FireFlow: Fast Inversion of Rectified Flow for Image Semantic Editing

Yingying Deng¹ Xiangyu He² Changwang Mei³ Peisong Wang² Fan Tang⁴

Figure 1. FireFlow for Image Inversion and Editing in 8 Steps. Our approach achieves outstanding results in semantic image editing and stylization guided by prompts, while maintaining the integrity of the reference content image and avoiding undesired alterations. [+]/[-] means adding or removing contents, [C] indicates changes in visual attributes (style, material, or texture), and [R] denotes content or gesture replacements.

Abstract

Though Rectified Flows (ReFlows) with distillation offer a promising way for fast sampling, its fast inversion transforms images back to structured noise for recovery and following editing remains unsolved. This paper introduces FireFlow, an embarrassingly simple yet effective zero-shot approach that inherits the startling capacity of ReFlow-based models (such as FLUX) in gener-

Proceedings of the 42^{nd} International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025 by the author(s).

ation while extending its capabilities to accurate inversion and editing in **8** steps. We first demonstrate that a carefully designed numerical solver is pivotal for ReFlow inversion, enabling accurate inversion and reconstruction with the precision of a second-order solver while maintaining the practical efficiency of a first-order Euler method. This solver achieves a $3\times$ runtime speedup compared to state-of-the-art ReFlow inversion and editing techniques while delivering smaller reconstruction errors and superior editing results in a training-free mode. The code is available at this-URL.

1. Introduction

The ability to accurately and efficiently invert generative models is critical for enabling applications such as semantic

¹University of Science and Technology Beijing, Beijing, China ²Institute of Automation, Chinese Academy of Sciences, Beijing, China ³Nanjing University of Science and Technology, Nanjing, China ⁴Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China. Correspondence to: Xiangyu He <hexiangyu17@mails.ucas.edu.cn>.

image editing, data reconstruction, style transfer and latent space manipulation (Deng et al., 2024a; Hertz et al., 2022; Tumanyan et al., 2023; Deng et al., 2024b). Inversion, which involves mapping observed data back to its latent representation, serves as the foundation for fine-grained control over generative processes. Achieving a balance between computational efficiency and numerical accuracy in inversion is particularly challenging for diffusion models, which rely on iterative processes to bridge data and latent spaces.

Diffusion models have long been used for high-quality image generation (Ramesh et al., 2022; Rombach et al., 2022; Podell et al., 2024; Zhang et al., 2023; Deng et al., 2025) and inversion (Hertz et al., 2022; Parmar et al., 2023) due to their ability to capture complex distributions through stochastic differential equations (SDEs). Nevertheless, the nonlinear solver introduces undesirable drift in the reverse trajectory, thereby compromising the accuracy of reconstruction and the fidelity of editing-by-inversion. In contrast, rectified Flow (ReFlow) models (Liu et al., 2023), which replace stochastic sampling with ordinary differential equations (ODEs) for faster and more efficient transformations. This motivate a closer investigation of ReFlow-based models, particularly in the context of inversion and editing, to develop simple and effective methods.

ReFlow models possess an underutilized advantage: a well-trained ReFlow model learns nearly constant velocity dynamics across the data distribution, ensuring stability and bounded velocity approximation errors. However, existing inversion methods for ReFlow models fail to fully exploit this property (Rout et al., 2025; Wang et al., 2024). Current approaches rely on generic Euler solvers that prioritize each step's computational efficiency at the expense of accuracy or incur additional costs to achieve higher precision. As a result, the potential of ReFlow models to deliver fast and accurate inversion remains untapped.

In this work, we introduce a novel numerical solver for the ODEs underlying ReFlow models, addressing the challenges of inversion and editing. Our method achieves second-order precision while retaining the computational cost of a firstorder solver. By reusing intermediate velocity approximations, our approach reduces redundant evaluations, stabilizes the inversion process, and fully leverages the constant velocity property of well-trained ReFlow models. As shown in Table 1, our approach is the first to provide a solver that strikes an optimal trade-off between accuracy and efficiency. enabling ReFlow models to excel in inversion and editing tasks. By combining computational efficiency, numerical robustness, and simplicity, our method offers a scalable solution for real-world tasks requiring high fidelity and realtime performance, advancing the utility of ReFlow-based generative models like FLUX.

Table 1. Comparison of recent training-free inversion and editing methods based on FLUX, including inversion/denoising steps, NFEs (Number of Function Evaluations) for both inversion and editing, local truncation error orders for solving ODE, and the need for a pre-trained auxiliary model for editing. Our approach offers a simple yet effective solution to address the challenges.

Methods	Add-it	RF-Solver	RF-Inv.	Ours
Steps	30	15	28	8
NFE	60	60	56	18
Aux. Model	/	w/o	w/o	w/o
Local Error	$\mathcal{O}(\Delta t^2)$	$\mathcal{O}(\Delta t^3)$	$\mathcal{O}(\Delta t^2)$	$\mathcal{O}(\Delta t^3)$

(Tewel et al., 2025) for Add-it, (Wang et al., 2024) for RF-Solver, (Rout et al., 2025) for RF-Inv.

2. Preliminaries and Related Works

2.1. Rectified Flow

Rectified Flow (Liu et al., 2023) offers a principled approach for modeling transformations between two distributions, π_0 and π_1 , based on empirical observations $X_0 \sim \pi_0$ and $X_1 \sim \pi_1$. The transformation is represented as an ordinary differential equation (ODE) over a continuous time interval $t \in [0,1]$:

$$dZ_t = v(Z_t, t) dt, (1)$$

where $Z_0 \sim \pi_0$ is initialized from the source distribution, and $Z_1 \sim \pi_1$ is generated at the end of the trajectory. The drift $v: \mathbb{R}^d \times [0,1] \to \mathbb{R}^d$ is designed to align the trajectory of the flow with the direction of the linear interpolation path between X_0 and X_1 . This alignment is achieved by solving the following least squares regression problem:

$$\min_{v} \mathbb{E}\left[\int_{0}^{1} \|(X_{1} - X_{0}) - v_{\theta}(X_{t}, t)\|_{2}^{2} dt\right], \quad (2)$$

where $X_t = tX_1 + (1-t)X_0$ denotes the linear interpolation path between X_0 and X_1 .

Forward process seeks to transform samples $X_0 \sim \pi_0$ to match the target distribution π_1 . A direct parameterization of X_t is given by the linear interpolation $X_t = tX_1 + (1-t)X_0$, which satisfies the non-causal ODE:

$$dX_t = (X_1 - X_0) \, dt. (3)$$

However, this formulation assumes prior knowledge of X_1 , rendering it non-causal and unsuitable for practical simulation. By introducing the drift $v(X_t,t)$, rectified flow causalizes the interpolation process. The drift v is fit to approximate the linear direction X_1-X_0 , resulting in the forward ODE with $X_0 \sim \pi_0$;

$$dX_t = v(X_t, t) dt, \quad t \in [0, 1].$$
 (4)

This causalized forward process enables simulation of Z_t without requiring access to X_1 during intermediate time steps.

Reverse process generates samples from π_1 by reversing the learned flow. Starting from $X_1 \sim \pi_1$, the reverse ODE is given by negating the drift term:

$$dX_t = -v(X_t, t) dt, \quad t \in [1, 0].$$
 (5)

This process effectively "undoes" the transformations applied during the forward flow, enabling the generation of X_0 that follows the original distribution π_0 . The reverse process guarantees consistency with the forward dynamics by leveraging the symmetry of the learned drift v.

2.2. Inversion

The inversion of real images into noise feature space, as well as the reconstruction of noise features back to the original real images, is a prominent area of research within diffusion models applied to image editing tasks (Lin et al., 2024; Brack et al., 2024; Miyake et al., 2023; Ju et al., 2024; Zhang et al., 2022; Huberman-Spiegelglas et al., 2024; Cho et al., 2024). The foundational theory of Denoising Diffusion Implicit Models (DDIM) (Song et al., 2021) involves the addition of predicted noise to a fixed noise during the forward process, which can subsequently be mapped to generate an image. However, this approach encounters challenges related to reconstruction bias. To address this issue, Null-Text Inversion (Mokady et al., 2023) optimizes an input null-text embedding, thereby correcting reconstruction errors at each iterative step. Similarly, Prompt-Tuning-Inversion (Dong et al., 2023) refines conditional embeddings to accurately reconstruct the original image. Negative-Prompt-Inversion (Miyake et al., 2023) replaces the null-text embedding with prompt embeddings to expedite the inversion process. Direct-Inversion (Ju et al., 2024) incorporates the inverted noise corresponding to each timestep within the denoising process to mitigate content leakage.

In contrast to the aforementioned Stochastic Differential Equation (SDE)-based formulations, rectified flow models that utilize ordinary differential equations (ODEs) offer a more direct solution pathway. RF-Inversion (Rout et al., 2025) employs dynamic optimal control techniques derived from linear quadratic regulators, while RF-Solver (Wang et al., 2024) utilizes Taylor expansion to minimize inversion errors in ODEs. Nevertheless, achieving superior inversion results typically necessitates an increased number of generation steps, which can lead to significant computational time and resource expenditure. In this paper, we propose a fewstep ODE solver designed to balance effective outcomes with high efficiency.

2.3. Editing

Image editing utilizing a pre-trained diffusion model has demonstrated promising results, benefiting from advance-

ments in image inversion and attention manipulation technologies (Hertz et al., 2022; Cao et al., 2023; Meng et al., 2022; Couairon et al., 2023; Deutch et al., 2024; Xu et al., 2024; Brooks et al., 2023). Training-free editing methods typically employ a dual-network architecture: one network is dedicated to reconstructing the original image, while the other is focused on editing. Prompt-to-Prompt (Hertz et al., 2022) manipulates the cross-attention maps within the editing pipeline by leveraging features from the reconstruction pipeline. Plug-and-Play (Tumanyan et al., 2023) method substitutes the attention matrices of self-attention blocks in the editing pipeline with those from the reconstruction pipeline. Similarly, MasaCtrl (Cao et al., 2023) modifies the Value components of self-attention blocks in the editing pipeline using values derived from the reconstruction pipeline. Additionally, the Add-it (Tewel et al., 2025) method utilizes both the Key and Value components of selfattention blocks from the source image to guide the editing process effectively. With respect to FLUX models, RF-Editing (Wang et al., 2024) reuses Value components from MMDiT (generated during inversion) for reconstructionbased editing, while RF-Inversion (Rout et al., 2025) uses the original image as a prior for guiding the forward and reverse process in semantic editing. We introduce FireFlow, a novel solver that can effectively integrate these techniques (and can also be used with the vanilla ReFlow model) to achieve promising results with fewer steps.

3. Motivation

The ReFlow model operates under the simple assumption that X_t evolves linearly between X_0 and X_1 , corresponding to uniform linear motion. Drawing an analogy to physics, it is natural to extend this linear motion to accelerated motion by incorporating an acceleration term:

$$\frac{dv_t}{dt} = a(X_t, t), \quad \frac{dX_t}{dt} = v(X_t, t), \tag{6}$$

where $X_{t+1} = X_t + v_t \Delta t + \frac{1}{2} a_t \Delta t^2$, and v_t is equivalent to $v(X_t,t)$ for simplicity. Recent works have empirically shown that training-based strategies (Park et al., 2024; Chen et al., 2024) for solving Equation (6) improve coupling preservation and inversion over rectified flow, even with few steps. Moreover, a training-free method (Wang et al., 2024) leveraging pre-trained ReFlow models has also demonstrated the utility of the second-order derivative of v in achieving effective inversion, essentially aligning with the principles of accelerated motion.

However, this observation appears counterintuitive. A well-trained ReFlow model, such as FLUX, generally assumes that v_t approximates the constant value $X_1 - X_0$. Thus, the acceleration term $a_t = dv_t/dt$ theoretically approaches zero, as the learning target for v_t is constant.

Connection to High-Order ODE Solvers: Instead of treating a_t as a continuous term, we reinterpret it through the lens of high-order ODE solvers. Using the finite-difference approximation $a_t = (v_{t+\Delta t} - v_t)/\Delta t$, we can rewrite the equation as:

$$X_{t+1} = X_t + v_t \Delta t + \frac{1}{2} a_t \Delta t^2 = X_t + \frac{1}{2} (v_t + v_{t+\Delta t}) \Delta t,$$

which corresponds to the standard formulation of the second-order Runge-Kutta method. This high-order approach allows fewer steps (or equivalently, larger step sizes Δt) to achieve the same accuracy as Euler's method, since the global error of a p-th order method scales as $\mathcal{O}(\Delta t^p)$. This enables larger Δt while maintaining the same error tolerance ϵ . Similarly, if we approximate a_t using $a_t = (v_{t+\frac{1}{2}\Delta t} - v_t)/(\frac{1}{2}\Delta t)$, the resulting position update becomes:

$$X_{t+1} = X_t + v_{t+\frac{1}{2}\Delta t} \Delta t,$$

which corresponds to the standard midpoint method, another second-order ODE solver.

Impact on ReFlow Inversion: It is well-established that the global error in the forward process of ODE solvers benefits from higher-order methods. Likewise, inversion and reconstruction tasks also exhibit improved performance with high-order solvers, as they better preserve original image details during the inversion of ReFlow models. We formalize this property in the following statement.

Proposition 3.1. Given a p-th order ODE solver and the ODE $\frac{dX_t}{dt} = v_{\theta}(X_t, t)$, if the dynamics of the reverse pass satisfy $\frac{dX_t}{dt} = -v_{\theta}(X_t, 1-t)$ which is Lipschitz continuous with constant L. The perturbation Δ_T at t=T propagates backward to t=0. The propagated error satisfies:

$$\|\Delta_0\| \le e^{-LT} \|\Delta_T\|. \tag{7}$$

Implication. The inversion error $\|\Delta_T\|$ introduced during the p-th order numerical solution propagates into the reverse pass, experiencing a slight reduction scaled by the Lipschitz constant L of the learned drift $v_{\theta}(X_t, t)$. Despite this reduction, the overall reconstruction error $\|\Delta_0\|$ for the original image remains asymptotically of the same order, $\mathcal{O}(\Delta t^p)$, where Δt represents the integration step size. Consequently, high-order solvers are preferred in ReFlow to achieve accurate inversion and editing with fewer steps.

4. Method

Challenges with High-Order Solvers: While the use of high-order solvers is theoretically promising, it fails to yield practical runtime speedups. For a parameterized drift $v_{\theta}(X_t,t)$, the runtime is determined by the Number of Function Evaluations (NFEs), i.e., the number of forward passes through the model $v_{\theta}(X_t,t)$. High-order solvers require

evaluating more points within the interval [t, t+1], leading to a higher NFE per step, which negates any reduction in the number of steps and fails to improve overall computational efficiency.

For instance, the midpoint method achieves a local error of $\mathcal{O}(\Delta t^3)$ and a global error of $\mathcal{O}(\Delta t^2)$. Formally, it proceeds as follows:

$$X_{t+\frac{\Delta t}{2}} = X_t + \frac{\Delta t}{2} v_{\theta}(X_t, t), \tag{8}$$

$$X_{t+1} = X_t + \Delta t \cdot v_\theta \left(X_{t + \frac{\Delta t}{2}}, t + \frac{\Delta t}{2} \right). \tag{9}$$

This scheme requires two NFEs per step: one to compute $X_{t+\frac{\Delta t}{2}}$ and another for $v_{\theta}\big(X_{t+\frac{\Delta t}{2}},t+\frac{\Delta t}{2}\big)$, effectively doubling the cost compared to the Euler method. The midpoint method leverages $v_{t+\frac{\Delta t}{2}}$ to provide a more accurate estimate of $\frac{X_{t+1}-X_t}{\Delta t}$ than v_t , which inspires us to seek an alternative with lower computational cost.

A Low-Cost Alternative: The training objective of Re-Flow implies that a well-trained model satisfies $v_{\theta}(X_t,t) \approx (X_1-X_0)$ for all t. Leveraging this property, the most efficient approach would replace v_t with v_0 , enabling one-step generation as proposed in the original ReFlow method (Liu et al., 2023). However, this simplification makes it difficult to incorporate conditional priors, as multi-step iteration is no longer required.

To maintain a multi-step paradigm, we propose a modified scheme that replaces v_t with previous t-1-step midpoint velocity $v_{(t-1)+\frac{\Delta t}{2}}$ rather than $v_{t+\frac{\Delta t}{2}}$. This approach is formalized as:

$$\hat{v}_{\theta}(X_t, t) := \underbrace{v_{\theta}(X_{(t-1) + \frac{\Delta t}{2}}, (t-1) + \frac{\Delta t}{2})}_{\text{load from memory}} \tag{10}$$

$$\hat{X}_{t+\frac{\Delta t}{2}} := X_t + \frac{\Delta t}{2} \hat{v}_{\theta}(X_t, t) \tag{11}$$

$$X_{t+1} = X_t + \Delta t \cdot \underbrace{v_{\theta} \left(\hat{X}_{t + \frac{\Delta t}{2}}, t + \frac{\Delta t}{2}\right)}_{\text{run \& save to memory}}$$
(12)

In this simple scheme, only one NFE is required per step¹, matching the computational cost of the Euler method. The key question, then, is whether this scheme retains the second-order accuracy of the original midpoint method.

For the local and global truncation error, we derive that if $v_{\theta}(X_t,t)$ is well-trained and varies smoothly with respect to both X and t, the proposed scheme achieves the same truncation error as the standard midpoint method. This ensures that the modified approach retains the benefits of

¹Specifically, we perform two NFEs at t=0 to initialize the conditions v_0 and $v_{0+\frac{\Delta t}{2}}$ for subsequent iterations. Python-style pseudo-code is provided in Sec.D.

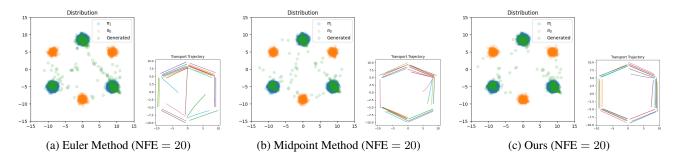


Figure 2. Results on 2D synthetic dataset. We evaluate the performance of 2-Rectified Flow using the Euler solver, midpoint solver, and our proposed approach on a 2D synthetic dataset. The source distribution π_0 (orange) and the target distribution π_1 (green) are parameterized as Gaussian mixture models. For the Euler method, the number of sampling steps is set to N=20, corresponding to an NFE of 20. Our approach generates samples that align more closely with the target distribution, achieving a better match in density and structure. Additionally, the trajectories of the samples exhibit greater straightness, adhering closely to the ideal of linear motion.

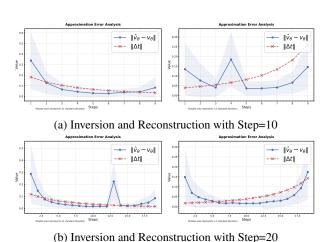


Figure 3. Illustrations of the approximation error in velocity ($\|\hat{v}_{\theta} - v_{\theta}\|$) as it evolves with inversion steps (left subfigures) and denoising steps (right subfigures), with Δt included as a reference.

second-order accuracy while operating at the computational cost of a first-order solver.

Proposition 4.1. Let $\hat{v}_{\theta}(X_t, t)$ denote the reused velocity approximation in Equation 10, and $v_{\theta}(X_t, t)$ denotes the exact velocity at time t. Then, the approximation satisfies the error bound: $||\hat{v}_{\theta}(X_t, t) - v_{\theta}(X_t, t)|| \leq \mathcal{O}(\Delta t)$, under the following conditions:

- 1) Temporal Error: The temporal error is directly proportional to the time step Δt , stemming from smoothness of $v_{\theta}(X,t)$ in the time domain.
- 2) Spatial Error: The spatial error is dominated by $\mathcal{O}(\Delta t)$, due to the boundedness of $\frac{\partial v_{\theta}}{\partial X}$.

We formally prove in the appendix that when two required conditions are satisfied, leading to the following result: our modified midpoint method achieves the same truncation error as the standard midpoint method under these circumstances. Consequently, it is expected to exhibit smaller overall error while maintaining the same runtime cost as the first-order Euler method.

Theorem 4.2. Consider a ReFlow model governed by ODE: $\frac{dX}{dt} = v_{\theta}(X,t)$, where $v_{\theta}(X,t)$ is smooth and bounded, and the solution X_t evolves over a time interval [0,T]. The modified midpoint method, defined in Equation (12), achieves the same global truncation error $\mathcal{O}(\Delta t^2)$ as the standard midpoint method, provided the reused velocity satisfies: $||\hat{v}_{\theta}(X_t,t) - v_{\theta}(X_t,t)|| \leq \mathcal{O}(\Delta t)$.

To highlight the advantages of our approach, we conduct experiments on synthetic data following the setup in (Liu et al., 2023). As shown in Figure 2, the transport trajectories generated by our method are straighter, leading to improved accuracy while maintaining the same NFE as the Euler method, and even surpassing the performance of the standard midpoint method.

Numerical Results and Discussion To empirically validate the theoretical assumption that the reused velocity approximation error $\|\hat{v}_{\theta}(X_t,t) - v_{\theta}(X_t,t)\|$ is bounded by $\mathcal{O}(\Delta t)$, we conducted numerical experiments and analyzed the relationship between the approximation error and the time step size Δt on FLUX-dev model during inversion and reconstruction. The results are summarized in Figure 3, which depicts the average approximation error across different step sizes, with the shaded area representing ± 1 standard deviation.

The data exhibit the following key trend that the approximation error grows approximately linearly with the step size $C \cdot \Delta t$, consistent with the theoretical bound $\mathcal{O}(\Delta t)$. Despite the occasional spikes and inherent variability of the error (illustrated by the shaded standard deviation), the trend and magnitude of the error remain well-controlled and stable across most steps, further validating the robustness of the reused velocity approximation in practice.

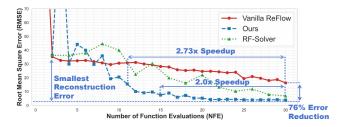


Figure 4. Image reconstruction errors versus denoising NFE: Our approach, compared to the first-order vanilla ReFlow inversion and second-order RF-solver, achieves lower reconstruction errors and demonstrates faster convergence with respect to NFE.

Image Semantic Editing: To ensure simplicity and a fair comparison with the second-order solver method, we follow the approach in (Wang et al., 2024), where the value features in self-attention layers during the denoising process are replaced with pre-stored value features generated during the inversion process, serving as a prior. Subsequently, a reference prompt is used as guidance to achieve semantic editing. Leveraging superior image preservation, our method does not require a careful selection of timesteps for applying the replacements, as suggested in the original paper. The inversion and denoising sampling processes are detailed in Algorithms 1 and 2.

5. Experiment

5.1. Implementation Details

Baselines: This section compares FireFlow with DM inversion-based editing methods such as Prompt-to-Prompt (Hertz et al., 2022), MasaCtrl (Cao et al., 2023), Pix2Pixzero (Parmar et al., 2023), Plug-and-Play (Tumanyan et al., 2023), DiffEdit (Couairon et al., 2023) and DirectInversion (Ju et al., 2024). We also consider the recent RF inversion methods, such as RF-Inversion (Rout et al., 2025) and RF-Solver (Wang et al., 2024).

Metrics: We evaluate different methods across three aspects: generation quality, text-guided quality, and preservation quality. The Fréchet Inception Distance (FID) (Heusel et al., 2017) is used to measure image generation quality by comparing the generated images to real ones. A CLIP model (Radford et al., 2021) is used to calculate the similarity between the generated image and the guiding text. To assess the preservation quality of non-edited areas, we use metrics including Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), Structural Similarity Index Measure (SSIM) (Wang et al., 2004), Peak Signal-to-Noise Ratio (PSNR), and structural distance (Ju et al., 2024).

Steps: Since the number of inference steps can significantly impact performance, we follow the best settings reported for the RF-Solver to ensure a fair comparison: 10 steps for text-

Table 2. Quantitative results for Unconditional Image Generation on CIFAR-10. Our approach achieves performance comparable to that of a second-order solver, but with reduced computational cost.

ODE Solver	$Steps(\downarrow)$	$NFE(\downarrow)$	FID(↓)	IS(↑)
Euler	15	15	5.67	9.20
Euler	10	10	5.83	9.03
Midpoint	5	10	5.45	9.27
Ours	5	6	5.35	9.26

Table 3. Quantitive results on Text-to-Image Generation. The FLUX-dev uses 1st-order ODE Solver, the RF-Solver and our approach use 1st-order ODE Solver. Compared with FLUX-dev and RF-Solver, our approach has higher FID and CLIP Score.

Methods	Steps	$NFE(\downarrow)$	$\text{FID}(\downarrow)$	CLIP Score(↑)
FLUX-dev	20	20	26.77	31.44
RF-Solver	20	40	25.54	31.39
RF-Solver	10	20	25.93	31.35
Ours	10	11	25.16	31.42

to-image generation (T2I) and 30 steps for reconstruction. For editing, RF-Solver varies the number of steps by task, using up to 25 steps. In contrast, we find that our approach achieves comparable or better results using 8 steps. The ablation study is shown in Section E.

5.2. Text-to-image Generation

Conditional Image Generation: We compare the performance of our method against the vanilla rectified flow and the second-order RF-solver on the fundamental T2I task. Following the setup in RF-solver, we evaluate a randomly selected subset of 10K images from the MSCOCO Caption 2014 validation set (Chen et al., 2015), using the ground-truth captions as reference prompts. The FID and CLIP scores for results generated with a fixed random seed of 1024 are presented in Table 3. In summary, our method delivers superior image quality while maintaining comparable text alignment performance.

Unconditional Image Generation: We adhere to the protocol established in the original ReFlow paper (Liu et al., 2023) for unconditional image generation on CIFAR-10, utilizing the open-source 1-Rectified-Flow-distill weights. The results, as shown in Table 2, compare various ODE solvers, and our method demonstrates consistent performance with fewer steps and higher scores.

5.3. Inversion and Reconstruction

Quantitative Comparison: We report the inversion and reconstruction results on the first 1K images from the Densely Captioned Images (DCI) dataset (Urbanek et al., 2024), using the official descriptions as source prompts. The results,

Table 4. Compare our approach with other editing methods on PIE-Bench. Our method demonstrates superior performance in terms of background preservation and CLIP similarity.

Method	Model	Structure	Background Preservation		$\mid \ CLIP \ Similarity \uparrow$		Steps	_{NFE↓}
		Distance↓	PSNR↑	SSIM↑	Whole	Edited		
Prompt2Prompt (Hertz et al., 2022)	Diffusion	0.0694	17.87	0.7114	25.01	22.44	50	100
Pix2Pix-Zero (Parmar et al., 2023)	Diffusion	0.0617	20.44	0.7467	22.80	20.54	50	100
MasaCtrl (Cao et al., 2023)	Diffusion	0.0284	22.17	0.7967	23.96	21.16	50	100
PnP (Tumanyan et al., 2023)	Diffusion	0.0282	22.28	0.7905	25.41	22.55	50	100
PnP-Inv. (Ju et al., 2024)	Diffusion	0.0243	22.46	0.7968	25.41	22.62	50	100
RF-Inversion (Rout et al., 2025)	ReFlow	0.0406	20.82	0.7192	25.20	22.11	28	56
RF-Solver (Wang et al., 2024)	ReFlow	0.0311	22.90	0.8190	26.00	22.88	15	60
Ours	ReFlow	0.0284	23.29	0.8287	<u>26.01</u>	22.96	15	32
Ours	ReFlow	0.0271	23.03	0.8249	26.02	22.81	8	18

Figure 5. Qualitative results of image reconstruction. Our approach achieves faster convergence and superior reconstruction quality compared to baseline ReFlow methods utilizing the FLUX model. Difference images showing the pixel-wise variations between the source image and the reconstructed images are also provided.

Table 5. Quantitative results for inversion and reconstruction using the FLUX-dev model (excluding the DDIM baseline). NFE includes both inversion and reconstruction function evaluations. Steps or computational costs are kept comparable across comparisons. Reconstruction is performed without leveraging latent features from the inversion process.

	Steps	NFE↓	LPIPS↓	SSIM↑	PSNR↑
DDIM-Inv.	50	100	0.2342	0.5872	19.72
ReFlow-Inv.	30	60	0.5044	0.5632	16.57
RF-Solver	30	120	0.2926	0.7078	20.05
RF-Inversion	30	60	0.4480	0.4599	16.22
Ours	30	62	0.1579	0.8160	23.87
ReFlow-Inv.	9	18	0.8145	0.3828	15.29
RF-Solver	5	20	0.5010	0.5232	14.72
RF-Inversion	9	18	0.7574	0.3742	13.37
Ours	8	18	0.4111	0.5945	16.01

shown in Table 5, demonstrate that our approach achieves a significant reduction in reconstruction error, whether compared at the same number of steps (yielding approximately $2\times$ speedup) or at the same computational cost.

Qualitative Comparison: As shown in Figure 5, our approach provides an efficient and effective reconstruction method based on FLUX. The drift from the source image is

significantly smaller compared to baseline methods, aligning with the quantitative results.

Convergence Rate: We empirically compare the convergence rates of different numerical solvers during reconstruction, as shown in Figure 4. For a fair comparison, we use the demo "boy" image and prompt provided in the RF-solver source code. Our approach achieves the lowest reconstruction error with the fastest convergence rate, offering up to $2.7\times$ speedup and over 70% error reduction. Figure 7 further illustrates the results when other approaches are fully converged at denoising NFE = 60.

5.4. Inversion-based Semantic Image Editing

Quantitative Comparison: We evaluate prompt-guided editing using the recent PIE-Bench dataset (Ju et al., 2024), which comprises 700 images across 10 types of edits. As shown in Table 4, we compare the editing performance in terms of preservation ability and CLIP similarity. Our method not only competes with but often outperforms other approaches, particularly in CLIP similarity. Notably, our approach achieves high-quality results with relatively few editing steps, demonstrating its efficiency and effectiveness in maintaining the integrity of the original content while producing edits that closely align with the intended modifi-



Figure 6. Comparison with State-of-the-art editing methods. As shown in the comparison (original images in Row 1 vs. edited results in subsequent rows), our approach delivers the most accurate and high-quality edits.

cations.

Qualitative Comparison: We present the visual editing results in Figure 6, which are consistent with our quantitative findings. Our method highlights a fundamental trade-off between minimizing changes to non-editing areas and enhancing the fidelity of the edits. In contrast, methods like P2P, Pix2Pix-Zero, MasaCtrl, and PnP often struggle with inconsistencies relative to the source image, as evident in the 3rd and 6th rows of the figure. Additionally, these methods frequently produce invalid edits, as shown in the 7th and 9th rows. While PnP-Inv excels at preserving the structure of the source image, it often fails to effectively apply the desired edits. Rectified flow model-based methods, such as RF-Inversion and RF-Solver, deliver better editing re-

Table 6. Per-image inference time for ReFlow inversion-based editing measured on an RTX 3090.

	Resolution	Steps	Time Cost	Speedup
Vanilla ReFlow	512×512	28	23.76s	1.0×
RF-Inversion	512×512	28	23.36s	$1.02 \times$
RF-Solver	512×512	15	25.31s	$0.94 \times$
Ours	512×512	8	7.70 s	3.09 ×
Vanilla ReFlow	1024×1024	28	72.10s	$1.0 \times$
RF-Inversion	1024×1024	28	71.35s	$1.01 \times$
RF-Solver	1024×1024	15	78.80s	$0.92 \times$
Ours	1024×1024	8	24.52 s	2.94 ×

sults compared to the aforementioned methods. However, they still face challenges with inconsistencies in non-editing areas. Overall, our method provides a more effective solution to these challenges, achieving superior results in both preservation and editing fidelity.

Inference Speed: In Table 6, we compare the inference time of FireFlow with several recent models. The number of steps is based on those reported in the original papers or provided in open-source code. FireFlow is significantly faster than competing reflow models and does not require an auxiliary model for editing.

6. Conclusion

We proposed a novel numerical solver for ReFlow models, achieving second-order precision at the computational cost of a first-order method. By reusing intermediate velocity approximations, our training-free approach fully exploits the nearly constant velocity dynamics of well-trained ReFlow models, minimizing computational overhead while maintaining accuracy and stability. This method addresses key limitations of existing inversion techniques, providing a scalable and efficient solution for tasks such as image reconstruction and semantic editing. Our work highlights the untapped potential of ReFlow-based generative frameworks and establishes a foundation for further advancements in efficient numerical methods for generative ODEs. We also provide a discussion of the limitations in Section F.

Acknowledgement

This work was partially supported by the National Key R&D Program of China (No. 2022ZD0160304), the Beijing Science and Technology Plan Project (No. Z231100005923033) and CCF-Tencent Rhino-Bird Open Research Fund.

Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential societal consequences of our work, none of which we feel must be specifically highlighted here.

References

- Brack, M., Friedrich, F., Kornmeier, K., Tsaban, L., Schramowski, P., Kersting, K., and Passos, A. LED-ITS++: limitless image editing using text-to-image models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pp. 8861–8870. IEEE, 2024.
- Brooks, T., Holynski, A., and Efros, A. A. Instruct-

- pix2pix: Learning to follow image editing instructions. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023*, pp. 18392–18402. IEEE, 2023.
- Cao, M., Wang, X., Qi, Z., Shan, Y., Qie, X., and Zheng, Y. Masactrl: Tuning-free mutual self-attention control for consistent image synthesis and editing. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 22560–22570, October 2023.
- Chen, T., Gu, J., Dinh, L., Theodorou, E., Susskind, J. M., and Zhai, S. Generative modeling with phase stochastic bridge. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=tUtGjQEDd4.
- Chen, X., Fang, H., Lin, T., Vedantam, R., Gupta, S., Dollár, P., and Zitnick, C. L. Microsoft COCO captions: Data collection and evaluation server. *CoRR*, abs/1504.00325, 2015. URL http://arxiv.org/abs/1504.00325.
- Cho, H., Lee, J., Kim, S. B., Oh, T., and Jeong, Y. Noise map guidance: Inversion with spatial context for real image editing. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.
- Couairon, G., Verbeek, J., Schwenk, H., and Cord, M. Diffedit: Diffusion-based semantic image editing with mask guidance. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.* OpenReview.net, 2023.
- Deng, Y., He, X., Tang, F., and Dong, W. Z*: Zero-shot style transfer via attention reweighting. In *Proceedings* of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6934–6944, June 2024a.
- Deng, Y., He, X., Tang, F., and Dong, W. Z-star+: A zero-shot style transfer method via adjusting style distribution, 2024b. URL https://arxiv.org/abs/2411.19231.
- Deng, Y., He, X., Tang, F., and Dong, W. Z-magic: Zeroshot multiple attributes guided image creator, 2025. URL https://arxiv.org/abs/2503.12124.
- Deutch, G., Gal, R., Garibi, D., Patashnik, O., and Cohen-Or, D. Turboedit: Text-based image editing using fewstep diffusion models. In Igarashi, T., Shamir, A., and Zhang, H. R. (eds.), SIGGRAPH Asia 2024 Conference Papers, SA 2024, Tokyo, Japan, December 3-6, 2024, pp. 41:1–41:12. ACM, 2024.

- Dong, W., Xue, S., Duan, X., and Han, S. Prompt tuning inversion for text-driven image editing using diffusion models. In *IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6*, 2023, pp. 7396–7406. IEEE, 2023.
- Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., and Cohen-Or, D. Prompt-to-prompt image editing with cross attention control. *arXiv* preprint *arXiv*:2208.01626, 2022.
- Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Guyon, I., von Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 6626–6637, 2017.
- Huberman-Spiegelglas, I., Kulikov, V., and Michaeli, T. An edit friendly DDPM noise space: Inversion and manipulations. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pp. 12469–12478. IEEE, 2024.
- Ju, X., Zeng, A., Bian, Y., Liu, S., and Xu, Q. Pnp inversion: Boosting diffusion-based editing with 3 lines of code. *International Conference on Learning Representations* (ICLR), 2024.
- Lin, H., Wang, M., Wang, J., An, W., Chen, Y., Liu, Y., Tian, F., Dai, G., Wang, J., and Wang, Q. Schedule your edit: A simple yet effective diffusion noise schedule for image editing. *CoRR*, abs/2410.18756, 2024.
- Liu, X., Gong, C., and Liu, Q. Flow straight and fast: Learning to generate and transfer data with rectified flow. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.* OpenReview.net, 2023. URL https: //openreview.net/forum?id=XVjTT1nw5z.
- Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.-Y., and Ermon, S. SDEdit: Guided image synthesis and editing with stochastic differential equations. In *International Conference on Learning Representations*, 2022.
- Miyake, D., Iohara, A., Saito, Y., and Tanaka, T. Negative-prompt inversion: Fast image inversion for editing with text-guided diffusion models. *CoRR*, abs/2305.16807, 2023.
- Mokady, R., Hertz, A., Aberman, K., Pritch, Y., and Cohen-Or, D. Null-text inversion for editing real images using guided diffusion models. In *IEEE/CVF Conference on*

- Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, pp. 6038–6047. IEEE, 2023.
- Park, D., Lee, S., Kim, S., Lee, T., Hong, Y., and Kim, H. J. Constant acceleration flow. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=hsgNvC5YM9.
- Parmar, G., Singh, K. K., Zhang, R., Li, Y., Lu, J., and Zhu, J. Zero-shot image-to-image translation. In Brunvand, E., Sheffer, A., and Wimmer, M. (eds.), ACM SIGGRAPH 2023 Conference Proceedings, SIG-GRAPH 2023, Los Angeles, CA, USA, August 6-10, 2023, pp. 11:1–11:11. ACM, 2023. doi: 10.1145/3588432.3591513. URL https://doi.org/10.1145/3588432.3591513.
- Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn, T., Müller, J., Penna, J., and Rombach, R. SDXL: Improving latent diffusion models for high-resolution image synthesis. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=di52zR8xgf.
- Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., and Sutskever, I. Learning transferable visual models from natural language supervision. In Meila, M. and Zhang, T. (eds.), *Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR, 2021.
- Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. Hierarchical text-conditional image generation with CLIP latents. *CoRR*, abs/2204.06125, 2022. doi: 10.48550/ARXIV.2204.06125. URL https://doi.org/10.48550/arXiv.2204.06125.
- Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022.
- Rout, L., Chen, Y., Ruiz, N., Caramanis, C., Shakkottai, S., and Chu, W.-S. Semantic image inversion and editing using rectified stochastic differential equations. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=Hu0FSOSEyS.
- Song, J., Meng, C., and Ermon, S. Denoising diffusion implicit models. In *9th International Conference on Learn-*

- ing Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
- Tewel, Y., Gal, R., Samuel, D., Atzmon, Y., Wolf, L., and Chechik, G. Add-it: Training-free object insertion in images with pretrained diffusion models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=ZeaTvXw080.
- Tumanyan, N., Geyer, M., Bagon, S., and Dekel, T. Plugand-play diffusion features for text-driven image-toimage translation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24*, 2023, pp. 1921–1930. IEEE, 2023.
- Urbanek, J., Bordes, F., Astolfi, P., Williamson, M., Sharma, V., and Romero-Soriano, A. A picture is worth more than 77 text tokens: Evaluating clip-style models on dense captions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 26700–26709, June 2024.
- Wang, J., Pu, J., Qi, Z., Guo, J., Ma, Y., Huang, N., Chen, Y., Li, X., and Shan, Y. Taming rectified flow for inversion and editing. *arXiv preprint arXiv:2411.04746*, 2024.
- Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. *IEEE Trans. Image Process.*, 13(4): 600–612, 2004.
- Xu, S., Huang, Y., Pan, J., Ma, Z., and Chai, J. Inversion-free image editing with language-guided diffusion models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pp. 9454–9461. IEEE, 2024. doi: 10.1109/CVPR52733.2024.00903. URL https://doi.org/10.1109/CVPR52733.2024.00903.
- Zhang, L., Rao, A., and Agrawala, M. Adding conditional control to text-to-image diffusion models. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3813–3824, 2023. doi: 10.1109/ICCV51070. 2023.00355.
- Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 586–595. Computer Vision Foundation / IEEE Computer Society, 2018.
- Zhang, Y., Huang, N., Tang, F., Huang, H., Ma, C., Dong, W., and Xu, C. Inversion-based creativity transfer with diffusion models. *CoRR*, abs/2211.13203, 2022.

A. The Pseudo-code for Inversion and Editing

Algorithm 1 Solving ReFlow Inversion ODE

Require: Discretization steps N, reference image X_0 , prompt embedding network Φ , Flux model $v(\cdot,\cdot,\cdot;\varphi)$, time steps t=0 $[t_0,...,t_{N-1}]$

Ensure: Structured noise X_1

1: Initialize
$$v_{t_0}(X_{t_0}) = v(X_{t_0}, t_0, \Phi(\cdot); \varphi)$$
 {Run}

2: $\Delta t_0 = t_1 - t_0$

3:
$$X_{t_0 + \frac{1}{2}\Delta t_0} = X_{t_0} + \frac{1}{2}\Delta t_0 \cdot v_{t_0}(X_{t_0})$$

$$\text{4: Initialize } v_{t_0 + \frac{1}{2}\Delta t_0}(X_{t_0 + \frac{1}{2}\Delta t_0}) = v(X_{t_0 + \frac{1}{2}\Delta t}, t_0 + \frac{1}{2}\Delta t_0, \Phi(\cdot); \varphi) \\ \text{\{Run \& Save to GPU Memory\}}$$

5: $X_{t_1} = X_{t_0} + \Delta t_0 \cdot v_{t_0 + \frac{1}{2}\Delta t_0} (X_{t_0 + \frac{1}{2}\Delta t_0})$

6: for i = 1 : N - 1 do

7:
$$\hat{v}_{t_i}(X_{t_i}) \leftarrow v_{t_{i-1} + \frac{1}{2}\Delta t_{i-1}}(X_{t_{i-1} + \frac{1}{2}\Delta t_{i-1}})$$

{Load from GPU Memory}

8:
$$\Delta t_i = t_{i+1} - t_i$$

9: $X_{t_i + \frac{1}{2}\Delta t_i} = X_{t_i} + \frac{1}{2}\Delta t_i \cdot \hat{v}_{t_i}(X_{t_i})$

10:
$$v_{t_i + \frac{1}{2}\Delta t_i}(X_{t_i + \frac{1}{2}\Delta t_i}) = v(X_{t_i + \frac{1}{2}\Delta t_i}, t_i + \frac{1}{2}\Delta t_i, \Phi(\cdot); \varphi)$$

{Run & Save to GPU Memory}

11:
$$X_{t_{i+1}} = X_{t_i} + \Delta t_i \cdot v_{t_i + \frac{1}{2}\Delta t_i} (X_{t_i + \frac{1}{2}\Delta t_i})$$

if i==N-1 then 12:

12: Save
$$V_{t_{N-1}}^{inv.}$$
 to storage.

end if 13:

14: **end for**

15: **return** X_1 , $V_{t_{N-1}}^{inv.}$ in Self-attention Layers

Algorithm 2 Solving ReFlow Denoising ODE (Editing)

Require: Discretization steps N, reference text "prompt", structured noise X_1 , prompt embedding network Φ , Flux model $v(\cdot,\cdot,\cdot;\varphi)$, time steps $t = [t_{N-1}, ..., t_0]$, pre-computed $V_{t_{N-1}}^{inv.}$ in Self-attention Layers during inversion

Ensure: Edited image X_0

1: Initialize
$$v_{t_{N-1}}(X_{t_{N-1}}) = v(X_{t_{N-1}}, t_{N-1}, \Phi(\text{prompt}); \varphi)$$
 {Replace $V_{t_{N-1}}^{edit}$ with $V_{t_{N-1}}^{inv}$ in Self-attention & Run} 2: $\Delta t_{N-1} = t_{N-2} - t_{N-1}$

3:
$$X_{t_{N-1}+\frac{1}{2}\Delta t_{N-1}}^{t_{N-2}} = X_{t_{N-1}}^{t_{N-1}} + \frac{1}{2}\Delta t_{N-1} \cdot v_{t_{N-1}}(X_{t_{N-1}})$$

4: Initialize
$$v_{t_{N-1}+\frac{1}{2}\Delta t_{N-1}}(X_{t_{N-1}+\frac{1}{2}\Delta t_{N-1}})=v(X_{t_{N-1}+\frac{1}{2}\Delta t_{N-1}},t_{N-1}+\frac{1}{2}\Delta t_{N-1},\Phi(\text{prompt});\varphi)\{\text{Replace }V_{t_{N-1}}^{edit}\text{ with }V_{t_{N-1}}^{inv.}=in\text{ Self-attention \& Run \& Save to GPU Memory}\}$$

5:
$$X_{t_{N-2}} = X_{t_{N-1}} + \Delta t_{N-1} \cdot v_{t_{N-1} + \frac{1}{2}\Delta t_{N-1}} (X_{t_{N-1} + \frac{1}{2}\Delta t_{N-1}})$$

6: for i = N - 2 : 0 do

7:
$$\hat{v}_{t_i}(X_{t_i}) \leftarrow v_{t_{i+1} + \frac{1}{2}\Delta t_{i+1}}(X_{t_{i+1} + \frac{1}{2}\Delta t_{i+1}})$$

8: $\Delta t_i = t_{i-1} - t_i$
9: $X_{t_i + \frac{1}{2}\Delta t_i} = X_{t_i} + \frac{1}{2}\Delta t_i \cdot \hat{v}_{t_i}(X_{t_i})$

{Load from GPU Memory}

9:
$$X_{t_i + \frac{1}{2}\Delta t_i} = X_{t_i} + \frac{1}{2}\Delta t_i \cdot \hat{v}_{t_i}(X_{t_i})$$

$$10: \quad v_{t_i+\frac{1}{2}\Delta t_i}(X_{t_i+\frac{1}{2}\Delta t_i}) = v(X_{t_i+\frac{1}{2}\Delta t_i}, t_i+\frac{1}{2}\Delta t_i, \Phi(\text{prompt}); \varphi) \\ \qquad \qquad \{\text{Run \& Save to GPU Memory}\}$$

11: $X_{t_{i-1}} = X_{t_i} + \Delta t_i \cdot v_{t_i + \frac{1}{2}\Delta t_i} (X_{t_i + \frac{1}{2}\Delta t_i})$

12: **end for**

13: return X_0

B. Technical Proofs

This section provides detailed technical proofs for the theoretical results discussed in this paper.

B.1. Proof of Proposition 3.1

Proof. The reverse ODE is given by:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -v(x,t). \tag{13}$$

Let $x^{\text{True}}(t)$ be the true solution of the reverse ODE, starting from x_T^{True} , and $x^{\text{Perturbed}}(t)$ be the solution starting from $x_T^{\text{Numerical}} = x_T^{\text{True}} + \Delta_T$. The initial condition difference is:

$$x_T^{\text{Perturbed}}(T) - x_T^{\text{True}}(T) = \Delta_T. \tag{14}$$

Define the error $\Delta(t)$ as the difference between the perturbed and true solutions:

$$\Delta(t) = x^{\text{Perturbed}}(t) - x^{\text{True}}(t). \tag{15}$$

The dynamics of $\Delta(t)$ follow from the reverse ODE:

$$\frac{\mathrm{d}\Delta(t)}{\mathrm{d}t} = \frac{\mathrm{d}x^{\mathrm{Perturbed}}(t)}{\mathrm{d}t} - \frac{\mathrm{d}x^{\mathrm{True}}(t)}{\mathrm{d}t}.$$
 (16)

Substituting the reverse ODE for each term:

$$\frac{\mathrm{d}\Delta(t)}{\mathrm{d}t} = -v(x^{\text{Perturbed}}(t), t) + v(x^{\text{True}}(t), t). \tag{17}$$

Using the Lipschitz continuity of v(x, t), we have:

$$||v(x^{\mathsf{Perturbed}}(t), t) - v(x^{\mathsf{True}}(t), t)|| \le L||\Delta(t)||, \tag{18}$$

where L is the Lipschitz constant of v(x, t). Thus,

$$\left\| \frac{\mathrm{d}\Delta(t)}{\mathrm{d}t} \right\| \le L \|\Delta(t)\|. \tag{19}$$

Based on the definition of the derivative of a norm:

$$\frac{\mathrm{d}\|\Delta(t)\|}{\mathrm{d}t} = \frac{\Delta(t)}{\|\Delta(t)\|} \cdot \frac{\mathrm{d}\Delta(t)}{\mathrm{d}t} \le \left\| \frac{\Delta(t)}{\|\Delta(t)\|} \right\| \cdot \left\| \frac{\mathrm{d}\Delta(t)}{\mathrm{d}t} \right\| = \left\| \frac{\mathrm{d}\Delta(t)}{\mathrm{d}t} \right\| \le L\|\Delta(t)\|,\tag{20}$$

This can be rewritten as:

$$\frac{\mathrm{d}\|\Delta(t)\|}{\|\Delta(t)\|} \le L\,\mathrm{d}t. \tag{21}$$

Integrate both sides from t = T (initial condition) to t = 0 (final condition):

$$\int_{T}^{0} \frac{\mathrm{d}\|\Delta(t)\|}{\|\Delta(t)\|} \le \int_{T}^{0} L \, \mathrm{d}t. \tag{22}$$

Thus, the inequality becomes:

$$\ln \|\Delta(0)\| - \ln \|\Delta(T)\| \le -LT.$$
(23)

Simplify:

$$\ln \|\Delta(0)\| \le \ln \|\Delta(T)\| - LT.$$
 (24)

Exponentiate both sides to remove the logarithm:

$$\|\Delta(0)\| \le \|\Delta(T)\|e^{-LT}.$$
 (25)

B.2. Proof of Proposition 4.1

Proof. Define the time interval between t and t-1 as Δt for simplicity, the reused velocity at t is given by:

$$\hat{v}_{\theta}(X_t, t) = v_{\theta}(X_{(t-1) + \frac{\Delta t}{2}}, (t-1) + \frac{\Delta t}{2}), \tag{26}$$

where $X_{(t-1)+\frac{\Delta t}{2}}$ is computed recursively using:

$$X_{(t-1)+\frac{\Delta t}{2}} = X_{t-1} + \frac{\Delta t}{2} \hat{v}_{\theta}(X_{t-1}, t-1). \tag{27}$$

The exact velocity at t is:

$$v_{\theta}(X_t, t). \tag{28}$$

To quantify the difference $||\hat{v}_{\theta}(X_t,t)-v_{\theta}(X_t,t)||$, we expand the reused velocity $\hat{v}_{\theta}(X_t,t)$ around the exact velocity $v_{\theta}(X_t,t)$. Using a Taylor series expansion, expand $v_{\theta}(X_{(t-1)+\frac{\Delta t}{2}},(t-1)+\frac{\Delta t}{2})$ around X_t and t:

$$v_{\theta}(X_{(t-1)+\frac{\Delta t}{2}},(t-1)+\frac{\Delta t}{2}) \approx v_{\theta}(X_t,t) + \frac{\partial v_{\theta}}{\partial X}(X_{(t-1)+\frac{\Delta t}{2}}-X_t) + \frac{\partial v_{\theta}}{\partial t}(-\Delta t + \frac{\Delta t}{2}) + \mathcal{O}(\Delta t^2). \tag{29}$$

The temporal difference is:

$$-\Delta t + \frac{\Delta t}{2} = \frac{-\Delta t}{2}. (30)$$

Thus, the temporal contribution to the velocity difference is:

$$-\frac{\Delta t}{2}\frac{\partial v_{\theta}}{\partial t}.$$
 (31)

The leading term introduces an error of $\mathcal{O}(\Delta t)$.

The spatial difference is:

$$X_{(t-1)+\frac{\Delta t}{2}} - X_t. \tag{32}$$

Using the recursive relationship:

$$X_{(t-1)+\frac{\Delta t}{2}} = X_{t-1} + \frac{\Delta t}{2} \hat{v}_{\theta}(X_{t-1}, t-1), \tag{33}$$

and the local truncation error of Euler method

$$X_t \approx X_{t-1} + \Delta t \cdot v_\theta(X_{t-1}, t-1) + \mathcal{O}(\Delta t^2), \tag{34}$$

we subtract:

$$X_{(t-1)+\frac{\Delta t}{2}} - X_t = -\Delta t \cdot v_{\theta}(X_{t-1}, t-1) + \frac{\Delta t}{2} \hat{v}_{\theta}(X_{t-1}, t-1) + \mathcal{O}(\Delta t^2).$$
(35)

Simplify:

$$X_{(t-1)+\frac{\Delta t}{2}} - X_t = \frac{\Delta t}{2} (\hat{v}_{\theta}(X_{t-1}, t-1) - 2 \cdot v_{\theta}(X_{t-1}, t-1)) + \mathcal{O}(\Delta t^2).$$
(36)

Substitute this into the spatial term:

$$\frac{\partial v_{\theta}}{\partial X}(X_{(t-1)+\frac{\Delta t}{2}} - X_t) = \frac{\Delta t}{2} \frac{\partial v_{\theta}}{\partial X}(\hat{v}_{\theta}(X_{t-1}, t-1) - 2 \cdot v_{\theta}(X_{t-1}, t-1)) + \mathcal{O}(\Delta t^2). \tag{37}$$

Combine both temporal and spatial difference:

$$\hat{v}_{\theta}(X_{t},t) - v_{\theta}(X_{t},t) = \frac{\Delta t}{2} \frac{\partial v_{\theta}}{\partial X} \left(\hat{v}_{\theta}(X_{t-1},t-1) - v_{\theta}(X_{t-1},t-1) \right) - \frac{\Delta t}{2} \left(\frac{\partial v_{\theta}}{\partial t} + \frac{\partial v_{\theta}}{\partial X} v_{\theta}(X_{t-1},t-1) \right) + \mathcal{O}(\Delta t^{2}). \tag{38}$$

Let $\delta_t = ||\hat{v}_{\theta}(X_t, t) - v_{\theta}(X_t, t)||$. From the above analysis and triangle inequality:

$$\delta_t \le \frac{\Delta t}{2} \delta_{t-1} + \mathcal{O}(\Delta t). \tag{39}$$

Unfold the recursion:

$$\delta_t \le \mathcal{O}(\Delta t) + \frac{\Delta t}{2} \mathcal{O}(\Delta t) + \left(\frac{\Delta t}{2}\right)^2 \mathcal{O}(\Delta t) + \cdots$$
 (40)

This is a geometric series with common ratio $\frac{\Delta t}{2}$, summing to:

$$\delta_t \le \mathcal{O}(\Delta t) \cdot \sum_{k=0}^{\infty} \left(\frac{\Delta t}{2}\right)^k = \mathcal{O}(\Delta t) \cdot \frac{1}{1 - \frac{\Delta t}{2}}.$$
(41)

For small Δt , $\frac{1}{1-\frac{\Delta t}{2}} \approx 1 + \frac{\Delta t}{2}$, so:

$$\delta_t = ||\hat{v}_{\theta}(X_t, t) - v_{\theta}(X_t, t)|| < \mathcal{O}(\Delta t). \tag{42}$$

B.3. Proof of Theorem 4.2

Proof. Define the time interval as Δt for simplicity, our modified midpoint method updates X_{t+1} as:

$$X_{t+1} = X_t + \Delta t \cdot v_\theta \left(X_{t + \frac{\Delta t}{2}}, t + \frac{\Delta t}{2} \right), \tag{43}$$

where:

$$X_{t+\frac{\Delta t}{2}} = X_t + \frac{\Delta t}{2}\hat{v}_{\theta}(X_t, t). \tag{44}$$

Substituting $X_{t+\frac{\Delta t}{2}}$, the velocity term becomes:

$$v_{\theta}\left(X_{t+\frac{\Delta t}{2}}, t + \frac{\Delta t}{2}\right) \approx v_{\theta}(X_{t}, t) + \frac{\Delta t}{2} \frac{\partial v_{\theta}}{\partial t} + \frac{\Delta t}{2} \frac{\partial v_{\theta}}{\partial X} \hat{v}_{\theta}(X_{t}, t) + \mathcal{O}(\Delta t^{2}). \tag{45}$$

Under the assumption $||\hat{v}_{\theta}(X_t, t) - v_{\theta}(X_t, t)|| \leq \mathcal{O}(\Delta t)$, we write:

$$\hat{v}_{\theta}(X_t, t) = v_{\theta}(X_t, t) + \delta v, \tag{46}$$

where $||\delta v|| \leq \mathcal{O}(\Delta t)$. Substituting this into the velocity term expansion:

$$\frac{\partial v_{\theta}}{\partial X}\hat{v}_{\theta}(X_{t},t) = \frac{\partial v_{\theta}}{\partial X}v_{\theta}(X_{t},t) + \frac{\partial v_{\theta}}{\partial X}\delta v. \tag{47}$$

Since $||\delta v|| \leq \mathcal{O}(\Delta t)$, the additional term $\frac{\Delta t}{2} \cdot \frac{\partial v_{\theta}}{\partial X} \delta v$ contributes an error of $\mathcal{O}(\Delta t^2)$, which is of the same order as higher-order terms in the expansion. Thus, the velocity term becomes:

$$v_{\theta}\left(X_{t+\frac{\Delta t}{2}}, t + \frac{\Delta t}{2}\right) \approx v_{\theta}(X_{t}, t) + \frac{\Delta t}{2} \frac{\partial v_{\theta}}{\partial t} + \frac{\Delta t}{2} \frac{\partial v_{\theta}}{\partial X} v_{\theta}(X_{t}, t) + \mathcal{O}(\Delta t^{2}). \tag{48}$$

Substituting the expanded velocity back into the updated equation:

$$X_{t+1} = X_t + \Delta t \cdot \left(v_{\theta}(X_t, t) + \frac{\Delta t}{2} \frac{\partial v_{\theta}}{\partial t} + \frac{\Delta t}{2} \frac{\partial v_{\theta}}{\partial X} v_{\theta}(X_t, t) + \mathcal{O}(\Delta t^2) \right). \tag{49}$$

Simplify:

$$X_{t+1} = X_t + \Delta t \cdot v_{\theta}(X_t, t) + \frac{\Delta t^2}{2} \frac{\partial v_{\theta}}{\partial t} + \frac{\Delta t^2}{2} \frac{\partial v_{\theta}}{\partial X} v_{\theta}(X_t, t) + \mathcal{O}(\Delta t^3). \tag{50}$$

The exact solution to the ODE is:

$$X(t + \Delta t) = X(t) + \Delta t \cdot v_{\theta}(X_{t}, t) + \frac{\Delta t^{2}}{2} \frac{\partial v_{\theta}}{\partial t} + \frac{\Delta t^{2}}{2} \frac{\partial v_{\theta}}{\partial X} v_{\theta}(X_{t}, t) + \mathcal{O}(\Delta t^{3}). \tag{51}$$

The modified midpoint method's update matches the exact solution up to $\mathcal{O}(\Delta t^2)$, confirming that the local truncation error remains $\mathcal{O}(\Delta t^3)$. Since the local truncation error is $\mathcal{O}(\Delta t^3)$, the global error accumulates over $\mathcal{O}(1/\Delta t)$ steps, resulting in $\mathcal{O}(\Delta t^2)$.

C. Empirical Convergence Rate

We now present a comparative analysis of reconstruction errors for different solvers, considering up to 60 Number of Function Evaluations (NFE). Our method exhibits rapid convergence to a consistently low reconstruction error, demonstrating its efficiency in minimizing reconstruction loss. The vanilla ReFlow model, implemented with a first-order Euler method, suffers from a slow convergence rate, implying a higher computational cost to achieve comparable accuracy. Notably, the RF-solver, which incorporates a second-order truncation error, displays a non-monotonic convergence behavior. Although it initially converges more quickly than vanilla ReFlow, the reconstruction error begins to increase after approximately 25 steps. This suggests that the second-order approximation in the RF-solver may introduce instability or over-fitting beyond this point, emphasizing the robustness and efficiency of our proposed method.

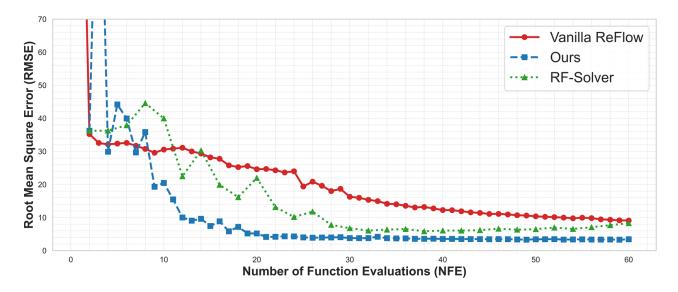


Figure 7. Visualization of the convergence rate of different order inversion and reconstruction method. With 60 NFE, our approach still enjoys the lowest reconstruction error and the fastest convergence speed.

D. Python-style Pseudo-Code

In this section, we provide Python-style pseudo-code to elucidate the core algorithmic steps of our proposed approach. This approach, while conceptually simple, delivers substantial performance improvements. Specifically, initialization of the variable \hat{v} is performed as None in the first iteration. Subsequently, each iteration requires only a single invocation of the model evaluation function, thereby maintaining a computational cost per iteration equivalent to that of the baseline ReFlow model employing the first-order Euler method. However, as evidenced by the convergence analysis presented in Figure 7, our approach achieves a significantly accelerated rate of convergence.

```
hat_velocity = None
for t_curr, t_prev in zip(timesteps[:-1], timesteps[1:]):
    if hat_velocity is None:
        velocity = model(X, t_curr)
else:
        velocity = hat_velocity

X_mid = X + (t_prev - t_curr) / 2 * velocity
    velocity_mid = model(X_mid, t_curr + (t_prev - t_curr) / 2)
    hat_velocity = velocity_mid
    X = X + (t_prev - t_curr) * velocity_mid
return X
```

E. Ablation Study

Editing Steps: An ablation study was conducted to evaluate the influence of the number of editing steps on the editing performance. The number of steps was varied from 2 to 12, and the corresponding results are presented in Figure 8. The analysis reveals that with only two editing steps, the editing prompts are not effectively incorporated, resulting in suboptimal performance. However, a significant improvement in performance is observed as the number of steps increases. Notably, the performance achieved with eight steps is comparable to that obtained with 10 or 12 steps, indicating that eight steps provide sufficient capacity for effective editing. Consequently, a value of eight editing steps was selected for use in all subsequent experiments.

Inversion-free Editing: Here, we apply our modified midpoint method to solve the controlled ODEs employed by other ReFlow-based editing methods. This compatibility underscores FireFlow's robustness in handling the ODE challenges inherent in ReFlow models, regardless of whether they occur during the forward or reverse diffusion process. Visual comparisons highlighting the superiority of our approach are shown in Figures 9.

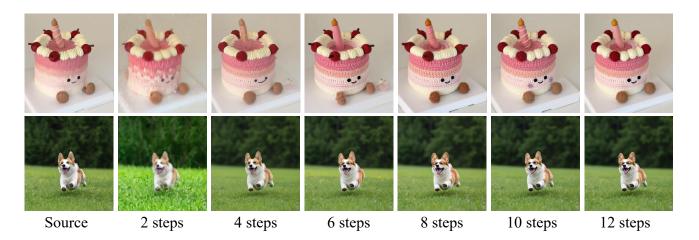


Figure 8. Ablation Study on the Number of Editing Steps.

Figure 9. Illustration on the effect of FireFlow solver when coupled with other controlled ODE.



Figure 10. Illustrations on FireFlow Failure Cases.

Figure 11. Illustrations on FireFlow with K feature addition in Self-attention.

F. Limitations

We empirically observe that our approach struggles with editing tasks involving changes to object colors or uncommon scenarios in natural images. As illustrated in Figure 10, the cat's color remains unsatisfactory after editing. Similarly, in less common scenes, such as when the person's head is not visible in the image, the editing results are poor.

Another example involves an uncommon description, such as "a [stormtrooper] with blue hair wearing a shirt," which also yields unexpected results. We attribute these issues to the simplicity of the editing strategy, which involves only replacing the V feature in the self-attention module:

$$Self_Attn_{edit} = Softmax(\frac{Q_{edit}K_{edit}}{\sqrt{d}})V_{inv}.$$
(52)

This approach appears insufficient for handling such scenarios.

We empirically find that incorporating K feature addition in the self-attention module can resolve these problems. Formally,

$$Self_Attn_{edit} = Softmax(\frac{Q_{edit}(K_{edit} + K_{inv.})}{\sqrt{d}})V_{edit}$$
(53)

However, this comes at the cost of diminished preservation of the original structure and background details. Details can be found in Figure 11. We also include an quantitative analysis on different editing strategies in Table 7. The results are consistent with the illustrations. It is evident that Equation 53 belongs to the category of "cross-attention," focusing on merging features from the self-attention module during inversion with the corresponding features generated during the denoising process. This concept has been extensively discussed in diffusion model (DM) editing methods. Table 7 presents only the foundational attempts in this direction. We hope this will inspire further research and advancements in future work.

Table 7. Comparison on different editing methods. Results on PIE Bench are reported. Guidance terms indicate the guidance ratio settings used in the FLUX model during the denoising process.

Method	Guidance	Structure Background Preservation			CLIP Similarity↑		Steps	 _{NFE↓}
		Distance↓	PSNR↑	SSIM↑	Whole	Edited	~~~	
-Add Q	[1,2,2,]	0.0590	17.72	0.7340	27.01	23.84	8	18
$\operatorname{Add} olimits \mathring{Q} + \operatorname{Add} olimits K$	[1,2,2,]	0.0537	18.35	0.7520	26.82	23.60	8	18
$\operatorname{Add} Q + \operatorname{Add} K + \operatorname{Add} V$	[1,2,2,]	0.0416	19.63	0.7805	25.95	22.92	8	18
$\overline{\operatorname{Add} Q}$	[1,1,2,]	0.0530	18.78	0.7580	26.99	23.85	15	32
$\operatorname{Add} Q + \operatorname{Add} K$	[1,1,2,]	0.0486	19.30	0.7721	26.68	23.59	15	32
Replace V	[2,2,]	0.0271	23.03	0.8249	26.02	22.81	8	18
$\operatorname{Add} Q$	[2,2,]	0.0710	16.49	0.7077	27.33	24.09	8	18
$\operatorname{Add} \check{K}$	[2,2,]	0.0738	16.41	0.7066	27.25	24.01	8	18