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Abstract

Aspect-based sentiment analysis (ABSA) aims001
to predict the sentiment polarity of a specific002
aspect within a given sentence. Most exist-003
ing methods predominantly leverage seman-004
tic or syntactic information based on attention005
scores, which are susceptible to interference006
caused by irrelevant contexts and often lack007
sentiment knowledge at a data-specific level. In008
this paper, we propose a novel Dynamic Multi-009
granularity Attribution Network (DMAN) from010
the perspective of attribution. Initially, we lever-011
age Integrated Gradients to dynamically ex-012
tract importance scores for each token, which013
contain underlying reasoning knowledge for014
sentiment analysis. Subsequently, we aggre-015
gate attribution representations from multiple016
semantic granularities in natural language, en-017
hancing profound understanding of the seman-018
tics. Finally, we integrate attribution scores019
with syntactic information to more accurately020
capture the relationships between aspects and021
their relevant contexts during the sentence un-022
derstanding process. Extensive experiments on023
five benchmark datasets demonstrate the effec-024
tiveness of our proposed method.025

1 Introduction026

Aspect-based sentiment analysis (ABSA) is a fine-027

grained classification task that focuses on identify-028

ing the sentiment polarity of specific aspects within029

a sentence (Jiang et al., 2011; Pontiki et al., 2014).030

For instance, given a sentence “The street is very031

crowded, but the atmosphere is pleasant”, the task032

aims to predict sentiment polarity associated with033

two aspects “street” and “atmosphere”, which are034

negative and positive respectively.035

The core challenge of ABSA is to model the036

connection between aspect and its contexts, espe-037

cially those parts that express opinions and ideas.038

To this end, various studies (Tang et al., 2016; Fan039

et al., 2018; Chen et al., 2020; Zhang et al., 2021)040

concentrate on attention mechanisms to model the041
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Figure 1: (a) Attention mechanism assigns high scores
to words unrelated to aspect service. (b) We construct
attention weights on irrelated words and overlook opin-
ion words, but still yield right prediction.

relationships between aspect and its context. In 042

addition, many methods (Zhang et al., 2019; Tang 043

et al., 2020; Li et al., 2021; Zhang et al., 2022b) 044

leverage syntactic information derived from depen- 045

dency trees to better capture the interactions be- 046

tween aspects and opinion expressions. Recently, 047

methods incorporating Pre-trained Language Mod- 048

els (Zhang et al., 2022a; Yin and Zhong, 2024; Sun 049

et al., 2024) have demonstrated impressive results 050

in ABSA. Despite these significant advancements, 051

critical challenges persist when directly applying 052

attention mechanisms or syntactic information to 053

this fine-grained task. 054

Specifically, attention-based methods may inap- 055

propriately assign high attention scores to words 056

that are irrelevant to the aspect. Li et al. (2021); 057

Zhang et al. (2022b); Ma et al. (2023) propose 058

that’s because attention mechanisms are vulnera- 059

ble to noise within sentences. As shown in Figure 060

1 (a) , the aspect “service” receives disproportion- 061

ately high attention scores for the unrelated opinion 062

words “pretty” and “good”. Furthermore, some re- 063

search that focuses on interpretability of attention 064

mechanisms (Serrano and Smith, 2019; Jain and 065

Wallace, 2019; Bibal et al., 2022) have indicated 066

that attention scores do not always correlate with 067

significance. Serrano and Smith (2019) have dicov- 068

ered that removing features deemed important by 069

attention scores leads to less prediction flip than 070

gradient-based strategies. Besides, Jain and Wal- 071

lace (2019) have observed shuffling the attention 072
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weights often does not affect the final prediction,073

which is consistent with our observations shown074

in Figure 1 (b). To sum up, while attention mech-075

anisms have improved the performance of ABSA,076

they often operate as a black box, leaving their077

ability to accurately capture critical opinion words078

remains debatable. This underscores the need for079

methods that efficiently capture keywords for rea-080

soning sentiment polarity. Additionally, although081

leveraging syntactic knowledge has shown to im-082

prove performance, it is important to recognize that083

not all syntactic information is equally beneficial084

to this fine-grained task. Syntactic information ir-085

relevant to the aspect can be redundant and may086

even introduce noise rather than provide useful087

insights. Therefore, it is crucial to focus on extract-088

ing relevant syntactic information, emphasizing the089

identification of important words within sentences.090

To address the aforementioned issues, we intro-091

duce attribution analysis into ABSA and propose092

a Dynamic Multi-granularity Attribution Network093

(DMAN). Attribution information reflects the im-094

portance of different tokens towards the prediction,095

which contain reasoning knowledge of the senti-096

ment at data-driven level. Initially, we employ Inte-097

grated Gradients (IG) (Sundararajan et al., 2017), a098

well-established gradient-based attribution method,099

to compute the importance scores of tokens. In-100

spired by the observation (Brouwer et al., 2021;101

Zhang et al., 2022a) that the significance of essen-102

tial words dynamically changes during semantic103

comprehension, we design multi-step attribution104

analysis to capture the dynamic significance of to-105

kens during the comprehension process. More con-106

cretely, we utilize stacked self-attention blocks in107

conjunction with IG to calculate attribution scores108

for each layer, and adopt a Top-K strategy to filter109

out dimensions with low values, thereby reducing110

the impact of trivial dimensions. Subsequently, we111

incorporate semantic representations at both token112

and span levels to derive multi-granularity attribu-113

tion scores, ensuring more comprehensive semantic114

concepts. Finally, we construct the adjacency ma-115

trices based on the dependency tree, and then use116

obtained attribution scores to initialize different117

adjacency matrices for different layers of GCNs,118

which facilitates the dynamic capture of key syn-119

tactic knowledge during throughout the process of120

sentence comprehension.121

In summary, our contributions could be summa-122

rized as follows:123

• To the best of our knowledge, we are the 124

first to introduce attribution analysis into the 125

ABSA task, which provides data-specific in- 126

sights for reasoning sentiment polarity. 127

• We propose a novel model DMAN that lever- 128

ages IG to dynamically extract attribution 129

scores of tokens from multi-granularity per- 130

spectives. Furthermore, we integrate these 131

scores with syntax to capture essential syntac- 132

tic elements during sentence comprehension. 133

• Extensive experiments on five public bench- 134

mark datasets show the effectiveness and in- 135

terpretability of our proposed DMAN. 136

2 Related Works 137

2.1 Aspect-based Sentiment Analysis 138

The goal of ABSA is to identify the sentiment po- 139

larity of specific aspect in the sentence. In recent 140

years, various approaches have utilized attention 141

mechanisms to investigate the semantic correla- 142

tions between contexts (Tang et al., 2016; Wang 143

et al., 2016; Ma et al., 2017; Fan et al., 2018; Tan 144

et al., 2019; Liang et al., 2019; Pang et al., 2021; 145

Zhang et al., 2021). For instance, Ma et al. (2017) 146

proposed the interactive attention networks to in- 147

teractively learn attentions in the contexts and tar- 148

gets. Fan et al. (2018) exploited a novel multi- 149

grained attention network to capture the interaction 150

between aspect and context. Tan et al. (2019) de- 151

signed dual attention mechanisms to distinguish 152

conflicting opinions. Zhang et al. (2021) proposed 153

a cross-domain feature learning module with an 154

aspect-oriented multi-head attention mechanism. 155

In addition, various research (Zhang et al., 2019; 156

Huang and Carley, 2019; Sun et al., 2019; Wang 157

et al., 2020; Tang et al., 2020; Li et al., 2021; Tian 158

et al., 2021; Zhang et al., 2022b; Yin and Zhong, 159

2024) proposes different methods that leverage syn- 160

tactic knowledge to model relationships between as- 161

pects and contexts. For instance, Wang et al. (2020) 162

proposed a relational graph attention network to 163

encode the new tree structure. Li et al. (2021) de- 164

signed a dual graph convolutional network to model 165

syntax structures and semantic correlations simulta- 166

neously. Tian et al. (2021) exploited an approach to 167

explicitly utilize dependency types with type-aware 168

graph convolutional networks, and Yin and Zhong 169

(2024) proposed a double-view graph Transformer 170

to alleviate the over-smoothing problem. 171
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The core idea underlying these methods is to172

comprehend the semantics and syntax of sentences,173

thereby directing greater attention to significant174

words. Distinct from these approaches, our study175

pioneers the investigation of ABSA from an attribu-176

tion perspective, unveiling the reasoning processes177

behind sentiment polarity at a data-driven level.178

2.2 Attribution Analysis179

The purpose of attribution analysis (Baehrens et al.,180

2010; Ancona et al., 2018; Brunner et al., 2020)181

is to assign importance scores the intermediate or182

input elements of a network, which matches well183

with the objectives of sentiment analysis. There are184

various types of attribution methods. Occlusion-185

based techniques (Zeiler and Fergus, 2014) deter-186

mine the significance of each feature by occluding187

it and comparing the resulting output to the original.188

Gradient-based methods (Sundararajan et al., 2017;189

Ding et al., 2019; Serrano and Smith, 2019; Brun-190

ner et al., 2020; Bibal et al., 2022) use the gradient191

information of features to approximate their im-192

portance. Compared to occlusion-based methods,193

gradient-based methods are generally faster as they194

require only a single forward pass. Perturbation-195

based methods (Guan et al., 2019; De Cao et al.,196

2020; Ivanovs et al., 2021) add noise to features to197

evaluate their significance for model predictions.198

Attribution analysis has not been extensively ex-199

plored in aspect-based sentiment analysis. In our200

work, we take the initiative to investigate whether201

attribution analysis can enhance ABSA perfor-202

mance and provide more reliable interpretations.203

3 Methods204

In this section, we describe our proposed DMAN205

in detail. Specifically, we begin with the problem206

definition, followed by encoder module and the207

overall architecture of DMAN.208

Problem Definition. Given a sentence-aspect pair209

(s, a), where s = {w1, w2, ..., wn} is a sentence210

with n words, and a = {a1, a2, ..., am} is the given211

aspect. ABSA aims to predict sentiment polarity212

of aspect a in the sentence s.213

Encoder. We utilize BERT as sentence encoder to214

extract aspect-specific context representations. We215

construct input as “[CLS] s [SEP ] a [SEP ]” to216

map each word into a real-value vector, getting sen-217

tence embedding E0 = {e1, e2, ..., en} and aspect218

embedding Ea = {ea1 , ea2 , ..., eam}.219

Overall architecture. As illustrated in Figure 2,220

our proposed Dynamic Multi-granularity Attribu- 221

tion Network comprises three primary components: 222

(1) Multi-step Attribution Extraction, (2) Multi- 223

granularity Attribution, and (3) Dynamic Syntax 224

Concentration. The technical details will be elabo- 225

rated on as follows. 226

3.1 Multi-step Attribution Extraction 227

Integrated Gradients. (Sundararajan et al., 2017) 228

proposed IG for attributing the prediction of a deep 229

network to its input or intermediate features. For- 230

mally, suppose a function F to represent a network, 231

and let x be the input feature and x′ be the baseline 232

feature, IG considers the straight line path from 233

x′ to x and aggregate the gradients at all points 234

along the path. The Integrated Gradients of i-th 235

dimension is defined as IGi(F, x) as follows: 236

IGi(F, x) = (xi−x′
i)×

∫ 1

α=0

∂F (x′ + α× (x− x′
i))

∂xi
dα.

(1) 237

Attribution Extraction. In this study, we design 238

a stacked self-attention architecture to facilitate se- 239

mantic comprehension and dynamically caputre 240

attribution knowledge at each layer. Unlike tradi- 241

tional methods that utilize attention mechanisms 242

for final classification, we treat the attention layers 243

as black boxes for semantic understanding, concen- 244

trating on the gradient variations of tokens. Specifi- 245

cally, given sentence embedding H0 from encoder, 246

we process it through multiple blocks consisting of 247

Self-Attention and Feed-Forward Networks (FFN), 248

which can be formulated as follows: 249

E′
l = softmax

(
(El−1W

q
l )(El−1W

k
l )

T

√
dk

)
El−1W

v
l , (2) 250

251
El = max(0, E′

lW
1
l + b1l )W

2
l + b2l , (3) 252

where W k
l , W q

l , W v
l , W 1

l , W 2
l are learnable model 253

parameters of l-th layer, El ∈ {el1, el2, ..., eln} is 254

the product of l-th layer while El−1 is the output 255

from the preceding layer. 256

Then we map the final features from the 257

stacked blocks into a probability distribution Pc = 258

[P1, ..., PC ] ∈ RC , where c presents the sentiment 259

polarity labels. In our approach, we denote the 260

function E → P c as F c, and we conduct exhaus- 261

tive attribution analysis for each dimension of input 262

features and obtain attribution scores of i-th token, 263

which could be denoted as IGi: 264
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Sentence: The roast chicken is so delicious.
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Figure 2: The overall architecture of our proposed DMAN, which consists of three modules arranged from left to
right: Multi-step Attribution Extraction, Multi-granularity Attribution, and Dynamic Syntax Concentration.

IGi(F
c, E) =

m∑
j=1

IGij(F
c, E)

(4)

265

=

m∑
j=1

(eij − e′ij)×
∫ 1

α=0

∂F c(e′ij + α× (eij − e′ij))

∂eij
dα.266

During the process, we employ an efficient ap-267

proximation technique for estimating integral cal-268

culations, which significantly enhanced computa-269

tional efficiency:270

IGij(F
c, E) ≈

T∑
t=1

< ∇eiF
c(e′ij +∆ek), (eij − e′ij) >271

=
(eij − e′ij)

T
×

T∑
t=1

∂F c(e′ij +
t
T
× (eij − e′ij))

∂eij
. (5)272

In our implementation, we use zero vectors as273

baseline features to reflect the significance of each274

token. Symbols are excluded from consideration,275

and absolute values are used to aggregate attri-276

butions across each dimension, thereby deriving277

token-level attribution values. Recognizing that not278

all dimensions hold equal significance, selecting279

the crucial dimensions becomes essential. During280

the computational process, we observed that cer-281

tain dimensions consistently maintain low values,282

failing to effectively differentiate between various283

tokens or stages. Therefore, we employ the Top-K284

algorithm to filter out dimensions with low attribu-285

tion influence, which is denoted as:286

IG′
i(F

c, E) = | Top−K(IGi(F
c, E)) |. (6)287

In our study, attribution analysis is conducted 288

on each self-attention block to thoroughly eluci- 289

date the dynamic semantic comprehension. The 290

attribution value of the k-th layer is denoted as Vk: 291

VK = ∥ni=1 IG′
i(F

c, Ek), (7) 292

where ∥ represents the concatenation operation and 293

Vk ∈ {vk1 , vk2 , ..., vkn}. 294

3.2 Multi-granularity Attribution 295

Most existing ABSA approaches focus on single 296

granularity representation, overlooking the fact 297

that texts are comprehensive representations con- 298

structed across multiple granularity levels (i.e. to- 299

ken, span, sentence). To the end, our method ex- 300

tracts attribution from both token and span gran- 301

ularities, providing hierarchical information that 302

aids in a deeper understanding of the underlying 303

motivations behind sentiment. 304

The first granularity is the token level. Given the 305

vector Vk, vki represents the attribution value of the 306

i-th token, offering a fine-grained level of represen- 307

tation. he second granularity is the span, which may 308

consist of consecutive words. To ensure semantic 309

coherence, we extract phrases that convey complete 310

meaning as spans. For instance, in the sentence 311

“The Mona Lisa is a famous painting housed in the 312

Louvre Museum”, ”Mona Lisa” and “Louvre Mu- 313

seum” are meaningful spans. We utilize spaCy1 314

toolkit to construct spans sspan = [s1, s2, ..., sn], 315

where si = [wj , ..., wj+qi−1] denotes i-th token 316

1We use spaCy toolkit: https://spacy.io/
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belongs to a span a span starting at the j-th token317

and containing qi tokens. Subsequently, for tokens318

belonging to a specific span, we employ mean pool-319

ing to obtain span-level attribution values:320

v̂ki = (
∑j+qi−1

j
vkj ) / qi, (8)321

where v̂ki is span-granularity attribution of i-th to-322

ken, thus we obtain V̂k = {v̂k1 , v̂k2 , ..., v̂kn}. Then,323

we design a simple linear operation to integrate324

token-level and span-level attribution values:325

V k = (αVk + (1− α)V̂k)/τk, (9)326

where V K is integrated multi-granularity attribu-327

tion score of k-th layer, α and τk is the coefficient328

hyperparameter of the k-th layer.329

3.3 Dynamic Syntax Concentration330

Leveraging syntactic information has significantly331

improved the performance of ABSA (Tang et al.,332

2020; Li et al., 2021; Zhang et al., 2022b). How-333

ever, we propose that syntactic information within334

a sentence does not always hold equal importance.335

As semantic understanding is a dynamic process,336

the the critical syntactic elements also change dy-337

namically in response to this process.338

In our approach, we adjust dependency rela-339

tionships based on multi-step attribution scores to340

achieve dynamic syntax concentration. Specifi-341

cally, we construct adjacent matrix A according to342

the dependency tree derived from spaCy:343

Aij =

{
1 if link(i, j) = True or i = j,
0 otherwise,

(10)344

where link(i, j) represents whether i-th and j-th345

token have a dependency relationship. To model346

the dynamic changes of key syntactic information347

during sentence comprehension, we utilize attribu-348

tion V k to derive the dynamic adjacency matrix349

Ak. Then, we employ GCNs to capture syntactic350

knowledge, which can be formulated as:351

Ak = V k ⊗A, (11)352
353

hki = ReLU(

n∑
j=1

Ak
ijW

khk−1
j + bk ), (12)354

where hki is the i-th token representation of k-th355

GCN, W k and bk are learnable parameters. The356

output of the k-th layer is Hk = {hk0, hk1, ..., hkn},357

and initial input H0 = E0. With these above calcu-358

lations, we finally obtain dynamic syntax-enhanced359

representations for subsequent classification.360

3.4 Model Training 361

Attribution Analysis. During the process of multi- 362

step attribution extraction, we map the final rep- 363

resentation into a probability distribution P , and 364

apply the following function to extract attribution: 365

LA = −
M∑
i=1

C∑
c=1

yci log (p
c
i ) , (13) 366

where yci is the ground truth label, C is the number 367

of labels, M is the number of training samples. 368

Sentiment Classification. After obtaining dy- 369

namic syntax-enhanced representation Hk, we con- 370

catenate it with original sentence representation 371

E0 to get the final sentiment classification features. 372

Then we map it to the probabilities over sentiment 373

polarities over a softmax layer: 374

z = [Hk, E0], (14) 375
376

ŷ = softmax(Wzz + bz), (15) 377

where Wz and bz are trainable parameters.Finally, 378

we use cross-entropy loss as our objective function: 379

L = −
M∑
i=1

C∑
c=1

yci log (ŷ
c
i ) . (16) 380

Datasets Positive Neutral Negative

Train Test Train Test Train Test

Lap14 994 341 464 169 870 128
Rest14 2164 728 637 196 807 196
Rest15 912 326 36 34 256 182
Rest16 1240 469 69 30 439 117
MAMS 3380 400 5042 607 2764 329

Table 1: The statistics of five benchmark datasets.
381

4 Experiments 382

4.1 Datasets 383

We evaluate our DMAN on five public standard 384

datasets, including Lap14 and Rest14 from (Pontiki 385

et al., 2014), Rest15 from (Pontiki et al., 2015), 386

Rest16 from (Pontiki et al., 2016), and MAMs from 387

(Jiang et al., 2019). We adopt the official data splits, 388

which strictly keep the same as previous papers, 389

and we use the accuracy and macro-averaged F1 390

value as the main evaluation metrics. Each sample 391

in these datasets consists of a sentence, an aspect, 392

and the sentiment polarity. The statistics of the 393

datasets are presented in Table 1. 394
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Models Lap14 Rest14 Rest15 Rest16 MAMs

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

BERT-SPC (Song et al., 2019) 78.99 75.03 84.46 76.98 83.40 65.28 89.54 70.47 80.11 80.34
R-GAT (Wang et al., 2020) 78.21 74.07 86.60 81.35 81.80 68.21 89.51 75.81 82.93 82.75
DGEDT (Tang et al., 2020) 79.80 75.60 86.30 80.00 84.00 71.00 91.90 79.00 - -
DualGCN (Li et al., 2021) 81.80 78.10 87.13 81.16 84.69 72.97 89.87 77.26 83.83 83.47
T-GCN (Tian et al., 2021) 80.88 77.03 86.16 79.95 85.26 71.69 92.32 77.29 83.38 82.77
SSEGCN (Zhang et al., 2022b) 81.01 77.96 87.31 81.09 - - - - - -
MGFN (Tang et al., 2022) 81.83 78.26 87.31 82.37 84.40 72.66 92.04 81.57 - -
TF-BERT (Zhang et al., 2023) 81.80 78.46 87.09 81.15 - - - - - -
RSC (Wang et al., 2023) 81.56 75.92 87.45 82.41 83.98 70.86 91.61 77.44 84.68 84.23
TextGT (Yin and Zhong, 2024) 81.33 78.71 87.31 82.27 - - - - - -
Our DMAN 82.29 78.91 87.59 82.47 86.30 72.97 92.85 77.37 85.55 85.01

Table 2: Experiment results (%) comparison on five publicly benchmark datasets. The best scores are bolded, and
the second best ones are underlined. All models are based on BERT.

4.2 Implementation Details395

In the implementation, we build our framework396

based on bert-based-uncased with max length as397

90. We employ the AdamW optimizer to optimize398

parameters. The embedding size is set to 768. The399

batch size is manually tested in [16, 32] and the400

learning rate is carefully tuned amongst [1e-5, 2e-5,401

4e-5]. The dropout rate is set to 0.1. The number402

of Multi-step is finally set to 2 and the K value of403

Top-K is tested between 10 and 300. Correspond-404

ingly, the number of GCN layers is set to 2. The405

hyper-parameter α is set to 0.6, and τk is adjusted406

amongst [0.04, 0.07] for different layers. We con-407

duct experiments on a single NVIDIA 4090 GPU.408

4.3 Baselines409

To validate the effectiveness of our approach, we410

compared it with advanced baseline models. To411

ensure a fair comparison, all selected baselines are412

based on the bert-based-uncased architecture.413

BERT-SPC (Song et al., 2019) feed the contexts414

and aspects into the BERT model for the sentence415

pair classification task.416

RGAT (Wang et al., 2020) generate a unified417

aspect-oriented dependency tree proposes a rela-418

tional graph attention network to encode the tree.419

DGEDT (Tang et al., 2020) propose a dependency420

graph dual-transformer network by considering flat421

representations and graph-based representations.422

DualGCN (Li et al., 2021) propose a dual graph423

convolutional networks model that considers syn-424

tax structures and semantic correlations.425

T-GCN (Tian et al., 2021) propose an approach to426

explicitly utilize dependency types for ABSA with427

type-aware graph convolutional networks.428

SSEGCN (Zhang et al., 2022b) design an aspect- 429

aware attention mechanism to enhance the node 430

representations with GCN. 431

MGFN (Tang et al., 2022) leverage the richer syn- 432

tax dependency relation label information and af- 433

fective semantic information of words. 434

TF-BERT (Zhang et al., 2023) propose a novel 435

table filling based model, which considers the con- 436

sistency of multi-word opinion expressions. 437

RSC (Wang et al., 2023) propose two straightfor- 438

ward effective methods to leverage the explanation 439

for preventing the learning of spurious correlations. 440

TextGT (Yin and Zhong, 2024) design a novel 441

double-view graph Transformer on text and a new 442

algorithm to implement edge features in graphs. 443

4.4 Main Results 444

The experiment results of different methods on 445

five benchmark datasets are presented in Table 446

2. Our DMAN consistently outperforms all com- 447

pared baselines on the Lap14, Rest14, Rest15, and 448

MAMs datasets, and achieves overall better results 449

than the baselines on the Rest16 dataset, demon- 450

strating the effectiveness of our method. Compared 451

to methods utilizing attention scores and depen- 452

dency graphs (e.g., RGAT, DualGCN, SSEGCN), 453

our attribution-based DMAN effectively reduces 454

noise interference from irrelevant opinion words 455

that could be introduced through attention scores. 456

Compared to more methods that leverage syntac- 457

tic information in different ways (e.g. T-GCN, 458

MGFN), our DMAN still achieves better perfor- 459

mance, validating that integrating attribution scores 460

to dynamically capture keywords facilitates a more 461

effective use of syntactic information. Furthermore, 462
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Models Lap14 Rest14 Rest15 Rest16 MAMs

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Our DMAN 82.29 78.91 87.59 82.47 86.30 72.97 92.85 77.37 85.55 85.01
w/o multi-attribution 80.88 76.37 86.34 79.95 84.63 68.84 91.87 75.74 83.83 83.04
w/o token-level 81.66 77.83 87.05 80.35 85.37 71.00 92.04 75.90 84.73 84.08
w/o span-level 81.82 78.06 87.23 81.76 85.74 71.68 92.36 76.89 85.03 84.36
w/o syntax information 81.03 77.39 86.61 81.09 85.19 70.86 91.71 75.17 84.13 83.39

Table 3: Ablation study results (%) of our DMAN on five benchmark datasets.

As MAMs is a challenging dataset that is large-463

scale and has multi-aspect within sentences, our464

method still has significant improvements. This465

further demonstrates DMAN’s capability to effec-466

tively focus on aspect-related opinion words and467

capture attribution knowledge towards sentiment.468

4.5 Ablation Study469

To further investigate the effectiveness of each com-470

ponent in our model, we conducted ablation studies471

on the five datasets. The results are shown in Table472

3. In the model without multi-granularity, the per-473

formance of DMAN suffers from a sharp degrada-474

tion, with accuracy decreases of 1.41%, 1.48% and475

1.72% on Lap14, Rest15 and MAMs datasets, re-476

spectively. These results demonstrate the effective-477

ness of our proposed multi-step attribution frame-478

work, which can accurately identify the critical479

words for sentiment expression and dynamically480

leverage the effective syntactic structures. In the481

model w/o syntax information, we do not initial ad-482

jacent matrix based on dependency tree. The results483

show that syntactic information offers crucial clues484

for correlations between words, effectively miti-485

gating potential attribution errors and significantly486

enhancing classification precision. Moreover, we487

conduct experiments only using single-granularity488

attribution. The performance decreases demon-489

strate that the integration of multi-granularity rep-490

resentations significantly enhances the precise com-491

prehension of semantics.492

4.6 Further Analysis493

Effect of Top-K. To mitigate the interference of494

noisy dimensions, we have employed the Top-K495

strategy on the attribution scores to filter out di-496

mensions with relatively low significance. In this497

section, we explore the impact of varying K val-498

ues. Specifically, we conducted experiments on499

the Rest14 and MAMs datasets, testing a range of500

K values from 100 to 300. The results, illustrated501
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Figure 3: Accuracy (%) and macro-F1 value (%) on
Rest14 dataset with different K values in Top-K strategy.
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Figure 4: Accuracy (%) and macro-F1 value (%) on
MAMs dataset with different K values in Top-K strat-
egy.

in Figure 3 and Figure 4 show that accuracy and 502

macro-F1 scores on both datasets initially improve 503

as K increases, but then plateau or slightly decrease. 504

We conjecture that low K values fail to adequately 505

capture attribution knowledge, while high K values 506

may introduce noise. Thus, selecting an appropri- 507

ate K value is crucial for optimal performance. 508

Effect of Attribution Steps. To investigate how 509

the number of attribution steps influences perfor- 510

mance, we evaluated our DMAN with varying steps 511

on the Rest14, Lap14, and MAMs datasets. No- 512

tably, to maintain compatibility with our frame- 513

work, the number of GCN layers must increase 514

correspondingly as the number of attribution steps 515

increases. As depicted in Figure 5, our model 516

achieves optimal performance with 2 steps, while 517

performance significantly declines with further in- 518
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Figure 5: Accuracy (%) of DMAN on Rest14, Lap14
and MAMs datasets with different attribution steps.

The price is reasonable
although

the service
is poor
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1-step
2-step
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(a) visualization for price.

The price is reasonable
although

the service
is poor

score
1-step
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0.25 0.2 0.29 0.38 0.15 0.31 0.2 0.26 0.33

0.16 0.37 0.21 0.68 0.23 0.12 0.19 0.19 0.25

0.14 0.44 0.23 0.85 0.17 0.12 0.22 0.18 0.18

score
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0.1 0.16 0.18 0.31 0.09 0.12 0.19 0.12 0.37
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0.0014 0.07 0.13 0.1 0.3 0.1 0.42 0.1 0.73
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(b) visualization for service.

Figure 6: Visualization of attention scores and multi-
step attribution scores on two aspects, price and service.
score denotes attention scores, 1-step and 2-step denote
attribution scores of 1st and 2nd layers.

creases in the number of layers. We attribute519

this phenomenon to two primary factors. Firstly,520

when the number of GCN layers becomes exces-521

sive, node representations face the issue of over-522

smoothing, leading to vanishing gradients and in-523

formation redundancy. Secondly, due to the rela-524

tively small size of ABSA datasets, the network525

is prone to overfitting as the model complexity in-526

creases, which results in a situation where gradients527

convey less effective attribution knowledge.528

4.7 Visualization on Attribution529

To demonstrate the effectiveness of attribution anal-530

ysis in our approach, we selected samples with mul-531

tiple aspects and visualized the attention scores and532

multi-step attribution scores in Figure 6 (a) and533

(b). Specifically, given the sentence “The price534

is reasonable although the service is poor” with535

two aspects, “price” and “service”, attention scores536

are shown to be susceptible to noise within the537

sentence, often assigning relatively high scores538

to irrelevant words (e.g., “is poor” for “price”).539

In contrast, our proposed DMAN more accurately540

identifies aspect-related opinion words (e.g., “rea-541
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Figure 7: Accuracy (%) on Lap14 and MAMs datasets
with different α values for granularity fusion.

sonable” for “price”, “poor” for “service”). Fur- 542

thermore, the progression of attribution scores from 543

the first to the second step illustrates the process 544

of semantic understanding, clearly indicating the 545

effectiveness and interpretability of our model in 546

dynamically capturing aspect-related contexts. 547

4.8 Impact of α in Multi-granularity 548

In the Multi-granularity Attribution Module, we 549

introduce α to balance token granularity and span 550

granularity. To investigate their impact on model 551

performance, we conducted experiments with dif- 552

ferent values of α on Lap14 and MAMs datasets. 553

As illustrated in Figure 7, the performance im- 554

proves with increasing α value and reaches a peak, 555

and then declines. This suggests that effectively 556

integrating multi-granularity representations can 557

provide a more comprehensive understanding of 558

sentence semantics. Specifically, considering that 559

ABSA is a fine-grained classification task, we do 560

not employ sentence-level representations. 561

5 Conclusion 562

In this paper, we propose a novel Dynamic Multi- 563

granualarity Attribution Network (DMAN) for the 564

ABSA task, which is different from traditional mod- 565

els that rely on attention scores. Specifically, we 566

first leverage Integrated Gradients to extract multi- 567

step attribution during semantic comprehension, 568

and Top-K strategy is adopted to filter out unimpor- 569

tant dimensions. We then consider multiple granu- 570

larities of semantic concepts, fusing attribution rep- 571

resentations from both token-level and span-level. 572

Finally, we integrate these attribution values with 573

dependency trees to dynamically capture relevant 574

syntactic knowledge, thereby enhancing semantic 575

understanding for sentiment classification. Exten- 576

sive experiments on five public datasets demon- 577

strate the effectiveness of our proposed DMAN. 578
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Limitations579

One of the primary limitations of our approach580

is that our method does not always provide accu-581

rate attributions when addressing sentences with582

overly complex content and structure. Actually,583

this is a common limitation among most ABSA584

methods. Additionally, Our framework comprises585

two components: attribution analysis and sentiment586

classification. The complexity of the model struc-587

ture results in increased computational costs during588

training process.589

Ethics Statement590

Our work will not cause ethical issues, and the591

datasets we use are publicly available. Addition-592

ally, we do not involve the collection or use of any593

private information.594
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