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Abstract
Factor graphs offer an efficient framework for probabilistic inference through message passing, with the added
benefit of uncertainty quantification, which is crucial in safety-critical applications. However, their applicability is
limited by the need to analytically solve update equations for factors, which are problem-specific and may involve
intractable integrals. We propose to approximate the message update equations of individual factors with shallow
neural networks, which we train on data generated by sampling from the respective factor equations, to capture
complex factor relationships while maintaining computational tractability.

1. Introduction
Factor graphs (Kschischang et al., 2001) are a powerful tool for probabilistic inference across numerous domains, such as
robotics and autonomous vehicles (Dellaert, 2021; Wen & Hsu, 2021), computer vision (Sun et al., 2003) or genetics (Vaske
et al., 2009). Their popularity stems from their ability to decompose complex probability distributions into products of
simpler local functions, enabling efficient inference through message passing algorithms. A particularly valuable feature of
factor graphs is their capacity to quantify uncertainty in their predictions. Despite these advantages, the practical application
of factor graph methods faces a significant limitation: the requirement to derive analytical message update equations for
each factor in the graph. These equations, which govern how information propagates between variables, must be specifically
tailored to each problem domain and can involve complex integrals that may not have closed-form solutions. This analytical
intractability restricts the range of probability models that can be solved by factor graphs.

While various approximation methods for factor graphs have been proposed, these usually solve problems such as con-
vergence issues (Zou & Yang, 2022) or computational scaling (Kuck et al., 2020), but not analytical intractability. This
necessitates the development of approaches capable of managing intricate factor relationships while preserving the computa-
tional and probabilistic advantages that render factor graphs appealing. By transcending this limitation, factor graphs can be
appropriately applied in previously unexplored applications. In this paper, we present a novel approach to message passing
in factor graphs using shallow neural networks that bridges this gap.

2. Related Work
Some previous works have explored the application of graph neural networks (GNNs) to enhance factor graphs (FGs)
by learning to approximate the update functions used during message passing. Kuck et al. (2020) proposed a method to
improve the computational scalability of FGs using GNNs, while Satorras & Welling (2021) developed an approach to
compensate for inaccurate factor parameters in scenarios where the true underlying distribution is not precisely known.
However, both approaches still require knowledge of the factor graph structure and factor types to generate training data
from simplified, tractable versions of the target problems. This limitation means they do not directly address the extension of
FGs beyond problems with analytically tractable message updates. Numerical integration techniques (Espelid & Genz, 2012)
offer another potential solution to handling intractable message updates in FGs. However, these methods typically incur
significant computational costs, especially in high-dimensional spaces or with complex factor relationships. Our approach
leverages the structure of FGs, explicitly to avoid integration by sampling directly from the joint marginal distribution.
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Figure 1: A general factor, where we want to calculate the message mf→X0
(x0), after a message from one of the variables

x1, . . . , xV
has been updated. However, depending on the factor f , this message might be analytically intractable.

3. Approach
Based on known identities for factor graphs, given a general factor f(x0, x1, . . . , xV

) in any arbitrary factor graph (see
Figure 1), the message mf→X0 from that factor to the variable X0 is defined as

mf→X0(x0) =

∫ +∞

−∞
· · ·

∫ +∞

−∞
f(x0, x1, . . . , xV

) ·mX1→f (x1) · . . . ·mX
V
→f (xV

) dx1 . . . dxV
,

while the message mX0→f (x0) back from the variable X0 to the factor f is defined as

mX0→f (x0) =
∏

f ′∈ne(X)\{f}

mf ′→X0(x0) (1)

and the marginal probability p(x0) is defined as

p(x0) =
∏

f∈ne(X0)

mf→X0(x0) . (2)

Table 2 contains the notation used in this work. To examine our general factor f as an isolated problem within the factor
graph during message passing, we consider the point in time where the marginal probability of one of its neighboring
variables other than y, i.e., x1, . . . , xV

, has just been updated by a message passed by another factor. Therefore, we can
assume, that all messages mX→f (x) from neighboring variables X ∈ ne (f) to f are given, either from initialization,
previous iterations, or based on the known relationship between the marginal p(x) and the messages:

p(x) = mf→X(x) ·mX→f (x) . (3)

As long as we stay within the distributional family of Gaussians, we can easily calculate an updated message mX→f (x)
from the old message mf→X(x) and an updated marginal using (3). Therefore, to update p(x0), after p(x) and mX→f (x)
have been updated for x ∈ {x1, . . . , xV

}, we need to calculate

p(x0) = mX0→f (x0) ·
∫ +∞

−∞
· · ·

∫ +∞

−∞
f(x0, x1, . . . , xV

) ·mX1→f (x1) · . . . ·mX
V
→f (xV

) dx1 . . . dxV
. (4)

It also follows from (3), that it does not matter whether we approximate the updated p(x0) or mf→X0(x0), as we can easily
calculate one from the other, given mX0→f (x0). Depending on the factor, the integral in (4) and (1) may be intractable,
however, we can approximate the updated p(x0) by instead sampling from the joint distribution of all neighboring variables
X ∈ ne (f). If we consider the message passing algorithm, one can easily see that at any point in time during message
passing, our arbitrary factor f is equivalent to a full factor graph that consist only of f and its neighboring variables, but
with each of the variables initialized to exactly mX→f (x) by a factor that is only connected to that particular variable, as
seen in Figure 2. Thus, the joint distribution p(x0, x1, . . . , xV

) of the variables X ∈ ne (f) can be described as

p(x0, x1, . . . , xV
) = f(x0, x1, . . . , xV

) ·
∏

X∈ne(f)
mX→f (x). (5)
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Figure 2: At any given moment in time during message passing, the arbitrary factor f on the left is equivalent to the full
factor graph on the right, when calculating the current marginals of its neighboring variables.

This enables us to use the Metropolis-Hastings algorithm to generate samples for each of the marginals by drawing samples
from (5), as Metropolis-Hastings can be used to sample from any target distribution with the density p(x), as long as we have
a function f(x) ∝ p(x). Using these samples, we calculate the empirical mean and variance of the marginal distribution
for each neighboring variable and approximate them as Gaussian distributions via moment matching, which is known to
minimize the Kullback–Leibler divergence for Gaussians. This approach allows us to approximate the updated marginals
arbitrarily well for any given factor, depending on the number of samples that we use. However, the more samples we
generate, the higher the computational cost will be, which makes sampling a less than ideal fit for inference with factor
graphs. Instead, we propose to generate a wide range of data points of incoming messages mX→f and their respective
updated marginals p(x) for each individual factor that needs to be approximated and fit shallow neural networks to these
data points, i.e., matching the moments of the respective distributions.

More concretely, for each of the V variables Xv ∈ ne (f) we fit a neural network gv with parameters θ to a data set of N
data points, which are each generated using the sample mean and sample variance of S samples XS = {Xs}Ss=1, where
Xs

i.i.d.∼ p(xv). The samples are drawn from the joint marginal distribution of all neighboring variables for one combination
of concrete incoming messages mn,X0→f (x0), . . . ,mn,X

V
→f (xV

). Consequently, the training of such a neural network,
which approximates the updated marginals during message passing, can be described as:

argmin
θ

1

N

∑N

n=1
Loss

Ä
[E[XS,n], V ar[XS,n]], gv(θ,mn,X0→f (x0), . . . ,mn,X

V
→f (xV

))
ä
. (6)

4. Evaluation
4.1. Setup

Two validate our approach, we chose two known factors that have analytical closed-form solutions and evaluate our approach
against these analytical solutions. The sampling in our approach is done via an adaptive version of the Metropolis-Hastings
algorithm. Unless otherwise specified, we use 1 million samples as a maximum number of samples per data point, with
50% burn-in. We use independent Gaussian distributions as proposal distributions for the individual variables and we adjust
their variances while sampling to achieve an acceptance rate of 0.23. We apply several convergence criteria (see Table 1,
Appendix) to early stop the sampling for a given data point. During sampling, we also clamp the sampled marginals, so that
for each sampled marginal, the variance is by at least by a factor of ϵ = 1e− 2 smaller than that of the respective incoming
message from the same variable, to make sure that using it to calculate the respective updated messages mf→Xv

does not
result in negative variances.

To generate a data set, we sample inputs, i.e., incoming messages mXv→f from uniform distributions (see Table 3, Appendix).
On the generated data set we then train shallow neural networks with one hidden layer consisting of 512 neurons and tanh
as the activation function. We use z-score normalization for both inputs and outputs based on the training data. The output
of each neural network is a 2-dimensional vector, representing the mean and variance of the updated marginal distribution of
the respective variable. As the variance needs to be strictly positive and smaller than the variance of the incoming message
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for the same variable, we add an additional residual layer. This layer combines the output of the fully-connected layers
and the respective input variance to ensure the previously described constraints in (7), where z is the output of the previous
layers, xσ represents the variance of the incoming message mX→f (x), yσ is the variance of the predicted marginal pX(x)
and σ is the sigmoid function:

yσ = σ(z) · xσ · (1− ε) . (7)

ε is fixed at 0.01 and defines the minimum expected difference in variance after a message update. As a loss function we
use root mean square error (RMSE). As an optimizer we use Adam with an initial learning rate of 0.001 and reduce it
adaptively by 5% (to a minimum of 0.000001) when 10 epochs have passed without a decrease in training loss. We train for
a maximum of 2 000 epochs combined with early stopping (Prechelt, 2012) at a patience of 20 epochs.

4.2. Isolated Factors

We choose two known factors for our evaluation, the weighted sum factor fWSF (x, y, z) = δ(z − (a · x+ b · y)) and the
gaussian mean factor fGM (x, y) = N

(
y;x, β2

)
, which can both be seen in Figure 5, see Appendix.

For both of these models, we generate data sets as described in Section 4.1. We plot the effects of generating the individual
data points with varying numbers of samples per data point Ns in Figure 3, as well as the effects of changing the number of
data points N in the generated training data sets in Figure 4. The graphs clearly show that higher parameters N and Ns lead
to better results. However, this effect is approaching a certain limit and comes at a computational cost. The results suggest a
sample size of one million per data point with at least 10 000 data points.

4.3. TrueSkill

TrueSkill, the skill estimation algorithm in Microsoft’s Xbox Live gaming service, is a prime example of the scalability
of factor graphs (Herbrich et al., 2007). We validate our approach by running a two-player setup (see Appendix, Figure
6), the core building block of the TrueSkill factor graph, using our method to approximate the weighted sum factor. We
evaluate the two-player factor graph for various prior distributions. More concretely, for all combinations of the two prior
distributions given by all permutations of means and variances where µ ∈ {1, 6, . . . , 96} and σ2 ∈ {10, 25, 50, 75, 100}.
Averaged over all combinations of priors we report a mean absolute error (MAE) of 0.4398 and 1.0421 and a mean absolute
percentage error (MAPE) of 0.1793 and 0.0223 for the mean and variance of the updated marginal distributions with a data
set size of 5 000 respectively. We argue that MAPE is the more relevant metric for the variance, because the same absolute
error is less impactful for larger variances, as these are dominated by the narrower distributions during message passing.
We chose MAE and MAPE over other metrics such as Kullback–Leibler divergence, that are more often used to compare
distributions, because we explicitly aim to match moments as closely as possible to reduce the error that is being introduced
by our approximation.

5. Discussion
Limitations and Future Work. The main limitation of our approach so far is the assumption of normally distributed
variables and message updates. While this holds for TrueSkill, it is a strong assumption that must be examined closely
as our approach is applied to different domains. Using our approach for problems where this assumption does not hold
introduces an approximation error that should be investigated further. Ideally, theoretical guarantees for the propagation of
this error can be found. The subsequent step in our approach is to expand it to more intricate applications. We focused on
the weighted sum factor, as it makes use of the Dirac delta function to model an equation. This concept can be used to
model equation systems in the context of physics-informed machine learning, e.g., to model discretised partial differential
equations as a strong inductive bias.

Conclusion. To broaden the scope of factor graphs to a wider set of problem domains, we propose a sampling-
based framework in combination with shallow neural networks. This enables us to approximate message updates in factor
graphs without the need for analytical integration. We validate our approach on factors with known closed-form solutions,
directly and in the context of a factor graph. As factor graphs in general offer an efficient inference protocol to obtain
probabilistic forecasts, our approach opens up promising avenues for further research on this expanded set of problem
domains, such as physics informed machine learning.
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6. Appendix

Figure 3: Results of sampled marginals against the analytical ones for the factors GMF and WSF by varying sample size N
on the x-axis. The first column refers to the mean of the marginals, the second one to the variance. The x-axis is in log-space
for better comparison.

Table 1: Convergence diagnostics used for model evaluation.

DIAGNOSTIC CRITERION

GEWEKE DIAGNOSTIC z < 1.96, p > 0.05
EFFECTIVE SAMPLE SIZE (ESS) > 100

POTENTIAL SCALE REDUCTION FACTOR (R̂) < 1.1
BAYESIAN FRACTION OF MISSING INFORMATION (BFMI) > 0.3
MONTE CARLO STANDARD ERROR (MCSE) ON MEAN < 0.1
MCSE ON STANDARD DEVIATION < 0.1
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Figure 4: Results of predicted marginals against the analytical ones for the factors GMF and WSF by varying sample size N
on the x-axis. The first column refers to the mean of the marginals, the second one to the variance. The x-axis is in log-space
for better comparison.

X Y

N
(
y;x, β2

)
(a) Gaussian Mean Factor

X Y

Z

δ(z − (a ·X + b · Y ))

(b) Weighted Sum Factor

Figure 5: The two known factors used in the evaluation.
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Table 2: Main parameters and variables of our model.

SYMBOL DESCRIPTION

V NUMBER OF VARIABLES, v = 0, 1, . . . , V
N NUMBER OF DATA POINTS THE NETWORK IS TRAINED ON, n = 1, . . . , N
S NUMBER OF SAMPLES FROM THE JOINT MARGINAL, s = 1, . . . , S
f EXEMPLARY FACTOR
X EXEMPLARY VARIABLE
pX(x) MARGINAL OF A VARIABLE X WITH VALUES x
ne(X) NEIGHBORING FACTORS OF VARIABLE X IN THE FACTOR GRAPH
ne(f) NEIGHBORING VARIABLES OF FACTOR f IN THE FACTOR GRAPH
Loss(·, ·) LOSS FUNCTION (E.G., RMSE) USED FOR TRAINING
gv NEURAL NETWORK
θ WEIGHTS OF A NEURAL NETWORK
a FIRST PARAMETER IN WEIGHTED SUM FACTOR (TWO SUMMANDS)
b SECOND PARAMETER IN WEIGHTED SUM FACTOR (TWO SUMMANDS)
β PARAMETER IN THE GAUSSIAN MEAN FACTOR
ϵ SMALL CONSTANT FOR SAMPLING AND NN CONSISTENCY, ϵ = 0.01
δ DIRAC DELTA: δ(x) = limσ2→0 N (x; 0, σ2)

Table 3: Sampling ranges for messages and factor parameters.

PARAMETER SAMPLING DISTRIBUTION

µv ∼ U(−100, 100)
σv ∼ U(1, 20)
a ∼ U(−10, 10)
b ∼ U(−10, 10)
β ∼ U(1, 10)

s1

p1

s2

p2

d

1(d > 0)

δ(d− (p1 − p2))

N(p2; s2, β
2)N(p1; s1, β

2)

N(s2;µs2, σ
2
s2)N(s1;µs1, σ

2
s1)

Figure 6: The two-player setup that is the core building block of Trueskill (Herbrich et al., 2007). It models the two players
skills s1 and s2, their performances p1 and p2 and the difference d between them. It assumes match outcome and prior
distributions over the players skills. Computing a full pass over the factor graph updates the marginal distributions over the
players skills based on the match outcome.
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