH∇F (x)

H = �I − sy
T

yT s
�H�I − ys

T

yT s
� +

ss
T

yT s
,

which is equivalent to

H =H + (s −Hy)s
T
+ s(s −Hy)

T

sT y
−

y
T
(s −Hy)ss

T

(sT y)2
. (2.102)

32

Under review as submission to TMLR

Obviously, BFGS is a special case of Lemma 29 with vector d = s. From Lemma 30, we know that

�PT EP�
F
≤ �P�F �EP�F

≤(1 +
�Md −M−1

y�

(1 − —) �M−1
y�
)(

√

1 − –◊2
�Md −M−1

y�

(1 − —) �M−1
y�
) �E�F

≤(

√

1 − –◊2 +
5
2
(1 − —)

−1
�Md −M−1

y�

�M−1
y�

) �E�F , (2.103)

�
M(s −Ay)(Md)

T

dT y
� ≤ 2 �M�F

�s −Ay�

M−1
y

, (2.104)

�
Md(s −Ay)

T MP
dT y

� ≤ �P�F 2 �M�F
�s −Ay�

M−1
y

≤(1 + —

1 − —
)
√

n2�MF
�s −Ay�

M−1
y
�

≤4
√

n �M�F
�s −Ay�

M−1
y

. . (2.105)

Substitute (2.103-2.105) into Lemma 29 (note that �E�F = �H −A�M) and letting A = ∇
2
F (x

∗
)
−1, we get

�H −∇2
F (x

∗
)
−1
�

M

≤

�
�
�
�
�

√

1−–◊2+
5
2
(1−—)

−1 �Md−M−1
y�

�M−1
y�

�
�
�
�
�

�H−∇2
F (x

∗
)
−1
�

M

+ 2(2
√

n + 1) �M�F
�s −∇

2
F (x

∗
)
−1

y�

�M−1y�
. (2.106)

For BFGS, let M = ∇
2
F (x

∗
)

1

2 , d = s. Assumption 27 implies

�Md−M−1
y�

�M−1
y�

≤ µ1 �s�
p (2.107)

for some constant µ1. Moreover, since

�s−∇
2
F (x

∗
)
−1

y�

≤K �∇
2
F (x

∗
)
−1
�max {�x−x

∗
�

p
, �x−x

∗
�} �s� , (2.108)

by (2.96) in Assumption 27, there exists some constant µ2 such that

�s −∇
2
F (x

∗
)
−1

y�

�M−1y�
≤ µ2 �s�

p
. (2.109)

Since �s� ≤ 2 max {�x−x
∗
�, �x−x

∗
�}, (2.106), (2.107) and (2.109) implies

�H −∇2
F (x

∗
)
−1
�

M

≤

√

1−–◊2 �H−∇2
F (x

∗
)
−1
�

M

+max{�x−x
∗
�

p
, �x−x

∗
�}

p
(–1�H−∇2

F (x
∗
)
−1
�

M
+–2), (2.110)

33

Under review as submission to TMLR

where –1 = 5(1 − —)
−1, –2 = 2µ2. After retrieving subscripts in formula (2.110), when k →∞ it is easy to see

that max {�x−x
∗
�

p
, �x−x

∗
�}

p
→ 0. Therefore,

�Hk+1 −∇
2
F (x

∗
)
−1
�

M
�

�

1 − –◊2

k �Hk−∇
2
F (x

∗
)
−1
�

M

≤ (1 − –

2
◊

2

k) �Hk−∇
2
F (x

∗
)
−1
�

M
,

and then summing over k from 0 to ∞ gives

–

2

∞
�

k=1

◊
2

k �Hk−∇
2
F (x

∗
)
−1
�

M

� �H0−∇
2
F (x

∗
)
−1
�

M
− �H∞−∇2

F (x
∗
)
−1
�

M
<∞.

Therefore,

lim
k→∞

��Hk−∇
2
F (x

∗
)
−1
�yk�

yk
= 0 (2.111)

By Dennis-Moré Theorem 25, we conclude that BFGS converges superlinearly.

2.3.3 Limited memory BFGS (LBFGS)

Previously we introduced BFGS which speeds up the second-order methods from cubic to quadratic time
complexity in the dimensionality d. However, we still need to store the whole inverted approximate Hessian
matrix Hk. BFGS is therefore still both space and time consuming for large-scale optimization problems.
It is desired to modify BFGS to make it suitable for large-scale optimization problems. This can be done
by storing the most important part of the information in matrix Hk. The resulting LBFGS method(Liu &
Nocedal, 1989; Zhu et al., 1997) does not require knowledge of the sparsity structure of the Hessian and the
following derivations show that is is simple to program. Let us derive the LBFGS method below.

Hk+1 =v
T
k Hkvk + flsks

T
k where vk = I − flyks

T
k

H1 =v
T
0

H0v0 + fl0s0s
T
0

H2 =v
T
1

v
T
0

H0v0v1 + v
T
1

fl0s0s
T
0

v1 + fl1s1s
T
1

�

Hk+1 =(v
T
k v

T
k−1�v

T
0
)H0(v0k−1vk)

+ (v
T
k v

T
k−1�v

T
0
)fl0s0s

T
0
(v0k−1vk)

�

+ (v
T
k v

T
k−1)flk−2sk−2s

T
k−2(vk−1vk)

+ v
T
k flk−1sk−1s

T
k−1vk

+ flksks
T
k , (2.112)

Hk+1 requires the whole sequence {si, yi}
k
i=0. We construct the following approximate formula with only m

data points.

Hk =(v
T
k−1T

k−m)H0

k(vk−mk−1)
+ flk−m(vT

k−1T
k−m+1

)sk−ms
T
k−m(vk−m+1k−1)

�

+ flk−2v
T
k−1sk−2s

T
k−2vk−1

+ flk−1sk−1s
T
k−1. (2.113)

The resulting pseudocode for LBFGS is provided below.

In Numerical Optimization (Nocedal & Wright, 2006) typically LBFGS is presented as a two-loop recursion
algorithm (see Algorithm 2.1).

34

Under review as submission to TMLR

2.4 Convergence Analysis for LBFGS

In this section, we are going to prove that LBFGS is globally R-linearly convergent (Definition 31) to the
optimal point x

∗ (Liu & Nocedal, 1989). In convergence analysis, we update the learning rate ÷k with line
search. Moreover, we prefer to rewrite LBFGS algorithm 2.1 to directly update the approximate Hessian
matrix Bk instead of Hk, as shown is Algorithm 2.2.
Definition 31 (R-linearly convergent). Given an objective function F and the sequence {xk}, there exists a
constant 0 ≤ R < 1 such that F (xk) − F (x∗) ≤ R

k
(F (x0) − F (x∗)).

Algorithm 2.1 LBFGS (Pseudocode 1: two-loop recursion)

1: Input: Init x0 ∈ RN , F ∶RN
→R, gradient ∇F ∶RN

→RN , limited-memory size m, learning rate ÷k

2: Init: H0

0
= I, r0 = ∇F (x0), k = 0

3: while not converged do
4: xk+1 = xk − ÷krk

5: if k >m then drop (sk−m, yk−m)

6: sk+1 = xk+1 − xk, yk+1 = ∇F (xk+1) −∇F (xk)

7: q=∇F (xk+1), H0

k+1
=

sT
k+1yk+1

yT
k+1yk+1 I, flk+1=

1

sT
k+1yk+1

8: for i=1,...,m do
9: –i = flk+1−is

T
k+1−iq

10: q = q − –iyk+1−i

11: for i=1,...,m do
12: —i = flk+1−iy

T
k+1−ir

13: rk+1 = rk + (–i − —i)sk+1−i

14: k = k + 1
15: return xk

Algorithm 2.2 LBFGS (Pseudocode 2 - line search learning rate)

1: Input:Init x0 ∈ RN , F ∶ RN
→ R, gradient ∇F ∶ RN

→ RN , limited-memory size m, learning rate ÷k

computed from line search (0 < —
′
<

1

2
, —
′
< — < 1)

2: Init: B0

0
= I, k = 0

3: while not converged do
4: dk = −B−1k ∇f(xk)

5: xk+1 = xk + ÷kdk

6: Where ÷k satisfies the Wolfe conditions:
7:

F (xk + ÷kdk) ≤ F (xk) + —
′
÷k∇f(xk)dk (2.114)

∇F (xk + ÷kdk) ≥ —∇F (xk)dk (2.115)

8: if k >m then drop (sk−m, yk−m)

9: sk+1=xk+1 − xk, yk+1=∇f(xk+1) −∇f(xk)

10: Denote s̃kl = sk+1−l, ỹkl = yk+1−l

11: for l=1,...,m-1 do

Bl+1
k =Bl

k −
Bl

ks̃kls̃
T
klB

l
k

s̃T
klB

l
ks̃kl

+
ỹklỹ

T
kl

ỹT
kls̃kl

(2.116)

12: Bk+1 =Bm
k , k = k + 1

13: return xk

We make the following assumption for the objective function F to guarantee LBFGS is R-linear.

35

Under review as submission to TMLR

Assumption 32 (Convex Setting). The objective function F is twice continuously di�erentiable and level
set D = {x ∈ Rn

∶ F (x) ≤ F (x0)} is convex. The Hessian matrix of F is denoted as G. There exist positive
constant M1 and M2 such that

M1 �z�
2
≤ z

T G(x)z ≤M2 �z�
2 (2.117)

for all z ∈ Rn and all x ∈ D.
Theorem 33 (Convergence of LBFGS; Convex Setting). Let x0 be a starting point for LBFGS updates. Let
F satisfies Assumption 32 and assume that B0

ks are chosen so that �B0

k� and �B0

k
−1
� are bounded. Then for

all positive definite B0

k, Algorithm 2.2 generates a sequence {xk} that converges to x
∗. Moreover there is a

constant R ∈ (0, 1) such that

F (xk) − F (x
∗
) ≤ R

k
[F (x0) − F (x

∗
)], (2.118)

which implies that {xk} converges to x
∗ R-linearly.

Proof. If we define

Gk = �

1

0

G(xk + ·sk)d·, (2.119)

then

yk =Gksk. (2.120)

Thus (2.117) and (2.120) implies

M1 �sk�
2
≤ y

T
k sk ≤M2 �sk�

2
, (2.121)

and

�yk�
2

yT
k sk

=
skG

2

ksk

sT
k Gksk

≤M2. (2.122)

Then from (2.116), (2.122) and boundness of �B0

k�, the trace satisfies

tr(Bk+1)≤tr(B0

k) +

m−1
�

l=0

�ỹkl�
2

ỹT
kls̃kl

≤tr(B0

k) +mM2 ≤M3 (2.123)

for some constant M3. Similarly, the determinant satisfies

det(Bk+1) =det(B0

k)

m−1
�

l=0

ỹ
T
kls̃kl

s̃T
klB

l
ks̃kl

=det(B0

k)

m−1
�

l=0

ỹ
T
kls̃kl

s̃T
kls̃kl

s̃
T
kls̃kl

s̃T
klB

l
ks̃kl

. (2.124)

By (2.123), the largest eigenvalue of Bl
k is less than M3 and together with (2.124) we get

det(Bk+1) ≥ det(B0

k)(M1�M3)
m
≥M4, (2.125)

for some positive constant M4. Therefore, by combining (2.123) and (2.125) we conclude that there is a
constant ” > 0 such that

cos ◊k =
s

T
k Bksk

�sk� �Bksk�
≥ ”. (2.126)

36

Under review as submission to TMLR

Then from the line search condition for the learning rate ÷k ((2.114)-(2.115) in Algorithm 2.2) and Assumption
32 we conclude that there exists c > 0 such that

F (xk+1) − F (x
∗
) ≤ (1 − c cos2

◊k)(F (xk) − F (x
∗
)). (2.127)

We have already proven (2.118), where R = 1 − c cos2
◊k. From (2.117) we obtain

1
2

M1 �xk − x
∗
� ≤ F (xk) − F (xk).

We combine this with (2.118) to get �xk − x
∗
� ≤ R

k
2 [2(F (x0) − F (x

∗
))�M1]

1

1 , so that the sequence {xk} is
R-linearly convergent.

3 Landscape-Aware Deep Learning Optimizers

This section first justifies the importance of studying the geometric properties of the landscape of the loss
function of deep neural networks. Then we move to the theoretical analysis of specific DL optimization
methods that adapt to the properties of the underlying loss landscape.

Loss function in DL Training a deep network requires finding network parameters that minimize the loss
function F (x) (x denotes the set of parameters) that is defined as the sum of discrepancies between target
data labels and their estimates obtained by the network. This sum is computed over the entire training
data set. Due to the multi-layer structure of the network and non-linear nature of the network activation
functions, F (x) is a non-convex function of network parameters. Increasing the number of training data
points complicates this function since it increases the number of its summands. Increasing the number of
parameters (by adding more layers or expanding the existing ones) increases the complexity of each summand
and results in the growth, which can be exponential (Anandkumar et al., 2015), of the number of critical
points of F (x). A typical use case for DL involves massive (i.e., high-dimensional and/or large) data sets
and very large networks (i.e., with millions of parameters), which results in an optimization problem that is
heavily non-convex and di�cult to analyze.

Figure 3: Consider the train and test loss
(resp. Ftrain and Ftest), which have simi-
lar shape but are shifted with respect to
each other. The local minimum that lies
in the flat region of the landscape (x∗

flat
)

admits a similar value of the train and test
loss, despite the shift between them, and
thus generalizes well (in fact this property
holds for network parameters that lie close
enough to x

∗
flat

as well). The local mini-
mum that lies in the narrow region of the
landscape (denoted as x

∗
non-flat

) admits a
significantly larger value of the test loss
compared to the train loss, due to the shift
between them, and thus generalizes very
poorly.

The shape of the DL loss function is poorly understood. Most of
what we know is either based on unrealistic assumptions and/or
holds only for shallow (two-layer) networks. The existing liter-
ature emphasizes i) the proliferation of saddle points (Dauphin
et al., 2014; Baldi & Hornik, 1989; Saxe et al., 2014) including
degenerate or hard to escape ones (Ge et al., 2015; Anandkumar
& Ge, 2016; Dauphin et al., 2014), ii) the equivalency of local
minima to the global minimum (Chaudhari & Soatto, 2015; Ha-
e�ele & Vidal, 2015; Janzamin et al., 2015; Kawaguchi, 2016;
Soudry & Carmon, 2016; Freeman & Bruna, 2017; Nguyen &
Hein, 2017; Vidal et al., 2017; Du & Lee, 2018; Safran & Shamir,
2016; 2017; Hardt & Ma, 2017; Ge et al., 2017; Yun et al., 2018;
Draxler et al., 2018; Trager et al., 2020), and iii) the existence
of a large number of isolated minima and few dense regions
with lots of minima close to each other(Baldassi et al., 2015;
2016a;b) (shown for shallow networks with discrete weights).
(Choromanska et al., 2015a;b) has examined properties of the
DL loss landscape using tools from statistical physics and show
that as the network size increases the variance (and the mean)
of the train and test loss values decreases and thus: i) the re-
covered minima become equivalent and ii) becoming stuck in
poor minima is a major problem only for smaller networks (later
confirmed in (Goodfellow & Vinyals, 2015)).

In order to design e�cient optimization algorithms for DL we
need to understand which regions of the DL loss landscape lead

37

Under review as submission to TMLR

to good generalization and how to reach them. Existing work (Feng & Tu, 2020; Chaudhari et al., 2017;
2019; Hochreiter & Schmidhuber, 1997; Jastrzebski et al., 2018; Wen et al., 2018; Keskar et al., 2017a;
Sagun et al., 2018; Simsekli et al., 2019; Jiang et al., 2019) shows that properly regularized SGD recovers
solutions that generalize well and provides only a weak evidence that these solutions lie in wide valleys of the
landscape. Prior studies (Chaudhari et al., 2017; 2019) demonstrated that the spectrum of the Hessian at a
well-generalizing local minimum of the loss function is often almost flat, i.e., the majority of eigenvalues are
close to zero. An intuitive illustration of why flatness potentially leads to better generalization is presented in
Figure 3. (Bisla et al., 2022) provides a comprehensive study analyzing that the good generalization abilities
of the DL model correlate with the properties of the loss landscape around recovered solutions.

There exists some approaches that aim at adapting the DL optimization strategy to the properties of
the loss landscape and encouraging the recovery of flat optima. They can be summarized as i) regular-
ization methods that regularize gradient descent strategy with sharpness measures such as the Minimum
Description Length (Hochreiter & Schmidhuber, 1997), local entropy (Chaudhari et al., 2017), or variants of
‘-sharpness (Foret et al., 2021; Keskar et al., 2017b), and low-pass-filtering strategies (Bisla et al., 2022) ii)
surrogate methods that evolve the objective function according to the di�usion equation (Mobahi, 2016),
iii) averaging strategies that average model weights across training epochs (Izmailov et al., 2018; Cha et al.,
2021), and iv) smoothing strategies that smoothens the loss landscape by introducing noise in the model
weights and average model parameters across multiple workers run in parallel (Wen et al., 2018; Haruki et al.,
2019; Lin et al., 2020) (such methods focus on distributed training of DL models with an extremely large
batch size - a setting where SGD and its variants struggle).

The next section discusses in detail several popular optimization methods targeted at finding the flat minima
in the DL optimization landscape. Let S = {›1,�, ›n} denote the set of n samples drawn i.i.d. from an
unknown distribution D. Let f(x; ›) denote the loss of the model parametrized by x for a specific example ›.
Denote the true loss as F (x) ∶= E›∼Df(x; ›) and the empirical loss as FS(x) ∶= 1

n ∑
n
i=1

f(x; ›). We use the
above notations for Section 3.

3.1 Sharpness-Aware Minimization (SAM)

Instead of seeking the optimal point for the original empirical training loss function FS , Sharpness-Aware
Minimization (SAM) (Foret et al., 2021) targets parameters within a neighborhood where the loss is uniformly
low. This formulation leads to a minmax optimization problem that underlines the SAM method and that
allows for e�cient implementation of gradient descent:

min
x

F
SAMS (x) + ⁄ �x�

2

2
(3.1)

s.t. F
SAMS (x) = max�‘�p≤fl

FS(x + ‘)

where fl > 0 is a hyperparameter and p ∈ [1,∞). (Foret et al., 2021) proposed default value 0.05 for the
selection of hyperparameter fl and empirically showed that p = 2 (L-2 norm) is typically optimal among
di�erent norms.

SAM problem (3.1) could be restated as

min
x

FS(x) + max�‘�p≤fl
[FS(x + ‘) − FS(x)] + ⁄ �x�

2

2
. (3.2)

The second term in square brackets captures the sharpness of the empirical loss FS , and we could treat it as
a regularization term based on the sharpness measure. Therefore, SAM is indeed a regularization method
that regularize gradient descent strategy with a sharpness measure.

The di�culty in solving the minimax problem 3.1 with gradient-base method lies in the computation of the
derivative w.r.t parameter x throughout the bilevel framework. (Foret et al., 2021) first approximate the

38

Under review as submission to TMLR

inner-level maximization problem via first-order Taylar expansion of FS(x + ‘) w.r.t ‘ around 0:

‘
∗
(x) ∶=arg max�‘�p≤fl

FS(x + ‘)

≈arg max�‘�p≤fl
FS(x) + ‘

�
∇xFS(x)

=arg max�‘�p≤fl
‘
�
∇xFS(x). (3.3)

The inner-level maximization problem can reformulated as a classical dual norm problem of the form:

�u�∗ = sup{u�v� �u�p ≤ 1}, (3.4)

with u = ‘�fl, v = fl∇xFS(x). Since the dual norm of lp norm is lq norm, where 1�p + 1�q = 1. we have
�u�∗ = �u�q, and the solution for dual norm problem (3.4) is

u
∗
= sign(v)

�v�
q−1

(�v�
q
q)

1�p
where 1�p + 1�q = 1. Therefor the Solution for Problem (3.3) is:

‘̂(x) = flsign(∇xFS(x)) �∇xFS(x)�q−1

��∇xFS(x)�qq�1�p
, (3.5)

where 1�p + 1�q = 1. When p = 2, formula (3.5) is simpificated as

‘̂(x) = fl
∇xFS(x)
�∇xFS(x)�2

. (3.6)

After substituting (3.5) into (3.1), we compute the gradient ∇xF
SAMS (x) as follows

∇xF
SAMS (x) ≈∇xFS(x + ‘̂(x)) =

d(x + ‘̂(x))

dx
∇xFS(x)�x+‘̂(x))

=∇xFS(x)�x+‘̂(x)) + d‘̂(x)

dx
∇xFS(x)�x+‘̂(x)) (3.7)

This approximation could be directly computed via chain rule. However, ‘̂(x) is the function of the first-
order gradient ∇xFS(x) and the computation of d‘̂(x)

dx requires Hessian of FS(x), which computation is
time-comsuming. To further accelerate the gradient computation, (Foret et al., 2021) drops the second-order
terms to obtain the final gradient approximation:

∇xF
SAMS (x) ≈ ∇xFS(x)�x+‘̂. (3.8)

The approximation (3.8) without second-order information yields the following SAM algorithm (Algorithm
3.1). (Foret et al., 2021) empirically proves that this approximation is of good quality in a variety of settings.

Algorithm 3.1 SAM
Inputs: xk: params Hyperpar: fl: neighbourhood size, ÷: step size
Init param x0

while not converged do
Sample data batch B = (÷1�÷m)

Compute gradient ∇xFB(x) of batch training loss
Compute ‘̂(x) w.r.t formula (3.5)
Compute gradient approximation for the SAM objective g = ∇xFS(x)�x+‘̂

xk+1 = xk − ÷ ∗ g // Update params

39

Under review as submission to TMLR

Generalization Ability. It should be noted that no theoretical generalization guarantees have been proven
in the literature for the SAM method. However, the empirical results in (Foret et al., 2021; Kwon et al., 2021)
verify that SAM really generalizes better than vanilla SGD.

3.2 Entropy-SGD

Motivated by the local geometry of the energy landscape shown in Figure 4, (Chaudhari et al., 2017) proposed
the Entropy-SGD algorithm that reshapes the problem of optimizing the loss function into the problem of
optimizing the local entropy of the loss, arguing that it prioritizes the discovery of well-generalizing solutions
within broad or flat regions of the energy landscape and steers the optimizer away from poorly-generalizing
solutions found in steep valleys of the loss landscape.

3.2.1 Local Entropy

Figure 4: Local entropy concentrates on wide
valleys in the energy landscape. This figure is
taken from (Chaudhari et al., 2017) (Figure
2).

The dicusson of local entropy builds upon (Baldassi et al.,
2016a) and (Chaudhari et al., 2017). Formally, for a parameter
vector x, consider a Gibbs distribution corresponding to a
given energy landscape F (x):

P (x; —) = Z
−1

— exp(−—F (x)) (3.9)

where — is the inverse temperature and Z— is a normalizing
constant, also called as partition function. When — →∞, the
distribution concentrates on the global minimum of energy
function F (x). However, the global minimum may in fact gen-
eralize very poorly. Using the toy energy landscape illustrated
in Figure 4 as an example, we identify xrobust and xnon-robust

as two local minima in the energy landscape, situated in a flat
and sharp valley, respectively. Despite the energy at xnon-robust

being significantly lower than that at xrobust, we prefer xrobust

due to its superior generalization. Consequently, this necessitates the introduction of a modified Gibbs
distribution to emphasize the discovery of the flat regions in the loss landscape:

P (x
′; x, —, “) = Z

−1

x,—,“ exp(−—F (x
′
) − —

“

2
�x − x

′
�

2

2
), (3.10)

where — is still the inverse temperature and “ is the "scope" hyperparameter that controls the bias of modified
distribution. When “ → 0, the modified Gibbs distribution converges to the original Gibbs distribution. By
increasing “, the modified distribution concentrates on the neighbourhood around location x. When “ →∞,
the modified Gibbs distribution converges to the uniform distribution. Without loss of generality, we could set
the inverse temperature — to 1 because “ a�ords us similar control over the Gibbs distribution. (Chaudhari
et al., 2017) proceeds by reshaping the original loss function to augment flat regions in the landscape that lie
low and de-emphasize the sharp valleys. It is done through the local entropy defined with respect to the
modified Gibbs distribution as:
Definition 34 (Local Entropy). Given the energy function F (x), the local entropy is defined as the log-
partition function of modified Gibbs distribution (3.10), i.e

F (x, “) = log�
x′

exp(−F (x
′
) −

“

2
�x − x

′
�

2

2
), (3.11)

where “ is the "scope" hyperparameter that regulates the extent to which the neighborhood influences the
location x.

Remark. Figure 4 shows the negative local entropy −F (x, “) for two di�erent values of “. The lower the “

is, the smoother the modified energy landscape is compared to the original landscape.

40

Under review as submission to TMLR

3.2.2 Algorithm

Instead of minimizing the original loss function, Entropy-SGD minimizes the negative local entropy defined
in Section 3.2.1. This section discusses how the algorithm is constructed via Langevin dynamics and several
implementation details.

The optimization problem solved by Entropy-SGD is given as:

min
x
−F (x, “;S), (3.12)

where the local entropy F is dependent on the sampled dataset S explicitly:

F (x, “;S) = log�
x′

exp(−FS(x′) − “

2
�x − x

′
�

2

2
)dx

′

= log�
x′

exp�− 1
n

n

�

i=1

f(x
′; ›i) −

“

2
�x − x

′
�

2

2
�dx

′
. (3.13)

The gradient for the negative local entropy is:

−∇F (x, “;S) = “(x −Ex′∼P [x
′
]), (3.14)

where the latent variable x
′ is satisfies the modified Gibbs Distribution:

P (x
′; x, “,S)∝ exp�− 1

n

n

�

i=1

f(x
′; ›i) −

“

2
�x − x

′
�

2

2
� . (3.15)

The gradient requires the expectation of modified Gibbs distribution, which is hard to compute. Entropy-SGD
however approximate its gradient using the stochastic gradient Langevin dynamics (SGLD) method, a Markov
chain Monte-Carlo (MCMC) technique.
Definition 35 (Stochastic Gradient Langevin Dynamics (SGLD)). Given some parameter x, its prior
distribution p(x), and a set of datapoints S = {›1, ..., ›n}, the Langevin dynamics samples from the posterior
distribution p(x�S)∝ p(x)∏

n
i=1

p(›i�x) by updating the chain:

�xt =
÷t

2
�∇ log p(xt) +

n

�

i=1

∇ log p(›i�xt)� +
√

÷t‘t,

where ‘t ∼ N(0, ‘
2
) is the Gaussian noise and ÷t is the learning rate. For a sample mini-batch B = {›k1

, ..., ›km}

from S, the SGLD is given as:

�xt =
÷t

2
�∇ log p(xt) +

m

n

m

�

i=1

∇ log p(›ki �xt)� +
√

÷t‘t.

The modified Gibbs distribution defined in (3.15) could be decomposed as:

P (x
′; x, “,S)∝ exp�− 1

m

m

�

i=1

f(x; ›ki) −
“

2
�x − x

′
�

2

2
�

= exp(−“

2
�x − x

′
�

2

2
)

m

�

i=1

exp�− 1
m

f(x; ›ki)� . (3.16)

One can combine (3.16) with Definition 35 and observe that given the sampled mini-batch B = {›k1
, ..., ›km} ⊂ S

of size m, the update rule for sampling x
′ with SGLD algorithm is:

x
′
= x
′
−

÷
′
t

2
�

1
m

m

�

i=1

∇x′f(x′, ›ki) − “(x − x
′
)� +

�

÷′t‘t. (3.17)

Entropy-SGD uses moving average to compute the expectation (denoted as µ) for latent variable x
′:

µ = (1 − –)µ + –x
′
.

41

Under review as submission to TMLR

This combined with (3.14) gives the approximated gradient update of the negative local entropy:

x = x − ÷“(x − µ).

The pseudocode for Entropy-SGD is shown in Algorithm 3.2.

Algorithm 3.2 Entropy-SGD
Inputs: x: params, K: number of Langevin iterations
Hyperpar: “: scope, ÷: step sizes, ÷

′: step size for SGLD
//SGLD iterations
x
′
= x, µ = x

for # of SGLD iterations < K do
Sample mini-batch B = (›k1

�›km)

Update latent variable x
′ with equation (3.17)

Compute the moving average µ = (1 − –)µ + –x
′ (– = 0.75 suggested)

//Update param x

x = x − ÷“(x − µ)

3.2.3 Generalization Ability

This section discuss the generalization ability of Entropy-SGD. It shows that Entropy-SGD results in a
smoother loss function and obtains better generalization error than when optimizing the original objective.

Lemma 36. (Lemma 2 in (Chaudhari et al., 2017)) Assume the di�erentiable original loss function f(x; ›) ∶

Rd
→ R is M-Lipschitz continuous and L-smooth with respect to l2-norm. Additionally assume that no

eigenvalue of the Hessian ∇2

xxf(x; ›) lies in the set [−2“ − c, c] for some small c > 0. Then the local entropy
F (x, “;S) defined in Definition 34 is M

1+“−1c -Lipschitz continuous and L
1+“−1c -smooth.

Proof. Recall the gradient for the negative local entropy is:

−∇F (x, “;S) = “(x −Ex′∼P [x
′
]),

where

P (x
′; x, “,S)∝ exp�− 1

n

n

�

i=1

f(x
′; ›i) −

“

2
�x − x

′
�

2

2
� .

Consider the term:

x −Ex′∼P [x
′
]

=x −Z
−1

x,“,S �
x′

x
′ exp�− 1

n

n

�

i=1

f(x
′; ›i) −

“

2
�x − x

′
�

2

2
�dx

′

≈x −Z
−1

x,“,S �
s
(x + s) exp�− 1

n

n

�

i=1

f(x; ›i) −
1
n

n

�

i=1

∇xf(x; ›i)
�
s

−
1
2

s
�
�“ +

1
n

n

�

i=1

∇
2

xxf(x; ›i)� s�dx
′

42

Under review as submission to TMLR

x −Ex′∼P [x
′
]

=x �1 −Z
−1

x,“,S �
s

exp�− 1
n

n

�

i=1

f(x; ›i) −
1
n

n

�

i=1

∇xf(x; ›i)
�
s

−
1
2

s
�
�“ +

1
n

n

�

i=1

∇
2

xxf(x; ›i)� s�dx
′
�

−Z
−1

x,“,S �
s

s exp�− 1
n

n

�

i=1

f(x; ›i) −
1
n

n

�

i=1

∇xf(x; ›i)
�
s

−
1
2

s
�
�“ +

1
n

n

�

i=1

∇
2

xxf(x; ›i)� s�dx
′

= −Z
−1

x,“,S exp�− 1
n

n

�

i=1

f(x; ›i)��
s

s exp�− 1
n

n

�

i=1

f(x; ›i) −
1
n

n

�

i=1

∇xf(x; ›i)
�
s

−
1
2

s
�
�“ +

1
n

n

�

i=1

∇
2

xxf(x; ›i)� s�dx
′
.

The above expression is the mean of a distribution. We could approximate it using the saddle point method
as the value of s that minimizes the exponent to get

x −Ex′∼P [x
′
] ≈ �“ +

1
n

n

�

i=1

∇
2

xxf(x; ›i)�

−1

�
1
n

n

�

i=1

∇xf(x; ›i)� .

For notation simplicity, denote f(x) =
1

n ∑
n
i=1

f(x; ›i). Obviously, the linear combination function f is still
M -Lipschitz continuous and L-smooth. And the formulation is simplified as:

x −Ex′∼P [x
′
] ≈ �“ +∇

2

xxf(x)�
−1

∇f(x).

Denote A(x) = �“ +∇
2

xxf(x)�
−1. For arbitrary x, y we have:

�∇F (x, “;S) −∇F (y, “;S)� = �A(x)∇f(x) −A(y)∇f(y)� ≤ Lsupx �A(x)� �x − y� .

Since no eigenvalue of the Hessian ∇2

xxf(x; ›) lies in the set [−2“ − c, c] for some small c > 0, we have

supx �A(x)� ≤
1

1 + “−1c
. (3.18)

Theorem 37. Assume the di�erentiable original loss function f(x; ›) ∶ Rd
→ R is M-Lipschitz continuous

and L-smooth with respect to l2-norm. Denote the stability gap of Entropy-SGD and SGD as ‘Entropy-SGD

and ‘SGD respectively, we have

‘Entropy-SGD � �
M

K
�

�1− 1

1+“−1c
�L

‘SGD, (3.19)

where K is the total number of iterations it runs.

Proof. From Theorem 10 that bounds the stability of an optimization algorithm through the smoothness of
its loss function and the number of iterations of SGD run on the training set, we know that the stability
bound for SGD after K iterations, denoted as ‘SGD, is:

‘SGD �
1
n

M
1�(1+L)

K
1−1�(1+L)

. (3.20)

This combined with Lemma 36 gives ‘Entropy-SGD � �
M
K
�
�1− 1

1+“−1c
�L

‘SGD.

Remark. Theorem 37 shows that Entropy-SGD generalizes better than SGD for all K >M if they both
converge after K passes over the samples.

43

Under review as submission to TMLR

3.3 Low-pass filter SGD (LPF-SGD)

Similar to SAM, Low-pass filter SGD (LPF-SGD) (Bisla et al., 2022) algorithm also focuses on recovering the
neighbourhood in the loss landscape with a uniformly low loss instead of finding the global minimum. The
concept of LPF-SGD is to smooth the original loss with Gaussian kernel to formulate a new optimization
problem. (Bisla et al., 2022) first introduces the definition of Low-pass filter (LPF) measure to quantify the
sharpness of local minimum.
Definition 38 (Low-pass filter (LPF) measure). Let K ∼N (0, ‡

2
I) be a kernel of a Gaussian filter. LPF

based sharpness measure at solution x
∗ is defined as the convolution of the loss function with the Gaussian

filter computed at x
∗:

(F �K)(x
∗
) = � F (x

∗
− ·)K(·)d·. (3.21)

LPF-SGD incorporate the LPF sharpness measure into the DL optimization strategy to actively search for
the flat regions in the DL loss landscape. Guiding the optimization process towards the well-generalizing flat
regions of the DL loss landscape using LPF based measure can be done by solving the following optimization
problem

min
x

F
LPF-SGD

(x) =min
x
(F �K)(x) =min

x
� F (x − ·)K(·)d·, (3.22)

where K is a Gaussian kernel and F (x) is the training loss function. (Bisla et al., 2022) solve the problem
given in Equation 3.22 using SGD. The gradient of the convolution between the loss function and the Gaussian
kernel is

∇xF
LPF-SGD

(x) = ∇x(F �K)(x)

=∇x �

∞
−∞ F (x − ·)K(·)d· (3.23)

≈
1

M

M

�

i=0

∇x(F (x − ·i)), (3.24)

where K ∼ N (0, “�) and the matrix � to is set to be proportional to the norm of the parameters in each
filter of the network, i.e., we set � = diag(��x

t
1
��, ��x

t
2
�����x

t
k ��), where x

t
k is the weight matrix of the k

th filter
at iteration t and “ is the LPF radius. “ in the Gaussian kernel controls the smoothness of loss landscape.
Since the more we progress with the training, the more we care to recover flat regions in the loss landscape, “

is progressively increasing during the training process:

“t = “0(–�2(− cos(tfi�K) + 1) + 1), (3.25)

where K is total number of iterations (epochs * gradient updates per epoch) and – is set such that
“K = (– + 1) ∗ “0.

The pseudocode for the LPF-SGD algorithm is shown in 3.3.

3.3.1 Generalization Ability

(Bisla et al., 2022) theoretically shows that LPF-SGD converges to the optimal point with smaller generalization
gap than SGD. The paper first formally confirms that indeed Gaussian LPF leads to a smoother objective
function and then shows that SGD run on this smoother function recovers solution with smaller generalization
error than in case of the original objective. The author first analyze the case when the variance of Gaussian
kernel is identity � = ‡

2
I and then move to the analysis for non-scalar � = “diag(��x1��, ��x2�����xk ��).

44

Under review as submission to TMLR

Algorithm 3.3 LPF-SGD
Inputs: x

t: weights
Hyperpar: “: filter radius, M : # MC iterations
while not converged do

Sample data mini-batch B = (›1,�, ›n)

Split batch into M splits B = {B1�BM}

g ← 0
for i=1 to M do

� = diag(��x
t
i ��

k
i=1
)

g = g +
1

M∇xL(Bi, x
t
+N (0, “�))

x
t+1
= x

t
− ÷ ∗ g // Update weights

Identical kernel covariance. Assume K ∼N (0, ‡
2
I). Denote the distribution N (0, ‡

2
I) as µ. Define the

convolution of original loss f(x; ›) with the Gaussian kernel K as

fµ(x; ›) = (f(⋅; ›)�K)(x) = �Rd
f(x − · ; ›)µ(·)d·

= EZ∼µ[f(x +Z; ›)] (3.26)

where d is the number of dimensions of the parameter and Z is a random variable satisfying distribution µ.
The loss function smoothed by the Gaussian LPF, that we denote as fµ, satisfies the following theorem.

Theorem 39. (Theorem 1 in (Bisla et al., 2022)) Let µ be the N (0, ‡
2
Id×d) distribution. Assume the

di�erentiable loss function f(x; ›) ∶ Rd
→ R is M -Lipschitz continuous and L-smooth with respect to l2-norm.

The smoothed loss function fµ(x; ›) is defined as (3.26). Then the following properties hold:

i) fµ is M -Lipschitz continuous.

ii) fµ is continuously di�erentiable; moreover, its gradient is min{M
‡ , L}-Lipschitz continuous, i.e., fµ

is min{M
‡ , L}-smooth.

iii) If f is convex, f(x; ›) ≤ fµ(x; ›) ≤ f(x; ›) + ‡M
√

d.

In addition, for each bound i)-iii), there exists a function l such that the bound cannot be improved by more
than a constant factor.

Proof for Theorem 39 is deferred to Appendix C. Theorem 39 confirms that indeed fµ is smoother than the
original objective f . At the same time, if M

‡ < L, increasing ‡ leads to an increasingly smoother objective
function, which is consistent with our intuition.

Recall Theorem 10 that bounds the stability of an optimization algorithm through the smoothness of its loss
function and the number of iterations on the training set for SGD algorithm, we have already bound the
stability gap for SGD and we denoted the gap as ‘SGD. Then we will move into the stability gap ‘LPF-SGD

for LPF-SGD algorithm. Let µ be distribution N (0, ‡
2
I). By the definition of Gaussian LPF (Definition 38),

the true loss and the empirical loss with respect to the Gaussian LPF smoothed function are

F
LPF-SGD

(x) ∶= (F �K)(x) = �

∞
−∞ F (x − ·)µ(·)d· = EZ∼µ[F (x +Z)], (3.27)

F
LPF-SGDS (x) ∶= (FS �K)(x) = �

∞
−∞ FS(x − ·)µ(·)d· = EZ∼µ[FS(x +Z)], (3.28)

45

Under review as submission to TMLR

where K is the Gaussian LPF kernel satisfies distribution µ and Z is a random variable satisfies distribution
µ. Since F (x) ∶= E›∼Df(x; ›) and FS(x) ∶= 1

m ∑
m
i=1

f(x; ›), L
LPF-SGD and L

LPF-SGDS could be rewritten as

F
LPF-SGD

(x)=�

∞
−∞E›∼D[f(x − · ; ›)]µ(·)d· =E›∼D ��

∞
−∞f(x − · ; ›)µ(·)d·�=E›∼D [fµ(x; ›)] (3.29)

F
LPF-SGDS (x)=�

∞
−∞

1
m

m

�

i=1

f(x; ›)µ(·)d· =
1
m

m

�

i=1

��

∞
−∞f(x − · ; ›i)µ(·)d·� =

1
m

m

�

i=1

fµ(x; ›i). (3.30)

Therefore, combine Theorem 39 with Theorem 10 we could conclude that the stability gap for LPF-SGD is

‘LPF-SGD ≤
1 + 1�cL̂

n − 1
(2cM

2
)

1

cL̂+1 K
cL̂

cL̂+1 .

where L̂ =min{M
‡ , L}, K is the number of total iterations. Then we could have the following Proposition 40

which supports that LPF-SGD generalize better than SGD.
Theorem 40. (Generalization Guarantee of LPF-SGD for � = ‡

2
I; Nonconvex Setting; Theorem 3 in (Bisla

et al., 2022)) Let µ be the N (0, ‡
2
I) distribution. Assume loss function f(◊; ›) ∶Rd

→R is M -Lipschitz and
L-smooth. The smoothed loss function lµ is defined as (3.26). Suppose that we run SGD and LPF-SGD for
K steps with non-increasing learning rate –k ≤ c�k. Denote the stability gap of SGD and LPF-SGD as ‘SGD

and ‘LPF-SGD, respectively. Then the ratio of stability gap is

fl =
‘LPF-SGD

‘SGD

=
1 − p

1 − p̂
�

2cM

K
�

p̂−p

= O(
1

K p̂−p
), (3.31)

where p =
1

cL+1
, p̂ =

1

c min{M
‡ ,L}+1

.

Finally, the following two properties hold:

i) If ‡ >
M
L and K � 2cM

2
�

1−p
1−p̂�

1

p̂−p , fl� 1.

ii) If ‡ >
M
— and K > 2cM

2 exp(2

1−p), increasing ‡ leads to a smaller fl.

Proof. For easy notation, denote L̂ =min{M
‡ , L}, ‘SGD and ‘LPF-SGD are stability gaps of SGD and LPF-SGD,

respectively. From Theorem 10 and based on the facts that f is M -Lipschitz continuous and L-smooth and
that smoothed objective fµ is M -Lipschitz continuous and min{M

‡ , L}-smooth, the upper bounds for the
stability gaps are

‘SGD ≤
1 + 1�cL

n − 1
(2cM

2
)

1

cL+1 K
cL

cL+1 ,

‘LPF-SGD ≤
1 + 1�—̂c

n − 1
(2cM

2
)

1

cL̂+1 K
cL̂

cL̂+1 .

Denote p =
1

cL+1
, p̂ =

1

cL̂+1
, the bound could be rewritten as

‘SGD ≤
1

(n − 1)(1 − p)
(2cM

2
)

p
K

1−p
,

‘LPF-SGD ≤
1

(n − 1)(1 − p̂)
(2cM

2
)

p̂
K

1−p̂
.

Then the ratio of GE bound is

fl =
‘LPF-SGD

‘SGD

=
1 − p

1 − p̂
�

2cM

K
�

p̂−p

= O(
1

K p̂−p
).

i) When ‡ >
M
— and K > 2cM

2
�

1−p
1−p̂�

1

p̂−p , fl =
1−p
1−p̂(

2cM2

K)
p̂−p
< 1. Therefore, if ‡ >

M
— and K �

2cM
2
�

1−p
1−p̂�

1

p̂−p , fl� 1 and property i) holds.

46

Under review as submission to TMLR

ii) Denote x ∶= p̂ − p, the reciprocal of approximated ratio could be re-written as

1
fl
≈ (1 − p̂ − p

1 − p
)(

K

2cM2
)

p̂−p
= (1 − x

1 − p
)(

K

2cM2
)

x

Define function h(x) = (1− ax)b
x, where a =

1

1−p and b =
T

2cM2 . Compute the derivative of function h:

h
′
(x) = (−ax ln b − a + ln b)b

x

h
′
(x0) = 0⇐⇒ x0 =

lnb − a

a ln b

When x ≤
lnb−a
a ln b , h

′
(x) ≥ 0. Otherwise h

′
(x) < 0. Since 0 < p < p̂ < 1, obviously the domain of function

h is in the interval [0, 1]. If lnb−a
a ln b > 1, the function h is increasing in its domain. Which means that

if the di�erence between p̂ and p increase, the reciprocal of approximated ratio of stability gap 1

fl
increase, which is equivalent to the approximate ratio fl of stability gap decrease. Because

ln b − a

a ln b
> 1⇐⇒ ln b >

a

1 − a
⇐⇒K > 2cM

2
e
−p

.

In all, we could conclude if T > 2cM
2
e
−p, p̂ − p increase leads to the approximate ratio of stability

gap fl decrease.
What’s more, we are going to analysis the relation between Gaussian filter factor ‡ and the di�erence
p̂ − p. Since

p =
1

cL + 1
, p̂ =

1
cL̂ + 1

,

where L̂ =min{M
‡ , L}. p̂−p increase is equivalent to —̂ decrease. When the Gaussian factor ‡ is large

enough (M
‡ < L), the smoother factor —̂ for function fµ is exactly M

‡ . Moreover, increasing the factor
‡ leads to the decrease of L̂.
Due to the analysis above, if K > 2cM

2
e
−p and M

‡ < —, increasing ‡ will cause the approximate ratio
fl to decrease and the generalization error will be smaller. We finish the proof for condition ii).

Remark. By point i) in Theorem 40, when number of iterations is large enough, stability gap of LPF-SGD
is much smaller than that of SGD, which implies LPF-SGD converges to a better optimal point with lower
generalization error than SGD. Moreover, point ii) in Theorem 40 indicates that increasing ‡ leads to a
smaller stability gap, otherwise lower generalization error.

Non-scalar kernel covariance. Assume K ∼ N (0, �). We next analyze the case when the covariance
� = “ ∗ diag(��◊1��, ��◊2�����◊k ��) for Gaussian kernel K is no longer a scalar diagonal matrix. For easy notation,
we denoted � = diag(‡

2

1
,�, ‡

2

d) where ‡
2

i = “ ∗ ��◊i��. The convolution of original loss f(x; ›) with the Gaussian
kernel K is still defined as

fµ(x; ›) = (f(⋅; ›)�K)(x) = �Rd
f(x − · ; ›)µ(·)d·

= EZ∼µ[f(x +Z; ›)] (3.32)

Then Theorem 39 could be modified into Theorem 41.
Theorem 41. (Theorem 5 in (Bisla et al., 2022)) Let µ be the N (0, �) distribution, where � =

diag(‡
2

1
,�, ‡

2

d) ∈ Rd×d is diagonal. Denote ‡
2− = min{‡2

1
,�, ‡

2

d}. Assume the di�erentiable loss function
f(◊; ›) ∶ Rd

→ R is M -Lipschitz continuous and L-smooth with respect to l2-norm. The smoothed loss function
fµ(◊; ›) is defined as (3.32). Then the following properties hold:

i) fµ is M -Lipschitz continuous.

47

Under review as submission to TMLR

ii) fµ is continuously di�erentiable; moreover, its gradient is min{M
‡− , L}-Lipschitz continuous, i.e. fµ

is min{M
‡− , L}-smooth.

iii) If f is convex, fµ(◊; ›) = f(◊; ›) +M

�

tr(�) = f(◊; ›) +M

�

∑
d
i=1

‡2

i .

In addition, for bound i) and iii), there exists a function l such that the bound cannot be improved by more
than a constant factor.

Proof for Theorem 41 is quite similar to that of Theorem 39, and the detailed proof is deferred to Appendix
C. Similar to the analysis for identical kernel covariance, we could conclude the stability gap for LPF-SGD
for non-scalar kernel variance is

‘LPF-SGD ≤
1 + 1�cL̂

n − 1
(2cM

2
)

1

cL̂+1 K
cL̂

cL̂+1 .

where L̂ = min{M
‡− , L}, ‡

2− = min{‡2

1
,�, ‡

2

d}, K is the total number of steps it runs. Then we can proceed
with the following Theorem 42, which supports the claim that LPF-SGD generalizes better than SGD.
Theorem 42. (Generalization Guarantee of LPF-SGD for � = “diag(��x1��, ��x2�����xk ��); Nonconvex Setting)
Let µ be the N (0, �) distribution, where � = diag(‡

2

1
,�, ‡

2

d) ∈ Rd×d is diagonal. Denote ‡
2− = ���∞ =

min{‡2

1
,�, ‡

2

d}. Assume loss function f(◊; ›) ∶ Rd
→R is M-Lipschitz and L-smooth. The smoothed loss

function lµ is defined as (3.32). Suppose we execute SGD and LPF-SGD for K steps with non-increasing
learning rate –k ≤ c�k. Then the ratio of stability gap is

fl =
‘LPF-SGD

‘SGD

=
1 − p

1 − p̂
�

2cM

T
�

p̂−p

= O(
1

K p̂−p
), (3.33)

where p =
1

cL+1
, p̂ =

1

c min{ –
‡− ,L}+1

.

Finally, the following two properties hold:

i) If ‡− > M
L and K � 2cM

2
�

1−p
1−p̂�

1

p̂−p , fl� 1.

ii) If ‡− > M
L and K > 2cM

2
e
−p, increasing ‡− leads to a smaller fl.

Proof. By Theorem 41, the smoothed loss function lµ is –-Lipschitz continuous and min{M
‡− , L}-smooth. This

gives as equivalency to Theorem 39 after substituting ‡− for ‡. Therefore, proof of Theorem 42 is exactly the
same as that of Theorem 40 after performing this substitution and therefore will be omitted.

Theorem 42 indicates that generalization properties of LPF-SGD under the identical kernel covariance still
hold for the non-scalar kernel covariance.

3.4 SmoothOut

Noise injection is a popular strategy used by practitioners to regularize the optimization process and encourage
better generalization. SmoothOut (Wen et al., 2018), a method utilized in this context, involves perturbing
multiple instances of the deep neural network (DNN) through noise injection and subsequently averaging
these instances. Furthermore, one can provide an alternative interpretation of SmoothOut through the lenses
of LPF-SGD. Analogous to the principle of LPF-SGD, where the loss function is smoothed via convolution
with a Gaussian kernel, SmoothOut attenuates sharp minima by convolving the original loss with a uniform
distribution.

SmoothOut method was first introduced in (Wen et al., 2018). Since sharp minima have large generalization
gaps, the optimization goal is to encourage convergence to flat minima for more robust models. SmoothOut

48

Under review as submission to TMLR

intentionally inject noises into the model to smooth out sharp minima. Suppose the original loss is F (x),
where x is model parameter. SmoothOut optimizes the following loss function with uniform perturbation:

min
x

L
SmoothOut

(x) =min
x

E‘∼U(−a,a)F (x + ‘)

≈min
x

1
M

M

�

i=1

F (x + ‘i), where ‘i
iid
∼ U(−a, a) and ∀i = 1, 2, ..., M,

where U(−a, a) is a uniform distribution within a range [−a, a]. If we assume K ∼ U(−a, a) is a uniform
distribution, the modified loss of SmoothOut could also be represented as the convolution of original loss
F (x) with kernal function K:

min
x

F
SmoothOut

(x) =min
x

E‘∼U(−a,a)F (x + ‘) =min
x
(F �K)(x) =min

x
� F (x − ·)K(·)d·.

The gradient of the modified loss is:

∇xF
SmoothOut

(x) = ∇x(F �K)(x) =∇x �

∞
−∞ F (x − ·)K(·)d· (3.34)

≈
1

M

M

�

i=0

∇x(F (x − ·i)), (3.35)

This interpretation of SmoothOut method is novel and has not been shown in the literature. The pseudocode
for SmoothOut is shown in Algorithm 3.4.

Algorithm 3.4 SmoothOut
Inputs: x

t: weights
Hyperpar: M : # of samples for uniform pertubation
while not converged do

Sample data mini-batch B = (›1,�, ›n)

Pertubation: x
t
= x

t
+ ‘

t, where ‘
t
i

iid
∼ U(−a, a).

Backpropagation: g = ∇xF (B, x
t
).

Denosing: x
t
= x

t
− ‘

t.
Updating: x

t+1
= x

t
− ÷ ∗ g

3.4.1 Generalization Ability

We next introduce a novel technique that theoretically demonstrates the superior generalization capabilities
of SmoothOut over SGD. This theoretical analysis draws inspiration from the proof employed for LPF-SGD,
as the modified loss function for SmoothOut exhibits certain analogous properties to LPF-SGD. Specifically,
both modified loss functions, denoted as F

LPF-SGD and F
SmoothOut, operate by smoothing the original

loss function F through convolution with a kernel function. While F
LPF-SGD utilizes a Gaussian kernel,

F
SmoothOut employs a uniform distribution for computing the convolution.

In this section, we first demonstrate how SmoothOut facilitates a smoother objective function. Building upon
existing research (Hardt et al., 2016), which has consistently highlighted the strong correlation between the
generalization error and both the Lipschitz continuity and smoothing characteristics of the objective function,
we theoretically prove that SmoothOut leads to superior generalization performance.

We assume K ∼ U(−a, a). Denote the uniform distribution U(−a, a) on the l2-ball with radius a as µ. Define
the convolution of the original loss f(x; ›) with the uniform density function K as:

fµ(x; ›) = (f(⋅; ›)�K)(x) = �Rd
f(x − · ; ›)µ(·)d·

= EZ∼µ[f(x +Z; ›)], (3.36)

49

Under review as submission to TMLR

where d is the number of dimensions of the parameter vector and Z is a random variable satisfying distribution
µ. The loss function smoothed by the uniform distribution, that we denote as lµ, satisfies the following
theorem.
Theorem 43. Let µ be the the uniform distribution U(−a, a). Assume the di�erentiable loss function
f(x; ›) ∶ Rd

→ R is M -Lipschitz continuous and L-smooth with respect to l2-norm. The smoothed loss function
fµ(x; ›) is defined as (3.36). Then the following properties hold:

i) fµ is M -Lipschitz continuous.

ii) fµ is continuously di�erentiable; moreover, its gradient is min{M
√

d
a , —}-Lipschitz continuous, i.e.,

fµ is min{M
√

d
a , L}-smooth.

iii) If f is convex, f(x; ›) ≤ fµ(x; ›) ≤ f(x; ›) + aM .

In addition, for each bound i)-iii), there exists a function f such that the bound cannot be improved by more
than a constant factor.

Proof for Theorem 43 is quite similar to that of Theorem 39, and the detailed proof is deferred to Appendix
D. Theorem 43 shows that fµ is smoother than the original loss function f . The larger the radius a of the
uniform distribution µ is, the smoother the modified loss function lµ is. Similar to the analysis for LPF-SGD,
we could conclude the stability gap for SmoothOut is

‘SmoothOut ≤
1 + 1�cL̂

n − 1
(2cM

2
)

1

cL̂+1 K
cL̂

cL̂+1 ,

where L̂ =min{M
√

d
a , L}, K is the total number of steps it runs. Then we obtain the following Theorem 44

which supports the claim that SmoothOut generalizes better than SGD.
Theorem 44 (Generalization Guarantee of SmoothOut; Nonconvex Setting). Let µ be the uniform distribution
U(−a, a) with radius of a. Assume loss function f(◊; ›) ∶Rd

→R is M -Lipschitz and L-smooth. The smoothed
loss function fµ is defined as (3.36). Suppose we execute SGD and LPF-SGD for K steps with non-increasing
learning rate –k ≤ c�k. Then the ratio of stability gap is

fl =
‘SmoothOut

‘SGD

=
1 − p

1 − p̂
�

2cM

T
�

p̂−p

= O(
1

K p̂−p
), (3.37)

where p =
1

cL+1
, p̂ =

1

min{M
√

d
a ,L}c+1

.

Finally, the following two properties hold:

i) If a >
M
√

d
L and K � 2c–

2
�

1−p
1−p̂�

1

p̂−p , fl� 1.

ii) If a >
M
√

n
L and K > 2cM

2
e
−p, increasing a leads to a smaller fl.

We omit the proof for Theorem 44 since the proof is exactly the same as proof for Theorem 40 & 42 of
LPF-SGD by changing some constant. By point i) in Theorem 44, when number of iterations is large enough,
stability gap of SmoothOut is much smaller than that of SGD, which implies SmoothOut converges to a
better optimal point with lower generalization error than SGD. Moreover, point ii) in Theorem 44 indicates
that increasing the radius a of the uniform distribution µ leads to a smaller stability gap, otherwise lower
generalization error.

4 Distributed Optimization Methods

Distributed optimization has emerged as a critical approach in tackling large-scale optimization problems that
arise in deep learning. As data size and model size continue to grow exponentially, traditional optimization

50

Under review as submission to TMLR

methods often become infeasible due to limitations in computational resources and memory. Distributed
optimization enables the e�cient processing of data across multiple machines or nodes, allowing for parallel
computation and reduced communication overhead. This not only accelerates the convergence of algorithms
but also enhances scalability and resilience against failures. As a result, developing robust distributed methods
is essential for addressing the challenges posed by today’s massive and dynamic data environments. While
many distributed optimization methods have demonstrated remarkable performance across various tasks,
there remains a gap in the literature regarding systematic discussions of the theoretical properties of these
methods. This review focuses on bridging this gap by providing a comprehensive analysis of the convergence
behaviors of key distributed optimization techniques. We aim to synthesize existing theoretical results and
identify areas where further research is needed, highlighting the implications for practical applications.

Our review focuses on distributed optimization and do not cover federated learning (Kairouz et al., 2021;
Wang et al., 2021; Banabilah et al., 2022; Wen et al., 2023). Distributed optimization and federated learning
are two techniques that involve multiple computing units for model training but di�er fundamentally in
data handling and objectives. Distributed optimization operates on datasets shared among the computing
nodes, where the same data is distributed across nodes for parallel processing. Thus all nodes have access to
the same data or a shared copy. This type of optimization often requires frequent communication with a
central server for gradient aggregation. In this setting it is reasonable to assume that the dataset on each
node has the same distribution, just as what EASGD, LSGD and GRAWA require for their convergence
guarantee. In contrast, federated learning focuses on training models in such a way that each node (device)
has its own private data that is not shared with other devices, which is essential for maintaining privacy and
security. Participants train local models and only send aggregated updates to a central server, minimizing
data transfer and preserving user privacy. Each participant (e.g., mobile device) retains its local data, which
is never shared, promoting privacy and security. The same proof technique for distributed optimization is no
longer suitable for federated learning because we can not assume the dataset among nodes share the same
distribution. Note that there already exist survey papers on federated learning for deep learning. A large
body of work is purely empirical.

Distributed optimization could be categorized into two families: centralized and decentralized. Centralized
techniques use a center server to coordinate the training process on workers, as opposed to the decentralized
schemes. It could also be classified into synchronous and asynchronous. Asynchronous methods refers to
operations or processes that occur time-wise independently of each other on each computational node. This
means that di�erent tasks can be executed on di�erent nodes in parallel, and they are not timed with respect
to each other (timing of their execution does not follow a predetermined sequence, but rather each node
has its own clock). This way nodes do not wait for each other to perform computations. The synchronous
method means otherwise.

In this section, we explore the theoretical guarantees of centralized and decentralized distributed optimization
methods. We do not explore the di�erence between synchronous and asynchronous methods in our reviewbe-
cause asynchronous methods often lack a well-defined mathematical update rule for the optimization system.
This absence makes is challenging to establish convergence guarantees, which are essential for ensuring the
reliability of the optimization process. Instead, for asynchronous methods like Downpour SGD, we focus on
providing convergence guarantees specifically for synchronous versions of these methods.

4.1 Centralized Methods

Centralized distributed optimization methods represent a pivotal approach in addressing large-scale optimiza-
tion problems across distributed computing environments. In these methods, a central entity coordinates the
optimization process, leveraging information exchanged among distributed workers to collectively optimize
a global objective function. In this section, we are going to discuss the convergence guarantee of some
representative centralized methods.

4.1.1 Downpour SGD

Introduced as part of Google’s DistBelief framework, Downpour SGD (Dean et al., 2012), an asynchronous
centralized stochastic gradient descent procedure, is proposed to e�ciently train large-scale machine learning

51

Under review as submission to TMLR

Figure 5: Dowpour SGD. Model replicas asynchronously fetch parameters and push gradients to the parameter
server. The figure is taken from Figure 2 of (Dean et al., 2012)

models across distributed computing systems. In Downpour SGD, model parameters are aggregated through
an asynchronous process where multiple workers independently compute gradients based on their mini-batches
of data and send these gradients to a central parameter server. The server aggregates the received gradients,
often by averaging or using weighted aggregation based on mini-batch sizes, and then updates the model
parameters. After the update, the parameter server broadcasts the new model parameters back to all workers,
allowing them to continue training with the most current values while managing the challenges of parameter
staleness. Downpour SGD works as follows: the training data is segmented into multiple subsets, with each
subset processed by an individual copy of a model (worker). The models exchange updates via a centralized
parameter server, which maintains the current state of all model parameters, split across many machines
(e.g., if we have 10 parameter server shards, each shard is responsible for storing and applying updates to
1�10th of the model parameters). Figure 5 shows the framework of Downpour SGD.

The existing literature on Downpour SGD (Dean et al., 2012) primarily focuses on its implementation details
and performance metrics, with limited emphasis on its theoretical guarantees. Our objective is to fill this
gap by conducting a thorough theoretical analysis of the method and providing convergence proofs under
both convex and non-convex assumptions. Since Downpour SGD serves as the basis for various centralized
methods, its proof scheme holds the potential to transfer to other similar centralized methods.

Although Downpour SGD exhibits both data and model parallelism, as the dataset and model are distributed
across multiple machines, it is important to note that model parallelism does not impact the convergence
of the method, as the back-propagation process for gradient computation remains consistent with that of a
single-machine setup. Hence, without loss of generality, we analyze the convergence guarantee of Downpour
SGD under the assumption that all model parameters are kept on a single machine and only the dataset is
partitioned.

In order to theoretically analyze Downpour SGD, we first mathematically formulate its underlying optimization
problem. Assume that there are m workers and a data subset processed by worker i satisfies distribution Di.
The model parameter is denoted as x where x ∈ Rd. The purpose of distributed SGD is to train a model by
minimizing the objective function F (x) using m workers. The optimization problem is formulated as follows:

min
x∈Rd

F (x) = min
x∈Rd

m

�

i=1

Fi(x)

= min
x∈Rd

m

�

i=1

E›∼Di[f(x; ›)], (4.1)

52

Under review as submission to TMLR

where f(x; ›) is the point-wise loss function and Fi(x) = E›∼Di[f(x; ›)] is the local objective function
optimized by the i-th worker. The stochastic gradient update step for solving problem 4.1 is

xk+1 = xk − ÷

m

�

i=1

gi(xk), (4.2)

where ÷ is the learning rate and where gi(xk) is a stochastic gradient of local objective Fi(x) on worker i at
iteration k, such that E[gi(xk)] = ∇Fi(xk). The update rule specified in Equation 4.2 precisely reflects the
methodology employed by Downpour.

We then move into the detailed theoretical analysis based on the mathematical formulation introduced above.

Convex Setting. We first show Downpour SGD reaches the same convergence rate as SGD under the
stronly-convex assumption.
Assumption 45 (Convex Setting). We assume that the loss function F (x) = ∑

m
i=1

Fi(x) and stochastic
gradient gi(xk) satisfy the following conditions:

(1) Lipschitz gradient (L-smooth): �∇Fi(x) −∇Fi(y)� ≤ L �x − y�

(2) µ-strongly convex: Fi(y) ≥ Fi(x) +∇Fi(x)
�
(x − y) +

µ
2
�x − y�

2

(3) Unbiased gradient: E›i[gi(xk)] = ∇Fi(x)

(4) Bounded variance: E[�gi(xk) −∇Fi(x)�
2
]≤‡

2

Theorem 46 (Convergence of Donwpour SGD; Convex Setting). Under Assumption 45, when the learning
rate ÷ satisefiles ÷ <

1

mL , the update rule 4.2 of Downpour SGD satisefies:

E[F (xk+1)] − F (x
∗
) ≤ (1 − ÷µ)(F (xk) − F (x

∗
)) +

÷
2
L‡

2

2
.

If the learning rate ÷ decreasse as ÷k =
1√
k

, E[F (xk+1)]−F (x
∗
) ≤ O(

1

k). In other words, Downpour SGD has
sublinear convergence rate.

Proof. Under the condition (1) in Assumption 45, we have

�F (x) − F (y)� = �

m

�

i=1

Fi(x) −

m

�

i=1

Fi(y)� ≤

m

�

i=1

�Fi(x) − Fi(y)� ≤mL �x − y� .

Therefore, we can conclude that the loss function F is mL-smooth. From the update rule 4.2, we have:

F (xk+1) =F (xk − ÷

m

�

i=1

gi(xk))

≤F (xk) − ÷�∇F (xk),

m

�

i=1

gi(xk)� +
÷

2
mL

2
�

m

�

i=1

gi(xk)�

2

≤F (xk) − ÷�∇F (xk),

m

�

i=1

gi(xk)� +
÷

2
mL

2

�
�
�
�
�
�

�

m

�

i=1

∇Fi(xk)�

2

+

m

�

i=1

�gi(xk) −∇Fi(xk)�
2

�
�
�
�
�
�

=F (xk) − ÷�∇F (xk),

m

�

i=1

gi(xk)� +
÷

2
mL

2
��∇F (xk)�

2
+

m

�

i=1

�gi(xk) −∇Fi(xk)�
2
� .

By taking expectation on both sides, we have

E[F (xk+1)] ≤F (xk) − ÷ �∇F (xk)�
2
+

÷
2
mL

2
�∇F (xk)�

2
+

÷
2
L‡

2

2

=F (xk) − ÷(1 − ÷mL

2
) �∇F (xk)�

2
+

÷
2
L‡

2

2
. (4.3)

53

Under review as submission to TMLR

Since the sum of µ-strongly convex functions is still µ-strongly convex, we could conclude that F (x) is
µ-strong convex based on condition (2) in Assumption 45. Let x

∗ be the minimizer of function F , by
Polyak-£ojasiewicz inequality we have

F (x) − F (x
∗
) ≤

1
2µ
�∇F (x)�

2
,∀x. (4.4)

Combine formula (4.3) with (4.4) to obtain

E[F (xk+1)] ≤F (xk) − 2÷µ(1 − ÷mL

2
)(F (xk) − F (x

∗
)) +

÷
2
L‡

2

2
. (4.5)

Since ÷ <
1

mL , we have

E[F (xk+1)] ≤F (xk) − ÷µ(F (xk) − F (x
∗
)) +

÷
2
L‡

2

2
. (4.6)

Substract F (x
∗
) on both sides to obtain

E[F (xk+1)] − F (x
∗
) ≤ (1 − ÷µ)(F (xk) − F (x

∗
)) +

÷
2
L‡

2

2
. (4.7)

Nonconvex Setting. We next show that Downpour SGD converges with sublinear convergence rate also
under the nonconvex assumptions.
Assumption 47 (Nonconvex Setting). We assume that the loss function F (x) = ∑

m
i=1

Fi(x) and stochastic
gradient gi(xk) satisfy the following conditions:

(1) Lipschitz gradient (L-smooth): �∇Fi(x) −∇Fi(y)� ≤ L �x − y�

(3) Unbiased gradient: E›i[gi(xk)] = ∇Fi(x)

(4) Bounded variance: E[�gi(xk; ›i) −∇Fi(x)�
2
]≤‡

2

Theorem 48 (Convegrence of Donwpour SGD; Nonconvex Setting). Under Assumption 47, when the learning
rate ÷ satisefiles ÷ <

1

mL , the update rule 4.2 of Downpour SGD satisefies:

1
K

K−1

�

i=0

E[�∇F (xk)�
2
] ≤

2E[F (x0) − F (xK)]

÷K
+ ÷L‡

2
.

If the learning rate ÷ decreasse as ÷k =
1√
k
, 1

K ∑
K−1

i=0
�∇F (xk)�

2
≤ O(

1√
K
). In other words, Downpour SGD

enjoys sublinear convergence rate.

Proof. Similarly to the proof for convex setting, under condition (1) in Assumption 47, we have

E[F (xk+1) − F (xk)] ≤ −÷(1 − ÷mL

2
)E[�∇F (xk)�

2
] +

÷
2
L‡

2

2
. (4.8)

Since ÷ <
1

mL , we have:

E[F (xk+1) − F (xk)] ≤ −
÷

2
E[�∇F (xk)�

2
] +

÷
2
L‡

2

2
. (4.9)

Sum the inequality (4.9) from k = 0,, K − 1 and divide by K to obtain:

1
K

K−1

�

i=0

E[�∇F (xk)�
2
] ≤

2E[F (x0) − F (xK)]

÷K
+ ÷L‡

2
. (4.10)

If ÷ =
1√
K

, we have

1
K

K−1

�

i=0

E[�∇F (xk)�
2
] ≤ O(

1
√

K
). (4.11)

54

Under review as submission to TMLR

4.1.2 Elastic Averaging SGD (EASGD)

In the Downpour SGD, local workers receive parameters from a centralized parameter server and transmit
the stochastic gradient term back to the central worker for subsequent update steps. However, this approach
has two potential drawbacks: i) all local workers inherit identical parameters from the centralized parameter
server, disregarding potential variations in problem settings arising from di�erent data shards seen by di�erent
local workers. Consequently, this uniform parameter inheritance can limit exploration of local optima; ii) the
computation of gradient updates for each worker relies on the parameters stored on the centralized parameter
server. This necessitates frequent communication between the central worker and local workers to ensure the
parameters on the local workers remain current. This, in turn, also counter-acts the exploration of the best
possible local optima.

To address the limitations of Downpour SGD, (Zhang et al., 2015) introduced the Elastic Averaging SGD
method (EASGD) along with its variants. EASGD enables each local worker to maintain its own set of
parameters, while the center parameter is continuously updated as a moving average derived from the
parameters computed by local workers. The coordination and communication among local workers are
facilitated by an elastic force mechanism based on the quadratic penalty method, linking the local parameters
with the center parameter stored in the centralized server. EASGD encourages exploration of the loss
landscape by each local worker by allowing its parameters to fluctuate further from the center parameter,
thereby reducing the need for extensive communication between local workers and the centralized server. The
reduction in communication not only encourages exploration but also enhances computational e�ciency.

The problem formulation for EASGD is provided next. Consider minimizing a function F (x) in a parallel
computing environment with m local workers and a centralized parameter server. We focus on the stochastic
optimization problem of the following form:

min
x

F (x) =min
x

E›∼D[f(x, ›)], (4.12)

where f(x, ›) is the point-wise loss function, x denotes the model parameters to be estimated, and › is a
random variable that follows the data distribution D. The stochastic optimization problem (4.12) can be
reformulated as follow:

min
x1,...,xn,x̃

n

�

i=1

E[f(xi
, ›

i
)] +

fl

2
�x

i
− x̃�

2

, (4.13)

where x
i is the local parameter on worker i and x̃ is the center parameter, each ›

i satisfies the data distribution
D (EASGD assumes that each worker can sample the entire dataset). The problem of the equivalence of
these two objectives is studied in the literature and is known as the augmentability or the global variable
consensus problem (Hestenes, 1975; Boyd et al., 2011). The quadratic penalty term aims to prevent local
workers from converging to distant attractors that deviate significantly from the central worker.

The gradient update rule for EASGD is then given as:

x
i
k+1
= x

i
k − ÷(gi(x

i
k) + fl(x

i
k − x̃)) (4.14)

x̃k+1 = x̃k + ÷

m

�

i=1

fl(x
i
k − x̃), (4.15)

where gi(x
i
k) is a stochastic gradient of F with respect to x

i at iteration k, such that E[gi(x
i
k)] = ∇F (x

i
k), ÷

is the learning rate, x
i
k and x̃k are the parameters of the local worker i and the centralized server at iteration

k, respectively. Denote – = ÷fl and — =m–, the update rule in (4.14-4.15) could be rewitten as:

x
i
k+1
= x

i
k − ÷g

i
(x

i
k) − –(x

i
k − x̃) (4.16)

x̃k+1 = (1 − —)x̃k + — �
1
m

m

�

i=1

x
i
k� (4.17)

The term −–(x
i
k − x̃) in (4.16) is the elastic force between the local variable x

i and center variable x̃ that
prevents the local worker to drift too far away from the center server. Equation (4.17) shows that the center

55

Under review as submission to TMLR

variable x̃ is updated as the moving average of local workers x
i where the average is taken both in time and

space.

We then move into the detailed theoretical analysis of EASGD based on the mathematical formulation
introduced above. The proof is motivated by the theoretical analysis in (Teng et al., 2019).

Convex Setting. We first show that EASGD reaches the same convergence rate as SGD under the
stronly-convex assumption.
Assumption 49 (Convex Setting). We assume that the loss function F = E›∼D[f(x; ›)] and stochastic
gradient gi(x

i
k) satisfy the following conditions:

(1) Lipschitz gradient (L-smooth): �∇F (x) −∇F (y)� ≤ L �x − y�

(2) µ-strongly convex: F (y) ≥ F (x) +∇F (x)
�
(x − y) +

µ
2
�x − y�

2

(3) Unbiased gradient: E[gi(x
i
k)] = ∇F (x)

(4) Bounded variance: E[�gi(x
i
k) −∇F (x)�

2

]≤‡
2.

Theorem 50 (Convergence of EASGD; Convex Setting). Let ”
i
k = x

i
k − x̃k. Under Assumption 49, when the

learning rate satisfies ÷ <
1

2L and ÷fl <
µ

2L , the update rule (4.16-4.17) for EASGD satisefies:

E[F (xi
k+1
)] ≤F (x

i
k) − ÷(1 − ÷L) �∇F (x

i
k)�

2

− ÷fl(
µ

2
− ÷flL) �”

i
k�

2

− ÷fl(F (x
i
k) − F (x̃k)) +

÷
2

2
L‡

2
.

Note the presence of the new term −÷fl(F (x
i
k) − F (x̃k)), which speeds up convergence when F (�xk) ≤ F (x

i
k),

i.e., is better than local workers. If the center parameter �xk is always chosen so that F (�xk) ≤ F (x
i
k) at every

step k and the learning rate ÷ decrease as ÷k =
1√
k

, then E[F (xk+1)]−F (x
∗
) ≤ O(

1

k). In other words, EASGD
converges sublinearly.

Proof. Assume ”
i
k = x

i
k − x̃k. From the update rule in (4.16-4.17) we have

F (x
i
k+1
) =F (x

i
k) − ÷�∇F (x

i
k), gi(x

i
k) + fl”

i
k� +

÷
2

2
L �gi(x

i
k) + fl”

i
k�

2

=F (x
i
k) − ÷�∇F (x

i
k), gi(x

i
k) + fl”

i
k� +

÷
2

2
L �∇F (x

i
k) + fl”

i
k + gi(x

i
k) −∇F (x

i
k)�

2

≤F (x
i
k) − ÷�∇F (x

i
k), gi(x

i
k) + fl”

i
k� +

÷
2

2
L(�∇F (x

i
k) + fl”

i
k�

2

+ �gi(x
i
k) −∇F (x

i
k)�

2

).

Taking the expectation on both sides:

E[F (xi
k+1
)] ≤F (x

i
k) − ÷ �∇F (x

i
k)�

2

− ÷fl∇F (x
i
k)
�
”

i
k +

÷
2

2
L �∇F (x

i
k) + fl”

i
k�

2

+
÷

2

2
L‡

2

≤F (x
i
k) − ÷(1 − ÷L) �∇F (x

i
k)�

2

+
÷

2

2
L‡

2
− ÷fl(

µ

2
− ÷flL) �”

i
k�

2

− ÷fl(F (x
i
k) − F (x̃k)).

Since ÷ <
1

2L and ÷fl <
µ

2L , we have:

E[F (xi
k+1
)] ≤F (x

i
k) −

÷

2
�∇F (x

i
k)�

2

− ÷fl(F (x
i
k) − F (x̃k)) +

÷
2

2
L‡

2
. (4.18)

Let x
∗ be the minimizer of function F , by Polyak-£ojasiewicz inequality for µ-strongl convex function F we

have:

F (x) − F (x
∗
) ≤

1
2µ
�∇F (x)�

2
,∀x. (4.19)

56

Under review as submission to TMLR

Combine (4.18) with (4.19) to obtain

E[F (xi
k+1
)] ≤F (x

i
k) − ÷µ(F (x) − F (x

∗
)) − ÷fl(F (x

i
k) − F (x̃k)) +

÷
2

2
L‡

2
. (4.20)

Substract F (x
∗
) on both sides and proceed:

E[F (xi
k+1
)] − F (x

∗
) ≤(1 − ÷µ)(F (x) − F (x

∗
)) − ÷fl(F (x

i
k) − F (x̃k)) +

÷
2

2
L‡

2
. (4.21)

Nonconvex Setting. We also show that EASGD converges sublinearly under the nonconvex assumptions.
Assumption 51 (Nonconvex Setting.). We assume that the loss function F = E›∼D[f(x; ›)] and stochastic
gradient gi(x

i
k) satisfy the following conditions:

(1) Lipschitz gradient (L-smooth): �∇F (x) −∇F (y)� ≤ L �x − y�

(2) Unbiased gradient: E[gi(x
i
k)] = ∇F (x)

(3) Bounded variance: E[�gi(x
i
k) −∇F (x)�

2

]≤‡
2

(4) Bounded domain: �xi
k − x̃k�

2

≤ ”
2.

Theorem 52 (Convergence of EASGD; Nonconvex Setting). Under Assumption 51, when the learning rate ÷

and elastic force fl satisfy the condition: 2÷L + fl < 1, the update rule 4.2 of EASGD satisfies:

1
K

K−1

�

i=0

E[�∇F (xk)�
2
] ≤

2E[F (x0) − F (xK)]

÷K
+ 2÷flL”

2
+ fl”

2
+ ÷L‡

2
.

If the learning rate ÷ and elastic force fl decreasse as ÷k = flk =
1√
k
, 1

K ∑
K−1

i=0
�∇F (xk)�

2
≤ O(

1√
K
). In other

words, Elastic SGD converges sublinearly.

Proof. Similarly to the proof for convex setting we start as follows:

E[F (xi
k+1
) − F (x

i
k)]

≤ − ÷(1 − ÷L)E[�∇F (x
i
k)�

2

] + ÷
2
flL �”

i
k�

2

− ÷flE[∇F (x
i
k)
�
”

i
k] +

÷
2

2
L‡

2
. (4.22)

We are going to derive a bound for −E[∇F (x
i
k)
�
”

i
k]:

−E[∇F (x
i
k)
�
”

i
k] =

1
2
E ��∇F (x

i
k)�

2

+ �”
i
k�

2

− �∇F (x
i
k) + ”

i
k�

2

�

≤
1
2
E ��∇F (x

i
k)�

2

+ �”
i
k�

2

�

≤
1
2
E[�∇F (x

i
k)�]

2
+

1
2
�”

i
k�

2

. (4.23)

Therefore, combining (4.22) with (4.23) gives

E[F (xi
k+1
) − F (x

i
k)] ≤ −÷(1 − ÷L −

fl

2
)E[�∇F (x

i
k)�

2

] +
÷fl

2
(2÷L + 1) �”i

k�
2

+
÷

2
L‡

2

2
. (4.24)

When 2÷L + fl < 1, we have

E[�∇F (x
i
k)�

2

] ≤
2E[F (xi

k+1
) − F (x

i
k)]

÷
+ 2÷flL”

2
+ fl”

2
+ ÷L‡

2
. (4.25)

57

Under review as submission to TMLR

Sum the inequality (4.25) from k = 0,, K − 1 and divide by K to obtain:

1
K

K−1

�

i=0

E[�∇F (xk)�
2
] ≤

2E[F (x0) − F (xK)]

÷K
+ 2÷flL”

2
+ fl”

2
+ ÷L‡

2 (4.26)

If ÷ =
1√
K

and fl =
1√
K

, we have

1
K

K−1

�

i=0

E[�∇F (xk)�
2
] ≤ O(

1
√

K
). (4.27)

4.1.3 Leader Stochastic Gradient Descent (LSGD)

(Teng et al., 2019) improves EASGD and relies on the framework consisting of multiple leaders. x̃ in EASGD
is close to the average of the local workers. However, the average is a poor solution for the whole system
when the local workers converges to di�erent local optimizers. In order to overcome the disadvantage, x̃ in
LSGD is chosen to be the best performer among all local workers of current training step. Except for a single
center parameter introduced by EASGD, LSGD introduces multiple local leaders for each group of local
workers, and pulls all the local workers towards the current local leader as well as the global leader to ensure
fast convergence. The multi-leader setting is well-aligned with the current hardware architecture, where the
local workers forming a group lie within a single computational node and di�erent groups correspond to
di�erent nodes.

The problem formulation for LSGD is next crystalized. Consider minimizing a function F (x) = E›∈D[f(x, ›)]

in parallel computing environment, where x corresponds to the model parameters and › is a random variable
sampled from distribution D. Firstly, recall the optimization problem formulation introduced in EASGD:

min
x1,...,xl,x̃

l

�

i=1

E[f(xi
, ›

i
)] +

⁄

2
�x

i
− x̃�

2

, (4.28)

where l is the number of workers, ›
is are samples from distribution D, x

i is the local set of parameters
processed by the i

th worker, and x̃ is the center parameter. In EASGD, x̃ is the average of the local workers.
However, the average is a poor solution for the whole system when the local workers converges to di�erent
local optimizers. In order to overcome the disadvantage, In LSGD, we define x̃ as the best performing worker:
x̃ ∶= arg minx1,...,xl E[f(xi

, ›
i
)] and use the best performing worker x̃ as the single leader of the system.

Formulation (4.28) could be extended to the multi-leader setting:

min
x1,1,x1,2,...,xn,l,x̃

n

�

j=1

l

�

i=1

E[f(xj,i
, ›

j,i
)] +

⁄

2
�x

j,i
− x̃

j
�

2

+
⁄G

2
�x

j,i
− x̃�

2

, (4.29)

where n is the number of groups, l is the number of workers in each group, ›
j,is are samples from distribution

D, and x̃
j and x̃ is the local leader and global leader, respectively, i.e. x̃

j
= arg minxj,1,...,xj,i E[f(xj,i

, ›
j,i
)]

and x̃ = arg minx1,1,...,xn,l E[f(xj,i
, ›

j,i
)].

The update rule for LSGD is:

x
j,i
k+1
= x

j,i
t − ÷g

j,i
t (x

j,i
t) − ⁄(x

j,i
t − x̃

j
t) − ⁄G(x

j,i
t − x̃t), (4.30)

x̃
j
= arg min

xj,1,...,xj,i

E[f(xj,i
, ›

j,i
)], x̃ = arg min

x1,1,...,xn,l

E[f(xj,i
, ›

j,i
)],

where g
j,i
t denotes the stochastic gradient of E[f(xj,i

, ›
j,i
)].

From previous analysis, we know that the only di�erence between the formulation of EASGD and LSGD is
that: EASGD only has a single center parameter x̃ while LSGD has multiple leaders {x̃j

}. We are going

58

Under review as submission to TMLR

to show The objective function of LSGD with multiple-leaders could be rewritten as the form of objective
function of EASGD with a single center parameter.

From formulation 4.29, the objective function for multiple-leaders of LSGD is of the form:

f(x) +
⁄1

2
�x − z1�

2
+

⁄2

2
�x − z2�

2
+ ... +

⁄c

2
�x − zc�

2
, (4.31)

where zi represents the local leaders and the global leader in LSGD generally. Formula (4.31) could be
rewritten as:

f(x) +
�
2
�x − z̃�

2
, (4.32)

where � = ∑c
i=1

⁄i and z̃ =
1

�
∑

c
i=1

⁄izi. By comparing the problem formulation of EASGD (Equation 4.28)
with the reformulated objective function of LSGD (Equation 4.32), we observe that LSGD’s objective function
is structurally the same as that of EASGD, di�ering only in the choice of certain constants. Since we have
already established the convergence guarantee for EASGD with a single center worker, this proof can be
readily adapted to LSGD by modifying these constants. Therefore, we omit the proof of the convergence
guarantee for LSGD in this manuscript.

4.1.4 Gradient-based Weighted Averaging (GRAWA)

Gradient-based Weighted Averaging (GRAWA) (Dimlioglu & Choromanska, 2024) considers the problem
of minimizing a loss function F with respect to model parameters x over a large data set D. In a parallel
computing environment with m workers (x1

, x
2
, ..., x

m
), this optimization problem can be written as:

min
x1,...,xm

m

�

i=1

E›∼Dif(x
i; ›) +

⁄

2
��x

i
− x

c
��

2
, (4.33)

where D is partitioned and distributed across m workers, Di is the data distribution exclusively seen by worker
i. x

c is the center variable (for example, an average of all the workers), and x
i stands for the parameters of

model i.

Motivated by EASGD, GRAWA applies a pulling force on all workers towards the center worker. The penalty
term ⁄

2
��x

i
− x

c
��

2 in the problem formulation (4.33) introduces the pulling force. However, di�erently from
EASGD which applies the 1�m equal average, GRAWA takes the weighted average among local workers based
on the gradients. Define the gradient vector for model i as Ai. More specifically, the weights are calculated
as follows (—i is the weight for worker i):

—i ∝
1
��Ai��2

,

m

�

i=1

—
i
= 1 �⇒ —

i
=

�
��∇f(xi)��

,

where � = ∏
m
i=1
��∇f(x

i
)��

∑
m
i=1

∏m
j=1
��∇f(xj)��

��∇f(xi)��
.

(4.34)

The update rule for GRAWA is:

x
i
k+1
= x

i
k − ÷(g

i
(x

i
k) + ⁄(x

i
k − x

c
)) (4.35)

x
c
k+1
= (1 − —

i
k)x̃k + —

i
k �

1
m

m

�

i=1

x
i
k� , (4.36)

where —
i
k is computed through Equation (4.34) defined above. We then move into the detailed theoretical

analysis of GRAWA based on the mathematical formulation introduced above.

59

Under review as submission to TMLR

Convex Setting. We first show that GRAWA reaches the same convergence rate as SGD under the
stronly-convex assumption.
Assumption 53 (Convex Setting). We assume that the loss function F = E›∼D[f(x; ›)] with the minimum
value x

∗ and stochastic gradient gi(x
i
k) satisfy the following conditions:

(1) Lipschitz gradient (L-smooth): �∇F (x) −∇F (y)� ≤ L �x − y�

(2) m-strongly convex: F (y) ≥ F (x) +∇F (x)
�
(x − y) +

m
2
�x − y�

2

(3) v-cone: �F (x) − F (x
∗
)� ≥ v��x − x

∗
�� i.e. lower bounded by a cone which has a tip at x

∗ and a slope k

(4) µ-sPL: ��∇F (x)�� ≥ µ (F (x) − F (x
∗
))

(5) Unbiased gradient: E[gi(x
i
k)] = ∇F (x)

(6) Bounded variance: E[�gi(x
i
k) −∇F (x)�

2

]≤‡
2.

Theorem 54. (Theorem 1 in (Dimlioglu & Choromanska, 2024)) Let x
c
k = ∑

m
i=1

—
i
kx

i
k and —

i
k’s are calculated

as in Equation 4.34. Under the Assumption 53 for the loss function F , the GRAWA center variable holds the
following property: F (x

c
k) ≤ f(x

i
k) for all i ∈ 1, 2, ..., m when µv ≥ L

√
M .

Proof. For notation simplicity, we omit the subscript k in this proof. We denote x
i
k, x

c
k and —

i
k as x

i, x
c and

—
i repectively.

Since x
c
= ∑

m
i=1

—
i
x

i, where ∑m
i=1

—
i
= 1, and F is convex:

F (x
c
) = F (

m

�

i=1

—
i
x

i
) ≤

m

�

i=1

—
i
F (x

i
). (4.37)

By the definition of —
i in Equations (4.34) we have

�∇F (x
c
)�

2
≤

m

�

i=1

�2

�∇F (xi)�
2
�∇F (x

i
)�

2

≤M�2
. (4.38)

Therefore, we have

�∇F (x
c
)� ≤

√

M�. (4.39)

Since —
i
=

��∇F (xi)� ≤ 1, we have � ≤ �∇F (x
i
)� for all i = 1, 2, .., m. Therefore:

�∇F (x
c
)� ≤

√

M �∇F (x
i
)� , ∀i = 1, .., m. (4.40)

Combine (4.40) with Assumption 53 for F (v-cone and L-smooth, where x
∗ is the minimum value):

F (x
i
) − F (x

∗
) ≥ v �x

i
− x
∗
� ≥

v

L
�∇F (x

i
)� ≥

v
√

ML
�∇F (x

c
)� .

Finally utilizing µ-sPL assumption for F , we have

F (x
i
) − F (x

∗
) ≥

µv
√

ML
(x

c
− x
∗
).

When kµ ≥ L
√

M , we can write: F (x
i
) ≥ F (x

c
).

Theorem 55. (Convergence of GRAWA; Convex Setting; Theorem 2 in (Dimlioglu & Choromanska, 2024))
Let ”

i
k = x

i
k − x̃k. Under the Assumption 53, when the learning rate satisfies ÷ <

1

2L and ÷⁄ <
m
2L , the update

rule (4.35-4.36) for GRAWA satisefies:

E[F (xi
k+1
)] ≤F (x

i
k) − ÷(1 − ÷L) �∇F (x

i
k)�

2

− ÷⁄(
m

2
− ÷⁄L) �”

i
k�

2

− ÷⁄(F (x
i
k) − F (x

c
k)) +

÷
2

2
L‡

2
.

60

Under review as submission to TMLR

Note the presence of the new term −÷⁄(F (x
i
k)−F (x

c
k)), which speeds up convergence since F (x

i
k) > F (x

c
k) is

guaranteed by Theorem 54 when µv ≤ L
√

M .

If the learning rate ÷ decreases as ÷k =
1√
k

, then E[F (xk+1)]−F (x
∗
) ≤ O(

1

k). In other words, GRAWA shows
sublinear convergence rate.

Proof. Since we already prove that F (x
c
k) ≤ f(x

i
k) for all i ∈ 1, 2, ..., m under Assumption 53 in Theorem 54.

The Proof scheme for Theorem 55 is exactly the same as that of EASGD based on the verified inequality.

Nonconvex Setting. The proof for GRAWA under nonconvex setting is exactly the same as that of
EASGD if we assume the distance between local workers and the center worker is always bounded throughout
the training process, i.e �xi

k − x
c
k� ≤ ”

2.

4.2 Decentralized Methods

Di�erently from the centralized methods, decentralized methods eliminate the need for a central worker,
distributing tasks among multiple workers that communicate according to a certain topology. The decentralized
communication topology e�ectively addresses the communication bottleneck encountered in centralized
methods, particularly in scenarios involving a large number of workers or limited network bandwidth within
the framework, since we no longer need to send local parameters from all local workers to a single processing
unit.

Before moving into the detailed discussion of di�erent decentralized methods, we consider the problem
formulation for decentralized distributed optimization. Assume that there are m workers and each dataset
satisfies distribution Di. The model parameter is denoted as x where x ∈ Rd. The purpose of distributed
optimization is to optimize the following problem:

min
x∈Rd

F (x) = min
x∈Rd

m

�

i=1

Fi(x)

= min
x∈Rd

1
m

m

�

i=1

E›∼Di[f(x; ›)], (4.41)

where f(x; ›) is the point-wise loss function and Fi(x) = E›∼Di[f(x; ›)] is the local objective function
optimized by the i-th worker. We are going to stick to this problem formulation in this section.

4.2.1 Decentralized Parallel SGD (D-PSGD)

Firstly, we introduce the Decentralized Parallel SGD (D-PSGD) method (Lian et al., 2017; 2018). The
communication topology of D-PSGD is given by an undirected weighted graph G = (V, W), where V ∶=

{1, 2, ..., m} denotes the set of m workers, and W = (Wij)m×m represents the weight matrix of edges in the
graph.

Within D-PSGD, each worker performs a local gradient update and subsequently averages its parameters
with those of its neighboring workers, as determined by the weight matrix W . The weight Wij determines the
influence of node j on node i. The weight Wij should always be bounded in the range [0, 1] and ∑m

j=1
Wij = 1

for all i. Wij = 0 indicates nodes i and j are not connected. The weight matrix W ∈ Rm×m is a symmetric
doubly stochastic matrix, which means: (i)Wij ∈ [0, 1],∀i, j; (ii)Wij =Wji,∀i, j; (iii)∑m

j=1
Wij = 1,∀i.

The gradient update rule for D-PSGD is:

xk+1,i =

m

�

j=1

Wij [xk,j − ÷gi(xk,i; ›k,i)] , (4.42)

where ÷ denotes the learning rate and xk,i denotes the model parameters of worker i at iteration k. gi(xk,i; ›k,i)

denotes the stochastic gradient of local loss Fi with respect to the local parameters of worker i at iteration k,
such that E›i[gi(xk,i; ›k,i)] = ∇Fi(xk).

61

Under review as submission to TMLR

We then move into the detailed proof of convergence based on the mathematical formulation introduced above.
We focus on the non-convex setting. The proof is based on (Lian et al., 2017), it is however reorganized.

Convergence Analysis. This section provides the analysis of the convergence of the D-PSGD algorithm.
We define the average iterate at step k as xk =

1

m ∑
m
i=1

xk,i, and the minimum of the loss function as F
∗.

This section demonstrates that under certain assumptions, the averaged gradient norm 1

K ∑
K
k=1

E[�∇F (xk)�]

converges to zero with sublinear convergence rate.

Before moving into the details, we first introduce the following Lemma 56 that the doubly stochastic matrix
W satisfied. Lemma 56 will play a vital role in the convergence proof later on.
Lemma 56. If W is a symmetric doubly stochastic matrix with the spectral norm fl =

(max{�⁄2(W)�, �⁄m(W)�})2 < 1, then for J = 11��m and arbitrary matrix B,

�B �Wk
− J��

2

F
≤ fl

k
�B�2F .

Proof. Since W is symmetric doubly stochastic and J = 11��m, we have WJ = J and J2
= J. Therefore,

Wk
− J =W(Wk−1

− J). (4.43)

Therefore, we have

�B �Wk
− J��

2

F
=

d

�

i=1

�b�i (Wk
− J)�

2

=

d

�

i=1

b�i (Wk−1
− J)W2

(Wk−1
− J)bi

≤‡max(W
2
)

d

�

i=1

b�i (Wk−1
− J)(Wk−1

− J)bi

≤fl �B �Wk−1
− J��

2

F

...

≤fl
k
�B�2F .

Then we are going to move to the main Theorem for the convergence analysis.
Assumption 57 (Nonconvex Setting). We assume that the loss function F (x) = ∑

m
i=1

Fi(x) satisfies the
following conditions:

(1) Lipschitz gradient: �∇Fi(x) −∇Fi(y)� ≤ L �x − y�

(2) Unbiased gradient: E›i[gi(xk,i; ›k,i)] = ∇Fi(xk,i)

(3) Bounded variance: E›i[�gi(xk,i; ›k,i) −∇Fi(xk,i)�
2
] ≤ ‡

2

(4) Unified gradient: E›i[�∇Fi(x) −∇Fi(x)�
2
] ≤ ’

2.

Theorem 58 (Convergence of D-PSGD; Nonconvex Setting). Suppose all local workers are initialized with
the same point x1 and W is the symmetric doubly stochastic weight matrix used for the D-PSGD update
rule. Define the spectral norm of W as fl = (max{�⁄2(W)�, �⁄m(W)�})2. Under Assumption 57, if fl < 1 and
÷L ≤min{1, (

�

fl−1 − 1)�4}, then after K iterations:

1
K

K

�

i=1

E ��∇F (xk)�
2
� ≤

8(F (x1) − F
∗
)

÷K
+

4÷L‡
2

m
+

8÷
2
L

2
fl

1 −√fl
�

‡
2

1 +√fl
+

3’
2

1 −√fl
� .

When setting ÷ =
�

m
K , we obtain sublinear convergence rate O(1√

mK
) +O(

m
K).

62

Under review as submission to TMLR

Proof. For notation simplicity, we denote the stochastic gradient gi(xk,i; ›k,i) as gi(xk,i). We first introduce
the following matrix forms for notation simplicity in the proof.

x
(k)
= [xk,1, xk,2, ..., xk,m];

G(k) = [g1(xk,1), g2(xk,2), ..., gm(xk,m)];

F(k) = [∇F1(xk,1),∇F2(xk,2), ...,∇Fm(xk,m)].

The matrix update rule can be written as

x
(k+1)

= (x
(k)
− ÷G(k))W, (4.44)

after taking the average, we have

xk+1 = xk −
÷

m
G(k)1. (4.45)

From Assumption 57, since function F is Lipschitz smooth, we have

F (xk+1) − F (xk) ≤�∇F (xk), xk+1 − xk� +
L

2
�xk+1 − xk�

2
. (4.46)

Since xk+1 = xk −
÷
m G(k)1, we have

F (xk+1) − F (xk) ≤ − ÷�∇F (xk),
G(k)1

m
� +

÷
2
L

2
�

G(k)1
m
�

2

. (4.47)

Taking expectation gives

E[F (xk+1) − F (xk)] ≤ −÷�∇F (xk),
F(k)1

m
� +

÷
2
L

2
E
�
�
�
�
�
�

�
G(k)1

m
�

2�
�
�
�
�
�

. (4.48)

We are going to bound the two terms in the RHS of formula 4.79 one by one.

(i) Firstly, we are going to bound �∇F (xk),
F(k)1

m �.

�∇F (xk),
F(k)1

m
� = �∇F (xk),

1
m

m

�

i=1

∇Fi(xk,i)�

=
1
2

�
�
�
�
�
�

�∇F (xk)�
2
+ �

1
m

m

�

i=1

∇Fi(xk,i)�

2

− �F (xk) −
1
m

m

�

i=1

∇Fi(xk,i)�

2�
�
�
�
�
�

=
1
2

�
�
�
�
�
�

�∇F (xk)�
2
+ �

1
m

m

�

i=1

∇Fi(xk,i)�

2

− �
1
m

m

�

i=1

[∇Fi(xk) −∇Fi(xk,i)]�

2�
�
�
�
�
�

≥
1
2

�
�
�
�
�
�

�∇F (xk)�
2
+ �

1
m

m

�

i=1

∇Fi(xk,i)�

2

−
1
m

m

�

i=1

�∇Fi(xk) −∇Fi(xk,i)�
2

�
�
�
�
�
�

(By Jensen’s Inequlity.)

≥
1
2

�
�
�
�
�
�

�∇F (xk)�
2
+ �

1
m

m

�

i=1

∇Fi(xk,i)�

2

−
L

2

m

m

�

i=1

�xk − xk,i�
2

�
�
�
�
�
�

(F is L-Lipschitz smooth.)

Define
J = 1m

m
.

We can reformulate the above bound as:

�∇F (xk),
F(k)1

m
� ≥

1
2
�∇F (xk)�

2
+

1
2
�

F(k)1
m
�

2

−
L

2

2m
�xk(I − J)�2F . (4.49)

63

Under review as submission to TMLR

(ii) Secondly, we are going to bound E ��G(k)1
m �

2

�.

E
�
�
�
�
�
�

�
G(k)1

m
�

2�
�
�
�
�
�

= E
�
�
�
�
�
�

�
1
m

m

�

i=1

gi(xk,i)�

2�
�
�
�
�
�

=E
�
�
�
�
�
�

�
1
m

m

�

i=1

[gi(xk,i) −∇Fi(xk,i) +∇Fi(xk,i)]�

2�
�
�
�
�
�

≤
1

m2

m

�

i=1

E
�
�
�
�
�
�

�
1
m

m

�

i=1

[gi(xk,i) −∇Fi(xk,i)]�

2�
�
�
�
�
�

+ �
1
m

m

�

i=1

∇Fi(xk,i)�

2

≤
‡

2

m
+ �

F(k)1
m
�

2

. (4.50)

Combine formula (4.79), (4.80), and (4.81) to obtain

E[F (xk+1) − F (xk)] ≤ −
÷

2
E[�∇F (xk)�

2
] −

÷

2
(1 − ÷L)�

F(k)1
m
�

2

+
÷L

2

2m
E ��xk(I − J)�2F � +

÷
2
L‡

2

2m
. (4.51)

Averaging over all iterations from k = 1, ..., K we obtain

E[F (xK) − F (x1)]

K
≤ −

÷

2
1
K

K

�

k=1

E[�∇F (xk)�
2
] −

÷

2
(1 − ÷L)

1
K

K

�

k=1

�
F(k)1

m
�

2

+
1
K

K

�

k=1

÷L
2

2m
E ��xk(I − J)�2F � +

÷
2
L‡

2

2m
. (4.52)

By rearranging, we have

1
K

K

�

k=1

E[�∇F (xk)�
2
] ≤

2E[F (x1) − F (xK)]

÷K
−

1 − ÷L

m

1
K

K

�

k=1

�
F(k)1

m
�

2

+
L

2

mK

K

�

k=1

E ��xk(I − J)�2F � +
÷L‡

2

m

≤
2E[F (x1) − F (xK)]

÷K
+

L
2

mK

K

�

k=1

E ��xk(I − J)�2F � +
÷L‡

2

m
. (4.53)

We now completed the first part of the proof. In the following section, we are going to bound E ��xk(I − J)�2F �.

xk(I − J) =(xk−1 − ÷G(k))W(I − J)

=xk−1(I − J)W − ÷G(k−1)W(I − J)
=...

=x1(I − J)Wk−1
− ÷

k−1

�
q=1

G(q)Wk−q
(I − J). (4.54)

Since all workers start from the same point, we have x1(I − J) = 0. Moreover, since W is symmetric doubly
stochastic and J = 1m�m, we know WJ = J. Thus:

64

Under review as submission to TMLR

�xk(I − J)�2F = ÷
2

�����������

k−1

�
q=1

G(q)(Wk−q
− J)
�����������

2

F

=÷
2

�����������

k−1

�
q=1

(G(q) −∇F(q) +∇F(q))(Wk−q
− J)
�����������

2

F

≤2÷
2

�����������

k−1

�
q=1

(G(q) −∇F(q))(Wk−q
− J)
�����������

2

F
��∶=I1

+2÷
2

�����������

k−1

�
q=1

∇F(q)(Wk−q
− J)
�����������

2

F
��∶=I2

. (4.55)

Then we are going to bound terms (I1) and (I2) in formula (4.86).

E[I1] ≤

k−1

�
q=1

E ��(G(q) −∇F(q))(Wk−q
− J)�

2

F
�

≤

k−1

�
q=1

fl
k−qE ��G(q) −∇F(q)�2

F
� (Lemma 56)

≤
m‡

2
fl

1 − fl
(Assumption 57: variance bounded). (4.56)

E[I2] ≤

k−1

�
q=1

E ��∇F(q)(Wk−q
− J)�

2

F
�

+

k

�
q=1

k

�
p=1,p≠q

E ��∇F(q)(Wk−q
− J)�

F
�∇F(p)(Wk−p

− J)�
F
�

≤

k−1

�
q=1

fl
k−qE ��∇F(q)�2

F
�

+

k

�
q=1

k

�
p=1,p≠q

E � 1
2‘

fl
k−q
�∇F(q)�2

F
+

‘

2
fl

k−p
�∇F(p)�2

F
�

(Lemma 56 & Young’s inequality).

If ‘ = fl
p−q

2 for the Young’s inequality, we have

E[I2] ≤

k−1

�
q=1

fl
k−qE ��∇F(q)�2

F
�

+

k

�
q=1

k

�
p=1,p≠q

√
fl

2k−p−qE ��∇F(q)�2
F
+ �∇F(p)�2

F
�

=

k−1

�
q=1

fl
k−qE ��∇F(q)�2

F
� +

k

�
q=1

√
fl

k−qE ��∇F(q)�2
F
�

k

�
p=1,p≠q

√
fl

k−p

=

k−1

�
q=1

fl
k−qE ��∇F(q)�2

F
� +

k

�
q=1

√
fl

k−qE ��∇F(q)�2
F
� (

k

�
p=1

√
fl

k−p
−
√

fl
k−q
)

≤

√
fl

1 −√fl

k−1

�
q=1

√
fl

k−qE ��∇F(q)�2
F
� . (4.57)

65

Under review as submission to TMLR

After plugging (4.87) and (4.87) back into (4.86), summing the inequality for k = 1, ..., K, and then averaging
by mK, we have

1
mK

K

�

k=1

E [�xk(I − J)�] ≤2÷
2
‡

2
fl

1 − fl
+

2÷
2

m

√
fl

1 −√fl

1
K

K

�

k=1

k

�
q=1

√
fl

k−qE ��∇F(q)�2
F
�

=
2÷

2
‡

2
fl

1 − fl
+

2÷
2

m

√
fl

1 −√fl

1
K

K

�

k=1

E ��∇F(k)�2
F
�

k

�
q=1

√
fl

q

≤
2÷

2
‡

2
fl

1 − fl
+

2÷
2

m

fl

(1 −√fl)2

1
K

K

�

k=1

E ��∇F(k)�2
F
� . (4.58)

Note that:

�∇F(k)�2
F
=

m

�

i=1

�∇Fi(xi,k)�
2

=

m

�

i=1

�∇Fi(xi,k) −∇F (xi,k) +∇F (xi,k) −∇F (xk) +∇F (xk)�
2

≤3
m

�

i=1

��∇Fi(xi,k) −∇F (xi,k)�
2
+ �∇F (xi,k) −∇F (xk)�

2
+ �∇F (xk)�

2
�

≤3m’
2
+ 3L

2
�xk(I − J)�2F + 3m �∇F (xk)�

2
. (4.59)

Plugging (4.90) back into (4.89), we obtain:

1
mK

K

�

k=1

E [�xk(I − J)�] ≤2÷
2
‡

2
fl

1 − fl
+

6÷
2
’

2
fl

(1 −√fl)2
+

6÷
2
L

2
fl

(1 −√fl)2

1
mK

K

�

k=1

E [�xk(I − J)�]

+
6÷

2
fl

(1 −√fl)2

1
K

K

�

k=1

�∇F (xk)�
2

. (4.60)

Define

D =
6÷

2
L

2
fl

(1 −√fl)2
.

After rearranging, we have

1
mK

K

�

k=1

E [�xk(I − J)�] ≤ 1
1 −D

�
2÷

2
‡

2
fl

1 − fl
+

6÷
2
’

2
fl

(1 −√fl)2
+

6÷
2
fl

(1 −√fl)2

1
K

K

�

k=1

�∇F (xk)�
2
� . (4.61)

Plugging the bound (4.92) back into (4.84), we obtain

1
K

K

�

k=1

E[�∇F (xk)�
2
] ≤

2E[F (x1) − F (xK)]

÷K
+

÷L‡
2

m

+
1

1 −D

2÷
2
‡

2
fl

1 − fl
+

D’
2

1 −D
+

D

1 −D

1
K

K

�

k=1

�∇F (xk)�
2

. (4.62)

66

Under review as submission to TMLR

By rearranging, we have

1
K

K

�

k=1

E[�∇F (xk)�
2
] ≤

1 −D

1 − 2D
�

2E[F (x1) − F (xK)]

÷K
+

÷L‡
2

m
�

+
1

1 − 2D

2÷
2
L

2
fl

1 −√fl
(

‡
2

1 +√fl
+

3’
2

1 −√fl
)

≤
1

1 − 2D
�

2E[F (x1) − F (xK)]

÷K
+

÷L‡
2

m
�

+
1

1 − 2D

2÷
2
L

2
fl

1 −√fl
(

‡
2

1 +√fl
+

3’
2

1 −√fl
). (4.63)

Since ÷L ≤
1−√fl
4
√

fl , we have

D =
6÷

2
L

2
fl

(1 −√fl)2
≤

3
8
<

1
2
�⇒

1
1 − 2D

≤ 4.

Therefore (4.94) could be bounded as:

1
K

K

�

k=1

E[�∇F (xk)�
2
] ≤

8E[F (x1) − F (xK)]

÷K
+

4÷L‡
2

m
+

8÷
2
L

2
fl

1 −√fl
(

‡
2

1 +√fl
+

3’
2

1 −√fl
). (4.64)

Since F
∗ is the minimum value of the loss, we have:

1
K

K

�

i=1

E ��∇F (xk)�
2
� ≤

8(F (x1) − F
∗
)

÷K
+

4÷L‡
2

m
+

8÷
2
L

2
fl

1 −√fl
�

‡
2

1 +√fl
+

3’
2

1 −√fl
� . (4.65)

If the learning rate is set to be ÷ =
�

m
K , we have

1
K

K

�

i=1

E ��∇F (xk)�
2
� ≤

8(F (x1) − F
∗
) + 4L‡

2

√
mK

+
8m

K

L
2
fl

1 −√fl
�

‡
2

1 +√fl
+

3’
2

1 −√fl
�

=O(
1

√
mK
) +O(

m

K
). (4.66)

4.2.2 MATCHA

Since the communication topology in DP-SGD is fixed, the algorithm encounters an error-runtime trade-o�
issue. A dense topology requires significant communication time per iteration. Conversely, a sparse topology
reduces communication time but results in slower convergence per iteration. To address this challenge, (Wang
et al., 2019) introduced the MATCHA algorithm. This approach adopts a win-win strategy, enabling both
rapid convergence and reduced communication time. MATCHA decomposes the topology into matching
components, facilitating parallelization of inter-node communication.

In this section, we introduce the MATCHA technique. Consider a communication topology of m worker
nodes. The communication links connecting the nodes are represented by an undirected connected graph
G = (V, E), where V = {1, 2, ..., m} are the vertices and E is the set of edges (E ⊂ V ×V). The communication
graph G could be abstracted as a adjacency matrix A, where Aij = 1 means (i, j) ∈ E and Aij = 0 means
(i, j) ∉ E. The Laplacian matrix or A is defined as: L = diag(d1, ..., dm) −A, where di denotes the degree of
node i.

In order to reduce the frequency of inter-node communication without a�ecting the convergence speed,
MATCHA decompose a dense topology with the matching decomposition and generate a new random

67

Under review as submission to TMLR

Figure 6: Illustration of MATCHA. This plot is taken from (Wang et al., 2019) (Figure 2).

temporary activated topology for each iteration based on this decomposition. The algorithm also follows the
intuition that it is beneficial to communicate over critical links more frequently and less over other links.
Figure 6 visualize the process of constructing the temporary activated topology for each iteration. We are
going to briefly introduce three steps of MATCHA below.

Step 1: Matching Decomposition. The dense base communication topology is decomposed into a total of M

disjoint matchings, i.e., G(V, E) = �
M
j=1

Gj(V, Ei) and Ei ∩Ej =,∀i ≠ j. Each matching Gj of graph G is a
subgraph where each vertex appears in at most one edge of this subgraph.

Step 2: Computing Matching Activation Probabilities. In order to control the total communication time per
iteration, MATCHA assigns an independent Bernoulli random variable Bj ∼ Bernoulli(pj) for each matching,
where pj is the activation probability of matching Gj . As a result, the expected communication time for each
iteration using this system is given as:

Expected Comm. Time = E
�
�
�
�
�

M

�

j=1

Bj

�
�
�
�
�

=

M

�

j=1

pj .

In order to reduce the total communication time, MATCHA defines a communication budget Cb and sets a
constraint on the activation probabilities pj based on the definition of the expected communication time:
∑

M
j=1

pj ≤ CbM .

In order to give more importance to critical links in the communication graph, MATCH maximizes the
connectivity of the expected graph by solving the following optimization problem:

max
p1,...,pM

⁄2(

M

�

j=1

pjLj)

s.t.

M

�

j=1

pj ≤ CbM (4.67)

0 ≤ pj ≤ 1,∀j = 1, ..., M,

where ⁄2 is the second smallest eigenvalue of the graph Laplacian and formula (4.67) could be generated
from the algebraic connectivity of the graph, as interpreted in (Bollobás, 2013).

Step 3: Generating Random Topology Sequence. Given the activation probability pj solved in step 2,
MATCHA samples B

(k)
j from the Bernoulli distribution Bernoulli(pj) before k-th iteration. B

(k)
j = 1�0

68

Under review as submission to TMLR

controls whether the matching j will be included in the current iteration. The temporary activated topology
at k-th iteration is G(k) = �M

j=1
B
(k)
j Gj , which is sparse or even disconnected. The corresponding Laplacian

matrix is L(k) = ∑M
j=1

B
(k)
j Lj . The weight matrix W(k) for MATCHA at iteration k can be represented as:

W(k)
= I − –L(k) = I − –

M

�

j=1

B
(k)
j Lj . (4.68)

The gradient update rule for MATCHA is:

xk+1,i =

m

�

j=1

W
(k)
ij [xk,j − ÷gi(xk,i; ›k,i)] , (4.69)

where ÷ denotes the learning rate and xk,i denotes the model parameters of worker i at iteration k. gi(xk,i; ›k,i)

denotes the stochastic gradient of local loss Fi with respect to the local parameters of worker i at iteration k,
such that E›i[gi(xk,i; ›k,i)] = ∇Fi(xk).

Convergence proof. This section presents an analysis of the convergence rate of the MATCHA algorithm.
The proof is structured similar to that of DP-SGD. We define the average iterate at step k as xk =

1

m ∑
m
i=1

xk,i

and the minimum of the loss function as F
∗. This section demonstrates that under certain assumptions, the

averaged gradient norm 1

K ∑
K
k=1

E[�∇F (xk)�] converges to zero with sublinear convergence rate.

Before moving into the detailed convergence guarantee, we first discuss the property of weight matrix W(k)
(Theorem 59), that will be used in the proof.
Theorem 59. (Theorem 1 in (Wang et al., 2019)) Let {L(k)} denote the sequence of Laplacian matrix
generated by MATCHA algorithm with arbitrary communication budget Cb > 0 for the the base communication
topology G. Let the weight matrix W(k) be defined as in Equation (4.68). There exists a range of – such that
the spectral norm fl = �E[W(k)�W(k)

− J]�
2

< 1, where J = 11��m.

Proof. Firstly, we are going to show that the expected activated topology ∑M
j=1

pjLj is connected. Let p0 = Cb,

⁄2(

M

�

j=1

pjLj) ≥ p0⁄2(p0

M

�

j=1

Lj) = p0⁄2(

M

�

j=1

Lj) > 0.

where pj is the activation probability of matching Gj(p0 is the activation probability of first matching G0).
⁄i is the i-th smallest eigenvalue of the graph Laplacian L. Therefore, the base communication topology is
connected.

fl = �E[W(k)�W(k)
− J]�

2

= �E �(I − –L(k))�(I − –L(k)) − J��

= �E �I − 2–E �L(k)� + –
2E �L(k)�L(k)� − J�� , (4.70)

where L(k) = ∑M
j=1

B
(k)
j Lj . Since B

(k)
j are i.i.d. across all subgraphs and iterations,

E �L(k)� =
m

�

j=1

pjLj (4.71)

E �L(k)�L(k)� =
M

�

j=1

p
2

jL2

j +

M

�

j=1

�

t=1,t≠j

pjptL�j Lt +

M

�

j=1

pj(1 − pj)L2

j

=
�

�

M

�

j=1

pjLj
�

�

2

+

M

�

j=1

pj(1 − pj)L2

j

=
�

�

M

�

j=1

pjLj
�

�

2

+ 2
M

�

j=1

pj(1 − pj)Lj . (4.72)

69

Under review as submission to TMLR

Plugging (4.71) and (4.72) back to (4.70), we have

�E �W(k)�W(k)
� − J� ≤

�������������

�

�
I − –

m

�

j=1

pjLj
�

�

2

− J
�������������

+ 2–
2

�����������

M

�

j=1

pj(1 − pj)Lj

�����������

=max{(1 − –⁄2)
2
, (1 − –⁄m)

2
} + 2–

2
’, (4.73)

where ⁄l denotes the l-th smallest eigenvalue of matrix ∑m
j=1

pjLj and ’ > 0 denotes the spectral norm of
matrix ∑m

j=1
pj(1 − pj)Lj . Suppose h⁄(–) = (1 − –⁄)

2
+ 2–

2
’. Then we have:

ˆh

ˆ–
= −2⁄(1 − –⁄) + 4–’,

ˆ
2
h

ˆ–2
= 2⁄

2
+ 4’ > 0.

Therefore, h⁄(–) is a convex function. By setting its derivative to zero, we can get the minimal value:

–
∗
=

⁄

⁄2 + 2’
,

h⁄(–
∗
) =

4’
2

(⁄2 + 2’)2
+

2⁄
2
’

(⁄2 + 2’)2
=

2’

⁄2 + 2’
. (4.74)

We already prove that ⁄m ≥ ⁄2 > 0. Therefore, we have –
∗
> 0 and h⁄(–

∗
) < 1. Note that h⁄(0) = 1

and h⁄(–) is a quadratic function. Therefore, if – ∈ (0, 2–
∗
), h⁄(–

∗
) ≤ h⁄(–) < 1. Thus when – <

(0, min{ 2⁄2(⁄2
m+2’) , 2⁄m(⁄2

m+2’)}), we have

�E �W(k)�W(k)
� − J� ≤max{h⁄2

(–), h⁄m(–)} < 1.

Theorem 59 demonstrates that for MATCHA with an arbitrary communication budget Cb > 0, there exists
a value of – such that the resulting spectral norm fl < 1. This spectral norm is crucial for ensuring the
convergence of MATCHA.
Lemma 60. (Lemma 1 in (Wang et al., 2019)) Let {W(k)

}
∞
k=1

be an i.i.d. symmetric and doubly stochastic
matrices sequence. Then for arbitrary matrix B

E
�
�
�
�
�
�

�B�
n

�

l=1

W(l)
− J��

2

F

�
�
�
�
�
�

≤ fl
n
�B�

2

F .

Proof. Define �Aq,n =∏
n
l=q W(l)

− J, b�i denote the i-th row vector of B. Since for all k, W(k)
� =W(k) and

W(k)J = JW(k)
=W(k). Thus, we have

A1,n =

n

�

l=1

�W(l)
− J� = A1,n−1(

�W
(n)
− J).

Thus, we have

EW(n) ��BA1,n�
2

F � ≤

d

�

i=1

EW(n) ��b�i A1,n�
2

�

=

d

�

i=1

b�i A1,n−1EW(n) �W(n)�W(n)
− J�A�

1,n−1
bi

70

Under review as submission to TMLR

Let C = EW(n) �W(n)�W(n)
− J�, vi =A�

1,n−1
bi, we have:

EW(n−1) ��BA1,n−1�
2

F � =

d

�

i=1

v
�
i Cv

≤‡max(C)
d

�

i=1

vi

≤fl �BA1,n−1� .

Repeat the previous procedure, since W(k) are all i.i.d, we could get the final results.

We are next going to move to the main Theorem that captures the convergence of MATCHA. Lemma 60 is
used to prove the theorem.
Assumption 61 (Nonconvex Setting). We assume that the loss function F (x) = ∑

m
i=1

Fi(x) satisfy the
following conditions:

(1) Lipschitz gradient: �∇Fi(x) −∇Fi(y)� ≤ L �x − y�

(2) Unbiased gradient: E›i[gi(xk,i; ›k,i)] = ∇Fi(xk,i)

(3) Bounded variance: E›i[�gi(xk,i; ›k,i) −∇Fi(xk,i)�
2
] ≤ ‡

2

(4) Unified gradient: E›i[�∇Fi(x) −∇Fi(x)�
2
] ≤ ’

2.

Theorem 62 (Convergence of MATCHA; Nonconvex Setting). (Theorem 2 in (Wang et al., 2019)) Suppose
all local workers are initialized with the same point x1 and {Wk

}
K
k=1

is the i.i.d. weight matrix generated by
the MATCHA algorithm. Define the spectral norm of W as fl = �E[W(k)�W(k)

− J]�. Under Assumption 61,
if learning rate ÷L ≤min 1, (

�

fl−1 − 1)�4, then after K iterations:

1
K

K

�

i=1

E ��∇F (xk)�
2
� ≤

8(F (x1) − F
∗
)

÷K
+

4÷L‡
2

m
+

8÷
2
L

2
fl

1 −√fl
�

‡
2

1 +√fl
+

3’
2

1 −√fl
� .

When setting ÷ =
�

m
K , we obtain sublinear convergence rate O(1√

mK
) +O(

m
K).

Proof. For notation simplicity, we denote the stochastic gradient gi(xk,i; ›k,i) as gi(xk,i). We first introduce
the following matrix forms for notation simplicity in the proof.

x
(k)
= [xk,1, xk,2, ..., xk,m];

G(k) = [g1(xk,1), g2(xk,2), ..., gm(xk,m)];

F(k) = [∇F1(xk,1),∇F2(xk,2), ...,∇Fm(xk,m)].

The matrix update rule can be written as

x
(k+1)

= (x
(k)
− ÷G(k))W(k)

, (4.75)

after taking the average, we have

xk+1 = xk −
÷

m
G(k)1. (4.76)

From Assumption 57, since function F is Lipschitz smooth, we have

F (xk+1) − F (xk) ≤�∇F (xk), xk+1 − xk� +
L

2
�xk+1 − xk�

2
. (4.77)

71

Under review as submission to TMLR

Since xk+1 = xk −
÷
m G(k)1, we have

F (xk+1) − F (xk) ≤ − ÷�∇F (xk),
G(k)1

m
� +

÷
2
L

2
�

G(k)1
m
�

2

. (4.78)

Taking expectation, we have

E[F (xk+1) − F (xk)] ≤ −÷�∇F (xk),
F(k)1

m
� +

÷
2
L

2
E
�
�
�
�
�
�

�
G(k)1

m
�

2�
�
�
�
�
�

. (4.79)

We are going to bound the 2 terms in the RHS of formula 4.79 on by one.

(i) Firstly, we are going to bound �∇F (xk),
F(k)1

m �.

�∇F (xk),
F(k)1

m
� = �∇F (xk),

1
m

m

�

i=1

∇Fi(xk,i)�

=
1
2

�
�
�
�
�
�

�∇F (xk)�
2
+ �

1
m

m

�

i=1

∇Fi(xk,i)�

2

− �F (xk) −
1
m

m

�

i=1

∇Fi(xk,i)�

2�
�
�
�
�
�

=
1
2

�
�
�
�
�
�

�∇F (xk)�
2
+ �

1
m

m

�

i=1

∇Fi(xk,i)�

2

− �
1
m

m

�

i=1

[∇Fi(xk) −∇Fi(xk,i)]�

2�
�
�
�
�
�

≥
1
2

�
�
�
�
�
�

�∇F (xk)�
2
+ �

1
m

m

�

i=1

∇Fi(xk,i)�

2

−
1
m

m

�

i=1

�∇Fi(xk) −∇Fi(xk,i)�
2

�
�
�
�
�
�

(By Jensen’s Inequlity.)

≥
1
2

�
�
�
�
�
�

�∇F (xk)�
2
+ �

1
m

m

�

i=1

∇Fi(xk,i)�

2

−
L

2

m

m

�

i=1

�xk − xk,i�
2

�
�
�
�
�
�

(F is L-Lipschitz smooth.)

Define
J = 1m

m
,

we could reformulate the above bound as:

�∇F (xk),
F(k)1

m
� ≥

1
2
�∇F (xk)�

2
+

1
2
�

F(k)1
m
�

2

−
L

2

2m
�xk(I − J)�2F (4.80)

(ii) Secondly, we are going to bound E ��G(k)1
m �

2

�.

E
�
�
�
�
�
�

�
G(k)1

m
�

2�
�
�
�
�
�

= E
�
�
�
�
�
�

�
1
m

m

�

i=1

gi(xk,i)�

2�
�
�
�
�
�

=E
�
�
�
�
�
�

�
1
m

m

�

i=1

[gi(xk,i) −∇Fi(xk,i) +∇Fi(xk,i)]�

2�
�
�
�
�
�

≤
1

m2

m

�

i=1

E
�
�
�
�
�
�

�
1
m

m

�

i=1

[gi(xk,i) −∇Fi(xk,i)]�

2�
�
�
�
�
�

+ �
1
m

m

�

i=1

∇Fi(xk,i)�

2

≤
‡

2

m
+ �

F(k)1
m
�

2

(4.81)

72

Under review as submission to TMLR

Combine formula (4.79), (4.80) and (4.81), we have

E[F (xk+1) − F (xk)] ≤ −
÷

2
E[�∇F (xk)�

2
] −

÷

2
(1 − ÷L)�

F(k)1
m
�

2

+
÷L

2

2m
E ��xk(I − J)�2F � +

÷
2
L‡

2

2m
(4.82)

Averaging over all iterations from k = 1, ..., K, we have

E[F (xK) − F (x1)]

K
≤ −

÷

2
1
K

K

�

k=1

E[�∇F (xk)�
2
] −

÷

2
(1 − ÷L)

1
K

K

�

k=1

�
F(k)1

m
�

2

+
1
K

K

�

k=1

÷L
2

2m
E ��xk(I − J)�2F � +

÷
2
L‡

2

2m
(4.83)

By rearranging, we have

1
K

K

�

k=1

E[�∇F (xk)�
2
] ≤

2E[F (x1) − F (xK)]

÷K
−

1 − ÷L

m

1
K

K

�

k=1

�
F(k)1

m
�

2

+
L

2

mK

K

�

k=1

E ��xk(I − J)�2F � +
÷L‡

2

m

≤
2E[F (x1) − F (xK)]

÷K
+

L
2

mK

K

�

k=1

E ��xk(I − J)�2F � +
÷L‡

2

m
(4.84)

We now complete the first part of the proof. In the following section, we are going to bound E ��xk(I − J)�2F �.

xk(I − J) =(xk−1 − ÷G(k))W(k)
(I − J)

=xk−1(I − J)W(k)
− ÷G(k−1)W(k−1)

(I − J)
=...

=x1(I − J)
k−1

�
q=1

W(q)
− ÷

k−1

�
q=1

G(q)(
k−1

�
q=1

W(q)
− J) (4.85)

Since all workers start from the same point, we have x1(I − J) = 0. Moreover, since W is symmetric doubly
stochastic and J = 1m�m, we know WJ = J. In all:

�xk(I − J)�2F = ÷
2

�����������

k−1

�
q=1

G(q)(
k−1

�

l=q

W(l)
− J)
�����������

2

F

=÷
2

�����������

k−1

�
q=1

(G(q) −∇F(q) +∇F(q))(
k−1

�

l=q

W(l)
− J)
�����������

2

F

≤2÷
2

�����������

k−1

�
q=1

(G(q) −∇F(q))(
k−1

�

l=q

W(l)
− J)
�����������

2

F
���∶=I1

+2÷
2

�����������

k−1

�
q=1

∇F(q)(
k−1

�

l=q

W(l)
− J)
�����������

2

F
��∶=I2

(4.86)

Then we are going to bound terms (I1) and (I2) in formula (4.86).

73

Under review as submission to TMLR

E[I1] ≤

k−1

�
q=1

E
�
�
�
�
�
�

�����������

(G(q) −∇F(q))(
k−1

�

l=q

W(l)
− J)
�����������

2

F

�
�
�
�
�
�

≤

k−1

�
q=1

fl
k−qE ��G(q) −∇F(q)�2

F
� (Lemma 56)

≤
m‡

2
fl

1 − fl
(Assumption 57: variance bounded) (4.87)

E[I2] ≤

k−1

�
q=1

E
�
�
�
�
�
�

�����������

∇F(q)(
k−1

�

l=q

W(l)
− J)
�����������

2

F

�
�
�
�
�
�

+

k

�
q=1

k

�
p=1,p≠q

E
�
�
�
�
�
�

�����������

∇F(q)(
k−1

�

l=q

W(l)
− J)
�����������F

�∇F(p)(Wk−p
− J)�

F

�
�
�
�
�
�

≤

k−1

�
q=1

fl
k−qE ��∇F(q)�2

F
�

+

k

�
q=1

k

�
p=1,p≠q

E � 1
2‘

fl
k−q
�∇F(q)�2

F
+

‘

2
fl

k−p
�∇F(p)�2

F
�

(Lemma 56 & Young’s inequality)

If ‘ = fl
p−q

2 for the Young’s inequality, we have

E[I2] ≤

k−1

�
q=1

fl
k−qE ��∇F(q)�2

F
�

+

k

�
q=1

k

�
p=1,p≠q

√
fl

2k−p−qE ��∇F(q)�2
F
+ �∇F(p)�2

F
�

=

k−1

�
q=1

fl
k−qE ��∇F(q)�2

F
� +

k

�
q=1

√
fl

k−qE ��∇F(q)�2
F
�

k

�
p=1,p≠q

√
fl

k−p

=

k−1

�
q=1

fl
k−qE ��∇F(q)�2

F
� +

k

�
q=1

√
fl

k−qE ��∇F(q)�2
F
� (

k

�
p=1

√
fl

k−p
−
√

fl
k−q
)

≤

√
fl

1 −√fl

k−1

�
q=1

√
fl

k−qE ��∇F(q)�2
F
� (4.88)

Plugging (4.87) and (4.87) back to (4.86), and summing the inequality for k = 1, ..., K then averaging by mK,
we have

1
mK

K

�

k=1

E [�xk(I − J)�] ≤2÷
2
‡

2
fl

1 − fl
+

2÷
2

m

√
fl

1 −√fl

1
K

K

�

k=1

k

�
q=1

√
fl

k−qE ��∇F(q)�2
F
�

=
2÷

2
‡

2
fl

1 − fl
+

2÷
2

m

√
fl

1 −√fl

1
K

K

�

k=1

E ��∇F(k)�2
F
�

k

�
q=1

√
fl

q

≤
2÷

2
‡

2
fl

1 − fl
+

2÷
2

m

fl

(1 −√fl)2

1
K

K

�

k=1

E ��∇F(k)�2
F
� (4.89)

74

Under review as submission to TMLR

Note that:

�∇F(k)�2
F
=

m

�

i=1

�∇Fi(xi,k)�
2

=

m

�

i=1

�∇Fi(xi,k) −∇F (xi,k) +∇F (xi,k) −∇F (xk) +∇F (xk)�
2

≤3
m

�

i=1

��∇Fi(xi,k) −∇F (xi,k)�
2
+ �∇F (xi,k) −∇F (xk)�

2
+ �∇F (xk)�

2
�

≤3m’
2
+ 3L

2
�xk(I − J)�2F + 3m �∇F (xk)�

2
. (4.90)

Plugging (4.90) back to (4.89), we have:

1
mK

K

�

k=1

E [�xk(I − J)�] ≤2÷
2
‡

2
fl

1 − fl
+

6÷
2
’

2
fl

(1 −√fl)2
+

6÷
2
L

2
fl

(1 −√fl)2

1
mK

K

�

k=1

E [�xk(I − J)�]

+
6÷

2
fl

(1 −√fl)2

1
K

K

�

k=1

�∇F (xk)�
2 (4.91)

Define

D =
6÷

2
L

2
fl

(1 −√fl)2
,

After rearranging, we have

1
mK

K

�

k=1

E [�xk(I − J)�] ≤ 1
1 −D

�
2÷

2
‡

2
fl

1 − fl
+

6÷
2
’

2
fl

(1 −√fl)2
+

6÷
2
fl

(1 −√fl)2

1
K

K

�

k=1

�∇F (xk)�
2
� . (4.92)

Plugging the bound (4.92) back to (4.84), we have

1
K

K

�

k=1

E[�∇F (xk)�
2
] ≤

2E[F (x1) − F (xK)]

÷K
+

÷L‡
2

m

+
1

1 −D

2÷
2
‡

2
fl

1 − fl
+

D’
2

1 −D
+

D

1 −D

1
K

K

�

k=1

�∇F (xk)�
2 (4.93)

By rearranging, we have

1
K

K

�

k=1

E[�∇F (xk)�
2
] ≤

1 −D

1 − 2D
�

2E[F (x1) − F (xK)]

÷K
+

÷L‡
2

m
�

+
1

1 − 2D

2÷
2
L

2
fl

1 −√fl
(

‡
2

1 +√fl
+

3’
2

1 −√fl
)

≤
1

1 − 2D
�

2E[F (x1) − F (xK)]

÷K
+

÷L‡
2

m
�

+
1

1 − 2D

2÷
2
L

2
fl

1 −√fl
(

‡
2

1 +√fl
+

3’
2

1 −√fl
) (4.94)

Since ÷L ≤
1−√fl
4
√

fl , we have

D =
6÷

2
L

2
fl

(1 −√fl)2
≤

3
8
<

1
2
�⇒

1
1 − 2D

≤ 4

75

Under review as submission to TMLR

Therefore (4.94) could be bounded as:

1
K

K

�

k=1

E[�∇F (xk)�
2
] ≤

8E[F (x1) − F (xK)]

÷K
+

4÷L‡
2

m
+

8÷
2
L

2
fl

1 −√fl
(

‡
2

1 +√fl
+

3’
2

1 −√fl
) (4.95)

Since F
∗ is the minimum value of the loss, we could have:

1
K

K

�

i=1

E ��∇F (xk)�
2
� ≤

8(F (x1) − F
∗
)

÷K
+

4÷L‡
2

m
+

8÷
2
L

2
fl

1 −√fl
�

‡
2

1 +√fl
+

3’
2

1 −√fl
� . (4.96)

If the learning rate is set to be ÷ =
�

m
K , we have

1
K

K

�

i=1

E ��∇F (xk)�
2
� ≤

8(F (x1) − F
∗
) + 4L‡

2

√
mK

+
8m

K

L
2
fl

1 −√fl
�

‡
2

1 +√fl
+

3’
2

1 −√fl
�

=O(
1

√
mK
) +O(

m

K
). (4.97)

4.2.3 Adjacent Leader Decentralized SGD (AL-DSGD)

The Adjacent Leader Decentralized SGD (AL-DSGD) algorithm, introduced by (He et al., 2024), aims
to enhance the final model performance, accelerate convergence, and minimize communication load in
decentralized DL optimizers. The algorithm operates by assigning weights to neighboring workers based
on their performance and the degree before averaging them. Additionally, it exerts a corrective force on
workers determined by both the best-performing neighbor and the neighbor with the highest degree. To
address the issue of reduced convergence speed and performance in nodes with lower degrees, AL-DSGD
employs dynamic communication graphs. These graphs enable workers to interact with more nodes while
maintaining low node degrees. Algorithm 4.1 shows the pseudocode for AL-DSGD algorithm. Let k denote
the iteration index (k = 1, 2, . . . , K) and i denote the index of the worker (i = 1, 2, . . . , m). Let x

N
k,i denote the

best performing worker from among the workers adjacent to node i at iteration k and let x
·
k,i denote the

maximum degree worker from among the workers adjacent to node i at iteration k. Let {G(i)}n
i=1

denote
the dynamic communication graphs, each communication graph {G(i)}has its own weight matrices sequence
{W(k)

}. There are mainly three steps needed to execute AL-DSGD algorithm and we discuss them below.

Step 1: The Corrective Force. The workers with lower degree in the communication topology have worse
performance than that with higher degree. In order to augment the influence of the best-performing worker
on others, AL-DSGD introduces the corrective force between workers to pull current local worker to their
adjacent nodes with the largest degrees and the lowest train loss. For each current worker xk,i, denote the
best-performing adjacent worker based on the train loss and the largest degree adjacent work as x

N
k,i and x

·
k,i,

respectively. Adding the corrective force is done as follows:

xk+ 1

2
,i=xk,i−“∇Fi(xk,i; ›k,i) − “⁄N(xk,i − x

N
k,i) − “⁄·(xk,i − x

·
k,i)

where ⁄N and ⁄· are pulling coe�cients, “ is the learning rate, and ∇Fi(xk,i; ›k,i) is the gradient of the loss
function for worker i computed on parameters xk,i and local data sample ›k,i that is seen by worker i at
iteration k.

Step 2: The Averaging Step. When averaging workers, AL-DSGD weight them according to their degree and
performance. Figure 7 visualizes the process and the update step is shown below.

xk+1,i=(1 −wN −w·) ⋅ (W
(k)
ii xk+ 1

2
,i+

m

�

j=1,j≠i

W
(k)
ij xk,j) +wN ⋅ x

N
k,i +w· ⋅ x

·
k,i.

Step 3: The Dynamic Communication Graph. Instead of being restricted to a single communication topology,
AL-DSGD introduces n di�erent communication topologies and switches between them. Figure 8 visualizes
the process.

76

Under review as submission to TMLR

Algorithm 4.1 Proposed AL-DSGD algorithm
1: Initialization:initialize local models {xi

0
}

m
i=1

with the di�erent initialization, learning rate “, weight
matrices sequence {W(k)

}, and the total number of iterations K. Initialize communication graphs
set {G(i)}n

i=1
, each communication graph {G(i)}has its own weight matrices sequence {W(k)

}. Pulling
coe�cients ⁄N and ⁄· . Model weights coe�cients wN and w· . Split the original dataset into subsets.

2: while k=0, 1, 2, ... K-1 ≤ K do
3: Compute the local stochastic gradient ∇Fi(xk,i; ›k,i) on all workers
4: For each worker, fetch neighboring models and determine the adjacent best worker x

N
k,i and the

adjacent maximum degree worker: x
·
k,i.

5: Update the local model with corrective force:
xk+ 1

2
,i = xk,i − “∇Fi(xk,i; ›k,i) − “⁄N(xk,i − x

N
k,i)

− “⁄·(xk,i − x
·
k,i)

6: Average the model with neighbors, give additional weights to worker x
N
k,i and x

·
k,i:

xk+1,i = (1 −wN −w·) ⋅ (

m

�

j=1,j≠i

W
(k)
ij xk,j +W

(k)
ii xk+ 1

2
,i) +wN ⋅ x

N
k,i +w· ⋅ x

·
k,i

7: Switch to new communication graph.
8: Output:the average of all workers 1

m ∑
m
i=1

xk,i

Figure 7: (a) The weights before communication are represented as colored blocks, where di�erent colors
correspond to di�erent workers. (b) Previous methods simply average the training model with neighbors.
Each colored block denotes the identity of workers whose parameters were taken to compute the average. (c)
To illustrate AL-DSGD, we assume that the higher is the index of the worker, the worse is its performance in
this iteration. For each node, in addition to averaging with neighboring models, AL-DSGD assigns additional
weights to the best performing adjacent model and the maximum degree adjacent model. This is depicted as
the sum, where the additional block has two pieces (the left corresponds to the best performing adjacent
model and the right corresponds to the maximum degree adjacent model; the indexes of these models are also
provided). For example, in the case of model 2, both the best-performing adjacent model and the maximum
degree adjacent model is model 1.

The gradient update step for AL-DSGD is:

xk+1,i =

(I)
���

(1 − ÊN − Ê·)

m

�

j=1

W
(k)
ij xk,j + ÊN x

n
k,i + Ê· x

·
k,i

− “(1 − ÊN − Ê·)W
(k)
ii [∇Fi(xk,i; ›k,i) + ⁄N(xk,i − x

N
k,i) + ⁄·(xk,i − x

·
k,i)] (4.98)

Convergence proof. This section presents an analysis of the convergence rate of the AL-DSGD algorithm.
The proof is structured similarly to that of DP-SGD and MATCHA. We define the average iterate at step k

as xk =
1

m ∑
m
i=1

xk,i and the minimum of the loss function as F
∗. This section demonstrates that under certain

assumptions, the averaged gradient norm 1

K ∑
K
k=1

E[�∇F (xk)�] converges to zero with sublinear convergence
rate.

77

Under review as submission to TMLR

Figure 8: AL-DSGD with three Laplacian matrices rotates workers locations between (a), (b), and (c).

We first reformulate the update rule (4.98) of AL-DSGD into matrix representation for easy notaion. We first
consider part (I) in formula (4.98) without the gradient update step. We define x̃k+ 1

2
,i ∶= (I), and denote

xk = [xk,1, xk,2, ..., xk,m],

x̃k+ 1

2

= [x̃k+ 1

2
,1x̃k+ 1

2
,2, ..., x̃k+ 1

2
,m],

x
N
k = [x

N
k,1, x

N
k,2, ..., x

N
k,m],

x
·
k = [x

·
k,1, x

·
k,2, ..., x

·
k,m].

We have:

x̃k+ 1

2

=Xk
�W
(k)

�W
(k)
= (1 − ÊN − Ê·)W(k)

+ ÊN AN
k + Ê· A·

k

W(k)
= 1 − –L(k), (4.99)

where L(k) denotes the graph Laplacian matrix at the k
th iteration, x

N
k and x

·
k are the model parameter

matrix of the adjacent best workers and adjacent maximum degree workers at the k
th iteration. Assume

x
N
k = xkAN

k , x
·
k = xkA·

k. Since every row in x
N
k and x

·
k is also a row of the model parameter matrix xk, we

could conclude that the transformation matrices AN
k and A·

k must be the left stochastic matrices.

AL-DSGD switches between n communication graphs {G(i)}n
i=1

. Let {L(i),j}m
j=1

be the Laplacian matrices
set as matching decompositions of graph G(i). Led by MATCHA approach, to each matching of L(i),j to
graph G(i) we assign an independent Bernoulli random variable B(i),j with probability p(i),j based on the
communication budget Cb.

Then the graph Laplacian matrix at the k
th iteration L(k) can be written as:

L(k) =

�
����������������
�
����������������
�

m

�

j=1

B
(k)(1),jL(1),j if k mod n = 1

m

�

j=1

B
(k)(2),jL(2),j if k mod n = 2

...

m

�

j=1

B
(k)(n),jL(n),j if k mod n = 0.

78

Under review as submission to TMLR

The convergence of AL-DSGD algorithm requires fl =max{�E ��W(k)
(I−J)�W

(k)�
��, �E ��W(k)

�W
(k)�
��}<1,

where J = 11��m. The following Theorem 63 illustrated that for arbitrary communication budget Cb there
exists some –, ÊN and Ê· such that the spectral norm fl < 1.
Theorem 63. (Theorem 1 in (He et al., 2024)) Let {L(k)} denote the sequence of Laplacian matrices
generated by AL-DSGD algorithm with arbitrary communication budget Cb > 0 for the dynamic communication
graph set {G(i)}n

i=1
. The mixing matrix �W(k) is defined as (4.99). There exists a range of – and a range

of average parameters ÊN = Ê· ∈ (0, Ê(–)), whose bound is dictated by –, such that the spectral norm
fl =max{�E ��W(k)

(I − J)�W
(k)�
�� ,�E ��W(k)

�W
(k)�
��} < 1.

Proof. See Appendix 4.1.

Lemma 64. (Lemma 3 in (He et al., 2024)) Let {�W(k)
}
∞
k=1

be i.i.d matrix generated from AL-DSGD
algorithm and

fl =max{�E ��W(k)
(I − J)�W

(k)�
�� ,�E ��W(k)

�W
(k)�
��} < 1.

Then for arbitrary B

E
�
�
�
�
�
�

�B�
n

�

l=1

�W
(l)
� (I − J)�

2

F

�
�
�
�
�
�

≤ fl
n
�B�2F .

Proof. See Appendix E

Next we are going to move to the main theorem capturing the convergence of AL-DSGD. The proof is based
on Lemma 64.
Assumption 65 (Nonconvex Setting). We assume that the loss function F (x) = ∑

m
i=1

Fi(x) satisfies the
following conditions:

(1) Lipschitz continuous: �Fi(x) − Fi(y)� ≤ — �x − y�

(2) Lipschitz gradient: �∇Fi(x) −∇Fi(y)� ≤ L �x − y�

(3) Unbiased gradient: E›i[gi(xk,i; ›k,i)] = ∇Fi(xk,i)

(4) Bounded variance: E›i[�gi(xk,i; ›k,i) −∇Fi(xk,i)�
2
] ≤ ‡

2

(5) Unified gradient: E›i[�∇Fi(x) −∇Fi(x)�
2
] ≤ ’

2

(6) Bounded domain: max{�xk,i − x
N
k,i�, �xk,i − x

·
k,i�} ≤�2.

Theorem 66. (Convergence of AL-DSGD; Nonconvex Setting; Theorem 2 in ()) Suppose all local workers
are initialized with x

(1)
= 0 and {�W(k)

}
K
k=1

is an i.i.d. matrix sequence generated by AL-DSGD algorithm
which satisfies the spectral norm condition fl < 1 (fl is defined in Theorem 63). Under Assumption 11, if
⁄ = 2⁄N = 2⁄· and (1 − –)(1 − Ê)“L ≤min{1, (

�

fl−1 − 1)}, then after K iterations:

1
K

K

�

i=1

E ��∇F (xk)�
2
� ≤

8(F (x1) − F
∗
)

÷K
+

8M

÷
+

8÷
2
L

2
fl

1 −√fl
�

m‡
2
+ ⁄

2�2

m(1 +√fl)
+

3’
2

1 −√fl
� ,

where ÷ = (1−–)(1−Ê)“ and M =
÷2L‡2

2m +⁄÷—�+⁄÷
2
L—�+⁄2÷2L�

2

2
. When setting ⁄ =

�
m
K , “ =

�
m(1−Ê)(1−–)K ,

we obtain sublinear convergence rate O(1√
mK
) +O(

�
m
K) +O(

�
m

K3).

79

Under review as submission to TMLR

Proof. Recall the update rule for AL-DSGD algorithm:

xk+1 =
�W

k
xk − “(1 − Ê)Diag �W(k)

� �G(k) + ⁄N(xk − x
N
k) + ⁄·(xk − x

·
k)� , (4.100)

where

xk = [x1,k, ..., xm,k],

G(k) = [g1(x1,k), ..., gm(xm,k)],

∇F(k) = [∇F1(x1,k), ...,∇Fm(xm,k)]

Let ⁄ = 2⁄N = 2⁄· , and Ck =
1

2
(X

N
k +X

·
k). Then we have

Xk+1 =
�W

k
xk − “(1 − Ê)Diag �W(k)

� �G(k) + ⁄(xk −Ck)� (4.101)

By the construction of W(k), the diagonal term in W(k) are all 1 − –, we have

Xk+1 =
�W

k
xk − “(1 − Ê)(1 − –) �G(k) + ⁄(xk −Ck)� (4.102)

After taking the average and define ÷ = “(1 − Ê)(1 − –), we have

xk+1 = xk − ÷ �
G(k)1

m
+ ⁄(xk+ 1

2

− ck)� = xk − ÷ �
G(k)1

m
+ ⁄�(k)� . (4.103)

Denote �(k) = xk+ 1

2

− ck. from Assumption 11 (5), we could conclude ��(k)�2 ≤�2.

Then we have

F (xk+1) − F (xk) ≤�∇F (xk), xk+1 − xk� +
L

2
�xk+1 − xk�

≤ − ÷�∇F (xk),
G(k)1

m
+ ⁄�(k)� + ÷

2
L

2
�

G(k)1
m

+ ⁄�(k)�

≤ − ÷�∇F (xk),
G(k)1

m
� +

÷
2
L

2
�

G(k)1
m
�

− ⁄÷�∇F (xk), �(k)� + ⁄
2
÷

2
L

2
��(k)�2 + ⁄÷

2
L�

G(k)1
m

, �(k)�

≤ − ÷�∇F (xk),
G(k)1

m
� +

÷
2
L

2
�

G(k)1
m
� + ⁄÷—� + ⁄÷

2
L—� + ⁄

2
÷

2
L�2

2
(4.104)

Inspired by the proof in form MATCHA, we have:

E [F (xk+1) − F (xk)]

≤ −
÷

2
E ��∇F (xk)�

2
� −

÷

2
(1 − ÷L)E

�
�
�
�
�
�

�
∇F(k)1

m
�

2�
�
�
�
�
�

+
÷L

2

2m
E ��xk(I − J)�2F �

+
÷

2
L‡

2

2m
+ ⁄÷—� + ⁄÷

2
L—� + ⁄

2
÷

2
L�2

2
(4.105)

Denote M =
÷2L‡2

2m + ⁄÷—� + ⁄÷
2
L—� + ⁄2÷2L�

2

2
, the bound could be simplified as

E [F (xk+1) − F (xk)] ≤ −
÷

2
E ��∇F (xk)�

2
� −

÷

2
(1 − ÷L)E

�
�
�
�
�
�

�
∇F(k)1

m
�

2�
�
�
�
�
�

+
÷L

2

2m
E ��xk(I − J)�2F � +M. (4.106)

80

Under review as submission to TMLR

Summing over all iterations and then take the average, we have

E [F (xK) − F (x1)]

K
≤ −

÷

2
1
K

k

�

k=1

E ��∇F (xk)�
2
� −

÷

2
(1 − ÷L)

1
K

k

�

k=1

E
�
�
�
�
�
�

�
∇F(k)1

m
�

2�
�
�
�
�
�

+
÷L

2

2mK

k

�

k=1

E ��xk(I − J)�2F � +M. (4.107)

By rearranging the inequality, we have

1
K

k

�

k=1

E ��∇F (xk)�
2
� ≤

2(F (x1) − F
∗
)

÷K
− (1 − ÷L)

1
K

k

�

k=1

E
�
�
�
�
�
�

�
∇F(k)1

m
�

2�
�
�
�
�
�

+
L

2

mK

k

�

k=1

E ��xk(I − J)�2F � +
2M

÷

≤
2(F (x1) − F

∗
)

÷K
+

L
2

mK

k

�

k=1

E ��xk(I − J)�2F � +
2M

÷
. (4.108)

Then we are goint to bound E ��xk(I − J)�2F �. By the property of matrix J , we have

xk(I − J) =(xk−1 − ÷(G(k−1)
+ ⁄�k−1)

�W
(k−1)

(I − J)

=Xk−1
�W
(k−1)

(I − J) − ÷(G(k−1)
+ ⁄�(k−1)

)�W
(k−1)

(I − J)
=...

=X1

k−1

�
q=1

�W
(q)
(I − J) − ÷

k−1

�
q=1

(G(k−1)
+ ⁄�(k))�

�

k−1

�

l=q

�W
(l)�
�
(I − J) (4.109)

Without loss of generalizty, assume X1 = 0. Therefore, by Assumption (11) and Lemma 72 we have

�xk(I − J)�2F

=÷
2

�����������

k−1

�
q=1

(G(k−1)
+ ⁄�(k))�

�

k−1

�

l=q

�W
(l)�
�
(I − J)

�����������

2

F

≤2÷
2

�����������

k−1

�
q=1

G(k−1) �
�

k−1

�

l=q

�W
(l)�
�
(I − J)

�����������

2

F

+ 2÷
2
⁄

2

�����������

k−1

�
q=1

�(k) �
�

k−1

�

l=q

�W
(l)�
�
(I − J)

�����������

2

F

. (4.110)

From Assumption 11 (5), we could conclude ��(k)�2 ≤�2 for all k. Combine with Lemma 72, we have

�xk(I − J)�2F

≤2÷
2

�����������

k−1

�
q=1

G(k−1) �
�

k−1

�

l=q

�W
(l)�
�
(I − J)

�����������

2

F

+ 2÷
2
⁄

2�2
k

�
q=1

fl
q

≤2÷
2

�����������

k−1

�
q=1

G(k−1) �
�

k−1

�

l=q

�W
(l)�
�
(I − J)

�����������

2

F

+
2÷

2
⁄

2�2
fl

1 − fl

≤2÷
2

�����������

k−1

�
q=1

�G(k−1)
−∇F(q)��

�

k−1

�

l=q

�W
(l)�
�
(I − J)

�����������

2

F

+ 2÷
2

�����������

k−1

�
q=1

∇F(q) �
�

k−1

�

l=q

�W
(l)�
�
(I − J)

�����������

2

F

+
2÷

2
⁄

2�2
fl

1 − fl
. (4.111)

81

Under review as submission to TMLR

Taking expectation, we have:

E ��xk(I − J)�2F � ≤ 2÷
2E
�
�
�
�
�
�

�����������

k−1

�
q=1

∇F(q) �
�

k−1

�

l=q

�W
(l)�
�
(I − J)

�����������

2

F

�
�
�
�
�
�

+
2m÷

2
‡

2
fl

1 − fl
+

2÷
2
⁄

2�2
fl

1 − fl
(4.112)

For notation simplicity, let Bq,p = �∏
p
l=q
�W
(l)
� (I − J), then we have

E
�
�
�
�
�
�

�����������

k−1

�
q=1

∇F(q) �
�

k−1

�

l=q

�W
(l)�
�
(I − J)

�����������

2

F

�
�
�
�
�
�

=

k−1

�
q=1

E ��∇F(q)Bq,k−1�
2

F
� +

k−1

�
q=1

k−1

�
p=1,p≠q

E �Tr{B�q,k−1
∇F(q)�∇F(p)Bp,k−1}�

≤

k−1

�
q=1

E ��∇F(q)Bq,k−1�
2

F
� +

k−1

�
q=1

k−1

�
p=1,p≠q

E ��∇F(q)Bq,k−1�
2

F
�∇F(p)Bp,k−1�

2

F
�

≤

k−1

�
q=1

E ��∇F(q)Bq,k−1�
2

F
� +

k−1

�
q=1

k−1

�
p=1,p≠q

E � 1
2‘
�∇F(q)Bq,k−1�

2

F
+

‘

2
�∇F(p)Bp,k−1�

2

F
�

≤

k−1

�
q=1

E ��∇F(q)Bq,k−1�
2

F
� +

k−1

�
q=1

k−1

�
p=1,p≠q

E �fl
k−q

2‘
�∇F(q)�2

F
+

fl
k−p

‘

2
�∇F(p)�2

F
� . (4.113)

Taking ‘ = fl
p−q

2 , we have

E
�
�
�
�
�
�

�����������

k−1

�
q=1

∇F(q) �
�

k−1

�

l=q

�W
(l)�
�
(I − J)

�����������

2

F

�
�
�
�
�
�

≤

k−1

�
q=1

E ��∇F(q)Bq,k−1�
2

F
� +

1
2

k−1

�
q=1

k−1

�
p=1,p≠q

√
fl

2k−p−qE ��∇F(q)�2
F
+ �∇F(p)�2

F
�

=

k−1

�
q=1

E ��∇F(q)Bq,k−1�
2

F
� +

k−1

�
q=1

√
fl

k−qE ��∇F(q)�2
F
�

k−1

�
p=1,p≠q

√
fl

k−p

=

k−1

�
q=1

E ��∇F(q)Bq,k−1�
2

F
� +

k−1

�
q=1

√
fl

k−qE ��∇F(q)�2
F
�
�

�

k−1

�
p=1

√
fl

k−p
−
√

fl
k−q�

�

≤

√
fl

1 −√fl

k−1

�
q=1

√
fl

k−qE ��∇F(q)�2
F
� .

Therefore,

E ��xk(I − J)�2F � ≤
2÷

2√
fl

1 −√fl

k−1

�
q=1

√
fl

k−qE ��∇F(q)�2
F
� +

2÷
2
fl(m‡

2
+ ⁄

2�2
)

1 − fl
. (4.114)

Therefore

1
mK

K

�

k=1

E ��xk(I − J)�2F � ≤
2÷

2√
fl

mK(1 −√fl)

K

�

k=1

k−1

�
q=1

√
fl

k−qE ��∇F(q)�2
F
� +

2÷
2
fl(m‡

2
+ ⁄

2�2
)

m(1 − fl)

≤
2÷

2√
fl

mK(1 −√fl)

K

�

k=1

√
fl

1 −√fl
E ��∇F(q)�2

F
� +

2÷
2
fl(m‡

2
+ ⁄

2�2
)

m(1 − fl)

=
2÷

2
fl

mK(1 −√fl)2

K

�

k=1

E ��∇F(q)�2
F
� +

2÷
2
fl(m‡

2
+ ⁄

2�2
)

m(1 − fl)
(4.115)

82

Under review as submission to TMLR

Note that

�∇F(q)�2
F
=

m

�

i=1

�∇Fi(xi,k)�
2

=

m

�

i=1

�∇Fi(xi,k) −∇F (xi,k) +∇F (xi,k) −∇F (xk) +∇F (xk)�
2

≤3
m

�

i=1

��∇Fi(xi,k) −∇F (xi,k)�
2
+ �∇F (xi,k) −∇F (xk)�

2
+ �∇F (xk)�

2
�

≤3m’
2
+ 3L

2
�xk(I − J)�2F + 3m �∇F (xk)�

2
. (4.116)

Therefore, we have

1
mK

K

�

k=1

E ��xk(I − J)�2F � ≤
2÷

2
fl(m‡

2
+ ⁄

2�2
)

m(1 − fl)
+

6÷
2
’

2
fl

(1 −√fl)2
+

6÷
2
’

2
fl

(1 −√fl)2

1
mK

E ��xk(I − J)�2F �

+
6÷

2
fl

(1 −√fl)2

1
K

K

�

i=1

E ��∇F (xk)�
2
� . (4.117)

Define D =
6÷2L2fl(1−√fl)2 , by rearranging we have

1
mK

K

�

k=1

E ��xk(I − J)�2F � ≤
1

1 − 2D
[

2÷
2
fl(m‡

2
+ ⁄

2�2
)

m(1 − fl)
+

6÷
2
’

2
fl

(1 −√fl)2

+
6÷

2
fl

(1 −√fl)2

1
K

K

�

i=1

E ��∇F (xk)�
2
]� (4.118)

Plugging (4.118) back to (4.108), we have

1
K

K

�

i=1

E ��∇F (xk)�
2
� ≤

2(F (x1) − F
∗
)

÷K
+

2M

÷
+

1
1 −D

2÷
2
L

2
fl(m‡

2
+ ⁄

2�2
)

m(1 − fl)
+

D’
2

1 −D

+
D

1 −D

1
K

K

�

i=1

E ��∇F (xk)�
2
� . (4.119)

Therefore,
K

�

i=1

E ��∇F (xk)�
2
� ≤�

2(F (x1) − F
∗
)

÷K
+

2M

÷
�

1 −D

1 − 2D
+ �

2÷
2
L

2
fl(m‡

2
+ ⁄

2�2
)

m(1 − fl)
+

6÷
2
L

2
’

2
fl

(1 −√fl)2
�

1
1 − 2D

≤�
2(F (x1) − F

∗
)

÷K
+

2M

÷
�

1
1 − 2D

+
2÷

2
L

2
fl

1 −√fl
�

m‡
2
+ ⁄

2�2

m(1 +√fl)
+

3’
2

1 −√fl
�

1
1 − 2D

(4.120)

Recall that ÷L ≤ (1 −√fl)�4√fl, we could know that 1

1−2D ≤ 4. Therefore the bound could be simplified as

K

�

i=1

E ��∇F (xk)�
2
� ≤

8(F (x1) − F
∗
)

÷K
+

8M

÷
+

8÷
2
L

2
fl

1 −√fl
�

m‡
2
+ ⁄

2�2

m(1 +√fl)
+

3’
2

1 −√fl
� , (4.121)

where M =
÷2L‡2

2m + ⁄÷—� + ⁄÷
2
L—� + ⁄2÷2L�

2

2
. When ÷ = ⁄ =

�
m
K ,

K

�

i=1

E ��∇F (xk)�
2
� ≤

8(F (x1) − F
∗
)

√
mK

+
4L‡

2

√
mk
+ 8—�

�
m

K
+ 8⁄L—�

�
m

K
+ 4⁄

2
L�2

�
m

K

+
8
√

mL
2
fl

(1 −√fl)
√

K
�

‡
2

1 +√fl
+

�2

K(1 +√fl)
+

3’
2

1 −√fl
�

=O(
1

√
mK
) +O(

�
m

K
) + +O(

�
m

K3
) (4.122)

83

Under review as submission to TMLR

5 Conclusion

This paper o�ers a comprehensive exploration of the theoretical foundations of optimization methods in DL,
emphasizing methodologies, convergence analyses, and generalization abilities. While the field has seen rapid
advancements in DL models and the growth of available data, the optimization of these models remains a focal
point for researchers aiming to enhance their performance. Despite the plethora of optimization techniques
available, many existing survey papers tend to focus on summarizing methodologies, often neglecting the
theoretical analyses of these methods.

Our study delves deep into the theoretical analysis of popular gradient-based first-order and second-order
methods, shedding light on their intricacies and potential applications. We also discuss the theoretical analysis
of optimization techniques that adapt to the geometrical properties of the DL loss landscapes with a goal
of identifying optimal points that minimize the generalization error. Furthermore, our analysis extends to
distributed optimization methods that enable parallel computations and encompasses both centralized and
decentralized approaches.

By consolidating all these various insights, this paper serves as a comprehensive theoretical handbook of
optimization methods for DL. We aim to bridge the gap between theory and practice in DL, o�ering valuable
lesson to the readers and building understanding of the DL optimization field, thereby facilitating further
advancements and innovations in DL optimization.

References
Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with formulas, graphs, and

mathematical tables, volume 55. US Government printing o�ce, 1948.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

A. Anandkumar and R. Ge. E�cient approaches for escaping higher order saddle points in non-convex
optimization. arXiv:1602.05908, 2016.

A. Anandkumar, K. Chaudhuri, P. Liang, S. Oh, and U. N. Niranjan. Non-convex optimization, Workshop at
NIPS. http://www.offconvex.org/2016/01/25/non-convex-workshop/, 2015.

C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, and R. Zecchina. Subdominant dense clusters allow for
simple learning and high computational performance in neural networks with discrete synapses. Physical
review letters, 115(12):128101, 2015.

C. Baldassi, C. Borgs, J. T. Chayes, A. Ingrosso, C. Lucibello, L. Saglietti, and R. Zecchina. Unreasonable
e�ectiveness of learning neural networks: From accessible states and robust ensembles to basic algorithmic
schemes. PNAS, 113(48):E7655–E7662, 2016a.

C. Baldassi, F. Gerace, C. Lucibello, L. Saglietti, and R. Zecchina. Learning may need only a few bits of
synaptic precision. Physical Review E, 93(5):052313, 2016b.

P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples without
local minima. Neural Networks, 2:53–58, 1989.

Syreen Banabilah, Moayad Aloqaily, Eitaa Alsayed, Nida Malik, and Yaser Jararweh. Federated learning review:
Fundamentals, enabling technologies, and future applications. Information processing & management, 59
(6):103061, 2022.

T. Ben-Nun and T. Hoefler. Demystifying parallel and distributed deep learning: An in-depth concurrency
analysis. CoRR, abs/1802.09941, 2018.

Devansh Bisla, Jing Wang, and Anna Choromanska. Low-pass filtering sgd for recovering flat optima in the
deep learning optimization landscape. In International Conference on Artificial Intelligence and Statistics,
pp. 8299–8339. PMLR, 2022.

84

http://www.offconvex.org/2016/01/25/non-convex-workshop/

Under review as submission to TMLR

Raghu Bollapragada, Jorge Nocedal, Dheevatsa Mudigere, Hao-Jun Shi, and Ping Tak Peter Tang. A
progressive batching l-bfgs method for machine learning. In International Conference on Machine Learning,
pp. 620–629. PMLR, 2018.

Béla Bollobás. Modern graph theory, volume 184. Springer Science & Business Media, 2013.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMP-
STAT’2010: 19th International Conference on Computational StatisticsParis France, August 22-27, 2010
Keynote, Invited and Contributed Papers, pp. 177–186. Springer, 2010.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in
Machine learning, 3(1):1–122, 2011.

Charles G Broyden. Quasi-newton methods and their application to function minimisation. Mathematics of
Computation, 21(99):368–381, 1967.

Charles George Broyden, John E Dennis Jr, and Jorge J Moré. On the local and superlinear convergence of
quasi-newton methods. IMA Journal of Applied Mathematics, 12(3):223–245, 1973.

J. Cha, S. Chun, K. Lee, H.-C. Cho, S. Park, Y. Lee, and S. Park. SWAD: Domain generalization by seeking
flat minima. In NeurIPS, 2021.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM Transactions
on Intelligent Systems and Technology, 15(3):1–45, 2024.

P. Chaudhari and S. Soatto. On the energy landscape of deep networks. CoRR, abs/1511.06485, 2015.

P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs, J. Chayes, L. Sagun, and
R. Zecchina. Entropy-sgd: Biasing gradient descent into wide valleys. In ICLR, 2017.

P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs, J. Chayes, L. Sagun, and
R. Zecchina. Entropy-sgd: Biasing gradient descent into wide valleys (journal version). Journal of Statistical
Mechanics: Theory and Experiment, 2019(12):124018, 2019.

Xue-Wen Chen and Xiaotong Lin. Big data deep learning: challenges and perspectives. IEEE access, 2:
514–525, 2014.

A. Choromanska, M. Hena�, M. Mathieu, G. Ben Arous, and Y. LeCun. The loss surfaces of multilayer
networks. In AISTATS, 2015a.

A. Choromanska, Y. LeCun, and G. Ben Arous. Open problem: The landscape of the loss surfaces of
multilayer networks. In COLT, 2015b.

Yaim Cooper. The loss landscape of overparameterized neural networks. arXiv preprint arXiv:1804.10200,
2018.

Arnak S Dalalyan and Avetik Karagulyan. User-friendly guarantees for the langevin monte carlo with
inaccurate gradient. Stochastic Processes and their Applications, 129(12):5278–5311, 2019.

Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and attacking the
saddle point problem in high-dimensional non-convex optimization. In NIPS, 2014.

Je�rey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio Ranzato,
Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks. Advances in neural
information processing systems, 25, 2012.

Alexandre Défossez, Leon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof of adam
and adagrad. Transactions on Machine Learning Research, 2022.

85

Under review as submission to TMLR

John E Dennis and Jorge J Moré. A characterization of superlinear convergence and its application to
quasi-newton methods. Mathematics of computation, 28(126):549–560, 1974.

John E Dennis, Jr and Jorge J Moré. Quasi-newton methods, motivation and theory. SIAM review, 19(1):
46–89, 1977.

Tolga Dimlioglu and Anna Choromanska. Grawa: Gradient-based weighted averaging for distributed training
of deep learning models. In International Conference on Artificial Intelligence and Statistics, pp. 2251–2259.
PMLR, 2024.

F. Draxler, K. Veschgini, M. Salmhofer, and F. Hamprecht. Essentially no barriers in neural network energy
landscape. In ICML, 2018.

S. Du and J. Lee. On the power of over-parametrization in neural networks with quadratic activation. In
ICML, 2018.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. JMLR, 12:2121–2159, 2011.

J. C. Duchi, P. L. Bartlett, and M. J. Wainwright. Randomized smoothing for stochastic optimization. SIAM
Journal on Optimization, 22(2):674–701, 2012.

Y. Feng and Y. Tu. How neural networks find generalizable solutions: Self-tuned annealing in deep learning.
CoRR, abs/2001.01678, 2020.

Roger Fletcher. A new approach to variable metric algorithms. The computer journal, 13(3):317–322, 1970.

P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. Sharpness-aware minimization for e�ciently improving
generalization. In ICLR, 2021.

C. D. Freeman and J. Bruna. Topology and geometry of half-rectified network optimization. In ICLR, 2017.

R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points — online stochastic gradient for tensor
decomposition. In COLT, 2015. URL http://proceedings.mlr.press/v40/Ge15.html.

R. Ge, C. Jin, and Y. Zheng. No spurious local minima in nonconvex low rank problems: A unified geometric
analysis. In ICML, 2017.

A. Gholami, A. Azad, P. Jin, K. Keutzer, and A. Buluc. Integrated model, batch, and domain parallelism in
training neural networks. Proceedings of the 30th Syposium on Parallelism in Algorithms and Architectures,
pp. 77–86, 2018.

Donald Goldfarb. A family of variable-metric methods derived by variational means. Mathematics of
computation, 24(109):23–26, 1970.

I. J. Goodfellow and O. Vinyals. Qualitatively characterizing neural network optimization problems. In ICLR,
2015. URL http://arxiv.org/abs/1412.6544.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1. MIT Press,
2016.

B. Hae�ele and R. Vidal. Global optimality in tensor factorization, deep learning, and beyond. CoRR,
abs/1506.07540, 2015.

M. Hardt and T. Ma. Identity matters in deep learning. In ICLR, 2017.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In International conference on machine learning, pp. 1225–1234. PMLR, 2016.

K. Haruki, T. Suzuki, Y. Hamakawa, T. Toda, R. Sakai, M. Ozawa, and M. Kimura. Gradient noise
convolution (gnc): Smoothing loss function for distributed large-batch sgd. arXiv:1906.10822, 2019.

86

http://proceedings.mlr.press/v40/Ge15.html
http://arxiv.org/abs/1412.6544

Under review as submission to TMLR

Haoze He, Jing Wang, and Anna Choromanska. Adjacent leader decentralized stochastic gradient descent.
arXiv preprint arXiv:2405.11389, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Magnus Rudolph Hestenes. Optimization theory: the finite dimensional case. (No Title), 1975.

S. Hochreiter and J. Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.

Zhishen Huang and Stephen Becker. Perturbed proximal descent to escape saddle points for non-convex and
non-smooth objective functions. In Recent Advances in Big Data and Deep Learning: Proceedings of the
INNS Big Data and Deep Learning Conference INNSBDDL2019, held at Sestri Levante, Genova, Italy
16-18 April 2019, pp. 58–77. Springer, 2020.

Zhishen Huang and Stephen Becker. Stochastic gradient langevin dynamics with variance reduction. In 2021
International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2021.

Sergey Io�e and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pp. 448–456. pmlr, 2015.

P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson. Averaging weights leads to wider
optima and better generalization. In UAI, 2018.

M. Janzamin, H. Sedghi, and A. Anandkumar. Beating the Perils of Non-Convexity: Guaranteed Training of
Neural Networks using Tensor Methods. CoRR, abs/1506.08473, 2015.

S. Jastrzebski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y. Bengio, and A. Storkey. Finding flatter minima
with sgd. In ICLR Workshop Track, 2018.

Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, and S. Bengio. Fantastic generalization measures and
where to find them. CoRR, abs/1912.02178, 2019.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. On nonconvex optimization
for machine learning: Gradients, stochasticity, and saddle points. Journal of the ACM (JACM), 68(2):
1–29, 2021.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. Foundations and trends® in machine learning, 14(1–2):1–210, 2021.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank Fischer,
Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for good? on opportunities
and challenges of large language models for education. Learning and individual di�erences, 103:102274,
2023.

K. Kawaguchi. Deep learning without poor local minima. In NIPS. 2016.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch training for deep
learning: Generalization gap and sharp minima. In ICLR, 2017a. URL http://arxiv.org/abs/1609.
04836.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch training for deep
learning: Generalization gap and sharp minima. In ICLR, 2017b.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural
networks. Advances in neural information processing systems, 30, 2017.

87

http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836

Under review as submission to TMLR

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-aware
minimization for scale-invariant learning of deep neural networks. In International Conference on Machine
Learning, pp. 5905–5914. PMLR, 2021.

H. Lakshmanan and D. Pucci De Farias. Decentralized resource allocation in dynamic networks of agents.
SIAM Journal on Optimization, 19(2):911–940, 2008.

Quoc V Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow, and Andrew Y Ng. On optimization
methods for deep learning. In Proceedings of the 28th international conference on international conference
on machine learning, pp. 265–272, 2011.

Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

Dongqi Li, Zhu Teng, Qirui Li, and Ziyin Wang. Sharpness-aware minimization for out-of-distribution
generalization. In International Conference on Neural Information Processing, pp. 555–567. Springer, 2023.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of
neural nets. In Advances in Neural Information Processing Systems, pp. 6389–6399, 2018.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized algorithms
outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent.
Advances in neural information processing systems, 30, 2017.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic gradient
descent. In International Conference on Machine Learning, pp. 3043–3052. PMLR, 2018.

T. Lin, L. Kong, S. Stich, and M. Jaggi. Extrapolation for large-batch training in deep learning. In
International Conference on Machine Learning, pp. 6094–6104. PMLR, 2020.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization. Mathematical
programming, 45(1):503–528, 1989.

Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with momentum.
Advances in Neural Information Processing Systems, 33:18261–18271, 2020.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic bound of
learning rate. arXiv preprint arXiv:1902.09843, 2019.

James Martens and Ilya Sutskever. Learning recurrent neural networks with hessian-free optimization. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 1033–1040, 2011.

James Martens et al. Deep learning via hessian-free optimization. In Icml, volume 27, pp. 735–742, 2010.

H. Mobahi. Training recurrent neural networks by di�usion. CoRR, abs/1601.04114, 2016.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence o
(1/k2). In Dokl. Akad. Nauk. SSSR, volume 269, pp. 543, 1983.

Q. N. Nguyen and M. Hein. The loss surface of deep and wide neural networks. In ICML, 2017.

Yue Niu, Zalan Fabian, Sunwoo Lee, Mahdi Soltanolkotabi, and Salman Avestimehr. ml-bfgs: A momentum-
based l-bfgs for distributed large-scale neural network optimization. arXiv preprint arXiv:2307.13744,
2023.

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006.

OpenAI. Chatgpt. https://chat.openai.com.chat, 2023.

Antonio Orvieto, Hans Kersting, Frank Proske, Francis Bach, and Aurelien Lucchi. Anticorrelated noise
injection for improved generalization. In International Conference on Machine Learning, pp. 17094–17116.
PMLR, 2022.

88

https://chat.openai.com.chat

Under review as submission to TMLR

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via stochastic gradient
langevin dynamics: a nonasymptotic analysis. In Conference on Learning Theory, pp. 1674–1703. PMLR,
2017.

Ali Ramezani-Kebrya, Ashish Khisti, and Ben Liang. On the stability and convergence of stochastic gradient
descent with momentum. arXiv preprint arXiv:1809.04564, 2018.

Ali Ramezani-Kebrya, Ashish Khisti, and Ben Liang. On the generalization of stochastic gradient descent
with momentum, 2021.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv preprint
arXiv:1904.09237, 2019.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747,
2016.

I. Safran and O. Shamir. On the quality of the initial basin in overspecified neural networks. In ICML, 2016.

I. Safran and O. Shamir. Spurious local minima are common in two-layer relu neural networks. CoRR,
abs/1712.08968, 2017.

L. Sagun, U. Evci, V. Ugur Güney, Y. Dauphin, and L. Bottou. Empirical analysis of the hessian of
over-parametrized neural networks. In ICLR Workshop, 2018.

A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning in deep
linear neural networks. In ICLR. 2014.

Michelle Schatzman. Numerical analysis: a mathematical introduction. Oxford University Press, 2002.

Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley-benchmarking
deep learning optimizers. In International Conference on Machine Learning, pp. 9367–9376. PMLR, 2021.

Ayush Sekhari, Karthik Sridharan, and Satyen Kale. Sgd: The role of implicit regularization, batch-size and
multiple-epochs. Advances In Neural Information Processing Systems, 34:27422–27433, 2021.

David F Shanno. Conditioning of quasi-newton methods for function minimization. Mathematics of
computation, 24(111):647–656, 1970.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

U. Simsekli, L. Sagun, and M. Gürbüzbalaban. A tail-index analysis of stochastic gradient noise in deep
neural networks. CoRR, abs/1901.06053, 2019.

D. Soudry and Y. Carmon. No bad local minima: Data independent training error guarantees for multilayer
neural networks. CoRR, abs/1605.08361, 2016.

Ruo-Yu Sun. Optimization for deep learning: An overview. Journal of the Operations Research Society of
China, 8(2):249–294, 2020.

Ilya Sutskever, James Martens, George Dahl, and Geo�rey Hinton. On the importance of initialization and
momentum in deep learning. In International conference on machine learning, pp. 1139–1147. PMLR,
2013.

Yunfei Teng, Wenbo Gao, Francois Chalus, Anna E Choromanska, Donald Goldfarb, and Adrian Weller.
Leader stochastic gradient descent for distributed training of deep learning models. Advances in Neural
Information Processing Systems, 32, 2019.

89

Under review as submission to TMLR

Yingjie Tian, Yuqi Zhang, and Haibin Zhang. Recent advances in stochastic gradient descent in deep learning.
Mathematics, 11(3):682, 2023.

T. Tieleman and G. Hinton. Lecture 6.5: RmsProp: Divide the Gradient by a Running Average of Its Recent
Magnitude. Coursera: Neural networks for machine learning, 4(2):26–31, 2012.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and e�cient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

M. Trager, K. Kohn, and J. Bruna. Pure and spurious critical points: a geometric study of linear networks.
In ICLR, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, £ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

R. Vidal, J Bruna, R. Giryes, and S. Soatto. Mathematics of deep learning. CoRR, abs/1712.04741, 2017.

Jianyu Wang, Anit Kumar Sahu, Zhouyi Yang, Gauri Joshi, and Soummya Kar. Matcha: Speeding up
decentralized sgd via matching decomposition sampling. In 2019 Sixth Indian Control Conference (ICC),
pp. 299–300. IEEE, 2019.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat, Galen
Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field guide to federated optimization.
arXiv preprint arXiv:2107.06917, 2021.

Jing Wang and Anna Choromanska. Sgb: Stochastic gradient bound method for optimizing partition functions.
arXiv preprint arXiv:2011.01474, 2020.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex landscapes.
In International Conference on Machine Learning, 2019.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex landscapes.
Journal of Machine Learning Research, 21(219):1–30, 2020.

Jie Wen, Zhixia Zhang, Yang Lan, Zhihua Cui, Jianghui Cai, and Wensheng Zhang. A survey on federated
learning: challenges and applications. International Journal of Machine Learning and Cybernetics, 14(2):
513–535, 2023.

Wei Wen, Yandan Wang, Feng Yan, Cong Xu, Chunpeng Wu, Yiran Chen, and Hai Li. Smoothout: Smoothing
out sharp minima to improve generalization in deep learning. arXiv preprint arXiv:1805.07898, 2018.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal value of
adaptive gradient methods in machine learning. Advances in neural information processing systems, 30,
2017.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen. Large
language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

Tianbao Yang, Qihang Lin, and Zhe Li. Unified convergence analysis of stochastic momentum methods for
convex and non-convex optimization. arXiv preprint arXiv:1604.03257, 2016.

Xiaodong Yang, Huishuai Zhang, Wei Chen, and Tie-Yan Liu. Normalized/clipped sgd with perturbation for
di�erentially private non-convex optimization. arXiv preprint arXiv:2206.13033, 2022.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learning: Training
bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

90

Under review as submission to TMLR

Mahsa Yousefi and Ángeles Martínez Calomardo. A stochastic modified limited memory bfgs for training
deep neural networks. In Science and Information Conference, pp. 9–28. Springer, 2022.

Gonglin Yuan, Mengxiang Zhang, and Yingjie Zhou. Adaptive scaling damped bfgs method without gradient
lipschitz continuity. Applied Mathematics Letters, 124:107634, 2022.

Gonglin Yuan, Xiong Zhao, Kejun Liu, and Xiaoxuan Chen. An adaptive projection bfgs method for nonconvex
unconstrained optimization problems. Numerical Algorithms, 95(4):1747–1767, 2024.

Ya-xiang Yuan. A modified bfgs algorithm for unconstrained optimization. IMA Journal of Numerical
Analysis, 11(3):325–332, 1991.

C. Yun, S. Sra, and A. Jadbabaie. Global optimality conditions for deep neural networks. In ICLR, 2018.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic averaging sgd. Advances in
neural information processing systems, 28, 2015.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoretically
understanding why sgd generalizes better than adam in deep learning. Advances in Neural Information
Processing Systems, 33:21285–21296, 2020.

Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b: Fortran subroutines
for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software (TOMS), 23
(4):550–560, 1997.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of adam in learning
neural networks with proper regularization. arXiv preprint arXiv:2108.11371, 2021.

91

	Introduction
	Gradient-based Optimization methods
	Preliminaries
	Preliminaries for the Convergence Analysis
	Preliminaries for the Generalization Error

	First-order methods
	Stochastic Gradient Decent
	Stochastic Gradient Descent with Momentum
	Adaptive learning rate methods

	Second-order methods
	Newton's method
	Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS)
	Limited memory BFGS (LBFGS)

	Convergence Analysis for LBFGS

	Landscape-Aware Deep Learning Optimizers
	Sharpness-Aware Minimization (SAM)
	Entropy-SGD
	Local Entropy
	Algorithm
	Generalization Ability

	Low-pass filter SGD (LPF-SGD)
	Generalization Ability

	SmoothOut
	Generalization Ability

	Distributed Optimization Methods
	Centralized Methods
	Downpour SGD
	Elastic Averaging SGD (EASGD)
	Leader Stochastic Gradient Descent (LSGD)
	Gradient-based Weighted Averaging (GRAWA)

	Decentralized Methods
	Decentralized Parallel SGD (D-PSGD)
	MATCHA
	Adjacent Leader Decentralized SGD (AL-DSGD)

	Conclusion
	Proof for Adagrad and Adam.
	Proof for BFGS
	Proof For Generalization ability of LPF-SGD.
	Proof for Theorem 39
	Proof of Theorem 41

	Proof for SmoothOut.
	Proof for Theorem 43.

	Proof for AL-DSGD.
	Proof for Theorem 63.
	Proof for Lemma 64.

