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Abstract

Aspect-based sentiment analysis (ABSA) aims
to predict the sentiment polarity of a specific
aspect within a given sentence. Most exist-
ing methods predominantly leverage seman-
tic or syntactic information based on attention
scores, which are susceptible to interference
caused by irrelevant contexts and often lack
sentiment knowledge at a data-specific level. In
this paper, we propose a novel Dynamic Multi-
granularity Attribution Network (DMAN) from
the perspective of attribution. Initially, we lever-
age Integrated Gradients to dynamically ex-
tract importance scores for each token, which
contain underlying reasoning knowledge for
sentiment analysis. Subsequently, we aggre-
gate attribution representations from multiple
semantic granularities in natural language, en-
hancing profound understanding of the seman-
tics. Finally, we integrate attribution scores
with syntactic information to more accurately
capture the relationships between aspects and
their relevant contexts during the sentence un-
derstanding process. Extensive experiments on
five benchmark datasets demonstrate the effec-
tiveness of our proposed method.

1 Introduction

Aspect-based sentiment analysis (ABSA) is a fine-
grained classification task that focuses on identify-
ing the sentiment polarity of specific aspects within
a sentence (Jiang et al., 2011; Pontiki et al., 2014).
For instance, given a sentence “The street is very
crowded, but the atmosphere is pleasant”, the task
aims to predict sentiment polarity associated with
two aspects “street” and “atmosphere”, which are
negative and positive respectively.

The core challenge of ABSA is to model the
connection between aspect and its contexts, espe-
cially those parts that express opinions and ideas.
To this end, various studies (Tang et al., 2016; Fan
et al., 2018; Chen et al., 2020; Zhang et al., 2021)
concentrate on attention mechanisms to model the
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Figure 1: (a) Attention mechanism assigns high scores
to words unrelated to aspect service. (b) We construct
attention weights on irrelated words and overlook opin-
ion words, but still yield right prediction.

relationships between aspect and its context. In
addition, many methods (Zhang et al., 2019; Tang
et al., 2020; Li et al., 2021; Zhang et al., 2022b)
leverage syntactic information derived from depen-
dency trees to better capture the interactions be-
tween aspects and opinion expressions. Recently,
methods incorporating Pre-trained Language Mod-
els (Zhang et al., 2022a; Yin and Zhong, 2024; Sun
et al., 2024) have demonstrated impressive results
in ABSA. Despite these significant advancements,
critical challenges persist when directly applying
attention mechanisms or syntactic information to
this fine-grained task.

Specifically, attention-based methods may inap-
propriately assign high attention scores to words
that are irrelevant to the aspect. Li et al. (2021);
Zhang et al. (2022b); Ma et al. (2023) propose
that’s because attention mechanisms are vulnera-
ble to noise within sentences. As shown in Figure
1 (a), the aspect “service” receives disproportion-
ately high attention scores for the unrelated opinion
words “pretty” and “good”. Furthermore, some re-
search that focuses on interpretability of attention
mechanisms (Serrano and Smith, 2019; Jain and
Wallace, 2019; Bibal et al., 2022) have indicated
that attention scores do not always correlate with
significance. Serrano and Smith (2019) have dicov-
ered that removing features deemed important by
attention scores leads to less prediction flip than
gradient-based strategies. Besides, Jain and Wal-
lace (2019) have observed shuffling the attention



weights often does not affect the final prediction,
which is consistent with our observations shown
in Figure 1 (b). To sum up, while attention mech-
anisms have improved the performance of ABSA,
they often operate as a black box, leaving their
ability to accurately capture critical opinion words
remains debatable. This underscores the need for
methods that efficiently capture keywords for rea-
soning sentiment polarity. Additionally, although
leveraging syntactic knowledge has shown to im-
prove performance, it is important to recognize that
not all syntactic information is equally beneficial
to this fine-grained task. Syntactic information ir-
relevant to the aspect can be redundant and may
even introduce noise rather than provide useful
insights. Therefore, it is crucial to focus on extract-
ing relevant syntactic information, emphasizing the
identification of important words within sentences.

To address the aforementioned issues, we intro-
duce attribution analysis into ABSA and propose
a Dynamic Multi-granularity Attribution Network
(DMAN). Attribution information reflects the im-
portance of different tokens towards the prediction,
which contain reasoning knowledge of the senti-
ment at data-driven level. Initially, we employ Inte-
grated Gradients (IG) (Sundararajan et al., 2017), a
well-established gradient-based attribution method,
to compute the importance scores of tokens. In-
spired by the observation (Brouwer et al., 2021;
Zhang et al., 2022a) that the significance of essen-
tial words dynamically changes during semantic
comprehension, we design multi-step attribution
analysis to capture the dynamic significance of to-
kens during the comprehension process. More con-
cretely, we utilize stacked self-attention blocks in
conjunction with IG to calculate attribution scores
for each layer, and adopt a Top-K strategy to filter
out dimensions with low values, thereby reducing
the impact of trivial dimensions. Subsequently, we
incorporate semantic representations at both token
and span levels to derive multi-granularity attribu-
tion scores, ensuring more comprehensive semantic
concepts. Finally, we construct the adjacency ma-
trices based on the dependency tree, and then use
obtained attribution scores to initialize different
adjacency matrices for different layers of GCN:ss,
which facilitates the dynamic capture of key syn-
tactic knowledge during throughout the process of
sentence comprehension.

In summary, our contributions could be summa-
rized as follows:

* To the best of our knowledge, we are the
first to introduce attribution analysis into the
ABSA task, which provides data-specific in-
sights for reasoning sentiment polarity.

* We propose a novel model DMAN that lever-
ages IG to dynamically extract attribution
scores of tokens from multi-granularity per-
spectives. Furthermore, we integrate these
scores with syntax to capture essential syntac-
tic elements during sentence comprehension.

» Extensive experiments on five public bench-
mark datasets show the effectiveness and in-
terpretability of our proposed DMAN.

2 Related Works

2.1 Aspect-based Sentiment Analysis

The goal of ABSA is to identify the sentiment po-
larity of specific aspect in the sentence. In recent
years, various approaches have utilized attention
mechanisms to investigate the semantic correla-
tions between contexts (Tang et al., 2016; Wang
etal., 2016; Ma et al., 2017; Fan et al., 2018; Tan
et al., 2019; Liang et al., 2019; Pang et al., 2021;
Zhang et al., 2021). For instance, Ma et al. (2017)
proposed the interactive attention networks to in-
teractively learn attentions in the contexts and tar-
gets. Fan et al. (2018) exploited a novel multi-
grained attention network to capture the interaction
between aspect and context. Tan et al. (2019) de-
signed dual attention mechanisms to distinguish
conflicting opinions. Zhang et al. (2021) proposed
a cross-domain feature learning module with an
aspect-oriented multi-head attention mechanism.

In addition, various research (Zhang et al., 2019;
Huang and Carley, 2019; Sun et al., 2019; Wang
et al., 2020; Tang et al., 2020; Li et al., 2021; Tian
et al., 2021; Zhang et al., 2022b; Yin and Zhong,
2024) proposes different methods that leverage syn-
tactic knowledge to model relationships between as-
pects and contexts. For instance, Wang et al. (2020)
proposed a relational graph attention network to
encode the new tree structure. Li et al. (2021) de-
signed a dual graph convolutional network to model
syntax structures and semantic correlations simulta-
neously. Tian et al. (2021) exploited an approach to
explicitly utilize dependency types with type-aware
graph convolutional networks, and Yin and Zhong
(2024) proposed a double-view graph Transformer
to alleviate the over-smoothing problem.



The core idea underlying these methods is to
comprehend the semantics and syntax of sentences,
thereby directing greater attention to significant
words. Distinct from these approaches, our study
pioneers the investigation of ABSA from an attribu-
tion perspective, unveiling the reasoning processes
behind sentiment polarity at a data-driven level.

2.2 Attribution Analysis

The purpose of attribution analysis (Baehrens et al.,
2010; Ancona et al., 2018; Brunner et al., 2020)
is to assign importance scores the intermediate or
input elements of a network, which matches well
with the objectives of sentiment analysis. There are
various types of attribution methods. Occlusion-
based techniques (Zeiler and Fergus, 2014) deter-
mine the significance of each feature by occluding
it and comparing the resulting output to the original.
Gradient-based methods (Sundararajan et al., 2017,
Ding et al., 2019; Serrano and Smith, 2019; Brun-
ner et al., 2020; Bibal et al., 2022) use the gradient
information of features to approximate their im-
portance. Compared to occlusion-based methods,
gradient-based methods are generally faster as they
require only a single forward pass. Perturbation-
based methods (Guan et al., 2019; De Cao et al.,
2020; Ivanovs et al., 2021) add noise to features to
evaluate their significance for model predictions.
Attribution analysis has not been extensively ex-
plored in aspect-based sentiment analysis. In our
work, we take the initiative to investigate whether
attribution analysis can enhance ABSA perfor-
mance and provide more reliable interpretations.

3 Methods

In this section, we describe our proposed DMAN
in detail. Specifically, we begin with the problem
definition, followed by encoder module and the
overall architecture of DMAN.

Problem Definition. Given a sentence-aspect pair
(s, a), where s = {wy,wy,...,w,} is a sentence
with n words, and a = {ay, ag, ..., a,, } is the given
aspect. ABSA aims to predict sentiment polarity
of aspect a in the sentence s.

Encoder. We utilize BERT as sentence encoder to
extract aspect-specific context representations. We
construct input as “[CLS] s [SEP] a [SEP]” to
map each word into a real-value vector, getting sen-
tence embedding Fy = {ey, e, ..., €, } and aspect
embedding F, = {€q,, €y, --+s €a,, }-

Overall architecture. As illustrated in Figure 2,

our proposed Dynamic Multi-granularity Attribu-
tion Network comprises three primary components:
(1) Multi-step Attribution Extraction, (2) Multi-
granularity Attribution, and (3) Dynamic Syntax
Concentration. The technical details will be elabo-
rated on as follows.

3.1 Multi-step Attribution Extraction

Integrated Gradients. (Sundararajan et al., 2017)
proposed IG for attributing the prediction of a deep
network to its input or intermediate features. For-
mally, suppose a function F' to represent a network,
and let  be the input feature and z’ be the baseline
feature, IG considers the straight line path from
2’ to x and aggregate the gradients at all points
along the path. The Integrated Gradients of i-th
dimension is defined as IG;(F, x) as follows:

1 / ’
IGi(F, =) = (z; —x}) ></ OF (@' +ax (z - xi))da.
a=0 812
M

Attribution Extraction. In this study, we design
a stacked self-attention architecture to facilitate se-
mantic comprehension and dynamically caputre
attribution knowledge at each layer. Unlike tradi-
tional methods that utilize attention mechanisms
for final classification, we treat the attention layers
as black boxes for semantic understanding, concen-
trating on the gradient variations of tokens. Specifi-
cally, given sentence embedding H from encoder,
we process it through multiple blocks consisting of
Self-Attention and Feed-Forward Networks (FFN),
which can be formulated as follows:

E W (B W
El,:softmax<( =1 W) (B W) )Ez_1WlU, 2)
Vg

E; = max(0, E{W}! + b} )W{ + b, 3)

where W}, W, Wp, W', W7 are learnable model
parameters of I-th layer, F; € {e!, e, ...,el} is
the product of [-th layer while E;_; is the output
from the preceding layer.

Then we map the final features from the
stacked blocks into a probability distribution P, =
[P1,...,Pc] € RC, where ¢ presents the sentiment
polarity labels. In our approach, we denote the
function £ — P€ as F°, and we conduct exhaus-
tive attribution analysis for each dimension of input
features and obtain attribution scores of i-th token,
which could be denoted as I1G;:
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Figure 2: The overall architecture of our proposed DMAN, which consists of three modules arranged from left to
right: Multi-step Attribution Extraction, Multi-granularity Attribution, and Dynamic Syntax Concentration.
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During the process, we employ an efficient ap-
proximation technique for estimating integral cal-
culations, which significantly enhanced computa-
tional efficiency:

T

IGij (FC, E) ~ Z < Veti(e;j + Aek), (61']' — 623-) >
t=1
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In our implementation, we use zero vectors as
baseline features to reflect the significance of each
token. Symbols are excluded from consideration,
and absolute values are used to aggregate attri-
butions across each dimension, thereby deriving
token-level attribution values. Recognizing that not
all dimensions hold equal significance, selecting
the crucial dimensions becomes essential. During
the computational process, we observed that cer-
tain dimensions consistently maintain low values,
failing to effectively differentiate between various
tokens or stages. Therefore, we employ the Top-K
algorithm to filter out dimensions with low attribu-
tion influence, which is denoted as:

IG{(F°, E) = | Top — K(IG;(F°¢, E)) |. (6)

In our study, attribution analysis is conducted
on each self-attention block to thoroughly eluci-
date the dynamic semantic comprehension. The
attribution value of the k-th layer is denoted as Vj:

Vi = |lizi IGi{(F*°, Ey), 7

where || represents the concatenation operation and
k ,k k
Vie € {vf,v3,...,v }.

3.2 Multi-granularity Attribution

Most existing ABSA approaches focus on single
granularity representation, overlooking the fact
that texts are comprehensive representations con-
structed across multiple granularity levels (i.e. to-
ken, span, sentence). To the end, our method ex-
tracts attribution from both token and span gran-
ularities, providing hierarchical information that
aids in a deeper understanding of the underlying
motivations behind sentiment.

The first granularity is the token level. Given the
vector Vj, vF represents the attribution value of the
1-th token, offering a fine-grained level of represen-
tation. he second granularity is the span, which may
consist of consecutive words. To ensure semantic
coherence, we extract phrases that convey complete
meaning as spans. For instance, in the sentence
“The Mona Lisa is a famous painting housed in the
Louvre Museum”, "Mona Lisa” and “Louvre Mu-
seum” are meaningful spans. We utilize spaCy'
toolkit to construct spans Sspan = [S1, 52, -..; Sn),
where s; = [wj, ..., wjtq,—1] denotes i-th token

'We use spaCy toolkit: https://spacy.io/



belongs to a span a span starting at the j-th token
and containing g; tokens. Subsequently, for tokens
belonging to a specific span, we employ mean pool-
ing to obtain span-level attribution values:

=" e ®)

where 9F is span-granularity attribution of 4-th to-

ken, thus we obtain V;, = {o%, 0, ..., 0%}. Then,

we design a simple linear operation to integrate
token-level and span-level attribution values:

Vi=(aVi + (1 —a)Vi)/, ©)

where V i is integrated multi-granularity attribu-
tion score of k-th layer, o and 7y, is the coefficient
hyperparameter of the k-th layer.

3.3 Dynamic Syntax Concentration

Leveraging syntactic information has significantly
improved the performance of ABSA (Tang et al.,
2020; Li et al., 2021; Zhang et al., 2022b). How-
ever, we propose that syntactic information within
a sentence does not always hold equal importance.
As semantic understanding is a dynamic process,
the the critical syntactic elements also change dy-
namically in response to this process.

In our approach, we adjust dependency rela-
tionships based on multi-step attribution scores to
achieve dynamic syntax concentration. Specifi-
cally, we construct adjacent matrix A according to
the dependency tree derived from spaCy:

A — { 1 iflink(é,5) = True ori = j,
71 0 otherwise,

(10)
where link(i, j) represents whether i-th and j-th
token have a dependency relationship. To model
the dynamic changes of key syntactic information
during sentence comprehension, we utilize attribu-
tion V}, to derive the dynamic adjacency matrix
AF_ Then, we employ GCNs to capture syntactic
knowledge, which can be formulated as:

AP =V, @ A, (11)

hi =ReLU( Y AFWFRE1 4 0% ),

(]

(12)

j=1

where h¥ is the i-th token representation of k-th
GCN, W* and b* are learnable parameters. The
output of the k-th layer is H* = {h&, nY ... hk},
and initial input Hy = Ey. With these above calcu-
lations, we finally obtain dynamic syntax-enhanced
representations for subsequent classification.

3.4 Model Training

Attribution Analysis. During the process of multi-
step attribution extraction, we map the final rep-
resentation into a probability distribution P, and
apply the following function to extract attribution:

M C
La==) ) yilog(p;),

i=1 c=1

(13)

where y{ is the ground truth label, C' is the number
of labels, M is the number of training samples.

Sentiment Classification. After obtaining dy-
namic syntax-enhanced representation H*, we con-
catenate it with original sentence representation
E) to get the final sentiment classification features.
Then we map it to the probabilities over sentiment

polarities over a softmax layer:
2= [H*, E, (14)
g = softmax(W,z +b,), (15)

where W, and b, are trainable parameters.Finally,
we use cross-entropy loss as our objective function:

M C
L==>> ylog ().

(16)
i=1 c=1
Datasets Positive Neutral Negative
Train Test Train Test Train Test

Lapl4 994 341 464 169 870 128
Restl4 2164 728 637 196 807 196
Rest15 912 326 36 34 256 182
Restl6 1240 469 69 30 439 117
MAMS 3380 400 5042 607 2764 329

Table 1: The statistics of five benchmark datasets.

4 Experiments

4.1 Datasets

We evaluate our DMAN on five public standard
datasets, including Lap14 and Rest14 from (Pontiki
et al., 2014), Restl5 from (Pontiki et al., 2015),
Rest16 from (Pontiki et al., 2016), and MAMs from
(Jiang et al., 2019). We adopt the official data splits,
which strictly keep the same as previous papers,
and we use the accuracy and macro-averaged F1
value as the main evaluation metrics. Each sample
in these datasets consists of a sentence, an aspect,
and the sentiment polarity. The statistics of the
datasets are presented in Table 1.



Lap14 Rest14 Rest15 Rest16 MAMs

Models

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
BERT-SPC (Song et al., 2019)  78.99 75.03 84.46 7698 8340 65.28 89.54 7047 80.11 80.34
R-GAT (Wang et al., 2020) 7821 74.07 86.60 81.35 81.80 68.21 89.51 7581 8293 82.75
DGEDT (Tang et al., 2020) 79.80 75.60 86.30 80.00 84.00 71.00 91.90 79.00 - -
DualGCN (Li et al., 2021) 81.80 78.10 87.13 81.16 84.69 72.97 89.87 77.26 83.83 83.47
T-GCN (Tian et al., 2021) 80.88 77.03 86.16 7995 85.26 71.69 9232 77.29 83.38 82.77
SSEGCN (Zhang et al., 2022b) 81.01 77.96 87.31 81.09 - - - - - -
MGEFN (Tang et al., 2022) 81.83 78.26 87.31 8237 8440 7266 92.04 81.57 - -
TF-BERT (Zhang et al., 2023) 81.80 78.46 87.09 81.15 - - - - - -
RSC (Wang et al., 2023) 81.56 7592 8745 8241 8398 70.86 91.61 77.44 84.68 84.23
TextGT (Yin and Zhong, 2024) 81.33 78.71 87.31 82.27 - - - - - -
Our DMAN 82.29 7891 87.59 8247 8630 7297 9285 7737 85.55 85.01

Table 2: Experiment results (%) comparison on five publicly benchmark datasets. The best scores are bolded, and
the second best ones are underlined. All models are based on BERT.

4.2 Implementation Details

In the implementation, we build our framework
based on bert-based-uncased with max length as
90. We employ the AdamW optimizer to optimize
parameters. The embedding size is set to 768. The
batch size is manually tested in [16, 32] and the
learning rate is carefully tuned amongst [1e-5, 2e-5,
4e-5]. The dropout rate is set to 0.1. The number
of Multi-step is finally set to 2 and the K value of
Top-K is tested between 10 and 300. Correspond-
ingly, the number of GCN layers is set to 2. The
hyper-parameter « is set to 0.6, and 7, is adjusted
amongst [0.04, 0.07] for different layers. We con-
duct experiments on a single NVIDIA 4090 GPU.

4.3 Baselines

To validate the effectiveness of our approach, we
compared it with advanced baseline models. To
ensure a fair comparison, all selected baselines are
based on the bert-based-uncased architecture.
BERT-SPC (Song et al., 2019) feed the contexts
and aspects into the BERT model for the sentence
pair classification task.

RGAT (Wang et al., 2020) generate a unified
aspect-oriented dependency tree proposes a rela-
tional graph attention network to encode the tree.
DGEDT (Tang et al., 2020) propose a dependency
graph dual-transformer network by considering flat
representations and graph-based representations.
DualGCN (Li et al., 2021) propose a dual graph
convolutional networks model that considers syn-
tax structures and semantic correlations.

T-GCN (Tian et al., 2021) propose an approach to
explicitly utilize dependency types for ABSA with
type-aware graph convolutional networks.

SSEGCN (Zhang et al., 2022b) design an aspect-
aware attention mechanism to enhance the node
representations with GCN.

MGFEFN (Tang et al., 2022) leverage the richer syn-
tax dependency relation label information and af-
fective semantic information of words.

TF-BERT (Zhang et al., 2023) propose a novel
table filling based model, which considers the con-
sistency of multi-word opinion expressions.

RSC (Wang et al., 2023) propose two straightfor-
ward effective methods to leverage the explanation
for preventing the learning of spurious correlations.
TextGT (Yin and Zhong, 2024) design a novel
double-view graph Transformer on text and a new
algorithm to implement edge features in graphs.

4.4 Main Results

The experiment results of different methods on
five benchmark datasets are presented in Table
2. Our DMAN consistently outperforms all com-
pared baselines on the Lap14, Rest14, Rest15, and
MAMs datasets, and achieves overall better results
than the baselines on the Rest16 dataset, demon-
strating the effectiveness of our method. Compared
to methods utilizing attention scores and depen-
dency graphs (e.g., RGAT, Dual GCN, SSEGCN),
our attribution-based DMAN effectively reduces
noise interference from irrelevant opinion words
that could be introduced through attention scores.
Compared to more methods that leverage syntac-
tic information in different ways (e.g. T-GCN,
MGEN), our DMAN still achieves better perfor-
mance, validating that integrating attribution scores
to dynamically capture keywords facilitates a more
effective use of syntactic information. Furthermore,



Lap14 Rest14 Rest15 Rest16 MAMs
Models
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Our DMAN 82.29 7891 87.59 8247 86.30 7297 92.85 77.37 8555 85.01
w/o multi-attribution ~ 80.88 76.37 86.34 79.95 84.63 68.84 91.87 75.74 83.83 83.04
w/o token-level 81.66 77.83 87.05 80.35 85.37 71.00 92.04 7590 84.73 84.08
w/o span-level 81.82 78.06 87.23 81.76 8574 71.68 92.36 76.89 85.03 84.36
w/o syntax information 81.03 77.39 86.61 81.09 85.19 70.86 91.71 75.17 84.13 83.39
Table 3: Ablation study results (%) of our DMAN on five benchmark datasets.
As MAMs is a challenging dataset that is large- 87.8r—— R F—
scale and has multi-aspect within sentences, our ?87'6 _
method still has significant improvements. This ?:;2 / ol §
further demonstrates DMAN’s capability to effec- § 87.0 / 73
tively focus on aspect-related opinion words and ~ 2s68{ .~ =
capture attribution knowledge towards sentiment. 86.6
86.4

4.5 Ablation Study

To further investigate the effectiveness of each com-
ponent in our model, we conducted ablation studies
on the five datasets. The results are shown in Table
3. In the model without multi-granularity, the per-
formance of DMAN suffers from a sharp degrada-
tion, with accuracy decreases of 1.41%, 1.48% and
1.72% on Lap14, Rest15 and MAMs datasets, re-
spectively. These results demonstrate the effective-
ness of our proposed multi-step attribution frame-
work, which can accurately identify the critical
words for sentiment expression and dynamically
leverage the effective syntactic structures. In the
model w/o syntax information, we do not initial ad-
jacent matrix based on dependency tree. The results
show that syntactic information offers crucial clues
for correlations between words, effectively miti-
gating potential attribution errors and significantly
enhancing classification precision. Moreover, we
conduct experiments only using single-granularity
attribution. The performance decreases demon-
strate that the integration of multi-granularity rep-
resentations significantly enhances the precise com-
prehension of semantics.

4.6 Further Analysis

Effect of Top-K. To mitigate the interference of
noisy dimensions, we have employed the Top-K
strategy on the attribution scores to filter out di-
mensions with relatively low significance. In this
section, we explore the impact of varying K val-
ues. Specifically, we conducted experiments on
the Rest14 and MAMs datasets, testing a range of
K values from 100 to 300. The results, illustrated

100 120 140 160 180 200 220 240 260 280 300
K value in TopK

Figure 3: Accuracy (%) and macro-F1 value (%) on
Rest14 dataset with different K values in Top-K strategy.
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Figure 4: Accuracy (%) and macro-F1 value (%) on
MAMs dataset with different K values in Top-K strat-

cgy.

in Figure 3 and Figure 4 show that accuracy and
macro-F1 scores on both datasets initially improve
as K increases, but then plateau or slightly decrease.
We conjecture that low K values fail to adequately
capture attribution knowledge, while high K values
may introduce noise. Thus, selecting an appropri-
ate K value is crucial for optimal performance.

Effect of Attribution Steps. To investigate how
the number of attribution steps influences perfor-
mance, we evaluated our DMAN with varying steps
on the Restl4, Lap14, and MAMs datasets. No-
tably, to maintain compatibility with our frame-
work, the number of GCN layers must increase
correspondingly as the number of attribution steps
increases. As depicted in Figure 5, our model
achieves optimal performance with 2 steps, while
performance significantly declines with further in-
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Figure 5: Accuracy (%) of DMAN on Rest14, Lap14
and MAMs datasets with different attribution steps.
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Figure 6: Visualization of attention scores and multi-
step attribution scores on two aspects, price and service.
score denotes attention scores, 1-step and 2-step denote
attribution scores of 1st and 2nd layers.

creases in the number of layers. We attribute
this phenomenon to two primary factors. Firstly,
when the number of GCN layers becomes exces-
sive, node representations face the issue of over-
smoothing, leading to vanishing gradients and in-
formation redundancy. Secondly, due to the rela-
tively small size of ABSA datasets, the network
is prone to overfitting as the model complexity in-
creases, which results in a situation where gradients
convey less effective attribution knowledge.

4.7 Visualization on Attribution

To demonstrate the effectiveness of attribution anal-
ysis in our approach, we selected samples with mul-
tiple aspects and visualized the attention scores and
multi-step attribution scores in Figure 6 (a) and
(b). Specifically, given the sentence “The price
is reasonable although the service is poor” with
two aspects, “price” and “service”, attention scores
are shown to be susceptible to noise within the
sentence, often assigning relatively high scores
to irrelevant words (e.g., “is poor” for “price”).
In contrast, our proposed DMAN more accurately
identifies aspect-related opinion words (e.g., “rea-
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Figure 7: Accuracy (%) on Lap14 and MAMs datasets
with different o values for granularity fusion.
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sonable” for “price”, “poor” for “service”). Fur-
thermore, the progression of attribution scores from
the first to the second step illustrates the process
of semantic understanding, clearly indicating the
effectiveness and interpretability of our model in
dynamically capturing aspect-related contexts.

4.8 Impact of o in Multi-granularity

In the Multi-granularity Attribution Module, we
introduce « to balance token granularity and span
granularity. To investigate their impact on model
performance, we conducted experiments with dif-
ferent values of o on Lap14 and MAMs datasets.
As illustrated in Figure 7, the performance im-
proves with increasing « value and reaches a peak,
and then declines. This suggests that effectively
integrating multi-granularity representations can
provide a more comprehensive understanding of
sentence semantics. Specifically, considering that
ABSA is a fine-grained classification task, we do
not employ sentence-level representations.

5 Conclusion

In this paper, we propose a novel Dynamic Multi-
granualarity Attribution Network (DMAN) for the
ABSA task, which is different from traditional mod-
els that rely on attention scores. Specifically, we
first leverage Integrated Gradients to extract multi-
step attribution during semantic comprehension,
and Top-K strategy is adopted to filter out unimpor-
tant dimensions. We then consider multiple granu-
larities of semantic concepts, fusing attribution rep-
resentations from both token-level and span-level.
Finally, we integrate these attribution values with
dependency trees to dynamically capture relevant
syntactic knowledge, thereby enhancing semantic
understanding for sentiment classification. Exten-
sive experiments on five public datasets demon-
strate the effectiveness of our proposed DMAN.



Limitations

One of the primary limitations of our approach
is that our method does not always provide accu-
rate attributions when addressing sentences with
overly complex content and structure. Actually,
this is a common limitation among most ABSA
methods. Additionally, Our framework comprises
two components: attribution analysis and sentiment
classification. The complexity of the model struc-
ture results in increased computational costs during
training process.

Ethics Statement

Our work will not cause ethical issues, and the
datasets we use are publicly available. Addition-
ally, we do not involve the collection or use of any
private information.
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