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ABSTRACT

In the problem of multi-label learning from single positive labels (SPL), we learn
the potential multiple labels from one observable single positive annotation. Despite
many efforts to solve this problem, an effective algorithm with sound theoretical
understanding is still in need. In this paper, we propose a novel loss function for
the SPL problem, called leveraged asymmetric loss with disambiguation (LASD),
where we introduce a pair of leverage parameters to address the severe negative-
positive imbalance. From the theoretical perspective, we analyze the SPL problem,
for the first time, from the perspective of risk consistency, which links the SPL loss
with losses for ordinary multi-label classification. We prove the consistency of our
proposed LASD loss to the cost-sensitive Hamming loss, which provides guidance
to the empirical choice of our proposed leverage parameters. In experiments, we
demonstrate the effectiveness of our proposed LASD loss function over other
state-of-the-art methods and empirically verify our theoretical results.

1 INTRODUCTION

Different from standard multi-class classification, where each instance is tagged with one target label,
multi-label classification (Liu et al., 2022; Li et al., 2022) allows an instance to have multiple labels
and thus is applicable to wider real-world scenarios. For example, a picture can contain multiple
objects (Lanchantin et al., 2021; Hu et al., 2021), a sentence can express multiple emotions (Huang
et al., 2021; Fei et al., 2020), and a song can belong to multiple genres (Shrivastava et al., 2020;
Pellegrini & Masquelier, 2021). Despite the wide applications of multi-label learning, the existence
of multi-labels further increases the difficulty of annotating high-quality labels (Deng et al., 2014).
On the one hand, label annotation can be extremely laborious and costly (Deng et al., 2014). On the
other hand, the small objects or rare classes are often inevitably ignored by the human annotators
(Liu et al., 2021; Wolfe et al., 2005). To deal with such problems, researchers loosen the requirements
of label and propose the “Partial Multi-Label” (PML) paradigm, where the label of each instance can
be the subset of its complete label set (Xie & Huang, 2021; Yan & Guo, 2021; Lyu et al., 2021; Li
et al., 2021). Recently, based on PML classification, Cole et al. (2021) take a step further and present
the paradigm called Single Positive Labels (SPL), where the data only provides one correct (positive)
label for each instance. A simple example is provided to illustrate the the difference between the
PML and SPL paradigms: for an image containing a sofa, a chair, and a potted plant but without a
person or a car, for PML paradigm, we are given the label: sofa (yes), chair (yes), person (no), others
(unknown), while for SPL paradigm, we only know the label: sofa (yes), others (unknown). In fact,
many real-world multi-class datasets are potentially multi-labeled, where SPL algorithms can be used
directly to explore their underlying multi-labels. For example, the empirical study by Stock & Cisse
(2018) presents the multi-label nature in images of ImageNet dateset (Russakovsky et al., 2015). By
using the previous datasets for multi-class problems, SPL can save a massive amount of money, time,
and labor resources on data collection.

The algorithmic study of SPL is relatively under-exploited. Cole et al. (2021) first formally define
the problem of SPL and proposes the adaptive SPL loss, which shows satisfactory experimental
performance. However, it suffers from the shortcoming that one of its hyper-parameters, the average
number of positive labels, is hard to define and may vary according to data selection. Subsequently,
Verelst et al. (2022) and Zhou et al. (2022) also aim to solve the SPL problem, and introduce the
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use of spatial consistency loss and entropy maximization, respectively. However, there exists a great
demand for theoretical properties for SPL problems.

An alternative idea for solving SPL problems is to utilize PML classifiers. The first category explores
the relationship among labels and models the label correlations (Chen et al., 2019; Durand et al.,
2019; Huynh & Elhamifar, 2020). However, this category requires at least two labels per instance and
thus is incompatible with the SPL problem. The second category turns the PML problem into solving
an optimization problem (Sun et al., 2010; Bucak et al., 2011; Cabral et al., 2011; Xu et al., 2013).
However, most of these algorithms only show promising performances on conventional datasets when
there are sufficient positive labels per instance. In other words, directly utilizing these algorithms
on SPL may induce severe performance degradation. Besides, one can also solve the SPL problem
through positive-unlabeled (PU) frameworks for multi-label learning (Sun et al., 2010; Hsieh et al.,
2015; Han et al., 2018; Kanehira & Harada, 2016). Nonetheless, these methods are rarely explored in
the SPL setting, and most of the works cannot be directly applied to large-scale multi-labeled image
classification.

Under such conditions, aiming at solving the SPL problem, we propose a new loss function called
leveraged asymmetric loss with disambiguation (LASD), which explicitly copes with the challenges of
extreme label imbalance and label self-disambiguation. To address the effectiveness of our proposed
loss function, we for the first time use the concept of risk consistency to show the relationship between
loss functions for SPL and that for fully supervised multi-label data. The contribution of this paper
can be summarized as follows:

• We propose a novel loss function for the SPL problem, where we introduce a pair of leverage
parameters to address the severer negative-positive label imbalance that occurred in SPL
than in ordinary multi-label learning. Moreover, we resort to the self-labeling mechanism to
disambiguate the unobserved labels and alleviate the bad impact of false negatives.

• We for the first time analyze an SPL loss function from the perspective of risk consistency.
Under mild sampling assumptions, we first show the theoretical link between arbitrary SPL
losses and losses for ordinary multilabel learning. Then we prove the risk consistency of our
LASD loss to the cost-sensitive Hamming loss, which guarantees the effectiveness of LASD
in dealing with severe label imbalance. This theoretical result also provides theoretical
guidance to the choice of the leverage parameters.

• In experiments, we compare our proposed loss with other state-of-the-art SPL methods on
multiple multi-label image classification datasets and show the effectiveness of our method.
Empirical understandings of the leverage parameter and ablation studies are also conducted.

2 RELATED WORKS

2.1 METHODS TARGETING AT SPL PROBLEM

Cole et al. (2021) first proposed the idea of SPL, which regards the false-negative labels as label
noise, decreases the weights of the negative labels in the loss function, and uses the label smoothing
(Szegedy et al., 2016) to trim the parameters. However, their loss function contains a hyper-parameter
describing the average number of positive labels for each instance, which is hard to obtain and can
vary across datasets. Verelst et al. (2022) utilized a consistency loss to keep feature map output
the same across training epochs, making the model for multi-label learning act in synergy with the
ubiquitous random resize crop data-augmentation. However, they focus less on the high negative-
positive label imbalance in the SPL problem. Moreover, both the works mentioned above failed to
justify their proposed methods theoretically. Zhou et al. (2022) for the first time introduced the idea
of entropy maximization on the unlabeled data and utilized asymmetric pseudo-labeling to address
the negative-positive imbalance. Kim et al. (2022) discussed the loss correction method to solve the
SPL problem, while SPL algorithms with sound theoretical understandings from the statistical view
are still yet to be exploited.

2.2 PML AND PU METHODS FOR SPL PROBLEM

The majority can be summarized in two branches: The first branch establishes a new setting with
positive and negative labels and solves the problems by designing efficient loss and optimization
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procedures. The other branch pays more attention to label completion, which initially aims at
completing unknown labels from the test set. Missing labels on the training set can also be jointly
reconstructed in the optimization frameworks. We omit here the discussions of branches incompatible
with SPL, including the requirement of at least two positive labels or one positive and one negative
label for each instance and the need for a fraction of fully-labeled instances.

Positive- and negative-label methods. Sun et al. (2010) formed a convex optimization problem to
predict the unknown labels, which assumes the positive instances will be as sparse as possible for
each label. Bucak et al. (2011) similarly presented a ranking-based optimization problem using group
lasso to obtain the sparse solution of instances for each label. Zhang et al. (2021) redesigned the loss
for negative labels to focus on semi-hard samples and introduced self-paced loss correction based on
the maximum likelihood criterion.

Label matrix completion method. As for label completion methods, Cabral et al. (2011); Xu et al.
(2013) constructed a data matrix composed of training and testing features with training labels and
then use ranking minimization to complete unknown testing labels. Hsieh et al. (2015) conducted
matrix completion in the aspect of PU learning, and Han et al. (2018) used logistic matrix factorization
for label matrix reconstruction.

To the best of our knowledge, few theoretical works have been done on the SPL problem, especially
from the statistical view. In this work, we propose a new loss function for the SPL problem and for
the first time conduct an analysis on the risk consistency of the SPL problem. To be specific, under
the mild sampling assumption of labels, we provide the theoretical link between SPL losses and the
losses for fully supervised multi-label learning. Based on this result, we are able to provide further
theoretical guidance on the choice of the leverage parameter in our proposed loss function.

3 PRELIMINARY

Firstly we will formulate the fully observed multi-label setting from the perspective of the positive
label set and then introduce the corresponding single-positive-label setting.

3.1 FULLY OBSERVED LABELS

In the standard multi-class classification problem, each input variable X from the input space X is
assigned a single label from [K] := {1, . . . ,K}, where K is the number of classes. In the multi-label
classification problem under the fully observed label setting, each X is associated with a set of
positive labels Y⃗ ⊂ [K] named the positive label set. For any y ∈ [K], if the y-th class is relevant to
X , then y ∈ Y⃗ and if the y-th class is not relevant, then y /∈ Y⃗ . Moreover, the positive multi-label
space is denoted as Y := {Y⃗ : Y⃗ ⊂ [K]}. We denote P as the probability distribution of the fully
labeled data (X, Y⃗ ) defined on X × Y and its corresponding probability density function as p. The
goal is to find a function f : X → [0, 1]K that predicts the applicable labels for each x ∈ X . The
formal objective is to find an f that minimizes the risk

R̄(f) := E(X,Y⃗ )∼P L(f(X), Y⃗ ), (1)

where L : [0, 1]K × Y → R+ is some multi-label metric such as the average precision or 0-1 error.

3.2 SINGLE POSITIVE LABEL

In the multi-class classification problem under single positive label setting, each X is associated with
only one single positive label Z ∈ Z := [K] and obviously Z is one element in the positive label set
Y⃗ , i.e. Z ∈ Y⃗ . We denote P as the probability distribution of the single positive labeled data (X,Z)
defined on X × Z and its corresponding probability density function as p(x, z). Denote the single
positive label loss function as L : [0, 1]K × [K] → R+ and its corresponding risk as

R(f) := E(X,Z)∼PL(f(X), Z). (2)
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3.3 RISK CONSISTENCY

In the single positive label setting, we say a single positive label loss function L satisfies the risk
consistency, if for any function f , the fully observed label risk R̄(f) w.r.t. P equals the single
positive label risk R(f) w.r.t P , i.e. R̄(f) = R(f).

Through the concept of risk consistency, we are able to relate the SPL problem to the standard
multi-label classification. To be specific, risk consistency guarantees the empirical risk w.r.t. an SPL
loss to be an unbiased estimator of the risk w.r.t. a multi-label loss. Further, if an SPL loss is risk
consistent to a multi-label loss, which is proved to be Bayes consistent (Gao & Zhou, 2011), then
the SPL loss is also Bayes consistent. In this case, the minimizer of the SPL risk is theoretically
guaranteed to be consistent with the Bayes optimum.

4 THE PROPOSED LEVERAGED ASYMMETRIC LOSS WITH DISAMBIGUATION

4.1 LEVERAGED ASYMMETRIC LOSS

Recall that under the fully supervised multi-label learning, Ridnik et al. (2021) proposed the asymmet-
ric loss (ASL) to address the high negative-positive imbalance problem concomitant with multi-label
learning. To be specific, the ASL loss without probability shift is

LASL(f(x), y⃗) =

K∑
k=1

[
1[k∈y⃗]Lγ+

(fk(x)) + 1[k/∈y⃗]Lγ−(fk(x))

]
, (3)

where we take the binary focal loss

Lγ+
(fk(x)) = −(1− fk(x))

γ+ log(fk(x)),

Lγ−(fk(x)) = −fk(x)
γ− log(1− fk(x)), (4)

and γ+, γ− ≥ 0.

In order to apply the loss for multi-label learning to the SPL problem, the vanilla idea is to assume
that unobserved labels are negative. However, note that the imbalance of fully supervised multi-label
learning originates from the existence of more negative labels over positives. In the SPL problem,
the negative-positive label is even more imbalanced, since we have only one positive label, and all
unobserved labels are assumed to be negative. Therefore, we have to introduce an additional leverage
parameter λ to tackle the extreme label imbalance, and propose the leveraged asymmetric loss

LLAS(f(x), z) =

K∑
k=1

[
1[z=k]Lγ+

(fk(x)) + λ · 1[z ̸=k]Lγ−(fk(x))

]
, (5)

where λ ∈ [0, 1].

4.2 PSEUDO LABEL DISAMBIGUATION

One thing we should pay attention to is that the assumed negative labels may indeed be positive.
Therefore, we attach pseudo labels to the unobserved labels and treat the pseudo positives and pseudo
negatives differently. To this end, we reformulate equation 5 with disambiguation, and achieve the
leveraged asymmetric loss with disambiguation (LASD), i.e.

LLASD(f(x), z) =

K∑
k=1

[
1[z=k] · Lγ+(fk(x)) + λ+ · 1[z ̸=k]1[fk(x)>τ ] · Lγ+(fk(x))

+ λ− · 1[z ̸=k]1[fk(x)≤τ ] · Lγ−(fk(x))

]
, (6)

where τ ∈ [0, 1] is the disambiguation threshold, γ+, γ−, λ+, λ− ≥ 0, and Lγ+
(·) and Lγ−(·) are

defined in equation 4. In experiments, we select the leverage parameters λ+ and λ− based on sound
theoretical guarantees. For the sake of readability, we delay the justifications to Theorem 5.4 in
Section 5. The LASD loss equation 6 can be decomposed into three terms: the single positive term,
the pseudo positive term, and the pseudo negative term.
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4.3 CONSISTENCY REGULARIZATION

To further increase the precision of pseudo positive and negative annotations introduced in Section 4.2,
we adopt the technique of data augmentation and introduce a consistency regularization to encourage
the network’s output to be invariant to different randomly augmented images. To be specific, given
the original image x and its two random augmentations x′ and x′′, we minimize the ℓ2 distance of
each output pair. The consistency regularization is therefore formulated as

ΦConsist(x) = ∥f(x)− f(x′)∥22 + ∥f(x)− f(x′′)∥22 + ∥f(x′)− f(x′′)∥22. (7)

The final loss function we used is then formulated as

LLASD(f(x), z) + α ∗ ΦConsist(x), (8)

where α is the weight parameter used to balance the contributions of the loss term LLASD(f(x), z)
and the regularization term ΦConsist(x).

5 THEORETICAL ANALYSIS

5.1 ASSUMPTION

The annotator randomly assigns one of the positive labels Y⃗ to be the single positive label Z. We
formulate this kind of annotation as the following assumption.
Assumption 5.1 (Sampling of Labels). Let p̄ and p be the joint probability density functions of the
fully labeled data (X, Y⃗ ) and the single positively labeled data (X,Z). Assume that

p(x, z) =
∑
y⃗∈Yz

1

|y⃗|
p̄(x, y⃗),

where Yz = {y⃗ : z ∈ y⃗, y⃗ ∈ Y}.

Note that P (z|x) =
∑

y⃗∈Yz
P̄ (y⃗|x)P (z|y⃗, x), where P and P̄ denote the corresponding probability

distributions of p and p̄. Therefore, Assumption 5.1 inherently assumes the single positive label z is
uniformly sampled from the fully observed labels, i.e. P (z|y⃗, x) = 1

|y⃗| .

Assumption 5.1 is inspired by the conventional modeling of weakly supervised learning problems.
For example, in learning from complementary labels, the complementary label is assumed to be
independently and uniformly drawn given the true label (Ishida et al., 2017; 2019; Gao & Zhang,
2021); in learning from partial labels, the partial labels are also assumed to be uniformly drawn (Feng
et al., 2020). The intuition behind is straightforward: with no prior knowledge given, the simplest and
most intuitive way is to assume that the single positive labels are uniformly sampled. Therefore, in
this paper, we naturally assume that the single positive label is uniformly sampled, given the ground
truth multi-labels.

Here we also propose a practical and efficient way of annotating multi-labeled instances with single
positive labels, which could reduce the cost and labor of annotating large datasets, while satisfies
the sampling procedure in Assumption 5.1. In order to get samples with the fully observed labels,
annotators are often asked to label whether each class of the sample is positive or negative. However,
this process is highly time-consuming when the number of classes K is large. Instead, we may
choose one of the classes uniformly at random and ask the annotator whether the class is positive or
not. Such a yes/no question can be much easier and quicker to be answered than labeling all classes.
If the answer is yes, this class will be treated as a single positive label; otherwise, we will select the
other class again until a true label is obtained.

5.2 RISK CONSISTENCY

The concept of risk consistency is a widely used tool in analyzing loss functions for weakly supervised
learning problems (see Ishida et al. (2017; 2019); Gao & Zhang (2021)). In learning from single
positive labels, we say an SPL loss function L is risk-consistent to a multi-class loss function L̄ if
they have the same classification risk, given the same classifier f . Note that risk consistency implies
the coincidence of the optimal classifiers, i.e., learning from single positive labels with L results in
the same optimal classifier learned from fully labeled data with L̄.

5



Under review as a conference paper at ICLR 2023

Theorem 5.2 (Risk Consistency). Under Assumption 5.1, if L and L satisfy

L̄(f(x), y⃗) = 1

|y⃗|
∑
z∈y⃗

L(f(x), z), (9)

then we have risk consistency, i.e.

R̄(f) = R(f). (10)

In Theorem 5.2, we derive the general condition of risk consistency under the setting of multi-label
learning with single positive labels, which holds for arbitrary loss functions for the SPL problem.
To the best of our knowledge, this is the first time that a single positive loss is analyzed from the
perspective of risk consistency. By Theorem 5.2, risk consistency requires the average of the single
positive loss L(f(x), z) over all potential positive labels z ∈ y⃗ to coincide with the fully supervised
multi-label loss L̄(f(x), y⃗).
Now we consider the risk consistency of the single positive loss function introduced in Equation
equation 6.
Theorem 5.3. If we assume that |1[fk(x)>τ ] − 1[k∈y⃗]| ≤ ε, for some ε > 0, then as ε → 0, the single
positive label loss L defined in equation 6 is risk consistent to the following fully observed label loss
L given by

L̄(f(x), y⃗) =
(

1

|y⃗|
+ λ+

(
1− 1

|y⃗|
))∑

k∈y⃗

Lγ+(fk(x)) + λ−
∑
k/∈y⃗

Lγ−(fk(x)). (11)

Theorem 5.3 shows that as the model is nearly well trained and the pseudo labels are nearly correctly
labeled, i.e. ε → 0, the SPL loss defined in equation 6 is risk consistent to the multi-class loss L̄
defined in equation 11, consisting of binary losses on the observed single positive label, the pseudo
positive labels, and the pseudo negative labels, respectively.

We show in Theorem 5.3 that our LASD loss is risk consistent to the weighted binary focal loss, which
has a similar form to the widely used binary cross-entropy (BCE) loss for multi-label classification.
However, equation 11 uses focal loss instead of cross-entropy loss to address the high label imbalance
in multi-label learning. Further, when |y⃗| = 1, where the SPL problem reduced to the ordinary
multi-class classification, equation 11 reduces to the one-verses-all loss function (Zhang, 2004).

Next, we prove that our SPL loss defined in equation 6 is risk consistent to the cost-sensitive Hamming
loss, and thus can solve the high positive-negative imbalance.
Theorem 5.4. Taking the same assumptions in Theorem 5.3. If 1 + λ+(|y⃗| − 1) = λ−(K − |y⃗|),
then as ε → 0 the single positive label loss L defined in equation 6 is consistent to the cost-sensitive
Hamming loss

L̄ham =
∑
k∈y⃗

1

|y⃗|
1[ŷk=1] +

∑
k/∈y⃗

1

K − |y⃗|
1[ŷk=−1]. (12)

As is known, cost-sensitive learning (Elkan, 2001; Zhou & Liu, 2010) values false-positive classi-
fication errors differently from false negatives and is widely applied in solving class-imbalanced
classification problems (Japkowicz & Stephen, 2002). In Theorem 5.4, we show that equation 12
is the cost-sensitive version of Hamming loss (Gao & Zhou, 2011; Wu & Zhou, 2017), a widely
used loss function for multi-label classification, where the weights for the false positives and false
negatives are inversely proportional to the number of positive and negative labels, respectively. In
other words, Theorem 5.4 guarantees the effectiveness of our LASD for the SPL problem in solving
the severe positive-negative label imbalance by properly selecting the leverage parameters λ+, λ−.

5.3 DISCUSSIONS

In this part, we compare our LASD with related works for the SPL problem.

Firstly, we show that our proposed LASD loss is an inclusive form, and thus the theoretical analysis
in Theorems 5.3 and 5.4 also apply to the previous related works. To be specific, as a special case,
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Table 1: Details of four image classification multi-label datasets.

Dataset ntrain ntest nclass Avg. pos. per Image

PASCAL VOC 2012 (VOC12) (Everingham et al.) 5,717 5,823 20 1.46
MS-COCO 2014 (COCO) (Lin et al., 2014) 82,081 40,137 80 2.94
NUS-WIDE (NUS) (Chua et al., 2009) 150,000 60,260 81 1.89
CUB-200-2011 Dataset (CUB) (Wah et al., 2011) 5,994 5,794 312 31.4

when taking λ+ = λ− = 1, our LASD loss reduces to the SPLC loss (without probability shifting)
proposed by (Zhang et al., 2021). Besides, when further taking λ+ = λ− = τ = 1, our LASD
loss reduces to the ASL loss without probability shifting (Ridnik et al., 2021). In order to address
the additional high label imbalance brought by the missing labels, SPLC uses the probability shift
technique to increase the weight of the semi-hard pseudo positive labels, whereas ASL adopts the
probability shift technique to erase the weight of (assumed) easy negatives. By contrast, we propose
to use a pair of leverage parameters λ+ and λ− to address this problem, which uniformly down
weight all unobserved labels (including both pseudo positives and pseudo negatives). In Theorem 5.4,
we theoretically prove that properly selected leverage parameters help to balance the weights among
the observed single positive label, pseudo positives, and pseudo negatives. Moreover, when taking
τ = 1 and γ+ = γ− = 0, our LASD loss reduces to the weak assume negative (WAN) loss, which
intuitively justifies lowering the weight of the assumed negatives in the binary cross-entropy loss.
Nonetheless, as a byproduct of this work, our theory also complements the choice of the parameter in
the WAN loss from the perspective of risk consistency.

Secondly, we compare our LASD with EM loss proposed in (Zhou et al., 2022), which also uses
pseudo labels to solve the SPL problem. Zhou et al. (2022) only annotate pseudo negatives to
avoid the use of noisy negative pseudo-labels and resort to entropy maximization for the rest of the
unobserved labels. On the contrary, we use both pseudo positives and pseudo negatives in this work.
In Appendix A.3, we empirically verify that when the model is well trained, the precision of pseudo
annotations is sufficiently high.

6 EXPERIMENTS

6.1 DATASET DESCRIPTIONS

We evaluate the performance of our proposed LASD loss on four benchmark multi-label image
datasets. We summarize their details in Table 1, including the number of samples for training and
for evaluation, and the number of classes. More detailed descriptions are shown in Appendix A.2.1.
We generate the single positive multi-label datasets for training by randomly choosing one positive
label and discarding other annotations for each training sample from fully labeled multi-label image
datasets. The generation process is applied only once per dataset, and the generated single positive
multi-label dataset is used for all comparisons on that dataset. We split 20% of the training set for
validation. Note that different from the training set, the validation and test sets are fully labeled.

6.2 COMPARED METHODS

To evaluate our method on large-scale multi-label image databases, we compare with deep neural
network based SPL algorithms and run experiments on their publicly available codes. Specifically,
we compare the following loss functions with the formulations of loss functions listed in Appendix
A.2.2. LAN and LFAN are the vanilla ideas that assume all unobserved labels as negatives in the
binary cross-entropy and binary focal loss functions, respectively. LAN−LS is a variant of LAN where
the label smoothing technique (Szegedy et al., 2016; Müller et al., 2019) is incorporated to tackle the
issue of “false-negative”, while LWAN down weights all assumed negatives to tackle this problem.
LASL is an ordinary multi-label classification method proposed in (Ridnik et al., 2021), where we
also assume the unobserved labels to be negative. LASL−PS is a variant of LASL where the technique
of probability shifting is used. LEPR and LROLE (Cole et al., 2021) introduce the expected number
of positive labels per image named k as regularization. Different from LEPR, LROLE jointly trains
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Table 2: The test mAP (%) evaluated on four image classification multi-label datasets. The best
results are marked in bold and the second best marked in underline.

Settings Losses VOC12 COCO NUSWIDE CUB

Single
Positive
Labeled

LAN 85.89± 0.38 64.92± 0.19 42.27± 0.56 18.31± 0.47
LFAN 87.03± 0.43 68.24± 0.04 46.22± 0.33 19.42± 0.38
LWAN 86.98± 0.36 67.59± 0.11 45.71± 0.23 19.15± 0.56
LAN−LS 87.90± 0.21 67.15± 0.13 43.77± 0.29 16.26± 0.45
LASL 86.99± 0.05 67.90± 0.18 46.68± 0.22 19.72± 0.12
LASL−PS 87.32± 0.06 68.46± 0.23 46.96± 0.08 20.11± 0.15
LEPR 85.15± 0.58 63.94± 0.12 45.41± 0.05 19.53± 0.19
LROLE 87.77± 0.22 67.04± 0.19 41.63± 0.35 13.66± 0.24
LLL−R 89.23± 0.13 71.02± 0.09 47.44± 0.28 19.52± 0.35
LLL−Ct 89.06± 0.17 70.51± 0.14 48.04± 0.22 20.43± 0.38
LLL−Cp 88.40± 0.24 70.74± 0.08 48.30± 0.11 20.14± 0.37
LEM 89.09± 0.17 70.70± 0.31 47.15± 0.11 20.85± 0.42
LEMAPL 89.19± 0.31 70.87± 0.23 47.59± 0.22 21.84± 0.34
LLASD 89.53± 0.21 72.22± 0.09 50.52± 0.03 22.01± 0.48

two networks and uses the co-training technique, where one network provides pseudo labels for
the supervision of the other network. LLL−R,LLL−Ct,LLL−Ct are three variants of the large loss
proposed in Kim et al. (2022), and LEM,LEMAPL are two variants of the entropy maximization loss
proposed in Zhou et al. (2022).

6.3 PERFORMANCE EVALUATION

The backbone network is the ImageNet pre-trained ResNet-50 provided in PyTorch (Paszke et al.,
2019). We add a linear layer after the backbone network. We run experiments on NVIDIA Tesla v100
32GB GPU. We present results under the scenario of fine-tuning the entire network end-to-end for ten
epochs. For each method, we search the learning rate in {1e−2, 1e−3, 1e−4, 1e−5} and the batch
size in {8, 16}. We select the hyper-parameter whose mean average precision (MAP) is the highest
on the validation set. The selection of hyper-parameters for all methods is shown in Appendix A.2.2.
We report the test mean average precision (MAP) performance on the multi-label image classification
datasets. We repeat the experiments ten times and also report the standard deviations. The best results
are marked in bold and the second-best are marked in underline.

Table 2 compares the mAPs of our proposed LASD loss with other losses under the SPL paradigm. We
conduct significant tests and empirically verify that our proposed LASD outperforms other published
methods significantly at the significance level of 0.05 on all four benchmark datasets. Compared with
the best performance of other state-of-the-art algorithms for the SPL problem, the improvements of
LASD are significant especially on two large multi-label datasets COCO and NUSWIDE: the LASD
loss achieves +1.2 mAP improvement on the COCO dataset and +2.2 mAP improvement on the
NUSWIDE dataset. Compared with gains obtained by former SOTA methods LLL (Kim et al., 2022)
and LEMAPL (Zhou et al., 2022) in their original papers where average +1.4 mAP gains are achieved,
the improvements of our LASD method are also remarkable enough. These achievements attribute to
the learning strategy of leveraged asymmetric loss with pseudo label disambiguation and consistency
regularization.

6.4 PARAMETER ANALYSIS

In this part, we conduct parameter analysis on essential parameters of our LASD loss, including the
leverage parameter λ+, the disambiguation threshold τ , and the strength of the regularization term
α. We change one parameter while fixing other parameters to be the best parameters chosen from
the validation set. Note that the other leverage parameter λ− is theoretically calculated based on
Theorem 5.4.

Parameter Analysis on the leverage parameter λ+: From Figure 1(a) we observe that the perfor-
mance reaches the best mAP when λ+ = 0.10. When λ+ becomes too small, the pseudo positive
term will be neglected, whereas a large λ+ means that we might be overconfident on the pseudo
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Figure 1: Parameter analysis on three parameters of our proposed LASD loss on the VOC12 dataset.

Table 3: Ablation study on the LASD loss on the VOC12 dataset.
Leverage Disambiguation Consistency Regularization VOC12

A × × × 85.89± 0.38
B

√
× × 86.99± 0.05

C
√ √

× 88.70± 0.14
D

√ √ √
89.53± 0.25

positive labels. Note that our method outperforms other competing methods in a wide range of λ+,
which verifies the robustness of this parameter.

Parameter Analysis on the disambiguation threshold τ : Figure 1(b) shows that when τ is close
to 1, it tends to ignore the potential positive labels, while small τ is at the risk of false positive. For
this reason, a suitable τ slightly smaller than one is beneficial in the SPL problem. Figure 1(b) also
verifies the robustness of the selection of τ , as our method outperforms in a wide range of τ .

Parameter Analysis on the weight parameter of the regularization term α: From Figure 1(c) we
observe that our method outperforms other competitors in a wide range between 0.2 to 0.8. When the
regularization strength α is close to zero, its performance decreases because the model fails to utilize
the power of consistency regularization, whereas when α is too large, the regularization term will be
dominated in the loss function and is harmful for the training process.

Ablation Study: We discuss the effectiveness of three key components of LASD, including the
asymmetric leverage, the pseudo label disambiguation and the regularization term. We compare the
following cases: case A) without the leveraged term, the disambiguation term, and the regularization
term; case B) with the leveraged term but without the disambiguation term and the regularization
term; case C) with the leveraged term and the disambiguation term, but without the regularization
term; and case D) with the leveraged term, the disambiguation term, and the regularization term.
The results in Table 3 show that all these three terms attribute to the performance improvement.
For one thing, leveraging negative and positive samples with two leverage parameter λ+ and λ− is
essential to tackle the problem of highly negative-positive imbalance problem with the theoretically
understanding w.r.t the risk consistency to cost-sensitive Hamming loss. For another, the pseudo
label disambiguation further helps to alleviate the false negative problem and the regularization term
further increases the reliability of pseudo-labeling.

7 CONCLUSION

In this paper, we proposed a novel loss function called leveraged asymmetric loss with disambiguation
(LASD) to address the problem of multi-label learning from single positive labels (SPL). In this loss,
we introduce a pair of leverage parameters weighting the single positive label and the unobserved
labels, so as to deal with the high negative-positive imbalance. Moreover, we incorporate pseudo
labels to disambiguate potential positive and negative labels. From the theoretical perspective, we
introduce the concept of risk consistency, and derive the link between an arbitrary SPL loss to the
losses for ordinary multi-label learning. We prove that our proposed LASD loss is consistent with
the cost-sensitive Hamming loss, which can guide the empirical choice of our proposed leverage
parameter under sound theoretical guarantees. In experiments, we compare our LASD with other
state-of-the-art SPL algorithms, and demonstrate the outstanding performance of our method on
multiple real-world datasets.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Serhat Selcuk Bucak, Rong Jin, and Anil K. Jain. Multi-label learning with incomplete class
assignments. In CVPR, 2011.

Ricardo Silveira Cabral, Fernando De la Torre, João Paulo Costeira, and Alexandre Bernardino.
Matrix completion for multi-label image classification. In NIPS, 2011.

Zhao-Min Chen, Xiu-Shen Wei, Peng Wang, and Yanwen Guo. Multi-label image recognition with
graph convolutional networks. In CVPR, 2019.

Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao Zheng. NUS-WIDE:
a real-world web image database from national university of singapore. In CIVR, 2009.

Elijah Cole, Oisin Mac Aodha, Titouan Lorieul, Pietro Perona, Dan Morris, and Nebojsa Jojic.
Multi-label learning from single positive labels. In CVPR, 2021.

Jia Deng, Olga Russakovsky, Jonathan Krause, Michael S Bernstein, Alex Berg, and Li Fei-Fei.
Scalable multi-label annotation. In SIGCHI, 2014.

Thibaut Durand, Nazanin Mehrasa, and Greg Mori. Learning a deep convnet for multi-label classifi-
cation with partial labels. In CVPR, 2019.

Charles Elkan. The foundations of cost-sensitive learning. In IJCAI, volume 17, pp. 973–978, 2001.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

Hao Fei, Yue Zhang, Yafeng Ren, and Donghong Ji. Latent emotion memory for multi-label emotion
classification. In AAAI, 2020.

Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An, and Masashi Sugiyama. Provably
consistent partial-label learning. In NeurIPS, volume 33, pp. 10948–10960, 2020.

Wei Gao and Zhi-Hua Zhou. On the consistency of multi-label learning. In COLT, 2011.

Yi Gao and Min-Ling Zhang. Discriminative complementary-label learning with weighted loss. In
International Conference on Machine Learning, pp. 3587–3597, 2021.

Yunchao Gong, Yangqing Jia, Thomas Leung, Alexander Toshev, and Sergey Ioffe. Deep convolu-
tional ranking for multilabel image annotation. In ICLR, 2014.

Yufei Han, Guolei Sun, Yun Shen, and Xiangliang Zhang. Multi-label learning with highly incomplete
data via collaborative embedding. In KDD, 2018.

Cho-Jui Hsieh, Nagarajan Natarajan, and Inderjit S. Dhillon. PU learning for matrix completion. In
ICML, 2015.

Bin Hu, Kehua Guo, Xiaokang Wang, Jian Zhang, and Di Zhou. Rrl-gat: Graph attention network-
driven multi-label image robust representation learning. IEEE Internet of Things Journal, 2021.

Chenyang Huang, Amine Trabelsi, Xuebin Qin, Nawshad Farruque, Lili Mou, and Osmar R Zaiane.
Seq2emo: A sequence to multi-label emotion classification model. In NAACL, 2021.

Dat Huynh and Ehsan Elhamifar. Interactive multi-label CNN learning with partial labels. In CVPR,
2020.

Takashi Ishida, Gang Niu, Weihua Hu, and Masashi Sugiyama. Learning from complementary labels.
In NeurIPS, volume 30, 2017.

Takashi Ishida, Gang Niu, Aditya Menon, and Masashi Sugiyama. Complementary-label learning for
arbitrary losses and models. In International Conference on Machine Learning, pp. 2971–2980,
2019.

10



Under review as a conference paper at ICLR 2023

Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A systematic study. Intelligent
data analysis, 6(5):429–449, 2002.

Atsushi Kanehira and Tatsuya Harada. Multi-label ranking from positive and unlabeled data. In
CVPR, 2016.

Youngwook Kim, Jae Myung Kim, Zeynep Akata, and Jungwoo Lee. Large loss matters in weakly
supervised multi-label classification. In CVPR, pp. 14156–14165, 2022.

Jack Lanchantin, Tianlu Wang, Vicente Ordonez, and Yanjun Qi. General multi-label image classifi-
cation with transformers. In CVPR, 2021.

Junlong Li, Peipei Li, Xuegang Hu, and Kui Yu. Learning common and label-specific features for
multi-label classification with correlation information. Pattern Recognition, 121:108259, 2022.

Ziwei Li, Gengyu Lyu, and Songhe Feng. Partial multi-label learning via multi-subspace representa-
tion. In IJCAI, 2021.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In ECCV, 2014.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In ICCV, 2017.

Siyu Liu, Xuehua Song, Zhongchen Ma, Ernest Domanaanmwi Ganaa, and XiangJun Shen. More:
Multi-output residual embedding for multi-label classification. Pattern Recognition, 126:108584,
2022.

Weiwei Liu, Haobo Wang, Xiaobo Shen, and Ivor Tsang. The emerging trends of multi-label learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Gengyu Lyu, Songhe Feng, and Yidong Li. Noisy label tolerance: A new perspective of partial
multi-label learning. Information Sciences, 543:454–466, 2021.

Rafael Müller, Simon Kornblith, and Geoffrey E. Hinton. When does label smoothing help? In
NeurIPS, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In NeurIPS, 2019.

Thomas Pellegrini and Timothée Masquelier. Fast threshold optimization for multi-label audio
tagging using surrogate gradient learning. In ICASSP, 2021.

Tal Ridnik, Emanuel Ben-Baruch, Nadav Zamir, Asaf Noy, Itamar Friedman, Matan Protter, and Lihi
Zelnik-Manor. Asymmetric loss for multi-label classification. In ICCV, 2021.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3), 2015.

Harsh Shrivastava, Yfang Yin, Rajiv Ratn Shah, and Roger Zimmermann. Mt-gcn for multi-label
audio-tagging with noisy labels. In ICASSP, 2020.

Pierre Stock and Moustapha Cisse. Convnets and imagenet beyond accuracy: Understanding mistakes
and uncovering biases. In ECCV, 2018.

Yu-Yin Sun, Yin Zhang, and Zhi-Hua Zhou. Multi-label learning with weak label. In AAAI, 2010.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In CVPR, 2016.

11



Under review as a conference paper at ICLR 2023

Thomas Verelst, Paul K Rubenstein, Marcin Eichner, Tinne Tuytelaars, and Maxim Berman. Spatial
consistency loss for training multi-label classifiers from single-label annotations. arXiv preprint
arXiv:2203.06127, 2022.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011
Dataset. Technical report, California Institute of Technology, 2011.

Jeremy M Wolfe, Todd S Horowitz, and Naomi M Kenner. Rare items often missed in visual searches.
Nature, 435(7041):439–440, 2005.

Xi-Zhu Wu and Zhi-Hua Zhou. A unified view of multi-label performance measures. In international
conference on machine learning, pp. 3780–3788, 2017.

Ming-Kun Xie and Sheng-Jun Huang. Partial multi-label learning with noisy label identification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Miao Xu, Rong Jin, and Zhi-Hua Zhou. Speedup matrix completion with side information: Applica-
tion to multi-label learning. In NIPS, 2013.

Yan Yan and Yuhong Guo. Adversarial partial multi-label learning with label disambiguation. In
AAAI, 2021.

Tong Zhang. Statistical analysis of some multi-category large margin classification methods. Journal
of Machine Learning Research, 5(Oct):1225–1251, 2004.

Youcai Zhang, Yuhao Cheng, Xinyu Huang, Fei Wen, Rui Feng, Yaqian Li, and Yandong Guo.
Simple and robust loss design for multi-label learning with missing labels. arXiv preprint
arXiv:2112.07368, 2021.

Donghao Zhou, Pengfei Chen, Qiong Wang, Guangyong Chen, and Pheng-Ann Heng. Acknowledging
the unknown for multi-label learning with single positive labels. arXiv preprint arXiv:2203.16219,
2022.

Zhi-Hua Zhou and Xu-Ying Liu. On multi-class cost-sensitive learning. Computational Intelligence,
26(3):232–257, 2010.

12



Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 PROOFS

Proof of Theorem 5.2. We compare the risk in the fully-labeled setting and the risk in the single
positive setting as follows.

On the one hand, the risk in fully label setting is

EP̄ L̄(f(X), y⃗) = EXEY⃗ |X L̄(f(X), y⃗)

= EX

∑
y⃗∈Y

p̄(y⃗|x)L̄(f(X), y⃗) (13)

On the other hand, the risk in the single positive setting is

EpL(f(x), z) = EX,Y⃗ ,ZL(f(x), z)
= EXEY⃗ |XEZ|Y⃗ L(f(x), z)

= EXEY⃗ |X
1

|Y⃗ |

∑
z∈Y⃗

L(f(x), z)

= EX

∑
y∈Y

p̄(y⃗|x) · 1

|y⃗|
∑
z∈y⃗

L(f(x), z). (14)

Combining Equation equation 13 and equation 14, we find out that, if

L̄(f(x), y⃗) = 1

|y⃗|
∑
z∈y⃗

L(f(x), z) (15)

is satisfied, then risk consistency holds, which finishes the proof.

Proof of Theorem 5.3. Combining equation 6 and equation 9, we get the risk consistent fully-
observed label loss

L(f(x), y⃗) = 1

|y⃗|
∑
z∈y⃗

L(f(x), z)

=
1

|y⃗|
∑
z∈y⃗

K∑
k=1

[(
1[z=k] + λ+ · 1[z ̸=k]1[fk(x)>τ ]

)
Lγ+ + λ− · 1[z ̸=k]1[fk(x)≤τ ]Lγ−

]

=
1

|y⃗|

K∑
k=1

∑
z∈y⃗

[(
1[z=k] + λ+ · 1[z ̸=k]1[fk(x)>τ ]

)
Lγ+ + λ− · 1[z ̸=k]1[fk(x)≤τ ]Lγ−

]

=
1

|y⃗|
∑
z∈y⃗

[
Lγ+

(fz) +

K∑
k=1,k ̸=z

(
λ+1[fk(x)>τ ]Lγ+

(fk) + λ−1[fk(x)≤τ ]Lγ−(fk)
)]

=
1

|y⃗|
∑
z∈y⃗

[
Lγ+(fz) +

K∑
k=1,k ̸=z

Lτ (fk)

]
, (16)

where we denote Lτ := λ+1[fk(x)>τ ]Lγ+(fk) + λ−1[fk(x)≤τ ]Lγ−(fk) for notational simplicity.
Then we have

L(f(x), y⃗) = 1

|y⃗|
∑
z∈y⃗

Lγ+
(fz) +

1

|y⃗|
∑
z∈y⃗

(∑
k/∈y⃗

Lτ (fk) +
∑

k∈y⃗,k ̸=z

Lτ (fk)

)
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=
1

|y⃗|
∑
z∈y⃗

Lγ+
(fz) +

1

|y⃗|
∑
z∈y⃗

∑
k/∈y⃗

Lτ (fk) +
1

|y⃗|
∑
z∈y⃗

∑
k∈y⃗,k ̸=z

Lτ (fk). (17)

Note that
∑

z∈y⃗ = |y⃗| and
∑

z/∈y⃗ = K − |y⃗|. Then the second term of equation 17 becomes

1

|y⃗|
∑
z∈y⃗

∑
k/∈y⃗

Lτ (fk) =
1

|y⃗|
|y⃗|
∑
k/∈y⃗

Lτ (fk) =

K∑
k/∈y⃗

Lτ (fk). (18)

The third term of equation 17 becomes

1

|y⃗|
∑
z∈y⃗

K∑
k∈y⃗,k ̸=z

Lτ (fk) =
1

|y⃗|

K∑
k∈y⃗

∑
z∈y⃗,z ̸=k

Lτ (fk) =
|y⃗| − 1

|y⃗|
∑
k∈y⃗

Lτ (fk). (19)

Combining equation 17, equation 18, and equation 19, we have

L(f(x), y⃗) = 1

|y⃗|
∑
k∈y⃗

Lγ+(fk) +

K∑
k/∈y⃗

Lτ (fk) +
|y⃗| − 1

|y⃗|
∑
k∈y⃗

Lτ (fk)

=
1

|y⃗|
∑
k∈y⃗

Lγ+(fk) +

K∑
k=1

Lτ (fk)−
1

|y⃗|
∑
k∈y⃗

Lτ (fk)

=
1

|y⃗|
∑
k∈y⃗

Lγ+
(fk) +

K∑
k=1

Lτ (fk)−
1

|y⃗|
∑
k∈y⃗

Lτ (fk)

=
1

|y⃗|
∑
k∈y⃗

Lγ+
(fk) +

( K∑
k=1

− 1

|y⃗|
∑
k∈y⃗

)(
λ+1[fk(x)>τ ]Lγ+

(fk) + λ−1[fk(x)≤τ ]Lγ−(fk)
)

(20)

By assumption, if 1[fk(x)>τ ] ≥ 1[k∈y⃗], i.e. 1[fk(x)>τ ] − 1[k∈y⃗] = ε, then there holds

1[fk(x)≤τ ] − 1[k/∈y⃗] =
(
1− 1[fk(x)>τ ]

)
−
(
1− 1[k∈y⃗]

)
= 1[k∈y⃗] − 1[fk(x)>τ ] = −ε. (21)

Thus, by equation 20, we have

L̄(f(x), y⃗) = 1

|y⃗|
∑
k∈y⃗

Lγ+
(fk) +

( K∑
k=1

− 1

|y⃗|
∑
k∈y⃗

)
·
(
λ+1[k∈y⃗]Lγ+(fk) + λ−1[k/∈y⃗]Lγ−(fk) + ελ+Lγ+

(fk)− ελ−Lγ−(fk)
)

=
1

|y⃗|
∑
k∈y⃗

Lγ+(fk) +
( K∑

k=1

− 1

|y⃗|
∑
k∈y⃗

)(
λ+1[k∈y⃗]Lγ+(fk) + λ−1[k/∈y⃗]Lγ−(fk)

)

+
( K∑

k=1

− 1

|y⃗|
∑
k∈y⃗

)
ε
(
λ+Lγ+

(fk)− λ−Lγ−(fk)
)

=
( 1

|y⃗|
+ λ+

(
1− 1

|y⃗|
))∑

k∈y⃗

Lγ+
(fk(x)) + λ−

∑
k/∈y⃗

Lγ−(fk(x))

+ ε
( K∑

k=1

− 1

|y⃗|
∑
k∈y⃗

)(
λ+Lγ+

(fk)− λ−Lγ−(fk)
)

(22)

By similar induction, equation 22 also holds for the case where 1[fk(x)>τ ] ≤ 1[k∈y⃗]. Then as ε → 0,
there holds

L̄(f(x), y⃗) →
( 1

|y⃗|
+ λ+

(
1− 1

|y⃗|
))∑

k∈y⃗

Lγ+
(fk(x)) + λ−

∑
k/∈y⃗

Lγ−(fk(x)). (23)
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Proof of Theorem 5.4. We first consider the loss function

L̃ =

(
1

|y⃗|
+ λ+

(
1− 1

|y⃗|
))∑

k∈y⃗

1[ŷk ̸=yk] + λ−
∑
k/∈y⃗

1[ŷk ̸=yk], (24)

which replaces Lγ+
and Lγ− with indicator functions.

Denote py⃗ = P(Y⃗ = y⃗|x). We have the inner risk w.r.t. L̃

W (p, f) =
∑
y⃗∈Y

py⃗L̃(f(x), y⃗)

=
∑
y⃗∈Y

py⃗ ·
(

1

|y⃗|
+ λ+

(
1− 1

|y⃗|
))∑

k∈y⃗

1[ŷk ̸=yk] +
∑
y⃗∈Y

py⃗ · λ−
∑
k/∈y⃗

1[ŷk ̸=yk]

=
∑
y⃗∈Y

∑
k∈y⃗

py⃗ ·
(

1

|y⃗|
+ λ+

(
1− 1

|y⃗|
))

1[ŷk ̸=yk] +
∑
y⃗∈Y

∑
k/∈y⃗

py⃗ · λ−1[ŷk ̸=yk]

=
∑

k∈[K]

∑
y⃗∈Yk

py⃗ ·
(

1

|y⃗|
+ λ+

(
1− 1

|y⃗|
))

1[ŷk ̸=yk] +
∑

k∈[K]

∑
y⃗∈Y\Yk

py⃗ · λ−1[ŷk ̸=yk]

=
∑

k∈[K]

[ ∑
y⃗∈Yk

py⃗ ·
(

1

|y⃗|
+ λ+

(
1− 1

|y⃗|
))

1[ŷk ̸=1] +
∑

y⃗∈Y\Yk

py⃗ · λ−1[ŷk ̸=−1]

]
. (25)

For k ∈ [K], if for some constant C > 0, 1 + λ+(|y⃗| − 1) = λ−(K − |y⃗|) = C, then we have

W (p, f) = C
∑

k∈[K]

[ ∑
y⃗∈Yk

py⃗ ·
1

|y⃗|
1[ŷk=1] +

∑
y⃗∈Y\Yk

py⃗ ·
1

K − |y⃗|
1[ŷk=−1]

]
, (26)

and the set of corresponding Bayes predictors of L̃

A(p) =

{
f = f(x) : ŷ = F (f) with ŷk = sgn

( ∑
y⃗∈Yk

1

|y⃗|
py⃗ −

∑
y⃗ /∈Yk

1

K − |y⃗|
py⃗

)}
. (27)

Note that A(p) in equation 27 is the same as the set of Bayes predictors of the cost-sensitive Hamming
loss equation 12. By similar induction of Theorem 15 in Gao & Zhou (2011), one can derive that
LASD equation 6 with surrogate losses Lγ+ , Lγ− is consistent w.r.t. the cost-sensitive Hamming loss

equation 12 if Lγ+
, Lγ− are convex and

∂Lγ+
(fk)

∂fk
|fk=0 =

∂Lγ+
(−fk)

∂fk
|fk=0 < 0. By the definition of

Lγ+
and Lγ− , the above conditions are satisfied and we thus finish the proof.

A.2 EXPERIMENTAL DETAILS

A.2.1 DATASET DESCRIPTION

We provide the details of four benchmark multi-label image datasets below:

• The PASCAL VOC 2012 Dataset (VOC12) (Everingham et al.) includes 5,717 training
images and 20 classes. We use the official validation set (5,823 images) as the test set. The
VOC2012 data includes images obtained from the "Flickr" website under the “Flickr” terms
of use. The identity of the images in the database, e.g., source and name of the owner, has
been obscured.

• The MS-COCO 2014 Dataset (COCO) (Lin et al., 2014) contains 82,081 training images and
80 classes. We also use the official validation set (40,137 images) as the test set.

• The NUS-WIDE (NUS) Dataset (Chua et al., 2009) consists of 126,034 and 84,226 images
from the official training and test sets respectively. The dataset includes 81 classes. Following
the standard practice (Gong et al., 2014; Durand et al., 2019), we combine the official training
and test sets and randomly split the whole dataset into the training set with 150,000 images
and the non-overlapping test set with 60,260 images. This web image dataset is created by
Lab for Media Search at the National University of Singapore and should be only used for
non-commercial research or educational purposes.
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• The CUB-200-2011 Dataset (CUB) (Wah et al., 2011) contains 5,994 training images and
312 classes. The number of images in the test set is 5,794. Images in this dataset are
overlapped with images in ImageNet. The use is restricted to non-commercial research and
educational purposes.

We carefully check the descriptions of these data sets and how these data sets were collected to make
sure that no personally identifiable information or offensive content is contained.

A.2.2 COMPARED METHODS

• LAN is from the vanilla idea that unobserved labels are assumed negative. Thus, the assumed
negative strategy with the binary cross-entropy loss is given by

LAN(f(x), z) = − 1

K

K∑
k=1

[
1[z=k] log(fk) + 1[z ̸=k] log(1− fk)

]
.

• LFAN is also from the vanilla idea that unobserved labels are assumed negative. Thus, the
assumed negative strategy with the focal loss is given by

LFAN(f(x), z) = − 1

K

K∑
k=1

[
1[z=k](1− fk)

γ log(fk) + 1[z ̸=k]f
γ
k log(1− fk)

]
,

where γ = 2 is suggested in (Lin et al., 2017).

• LAN−LS is the label smoothing version to tackle the issue of "false negative". Label
smoothing is proposed in (Szegedy et al., 2016; Müller et al., 2019). LAN−LS combines the
assume negative strategy and the label smoothing training technique. LAN−LS is given by

LAN−LS(f(x), z) = − 1

K

K∑
k=1

[[(1− ε/2) · 1[z=k] + ε/2 · 1[z ̸=k]] · log(fk)+

[(1− ε/2) · 1[z ̸=k] + ε/2 · 1[z=k]1
ε/2
[z ̸=k]] · log(1− fk)],

where ε is the hyper-parameter of label smoothing and is set to 0.1 as in (Cole et al., 2021).

• LWAN is proposed based on the idea that the false negative term in the loss function is
down-weighted. LWAN is given by

LWAN(f(x), z) = − 1

K

K∑
k=1

[
1[z=k] log(fk) + λ · 1[z ̸=k] log(1− fk)

]
,

where λ ∈ [0, 1] is the weight hyper-parameter and is set λ to 1/(K − 1) in practice.

• LASL is also from the vanilla idea that unobserved labels are assumed negative. Thus, the
assumed negative strategy with the asymmetric focal loss is given by

LASL(f(x), z) = − 1

K

K∑
k=1

[
1[z=k](1− fk)

γ+ log(fk) + 1[z ̸=k]f
γ−
k log(1− fk)

]
,

where γ+ = 0 and γ− = 4 are suggested in (Ridnik et al., 2021).

• LASL−PS is also from the vanilla idea that unobserved labels are assumed negative.
LASL−PS is a variant of LASL that probability shifting is added as in (Ridnik et al., 2021).
Therefore, denote pm,k as max(fk −m, 0), LASLPS is given by

LASLPS(f(x), z) = − 1

K

K∑
k=1

[
1[z=k](1− fk)

γ+ log(fk) + 1[z ̸=k]p
γ−
m,k log(1− pm,k)

]
,

where m is the probability shifting parameter. We follow the suggestion in (Ridnik et al.,
2021) that γ+ = 0, γ− = 4, and m = 0.05.
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• LEPR and LROLE are proposed in (Cole et al., 2021). Both of them introduced the expected
number of positive labels per image named k as regularization. The penalty is applied at the
batch level, and the hyper-parameter k is specified based on the fully labeled training set.
Different from LEPR, LROLE jointly trains two networks using the co-training technique,
where one network provides pseudo labels for the supervision of the other network. The
expected positive regularization loss LEPR is formulated as

LEPR(FB,ZB) =
1

|B|
∑
n∈B

L+
BCE (fn, zn) + λRk (FB) ,

where

L+
BCE (fn, zn) = −

L∑
k=1

1[z=k] log (fk) ,

Rk (FB) =

(
k̂ (FB)− k

L

)2

,

k̂ (FB) =

∑
n∈B

∑L
i=1 fni

|B|
.

and f , g are the image classifier and the label estimator respectively. The regularized online
label estimation loss LROLE is defined as

LROLE =
L′
(
FB | ỸB

)
+ L′

(
ỸB | FB

)
2

,

where

L′
(
FB | ỸB

)
=

1

|B|
∑
n∈B

LBCE (fn, sg (ỹn)) + LEPR (FB ,ZB) ,

and sg is the stop-gradient operation.
• LLASD is proposed in our paper. We fix γ+ = 0, γ− = 4, and search the disambiguation

threshold τ ∈ (0.85, 1), the leverage parameter λ+ ∈ (0, 1], and the weight parameter of
the regularization term α. Another leverage parameter λ− is then calculated according to
Theorem 5.4. We provide the final selected hyper-parameters of our proposed LASD as in
Table 4.

Table 4: Selected hyper-parameters of our method on each dataset.

VOC12 COCO NUS CUB

λ+ 0.10 0.03 0.015 0.005
τ 0.90 0.90 0.95 0.93
α 0.70 0.10 0.15 0.03

A.3 PRECISION OF PSEUDO LABELS

In order to verify that the assumption in Theorem 5.3 that 1[fk(x)>τ ] = 1[k∈y⃗] holds when fk(x)
is trained good enough, we present the averaged Positive Predictive Value (PPV) and the averaged
Negative Predictive Value (NPV) of the proposed LASD loss per epoch on the test sets of VOC12
and COCO under the best hyper-parameters. In each epoch, we use the disambiguation threshold
τ to classify the instance x for the k-th label: we classify the instance x as positive for the k-th
label if fk(x) > τ and otherwise negative. Then, we calculate the True Positive (TP), False Positive
(FP), False Negative (FN), and True Negative (TN). Positive Predictive Value (PPV) is calculated by
TP/(TP+FP), and Negative Predictive Value (NPV) is calculated by TN/(TN+FN). We obtained the
averaged PPV and NPV for all labels per epoch.

As shown in Figure 2, the PPVs and the NPVs of our LASD loss are signifitantly higher than
90% and even 95%, which means that most of the classified positive labels are true positives and
most of the classified negative labels are true negatives. In other words, 1[fk(x)>τ ] = 1[k∈y⃗] and
1[fk(x)≤τ ] = 1[k/∈y⃗] are empirically verified.
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Figure 2: Positive Predictive Value (PPV) and Negative Predictive Value (NPV). The high PPV and
NPV results empirically verify the assumption of Theorem 5.3.
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