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ABSTRACT

Preference optimization is a standard approach to fine-tuning large language mod-
els to align with human preferences. The quantity, diversity, and representative-
ness of the preference dataset are critical to the effectiveness of preference opti-
mization. However, obtaining a large amount of preference annotations is difficult
in many applications. This raises the question of how to use the limited anno-
tation budget to create an effective preference dataset. To this end, we propose
Annotation-Efficient Preference Optimization (AEPO). Instead of exhaustively
annotating preference over all available response texts, AEPO selects a subset of
responses that maximizes diversity and representativeness from the available re-
sponses and then annotates preference over the selected ones. In this way, AEPO
focuses the annotation budget on labeling preferences over a smaller but infor-
mative subset of responses. We evaluate the performance of Direct Preference
Optimization (DPO) using AEPO and show that it outperforms models trained
using a standard DPO with the same annotation budget. Our code is available at
https://anonymous.4open.science/r/aepo-05B2.

1 INTRODUCTION

Large Language Models (LLMs) trained on massive datasets are capable of solving a variety of tasks
in natural language understanding and generation (Brown et al., 2020; Ouyang et al., 2022; Touvron
et al., 2023; OpenAI et al., 2024). However, they have been shown to generate texts containing
toxic, untruthful, biased, and harmful outputs (Bai et al., 2022; Lin et al., 2022; Touvron et al.,
2023; Casper et al., 2023; Huang et al., 2024b; Guan et al., 2024). Language model alignment aims
to address these issues by guiding LLMs to generate responses that aligns with human preferences,
steering them to generate responses that are informative, harmless, and helpful (Christiano et al.,
2017; Ziegler et al., 2020; Stiennon et al., 2020; Bai et al., 2022).

The common strategies to align an LLM are Reinforcement learning from human feedback (RLHF)
and Direct Preference Optimization (DPO) (Stiennon et al., 2020; Ouyang et al., 2022; Rafailov
et al., 2023). RLHF and DPO use the human preference dataset to train a reward model or a lan-
guage model directly. The performance of these algorithms is highly dependent on the choice of
the preference dataset. However, building a human preference dataset requires human annotations,
which are expensive to collect. Thus, the main bottleneck in building a preference dataset is the
annotation cost.

A large number of works have investigated the synthesis of preference data using a powerful LLM
(e.g., GPT-4) to distill the knowledge of human preferences (Dubois et al., 2023; Lee et al., 2024;
Ding et al., 2023; Honovich et al., 2023; Cui et al., 2023; Mukherjee et al., 2023; Xu et al., 2024a;
Liu et al., 2024a). However, human preferences are known to be diverse and pluralistic, and they
are unlikely to be represented by the opinion of a single model (Qiu et al., 2022; Kirk et al., 2023;
Wan et al., 2023; Cao et al., 2023b; Zhou et al., 2024; Sorensen et al., 2024a; Rao et al., 2024; Xu
et al., 2024b; Sorensen et al., 2024b; Kirk et al., 2024; Shen et al., 2024b; Chakraborty et al., 2024).
Several papers have pointed out that LLMs may exhibit bias toward aligning with people from a
particular background (Santurkar et al., 2023; Naous et al., 2024; Adilazuarda et al., 2024). For
example, Cao et al. (2023b) reports that ChatGPT has a strong alignment with American culture,
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Figure 1: Annotation-Efficient Preference Optimization (AEPO) is a process for generating a pref-
erence dataset with diverse and representative responses with fewer annotations. See Section 3 for
details. Here we set k = 2 and select two responses from the generated responses to annotate.

but adapts less effectively to other cultural contexts. In addition to cultural biases, previous work
suggests that even a highly capable model (e.g., GPT-4) still has biases such as length bias (Jain
et al., 2024; Dubois et al., 2024), style bias (Gudibande et al., 2024), and positional bias (Zheng
et al., 2023). Thus, human annotation is desirable to align and personalize an LLM with diverse and
unbiased human preferences (Greene et al., 2023; Jang et al., 2023; Kirk et al., 2023). The efficiency
of annotation is critical to making LLMs accessible and useful to people from diverse backgrounds,
who may have only a small amount of preference feedback data to work with.

The question is how to generate an effective preference dataset with a limited annotation budget.
Previous work has shown that the following three features are desirable for a preference dataset to
be effective (Liu et al., 2024c;a):

1. Quantity and Diversity of instructions. Greater quantity and diversity are desirable for the
instruction set (Askell et al., 2021; Wang et al., 2023; Ding et al., 2023; Honovich et al.,
2023; Cao et al., 2023a; Yuan et al., 2023; Yu et al., 2023; Xu et al., 2024a; Zhang et al.,
2024a; Ge et al., 2024).

2. Diversity of responses. A set of responses with higher diversity is desirable (Cui et al.,
2023; Lu et al., 2024; Yuan et al., 2023; Song et al., 2024).

3. Representativeness of responses. Responses that represent the behavior of the training
model are more desirable (Guo et al., 2024; Tajwar et al., 2024; Tang et al., 2024a)

To achieve all three desiderata with a limited annotation budget, it is desirable to annotate prefer-
ence over diverse and representative responses with a minimum amount of annotation required per
instruction.

To this end, we propose Annotation-Efficient Preference Optimization (AEPO), a preference
optimization with a preprocessing step on the preference dataset to reduce the required amount of
annotation (Figure 1). Instead of annotating the preference over all N responses, AEPO selects
k(< N) responses from N responses. We deploy a sophisticated method to select a set of response
texts with high diversity and representativeness. It then annotates the preference for the selected k
responses. In this way, AEPO uses all N samples to select a subset of responses with high diversity
and representativeness, while requiring only an annotation over a subset of responses.

The strength of AEPO is threefold (Table 1). First, it is applicable to human feedback data. Com-
pared to Reinforcement Learning from AI Feedback (RLAIF) (Lee et al., 2024), our approach can
be applied to both human and AI feedback. RLAIF is a scalable approach in terms of both instruc-
tions and annotations, but it is known that the feedback from existing language models is biased in
various ways (Cao et al., 2023b; Zheng et al., 2023; Jain et al., 2024; Gudibande et al., 2024; Dubois
et al., 2024). Second, it is scalable with additional computational resources. By generating a larger
amount of responses, AEPO can find more diverse and representative responses to annotate, result-
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Table 1: Comparison of annotation strategies for preference dataset.
Preference dataset Human feedback Scalable Annotation-efficient

Human feedback ✓ ✗ ✗
RLAIF (Lee et al., 2024) ✗ ✓ ✓

West-of-N (Pace et al., 2024) ✓ ✓ ✗
AEPO (Proposed) ✓ ✓ ✓

ing in a more effective preference dataset with a fixed amount of annotation (Figure 3). Third, less
annotation is required to generate an effective preference dataset. Unlike an exhaustive annotation
strategy which requires a large annotation effort (e.g., West-of-N strategy, Xu et al. 2023; Yuan et al.
2024b; Pace et al. 2024), AEPO can reduce the annotation cost through the subsampling process.

We evaluate the performance of DPO using AEPO on the AlpacaFarm, Anthropic’s hh-rlhf, and
JCommonsensMorality datasets in Section 4 (Bai et al., 2022; Dubois et al., 2023; Takeshita et al.,
2023). With a fixed annotation budget, the performance of vanilla DPO degrades as the number of
responses per instruction increases above a certain threshold (Figure 3). In contrast, AEPO scales
with the number of responses under a fixed annotation budget, outperforming vanilla DPO when
a large number of responses are available. We conduct ablation studies and observe that AEPO
consistently outperforms WoN with varying settings and hyperparameters (Appendix D). The result
shows that AEPO is a promising algorithm for efficient preference optimization, especially when
annotation cost is the bottleneck of the alignment process.

2 BACKGROUND

Preference Optimization. Let Dp be a pairwise preference dataset Dp = {(x, yc, yr)}, where x
is an instruction (x ∈ X ), yc is the chosen response, and yr is the rejected response, that is, yc is
preferred to yr (yc, yr ∈ Y). One of the popular algorithms for learning from the preference dataset
is Direct Preference Optimization (DPO) (Rafailov et al., 2023). DPO trains the language model
to directly align with the human preference data over the responses without using reward models.
The objective function of the DPO is the following:

πDPO = argmax
π

E
(x,yc,yr)∼Dp

[log σ(β log
π(yc|x)
πref(yc|x)

− β log
π(yr|x)
πref(yr|x)

)], (1)

where σ is the sigmoid function and β is a hyperparameter that controls the proximity to the SFT
model πref .

Preference Dataset. The performance of preference optimization largely depends on the choice of
the preference dataset Dp. Existing approaches explore the use of high-performance models (e.g.,
GPT-4) to synthesize high-quality instructions, responses, and preference feedback (Ding et al.,
2023; Honovich et al., 2023; Cui et al., 2023; Mukherjee et al., 2023; Xu et al., 2024a; Liu et al.,
2024a).

Several papers have investigated annotation-efficient learning by reducing the number of instructions
rather than synthesizing more (Cohn et al., 1994; Settles, 2009). Su et al. (2023) suggested selecting
examples to annotate from a pool of unlabeled data to improve the efficiency of in-context learning.
Zhou et al. (2023) shows that fine-tuning a model with carefully selected and authored instructions
can improve performance. Chen et al. (2024) points out that public instruction datasets contain many
low-quality instances and proposes a method to filter out low-quality data, resulting in more efficient
fine-tuning.

Regarding the selection of the response texts, several works have proposed to use the West-of-N
(WoN) strategy (Xu et al., 2023; Yuan et al., 2024b; Pace et al., 2024). The WoN strategy randomly
samples N responses {yi}Ni=1 for each instruction x. Then, it annotates the preference over all N
responses. The response with the highest preference is labeled as chosen (win) yc and the one with
the lowest preference is labeled as rejected (lose) yr to construct Dp:

yc ← argmax
y∈{yi}N

i=1

R(x, y), yr ← argmin
y∈{yi}N

i=1

R(x, y). (2)
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Algorithm 1 Annotation-Efficient Preference Optimization (AEPO)
Input: A set of pairs of an instruction and a set of responses D = {(x, Ycand)}, a preference

annotator R, and an annotation budget per instruction k
1: DAE = ∅
2: for (x, Ycand) ∈ D do
3: Y ∗ ← argmaxY⊆Ycand,|Y |=k frep(Y ) + λfdiv(Y ) (See Eq. 18)
4: yc ← argmaxy∈Y ∗ R(x, y)
5: yr ← argminy∈Y ∗ R(x, y)
6: DAE ← DAE ∪ {(x, yc, yr)}
7: end for
8: return DAE

The strategy is shown to be more efficient than random sampling with the same number of instruc-
tions. However, it requires N annotations per instruction to run, making it inapplicable when the
annotation budget is limited.

3 ANNOTATION-EFFICIENT PREFERENCE OPTIMIZATION (AEPO)

We propose Annotation-Efficient Preference Optimization (AEPO), a method for efficiently
learning preferences from a large number of responses with a limited budget on preference an-
notations (Figure 1).

The procedure of AEPO is described in Algorithm 1. We assume that a set of N responses is
available for each instruction: D = {(x, {yi}Ni=1)}. Instead of annotating the preference over all
responses in {yi}Ni=1, AEPO subsamples k responses (e.g., k = 2) from the candidate set of sam-
ples according to the objective function (Eq. 18) that heuristically maximizes the information gain
(line 3). We explain the objective function later. Then, it deploys the WoN strategy (Eq. 2) on the
subsampled subset of responses Y ∗ instead of all N responses {yi}Ni=1. It annotates the prefer-
ence over Y ∗ to select the best and the worst responses as the chosen and the rejected responses,
respectively (lines 4, 5). In this way, we can allocate the annotation budget only to labeling in-
formative responses. AEPO achieves to build a preference dataset with diverse and representative
responses using a small amount of annotation effort, which is exactly the characteristics desired for
the preference annotation methodology we discussed in Section 1.

The performance of the procedure is highly dependent on how we subsample a subset Y from the
candidate set of responses Ycand := {yi}Ni=1. We propose to maximize the information gain (IG)
(Cover, 1999) as the criteria to select the subset Y . Let Ry be a random variable for the estimated
probability distribution of y’s reward value (R(x, y)) and RY be a set of random variables Ry for
y ∈ Y . The information gain IG(RYcand ;RY ) measures the reduction in the entropy of the predicted
values of RYcand when we observe the values of RY :

IG(RYcand ;RY ) = H[RYcand ]−H[RYcand | RY ], (3)
where H is the joint entropy. Our goal is to find an informative subset Y where IG(RYcand ;RY ) is
maximized.

Information gain is one of the primary objectives used in active learning, where the goal is to se-
lectively label the most informative unlabeled examples (Lewis & Gale, 1994; Engelson & Dagan,
1996; Guo & Greiner, 2007; Siddhant & Lipton, 2018; Nguyen et al., 2021; Huang et al., 2024a).
We choose the subset Y to label the preference so that the information gain for RYcand is maximized,
which we assume will lead to better alignment.

Since the information gain is not computable in a feasible time for LLMs, we instead make two
assumptions to heuristically estimate the information gain. Let d be a cost function that represents
the dissimilarity of the two response texts: d : Y × Y → [0, 1], where d(y, y′) = 0 if y = y′.

Heuristic 1 The preference annotation over Y (RY ) is more likely to be informative to Ry if it is
closer to y. That is, if ∑

yi∈Y

d(y, yi) ≤
∑

yi∈Y ′

d(y, yi), (4)
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then,
IG(Ry;RY ) ≥ IG(Ry;RY ′

) (5)
with high probability.

y

y1 y2

Y = {y1, y2}

y′1 y′2

Y ′ = {y′1, y′2}

Figure 2: An illustrative example of
response subsets for annotating prefer-
ence. Our algorithm is based on the
heuristic that the subset Y that is more
diverse and closer to y is more likely to
be informative than Y ′ to infer the value
of y.

Figure 2 illustrates the intuition behind the heuristic. We
assume that similar texts are more likely to have similar
preferences. Thus, we assume that selecting a subset Y
closer to y is more informative for estimating Ry than a
more distant subset Y ′.

From Eq. 4, we are motivated to choose a subset Y so that
they are closer to y ∈ Ycand:

frep(Y ; y) := − 1

N

∑
yi∈Y

d(y, yi), (6)

as a smaller frep leads to larger expected information gain
for Ry (Eq. 5). Let frep(Y ) be the sum of frep(y;Y ) for
y ∈ Ycand:

frep(Y ) := −
∑

y∈Ycand

frep(y;Y ). (7)

From the heuristic, the larger frep(Y ) is, the more likely
it is that the information gain of frep(Y ) is greater.

Remark 1 Assume Heuristic 1. The preference over
Y (RY ) is more likely to be informative for estimating
RYcand if it is closer to Ycand. That is, If

frep(Y ) ≥ frep(Y
′), (8)

then
IG(RYcand ;RY ) ≥ IG(RYcand ;RY ′

) (9)
with high probability.

The remark is derived from the summation over y ∈ Ycand in Heuristic 1. As such, frep(Y ) is a
reasonable objective to maximize the information gain (Eq. 3) under the given assumption.

An alternative explanation of frep(Y ) is that it quantifies the representativeness of the subset Y for
the entire sample set Ycand.

frep(Y ) =
∑

y∈Ycand

frep(y;Y ) (10)

=
∑

y∈Ycand

− 1

N

∑
y∈Y

d(y, y′)

 (11)

= −
∑
y∈Y

 1

N

∑
y′∈Ycand\{y}

d(y, y′)

 (12)

where
∑

y′∈Ycand\{y} d(y, y
′) can be interpreted as the average distance from y to all other samples.

That is, it shows the closeness to the mean of the sample set. Thus, the objective is to select a subset
Y that is closer to the center of the samples, making it more representative of the generated samples.

The second heuristic is about the effect of the diversity of a subset Y .

Heuristic 2 The preference over Y (RY ) is more likely to be informative for estimating RYcand if
each pair of samples in Y is more distinct. That is, if∑

y1∈Y

∑
y2∈Y \{y1}

d(y1, y2) ≥
∑

y1∈Y ′

∑
y2∈Y ′\{y1}

d(y1, y2), (13)

5
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then,

IG(RYcand ;RY ) ≥ IG(RYcand ;RY ′
) (14)

with high probability.

An example of high and low diversity subsamples (Y and Y ′) is shown in Figure 2. If the selected
samples are too similar (e.g., Y ′), then it will be difficult to infer Ry when y is different from both
of them. On the other hand, if the selected samples are distinct enough (e.g., Y ), then we expect it
to be easier to infer Ry .

Motivated by the heuristic, we propose the following objective function fdiv as the diversity objec-
tive:

fdiv(Y ) =
1

|Y |
∑
y1∈Y

∑
y2∈Y \{y1}

d(y1, y2). (15)

The objective fdiv(Y ) is equal to the value of Eq. 13, so maximizing it improves the information
gain to RYcand .

An alternative view of fdiv is that it serves as an upper bound on the difference in distance to a pair
of samples in Y , under the assumption that d is a metric. Let y1, y2 be a pair of samples in Y with
R(x, y1) > R(x, y2). It is difficult to infer Ry when |d(y, y1)−d(y, y2)| is small, since y is roughly
as close to y1 as it is as to y2 (Figure 2). Here, d(y1, y2) is an upper bound of |d(y, y1) − d(y, y2)|
from the triangle inequality:

∀y |d(y, y1)− d(y, y2)| ≤ d(y1, y2). (16)

Thus, fdiv(Y ) serves as an upper bound on the sum of the difference in distance to a pair of sub-
sampled texts y1 and y2:

Remark 2 Assume Heuristic 2. Let d be a metric over Y . fdiv is an upper bound on the sum of the
distance difference between the sample pairs in Y .:

1

|Y |
∑

y∈Ycand

∑
y1∈Y

∑
y2∈Y \{y1}

|d(y, y1)− d(y, y2)| ≤ fdiv(Y ). (17)

The proof is immediate from Eq. 16. Thus, it is ideal to have fdiv large enough so that |d(y, y1) −
d(y, y2)| is not too small to infer RYcand . Although the cost functions used in NLP are often not
metric (e.g., cosine distance), the remark serves as an intuitive explanation of the diversity objective
fdiv .

Based on the two heuristics, we propose to optimize the following objective to maximize the ex-
pected information gain from the subsample Y :

Y ∗
k : = argmax

Y ⊆Ycand
|Y |=k

frep(Y ) + λfdiv(Y )

= argmax
Y ⊆Ycand
|Y |=k

−
∑
y∈Y

 1

N

∑
y′∈Ycand\{y}

d(y, y′)

+ λ
1

|Y |
∑
y1∈Y

∑
y2∈Y \{y1}

d(y1, y2), (18)

where λ is a hyperparameter to control the trade-off between the two objectives. We use the cosine
distance of the embedding as the dissimilarity function:

d(y1, y2) = 1− cos(emb(y1), emb(y2)), (19)

where cos is the cosine function and emb is the embedding function. We use the
all-mpnet-base-v2 sentence BERT model as the embedding model because it has been shown
to be effective for a variety of sentence embedding tasks (Reimers & Gurevych, 2019; 2020; Song
et al., 2020).

6
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4 EXPERIMENTS

Setup. We evaluate the performance of AEPO on DPO using the AlpacaFarm (Dubois et al., 2023)
and Anthropic’s hh-rlhf (Bai et al., 2022) datasets. We use mistral-7b-sft-beta (Mistral) (Jiang et al.,
2023a; Tunstall et al., 2024) as the language model. See D.2 for the results using dolly-v2-3b
(Conover et al., 2023) as the language model.

We generate up to N = 128 responses per instruction with nucleus sampling (p = 0.9) (Holtzman
et al., 2020) to be used for the subsampling strategies. The temperature of the sampling algorithm
is set to 1.0 for all experiments. All the methods use the same set of responses to ensure a fair
comparison. For AEPO, the number of subsampled responses is set to k = 2 and the diversity
hyperparameter is set to λ ∈ {0.0, 0.5, 1.0, 2.0} for AlpacaFarm and λ ∈ {0.5, 1.0, 2.0} for the
rest of the datasets. We evaluate random sampling and WoN strategy as baselines. We additionally
evaluate a coreset-based subsampling strategy (Sener & Savarese, 2018) and a perplexity-based
subsampling strategy for AlpacaFarm. See Appendix B for the details of the algorithms. Since WoN
strategy uses N/2 times more annotations per instruction than AEPO with k = 2, we reduce the
number of instructions for WoN to 2/N so that the number of required annotations is the same as
for AEPO. Note that we assume that the cost of annotating the preference rank for N responses
is linear in N . This assumption favors WoN because it becomes increasingly difficult to annotate
preference rank over a larger set of options (Ganzfried, 2017).

We use the OASST reward model (Köpf et al., 2023) to annotate the preference over the responses
for the training data. Although it is ideal to use human annotations to evaluate the performance of
the algorithms, human annotations are expensive and difficult to reproduce. To this end, we use
existing open source reward models as preference annotators for the experiment.

We train the same model that generates the responses (Mistral) using DPO with Low-Rank Adapta-
tion (LoRA) (Hu et al., 2022; Sidahmed et al., 2024). We set the LoRA’s r = 64 and α = r/4.
Other hyperparameters for the training process are described in Appendix A. For the Alpaca-
Farm dataset, we use the alpaca human preference subset as the training set and use the
alpaca farm evaluation subset as the evaluation set. For the Anthropic’s hh-rlhf datasets,
we use the first 5000 entries of the training set of both the helpful-base and harmless-base
subsets as the training set. Then we evaluate the trained model on the first 1000 entries of the test set
of the helpful-base (Helpfulness) and harmless-base (Harmlessness) subsets. For WoN,
we reduce the number of instructions evenly for the two subsets so that the dataset always has the
same number of instructions from the two subsets.

We evaluate the quality of the trained models by sampling a response using nucleus sampling (p =
0.7). The model output is evaluated using Eurus-RM-7B (Eurus) (Yuan et al., 2024a) as it is open
source and shown to have a high correlation with human annotations in RewardBench (Lambert
et al., 2024).

Main Results. Figure 3 shows the Eurus score of the DPO models on AlpacaFarm using AEPO
(λ = 1.0) and WoN with different numbers of responses. WoN with N = 4 outperforms the
random sampling baselines (i.e., WoN with N = 2), even though it uses only half of the available
instructions, which is consistent with the results of Song et al. (2024). However, WoN’s score drops
significantly for N ≥ 8 as the number of instructions decreases. In contrast, AEPO scales with the
number of responses N and outperforms WoN (Figure 3).

Figures 5 and 6 show the win rate of the DPO models with N = 128 under a fixed annotation budget.
The win rate is computed against the SFT model using Eurus as a reference reward model. See
Appendix H for the evaluation using other reward models. In all three datasets, AEPO outperforms
the baseline algorithms except for when λ is set to 0 so that no diversity is assured.

The ablation study of AEPO is described in Appendix D where we evaluate AEPO on a smaller
LLM, out-of-domain tasks, using varying LoRA hyperparameters, and using varying loss functions.
The result shows that AEPO consistently outperforms the baselines in a wide range of settings.

AEPO generates a diverse and representative preference dataset. We evaluate the diversity,
representativeness, and quality of the preference dataset generated by AEPO with k = 2, N ∈
{2 (Random), 4, 8, 16, 32, 64, 128}, and λ ∈ {0, 0.3, 0.5, 1.0, 2.0}. To measure the semantic and
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Figure 3: Evaluation of AEPO and West-of-N for
DPO with an annotation budget fixed to 2 times the
number of instructions on AlpacaFarm. The line rep-
resents the average reward score and the bar shows the
standard deviation over three runs.

Figure 4: The number of instructions
(#Insts) and annotations (#Annots) used
by the preference annotation strategies
in Figures 5, 6, and 8.

Method #Insts #Annots

SFT (Mistral) 0 0

Random (p = 0.8) |D| 2|D|
Random (p = 0.9) |D| 2|D|
Random (p = 1.0) |D| 2|D|
WoN (N = 4) |D|/2 2|D|
WoN (N = 8) |D|/4 2|D|
WoN (N = 128) |D|/64 2|D|
Coreset |D| 2|D|
Perplexity |D| 2|D|
AEPO (λ = 0) |D| 2|D|
AEPO (λ = 0.5) |D| 2|D|
AEPO (λ = 1.0) |D| 2|D|
AEPO (λ = 2.0) |D| 2|D|
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Figure 5: Evaluation of preference annotation strategies for DPO on AlpacaFarm using Mistral
under the annotation budget fixed to 2 times the number of instructions. The win rate against the
SFT model is evaluated. The bar represents the mean, and the error bar indicates the standard
deviation of three runs.

lexical diversity of the responses, we use pairwise Sentence BERT and distinct-n (Li et al., 2016).
We use the same Sentence BERT model (all-mpnet-base-v2) as AEPO to evaluate the average
cosine similarity between the selected pairs of responses. Distinct-n counts the number of distinct
n-grams in a sentence divided by the length of the sentence. The representativeness is measured by
−frep(Y )/|Ycand| which is the average similarity (−d(y, y′)) of the selected texts Y to the whole
sample set Ycand. The quality of the responses is measured by the average reward score of the
selected responses.

The result is shown in Figure 7a. By using a larger number of responses N , AEPO manages to gen-
erate more diverse and representative response pairs than a random sampling with the same number
of annotations. Interestingly, AEPO also results in higher-quality texts being selected than random
sampling (Figure 7b). This aligns with prior work reporting that diversity and representativeness
objectives may also improve the quality of the output texts (Vijayakumar et al., 2016; 2018; Eikema
& Aziz, 2022; Jinnai et al., 2024). See Appendix E for examples of the preference data generated by
AEPO. We observe similar trends in the results on distinct-n, as well as the results on the Anthropic’s
datasets (Figures 15, 16, and 17 (Appendix H).
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Figure 6: Evaluation of preference dataset annotation strategies for DPO on hh-rlhf’s Helpfulness
and Harmlessness dataset using Mistral under the annotation budget fixed to 2 times the number of
instructions. The win rate against the SFT model is evaluated. The bar represents the mean, and the
error bar indicates the standard deviation of three runs.
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Figure 7: Diversity (↓Sentence BERT), representativeness, and quality (↑mean reward) of the re-
sponses of the preference datasetsDAE generated by the subsampling process of AEPO with a vary-
ing number of input responses (N ). The number of selected responses (k) is fixed at 2. AEPO suc-
cessfully generates datasets with better diversity-representativeness trade-offs and diversity-quality
trade-offs without requiring additional annotations.

Both diversity and representativeness of the preference dataset are important for preference
learning. The question is what contributes to the improved performance of AEPO. We evaluate
AEPO with λ ∈ {0.0, 0.5, 1.0, 2.0} to investigate the importance of diversity and representativeness
of responses on AlpacaFarm dataset. AEPO with moderate size of λ outperforms AEPO with higher
or lower λ (Figure 5 and 10). The result shows that both the diversity and the representativeness
of responses are important for the preference dataset, which is consistent with the observations in
previous work (Mukherjee et al., 2023; Chen et al., 2024; Liu et al., 2024c; Song et al., 2024).

AEPO is effective for learning Japanese commonsense morality with a limited annotation bud-
get. To evaluate the proposed method in an application where the annotation budget is often lim-
ited, we conduct an experiment using the JCommonsenseMorality (JCM) dataset (Takeshita et al.,
2023). JCM is a collection of texts labeled with whether a text contains a morally wrong statement
according to the commonsense morality (Hendrycks et al., 2021) of people in Japanese culture. Be-
cause commonsense morality is culturally dependent and requires annotation by the members of
the community (Durmus et al., 2024; Shen et al., 2024a), it is difficult to collect a large number of
annotations. Therefore, we consider the task of learning Japanese commonsense morality to be a
good benchmark for evaluating AEPO in a realistic application where AEPO is needed.

We use 800 entries (|D| = 800) from the train split for training and 500 entries from the test split
for evaluation. We train a Japanese LLM (calm2-7b-chat) using the train set of the JCM dataset
(Sugimoto, 2024). As a reward model, we evaluate the accuracy of the output with respect to the
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Figure 8: Evaluation of preference annotation strategies for DPO on the JCommonsenseMorality
(JCM) dataset using calm2-7b-chat under a fixed annotation budget. The win rate against the
SFT model is evaluated.

label provided in the dataset, as well as the overall quality. See Appendix G for the evaluation
procedure. The results are summarized in Figure 8. Overall, AEPO outperforms the baselines
within the same annotation budget constraint. The result on the JCM dataset suggests that AEPO is
an effective strategy in one of the tasks where the available annotations are limited.

5 RELATED WORK

Minimum Bayes risk decoding. Eq. 7 and 18 are largely inspired by Minimum Bayes Risk
(MBR) decoding (Kumar & Byrne, 2002; 2004; Eikema & Aziz, 2022). MBR decoding is a text
generation algorithm that selects the sequence with the highest similarity to the sequences gener-
ated by the probability model. As such, the objective function of MBR decoding corresponds to
Eq. 7. MBR decoding has been proven to produce high-quality text in many text generation tasks,
including machine translation, text summarization, and image captioning (Freitag et al., 2023; Suz-
gun et al., 2023; Bertsch et al., 2023; Li et al., 2024a; Yang et al., 2024). In particular, Eq. 18 is
strongly inspired by the objective function of Diverse MBR (DMBR) decoding (Jinnai et al., 2024).
The novelty of our work is to introduce the objective function of DMBR as a strategy to subsample
representative and diverse responses from many candidate responses so that the annotation budget
can be used efficiently.

Active learning. Related work in active learning is described in Appendix C.

6 CONCLUSIONS

We propose Annotation-Efficient Preference Optimization (AEPO), an annotation-efficient dataset
subsampling strategy for language model alignment. The subsampling strategy aims to maximize
the information gain using two heuristics on how the preference information is propagated between
samples. By focusing the annotation effort on the selected responses, AEPO achieves efficient pref-
erence optimization with a limited annotation budget. We evaluate the subsampling strategy and
show that it successfully selects diverse and representative samples from the candidates (Figure 7).
Experimental results show that AEPO outperforms the baselines on AlpacaFarm, Anthropic’s hh-
rlhf, and JCM datasets (Figures 5, 6, and 8). Our ablation study covers various settings, including
GPT-4 evaluation, off-policy training, out-of-domain evaluation, and using different hyperparame-
ters (Appendix D). The study shows that AEPO consistently outperforms the baselines in various
settings. We believe that AEPO is a critical contribution to promoting preference optimization re-
search by addressing the severe obstacle, the cost of creating better preference data.
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jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 27730–27744. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

Alizée Pace, Jonathan Mallinson, Eric Malmi, Sebastian Krause, and Aliaksei Severyn. West-of-
N: Synthetic preference generation for improved reward modeling. In ICLR 2024 Workshop
on Navigating and Addressing Data Problems for Foundation Models, 2024. URL https:
//openreview.net/forum?id=7kNwZhMefs.

Liang Qiu, Yizhou Zhao, Jinchao Li, Pan Lu, Baolin Peng, Jianfeng Gao, and Song-Chun Zhu.
Valuenet: A new dataset for human value driven dialogue system. In Thirty-Sixth AAAI Confer-
ence on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications
of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pp. 11183–11191.
AAAI Press, 2022. doi: 10.1609/AAAI.V36I10.21368. URL https://doi.org/10.1609/
aaai.v36i10.21368.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=HPuSIXJaa9.

Abhinav Rao, Akhila Yerukola, Vishwa Shah, Katharina Reinecke, and Maarten Sap. Normad:
A benchmark for measuring the cultural adaptability of large language models. arXiv preprint
arXiv:2404.12464, 2024.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing

18

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://openreview.net/forum?id=7kNwZhMefs
https://openreview.net/forum?id=7kNwZhMefs
https://doi.org/10.1609/aaai.v36i10.21368
https://doi.org/10.1609/aaai.v36i10.21368
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(EMNLP-IJCNLP), pp. 3982–3992, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-1410. URL https://aclanthology.org/
D19-1410.

Nils Reimers and Iryna Gurevych. Making monolingual sentence embeddings multilingual using
knowledge distillation. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 11 2020. URL https://
arxiv.org/abs/2004.09813.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial Winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen,
Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Teven Le
Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush. Multitask prompted
training enables zero-shot task generalization. In International Conference on Learning Repre-
sentations, 2022. URL https://openreview.net/forum?id=9Vrb9D0WI4.

Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo Lee, Percy Liang, and Tatsunori Hashimoto.
Whose opinions do language models reflect? In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 29971–30004. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.
press/v202/santurkar23a.html.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018.

Burr Settles. Active learning literature survey. Technical report, University of Wisconsin-Madison
Department of Computer Sciences, 2009.

Burr Settles and Mark Craven. An analysis of active learning strategies for sequence labeling tasks.
In Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing,
pp. 1070–1079, Honolulu, Hawaii, October 2008. Association for Computational Linguistics.
URL https://aclanthology.org/D08-1112.

Siqi Shen, Lajanugen Logeswaran, Moontae Lee, Honglak Lee, Soujanya Poria, and Rada Mihal-
cea. Understanding the capabilities and limitations of large language models for cultural com-
monsense. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 5668–5680, Mexico City, Mexico,
June 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.316.
URL https://aclanthology.org/2024.naacl-long.316.

Siqi Shen, Lajanugen Logeswaran, Moontae Lee, Honglak Lee, Soujanya Poria, and Rada Mihal-
cea. Understanding the capabilities and limitations of large language models for cultural com-
monsense. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 5668–5680, Mexico City, Mexico,
June 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.316.
URL https://aclanthology.org/2024.naacl-long.316.

Hakim Sidahmed, Samrat Phatale, Alex Hutcheson, Zhuonan Lin, Zhang Chen, Zac Yu, Jarvis Jin,
Roman Komarytsia, Christiane Ahlheim, Yonghao Zhu, Simral Chaudhary, Bowen Li, Saravanan
Ganesh, Bill Byrne, Jessica Hoffmann, Hassan Mansoor, Wei Li, Abhinav Rastogi, and Lucas
Dixon. PERL: Parameter efficient reinforcement learning from human feedback. arXiv preprint
arXiv:2403.10704, 2024.

19

https://aclanthology.org/D19-1410
https://aclanthology.org/D19-1410
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://openreview.net/forum?id=9Vrb9D0WI4
https://proceedings.mlr.press/v202/santurkar23a.html
https://proceedings.mlr.press/v202/santurkar23a.html
https://aclanthology.org/D08-1112
https://aclanthology.org/2024.naacl-long.316
https://aclanthology.org/2024.naacl-long.316


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Aditya Siddhant and Zachary C. Lipton. Deep Bayesian active learning for natural language pro-
cessing: Results of a large-scale empirical study. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing, pp. 2904–2909, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1318. URL
https://aclanthology.org/D18-1318.

Feifan Song, Bowen Yu, Hao Lang, Haiyang Yu, Fei Huang, Houfeng Wang, and Yongbin Li. Scal-
ing data diversity for fine-tuning language models in human alignment. In Nicoletta Calzolari,
Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Pro-
ceedings of the 2024 Joint International Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024), pp. 14358–14369, Torino, Italia, May 2024.
ELRA and ICCL. URL https://aclanthology.org/2024.lrec-main.1251.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. MPNet: Masked and permuted
pre-training for language understanding. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Had-
sell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/c3a690be93aa602ee2dc0ccab5b7b67e-Abstract.html.

Taylor Sorensen, Liwei Jiang, Jena D. Hwang, Sydney Levine, Valentina Pyatkin, Peter West,
Nouha Dziri, Ximing Lu, Kavel Rao, Chandra Bhagavatula, Maarten Sap, John Tasioulas, and
Yejin Choi. Value kaleidoscope: Engaging AI with pluralistic human values, rights, and du-
ties. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.), Thirty-Eighth
AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innova-
tive Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada,
pp. 19937–19947. AAAI Press, 2024a. doi: 10.1609/AAAI.V38I18.29970. URL https:
//doi.org/10.1609/aaai.v38i18.29970.

Taylor Sorensen, Jared Moore, Jillian Fisher, Mitchell Gordon, Niloofar Mireshghallah, Christo-
pher Michael Rytting, Andre Ye, Liwei Jiang, Ximing Lu, Nouha Dziri, Tim Althoff, and Yejin
Choi. A roadmap to pluralistic alignment. arXiv preprint arXiv:2402.05070, 2024b.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feed-
back. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 3008–3021. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1f89885d556929e98d3ef9b86448f951-Paper.pdf.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin, Rui Zhang, Mari
Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu. Selective annotation makes language
models better few-shot learners. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=qY1hlv7gwg.

Kaito Sugimoto. Exploring Open Large Language Models for the Japanese Language: A Practical
Guide. Jxiv preprint, 2024. doi: 10.51094/jxiv.682.

Mirac Suzgun, Luke Melas-Kyriazi, and Dan Jurafsky. Follow the wisdom of the crowd: Effec-
tive text generation via minimum Bayes risk decoding. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL
2023, pp. 4265–4293, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.262. URL https://aclanthology.org/2023.
findings-acl.262.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Ste-
fano Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of LLMs should leverage
suboptimal, on-policy data. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=bWNPx6t0sF.

20

https://aclanthology.org/D18-1318
https://aclanthology.org/2024.lrec-main.1251
https://proceedings.neurips.cc/paper/2020/hash/c3a690be93aa602ee2dc0ccab5b7b67e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c3a690be93aa602ee2dc0ccab5b7b67e-Abstract.html
https://doi.org/10.1609/aaai.v38i18.29970
https://doi.org/10.1609/aaai.v38i18.29970
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://openreview.net/forum?id=qY1hlv7gwg
https://aclanthology.org/2023.findings-acl.262
https://aclanthology.org/2023.findings-acl.262
https://openreview.net/forum?id=bWNPx6t0sF


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Masashi Takeshita, Rafal Rzpeka, and Kenji Araki. JCommonsenseMorality: Japanese dataset for
evaluating commonsense morality understanding. In In Proceedings of The Twenty Nineth An-
nual Meeting of The Association for Natural Language Processing (NLP2023), pp. 357–362,
2023. URL https://www.anlp.jp/proceedings/annual_meeting/2023/pdf_
dir/D2-1.pdf. in Japanese.

Yunhao Tang, Daniel Zhaohan Guo, Zeyu Zheng, Daniele Calandriello, Yuan Cao, Eugene Tarassov,
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A HYPERPARAMETERS

Table 2 lists the hyperparameters we use to run DPO. Table 3 lists the hyperparameters we use to
generate the texts for evaluation.

Table 2: DPO hyperparameters.
Parameter Value

Training epochs 3
Batch size 4

Regularization factor (β) 0.1
Optimizer RMSProp

Learning rate 1e-5
Learning rate scheduler linear

Warm up steps #instructions / 80
Max instruction length 512

Max new tokens 512
Max total length 512

Table 3: Generation hyperparameters on evaluation.
Parameter Value

Max instruction length 512
Max new tokens 512

Temperature 1.0
Top-p 0.7

B IMPLEMENTATION OF BASELINES

In addition to the existing methods (random sampling and WoN sampling), we present two re-
sponse texts subsampling strategies, a coreset-based subsampling and perplexity-based subsampling
as baselines.

We implement the Coreset selection using the set cover minimization algorithm following the work
of Sener & Savarese (2018) (Algorithm 1, k-Center-Greedy). The objective function for selecting
the subset Y is the following:

Y ∗ = argmin
Y⊆Ycand

max
y∈Ycand

min
y′∈Y

d(y, y′). (20)

Intuitively, Eq. 20 is similar to the representative objective (frep; Eq. 7) but instead of minimizing
the average distance of Y and Ycand, it aims to minimize the maximum distance of y ∈ Ycand and
y′ ∈ Y . Although the algorithm was originally proposed for training convolutional neural networks,
its procedure applies to the response text subsampling problem. We use the cosine distance of the
sentence embedding as the distance between the data points. We use the same text embedding model
as AEPO (all-mpnet-base-v2).

The perplexity-based dataset filtering strategy is shown to be effective for the pretraining (De la Rosa
et al., 2022; Marion et al., 2023; Thrush et al., 2024) and instruction fine-tuning (Zhou et al., 2023;
Li et al., 2024b). We implement a perplexity-based selection strategy to pick a pair of responses
with the highest and the lowest perplexity:

Y ∗ = {argmax
y∈Ycand

PP (y | x), argmin
y∈Ycand

PP (y | x)}, (21)

where PP denotes the perplexity of y given x as the input.
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C ADDITIONAL RELATED WORK

Active learning. Annotation-efficient learning has long been a challenge in natural language pro-
cessing (Zhang et al., 2022). Active learning is an approach that aims to achieve training with fewer
training labels by proactively selecting the data to be annotated and used for learning (Cohn et al.,
1994; Settles, 2009; Houlsby et al., 2011). There are roughly two active learning strategies used
in NLP (Zhang et al., 2022). One uses the informativeness of the data instances, such as uncer-
tainty and disagreement of the models (Lewis & Gale, 1994; Engelson & Dagan, 1996; Siddhant &
Lipton, 2018; Huang et al., 2024a). This approach has proven to be efficient in many text classifi-
cation tasks. The other strategy is based on the representativeness of the data instances (McCallum
& Nigam, 1998; Settles & Craven, 2008; Zhao et al., 2020; Chen & Wang, 2024). The strategy
annotates instances with high average similarity to all the other instances so that it can cover a large
portion of the dataset with few annotations. Another approach is to select instances that maximize
the diversity of labeled instances (Eck et al., 2005; Zeng et al., 2019; Bloodgood & Callison-Burch,
2010). Our approach is related to these approaches as our objective is a combination of represen-
tative and diversity measures designed to maximize the information gain. The novelty of our study
lies in applying these ideas to the language model alignment problem to reduce the annotation cost.

D ABLATION STUDY

We describe the ablation study to evaluate the effect of AEPO in various settings.

D.1 GPT-4 EVALUATION

Figure 9 shows the win rate of the DPO models against the SFT model using GPT-4 as an evalu-
ator. Overall we observe the same qualitative result as in Eurus. We access GPT-4 API via Azure
OpenAI service. The model name is gpt-4o and the model version is 2024-05-13. We set the model
temperature, frequency penalty, and presence penalty to 0. The following prompt is used to evaluate
the response text:

Please act as an impartial judge and evaluate the quality of the response provided
by an AI assistant to the user question displayed below. Your evaluation should
consider factors such as the helpfulness, relevance, accuracy, depth, creativity,
and level of detail of the response. Begin your evaluation by providing a short
explanation. Be as objective as possible. After providing your explanation, you
must rate the response on a scale of 1 to 10 by strictly following this format:
“[[rating]]”, for example: “Rating: [[5]]”.

[Question]
{question}
[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]
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Figure 9: Evaluation of AEPO on the AlpacaFarm dataset using GPT-4 as an evaluator. The win rate
against the SFT model is evaluated.

D.2 TRAINING DOLLY LANGUAGE MODEL

Several studies have shown that using responses generated by the training model itself (on-policy
learning) is more effective than using responses generated by other models (off-policy learning)
(Chang et al., 2024; Guo et al., 2024; Xu et al., 2024c; Tajwar et al., 2024; Dong et al., 2024; Pace
et al., 2024; Tang et al., 2024a). Nevertheless, off-policy learning is advantageous in resource-
constrained settings because it can leverage existing public resources to train arbitrary models.

To this end, we investigate the use of AEPO for off-policy learning. We use the preference dataset
DAE generated by Mistral’s responses {yi}Ni=1 on AlpacaFarm to train dolly-v2-3b (Dolly; Conover
et al. 2023). We set the LoRA’s r = 32 and α = r/4. Other experimental settings are the same as
the experiment on Mistral. Figure 10 shows the results of the off-policy learning using Eurus as the
reference reward model. AEPO with sufficiently large λ outperforms vanilla DPO. The result shows
the potential of AEPO to improve the efficiency of off-policy learning. See Table 18for the result
using other reward models.
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Figure 10: Evaluation of AEPO on training Dolly language model using the AlpacaFarm dataset.
We generate responses with Mistral and use the sampled responses to train Dolly. The win rate
against the SFT model is evaluated.

D.3 OUT-OF-DOMAIN EVALUATION

Previous work has shown that training on a diverse set of instructions improves the performance on
out-of-domain tasks (Sanh et al., 2022). The question is whether we can achieve a similar robustness

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

with a diverse set of responses generated by AEPO. We evaluate the Mistral models fine-tuned with
the AlpacaFarm dataset on ARC (Clark et al., 2018), HellaSwag (Zellers et al., 2019), TruthfulQA
(Lin et al., 2022), and WinoGrande (Sakaguchi et al., 2021) using the language model evaluation
harness (Gao et al., 2023b). Table 4 summarizes the scores and the standard errors of the trained
models on these benchmarks. Overall, AEPO scores slightly higher than WoN, except for the ARC.
The result shows that AEPO outperforms WoN in the AlpacaFarm domain not because it overfits to
the task, but because it improves on a wide range of tasks.

Table 4: Evaluation of DPO models trained with AlpacaFarm on out-of-domain benchmarks. Means
and standard errors are reported.

Preference Dataset Configuration

Method #Insts #Annots ARC HellaSwag TruthfulQA WinoGrande

SFT (Mistral) 0 0 57.94 ± 1.44 82.07 ± 0.38 42.98 ± 1.46 77.51 ± 1.17

Random (p = 0.9) |D| 2|D| 59.73 ± 1.43 83.14 ± 0.37 46.37 ± 1.51 78.06 ± 1.16
WoN (N = 4) |D|/2 2|D| 59.73 ± 1.43 82.95 ± 0.38 48.13 ± 1.54 75.14 ± 1.21
WoN (N = 8) |D|/4 2|D| 59.90 ± 1.43 82.80 ± 0.38 49.41 ± 1.55 74.90 ± 1.22
AEPO (λ = 0) |D| 2|D| 59.64 ± 1.43 83.10 ± 0.37 46.31 ± 1.51 78.14 ± 1.16
AEPO (λ = 0.5) |D| 2|D| 59.90 ± 1.43 83.28 ± 0.37 49.69 ± 1.54 77.19 ± 1.18
AEPO (λ = 1.0) |D| 2|D| 58.62 ± 1.44 82.57 ± 0.38 44.34 ± 1.49 77.90 ± 1.17
AEPO (λ = 2.0) |D| 2|D| 58.70 ± 1.44 82.54 ± 0.38 44.75 ± 1.49 77.58 ± 1.17

D.4 LORA HYPERPARAMETERS

We evaluate the effect of the LoRA hyperparameters on the performance of AEPO. We run DPO
once with LoRA’s r ∈ {32, 128} and α = r/4. All other experimental settings are the same as in
Section 4. Tables 5 and 6 show the experimental results. We observe that AEPO outperforms WoN
in reward scores as in Section 4 regardless of the choice of the LoRA’s r.

Table 5: Evaluation of AEPO on AlpacaFarm using Mistral with LoRA’s r = 32 and α = r/4.
Preference Dataset Configuration

Method #Insts #Annots OASST Eurus OASST (w%) Eurus (w%) PairRM (w%)

SFT (Mistral) 0 0 1.901 878.48 50 50 50

Random (p = 0.8) |D| 2|D| 2.021 997.05 54.22 55.59 52.49
Random (p = 0.9) |D| 2|D| 2.029 970.77 54.10 54.72 52.64
Random (p = 1.0) |D| 2|D| 2.099 1009.53 55.47 56.96 53.64
WoN (N = 4) |D|/2 2|D| 2.088 1031.62 56.34 56.71 53.98
WoN (N = 8) |D|/4 2|D| 2.052 993.94 54.84 56.09 54.10
AEPO (λ = 0) |D| 2|D| 1.994 936.94 53.48 53.35 53.10
AEPO (λ = 0.5) |D| 2|D| 2.079 981.37 56.77 55.53 54.12
AEPO (λ = 1.0) |D| 2|D| 2.121 1063.08 58.26 58.07 53.98
AEPO (λ = 2.0) |D| 2|D| 2.072 1034.58 55.53 56.34 53.97

WoN (N = 128) |D| 128|D| 2.339 1169.37 65.47 63.23 59.61
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Table 6: Evaluation of AEPO on AlpacaFarm using Mistral with LoRA’s r = 128 and α = r/4.
Preference Dataset Configuration

Method #Insts #Annots OASST Eurus OASST (w%) Eurus (w%) PairRM (w%)

SFT (Mistral) 0 0 1.901 878.48 50 50 50

Random (p = 0.8) |D| 2|D| 2.310 1149.53 63.11 60.62 59.18
Random (p = 0.9) |D| 2|D| 2.394 1140.02 65.96 59.25 60.00
Random (p = 1.0) |D| 2|D| 2.308 1096.25 63.11 58.01 58.96
WoN (N = 4) |D|/2 2|D| 2.390 1160.43 66.02 63.66 61.68
WoN (N = 8) |D|/4 2|D| 2.357 1183.47 65.65 63.29 61.28
AEPO (λ = 0) |D| 2|D| 2.186 1050.34 60.62 58.01 57.80
AEPO (λ = 0.5) |D| 2|D| 2.379 1172.73 63.29 63.91 60.37
AEPO (λ = 1.0) |D| 2|D| 2.354 1164.29 64.35 63.60 60.62
AEPO (λ = 2.0) |D| 2|D| 2.400 1203.51 66.34 63.60 59.69

WoN (N = 128) |D| 128|D| 2.705 1303.34 74.35 68.76 66.72
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D.5 LOSS FUNCTION

Several variants of loss functions are proposed to replace the sigmoid loss function of DPO. The
experimental results of AEPO using hinge loss (Zhao et al., 2023; Liu et al., 2024b) and KTO loss
(Ethayarajh et al., 2024) are given in Tables 7 and 8. We use LoRA r = 32 and LoRA α = r/4.
Other experimental settings follow the settings in Section 4. We observe that AEPO outperforms the
baselines regardless of the choice of the loss function.

Table 7: Evaluation of AEPO on AlpacaFarm with Mistral using hinge loss.
Preference Dataset Configuration

Method #Insts #Annots OASST Eurus OASST (w%) Eurus (w%) PairRM (w%)

SFT (Mistral) 0 0 1.901 878.48 50 50 50

Random (p = 0.8) |D| 2|D| 2.026 998.26 54.66 55.78 52.77
Random (p = 0.9) |D| 2|D| 2.036 989.09 55.47 55.71 53.32
Random (p = 1.0) |D| 2|D| 2.068 997.99 55.59 56.46 53.46
WoN (N = 4) |D|/2 2|D| 2.095 1009.54 55.90 55.28 53.69
WoN (N = 8) |D|/4 2|D| 2.037 989.60 54.47 55.59 54.15
AEPO (λ = 0) |D| 2|D| 1.994 964.50 53.48 54.60 53.10
AEPO (λ = 0.5) |D| 2|D| 2.079 991.11 56.77 55.65 54.22
AEPO (λ = 1.0) |D| 2|D| 2.121 1052.23 58.26 58.51 53.98
AEPO (λ = 2.0) |D| 2|D| 2.072 1050.30 55.53 57.27 53.97

WoN (N = 128) |D| 128|D| 2.335 1156.37 63.42 63.17 59.08

Table 8: Evaluation of AEPO on AlpacaFarm with Mistral using KTO loss.
Preference Dataset Configuration

Method #Insts #Annots OASST Eurus OASST (w%) Eurus (w%) PairRM (w%)

SFT (Mistral) 0 0 1.901 878.48 50 50 50

Random (p = 0.8) |D| 2|D| 2.025 1022.52 54.78 57.14 52.83
Random (p = 0.9) |D| 2|D| 2.057 988.42 55.16 55.90 53.04
Random (p = 1.0) |D| 2|D| 2.095 1000.09 56.15 57.02 53.88
WoN (N = 4) |D|/2 2|D| 2.075 994.79 55.22 54.60 54.03
WoN (N = 8) |D|/4 2|D| 2.032 1002.73 54.29 56.15 53.87
AEPO (λ = 0) |D| 2|D| 1.994 952.70 53.48 53.73 53.10
AEPO (λ = 0.5) |D| 2|D| 2.079 981.76 56.77 55.40 54.15
AEPO (λ = 1.0) |D| 2|D| 2.121 1059.95 58.26 58.76 53.98
AEPO (λ = 2.0) |D| 2|D| 2.072 1030.45 55.53 57.39 53.97

WoN (N = 128) |D| 128|D| 2.359 1158.02 64.84 62.86 59.84
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E GENERATION EXAMPLES OF AEPO

We show examples of the dataset entries generated by AEPO and WoN in Tables 9 and 10. AEPO
with λ = 0.0 selects two very similar or even identical responses. In contrast, the two responses
selected by AEPO with λ = 1.0 are sufficiently diverse.

Table 9: Example of a preference dataset entry generated by AEPO and WoN on AlpacaFarm
dataset. The input prompt is: Write two sentences with the same meaning but with different word-
ings\n\nHe went to the store.

Method Label Text

Random (p = 0.9) Chosen He visited the store. He went shopping.

Rejected

He visited the store.
He went shopping.

I got a message from my mom.

WoN (N = 4) Chosen 1. He went to the market.
2. He went shopping.

Rejected

He purchased products from the grocery store.
He went and made purchases at the store.

He left the house.
He walked away from his living space.

WoN (N = 8) Chosen 1. He went to the market.
2. He went shopping.

Rejected

He purchased products from the grocery store.
He went and made purchases at the store.

He left the house.
He walked away from his living space.

AEPO (λ = 0.0) Chosen He went shopping at the store.
He visited a store for purchasing goods.

Rejected He traveled to the store or he went to shop.

AEPO (λ = 1.0) Chosen 1. The subject went to the destination.
2. The subject made his/her way to the location in question.

Rejected

He made a trip to the store for some supplies.

He purchased items from the store.

I will buy the supplies from the store tomorrow.

Could you please provide me with some groceries from the
store?

Can you tell me if the store has any fresh fruits and vegetables
available for sale?

AEPO (λ = 2.0) Chosen 1. The subject went to the destination.
2. The subject made his/her way to the location in question.

Rejected I went to the local shop.
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Table 10: Example of a preference dataset entry generated by AEPO and WoN on AlpacaFarm
dataset. The input prompt is: Paraphrase this sentence to have the same meaning.\n\nWe have had
a prolonged period of extremely cold weather.

Method Label Text

Random (p = 9) Chosen For an extended period of time, we have experienced extremely
frigid temperatures.

Rejected The cold weather has been ongoing for a long period of time.

WoN (N = 4) Chosen During an extended period of harsh winter conditions, we have
been dealing with exceptionally low temperatures.

Rejected For a very long time, the temperature has been extremely low.

WoN (N = 8) Chosen

There has been a long stretch of bitterly cold weather.

OR

Cold weather has persisted for an extended period of time.

Rejected For a long time, the weather has been very cold.

AEPO (λ = 0.0) Chosen For an extended period of time, the weather has been extremely
cold.

Rejected For an extended period of time, the weather has been extremely
cold.

AEPO (λ = 1.0) Chosen The weather has been exceptionally frigid for an extended time.

Rejected We have experienced a long time with very low temperatures.

AEPO (λ = 2.0) Chosen The period of extremely low temperatures has persisted for an
extended period of time.

Rejected For a long time now, we have experienced a severe cold spell.
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F EVALUATION OF WEST-OF-N STRATEGY

WoN is an effective strategy when an abundance of annotations is available. Table 11 shows the
performance of DPO with the WoN strategy using N annotations per instruction without reducing
the size of the instruction set. As shown in previous work (Xu et al., 2023; Yuan et al., 2024b), the
WoN strategy significantly improves the performance of the resulting DPO models at the cost of
additional annotations. The win rate against the SFT model is shown in Figure 11.

Table 11: Evaluation of DPO with the WoN strategy on AlpacaFarm using Mistral. The results of
N = 2, 128 are the average of three runs, while the rest are of a single run.

Preference Dataset Configuration

Method #Insts #Annots OASST Eurus OASST (w%) Eurus (w%) PairRM (w%)

SFT (Mistral) 0 0 1.901 878.48 50 50 50
Random (p = 0.9) |D| 2|D| 2.174 1058.78 59.71 57.10 55.54
WoN (N = 4) |D| 4|D| 2.315 1105.60 64.35 61.37 59.26
WoN (N = 8) |D| 8|D| 2.422 1225.22 66.09 67.20 62.73
WoN (N = 16) |D| 16|D| 2.454 1237.81 68.14 64.66 63.42
WoN (N = 32) |D| 32|D| 2.529 1246.53 70.56 66.09 64.51
WoN (N = 64) |D| 64|D| 2.470 1248.19 68.07 66.58 63.72
WoN (N = 128) |D| 128|D| 2.522 1262.77 70.12 67.31 64.17

2 4 8 16 32 64 128
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Figure 11: Evaluation of the DPO using the WoN strategy without limiting the annotation budget on
AlpacaFarm using Mistral. The Eurus reward model is used for evaluation. With more annotations,
WoN outperforms AEPO.
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G EVALUATION ON JCOMMONSENSEMORALITY

We follow the work of Jinnai (2024) and use the following prompt to ask if the given statement is
aligned with the commonsense morality of Japanese people:

以下の文章に対してそれが道徳的あるいは倫理的な誤りがあるかを判断
してください。 (Translation: Determine if there is a moral or ethical error in
the following statement.)

{question}

where we replace {question} with the statement in the dataset.

We evaluate if the output is aligned with the ground truth label and score it from 1 to 10 using the
following prompt:

Please act as an impartial judge and evaluate the quality of the response provided
by an AI assistant to the user question displayed below. The correct answer of the
problem is provided below. The response of the system has to be aligned with this
correct answer. Your evaluation should consider factors such as the helpfulness,
relevance, accuracy, depth, creativity, and level of detail of the response. Begin
your evaluation by providing a short explanation. Be as objective as possi-
ble. After providing your explanation, you must rate the response on a scale of
1 to 10 by strictly following this format: “[[rating]]”, for example: “Rating: [[5]]”.

[Question]
以下の文章に対してそれが道徳的あるいは倫理的な誤りがあるかを判断
してください。 (Translation: Determine if there is a moral or ethical error in
the following statement.)
{question}
[Correct Answer to the Question]
{label}
[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]

where we replace {question}, {label}, and {answer} with the question, the ground truth label, and
the response of the model for each output. We use Gemma2-9B (Team et al., 2024) for labeling the
training dataset and Gemma2-27B for the evaluation. All other experimental settings are the same
as in Section 4.

H ADDITIONAL RESULTS

H.1 REWARD SCORES

Tables 12 and 13 show the results of training Mistral on AlpacaFarm including the results of the
proxy reward model (OASST). The results of Mistral on Anthropic’s Helpfulness and Harmlessness
are shown in Tables 14, 15, 16, and 17. Table 18 is the result of training Dolly.

Interestingly, we observed that AEPO outperforms WoN with 64 times more annotations in An-
thropic’s datasets (Tables 14, 15, 16, and 17). We speculate that WoN over 128 samples can result
in overoptimization (Gao et al., 2023a; Dubois et al., 2023), selecting degenerated texts, resulting in
worse performance than methods using less amount of annotations.
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Table 12: Reward score of the AEPO on AlpacaFarm using Mistral. The best score is in bold, and
the second best is underlined. The mean and standard deviation of three runs are shown. Note that
OASST is used as a proxy reward model to annotate the preference of the training dataset.

Preference Dataset Configuration

Method #Insts #Annots OASST Eurus

SFT (Mistral) 0 0 1.901 878.48

Random (p = 0.8) |D| 2|D| 2.155 ± 0.010 1088.71 ± 17.90
Random (p = 0.9) |D| 2|D| 2.174 ± 0.009 1058.78 ± 10.60
Random (p = 1.0) |D| 2|D| 2.168 ± 0.007 1044.35 ± 0.98
WoN (N = 4) |D|/2 2|D| 2.217 ± 0.012 1076.31 ± 14.35
WoN (N = 8) |D|/4 2|D| 2.197 ± 0.005 1047.37 ± 9.94
WoN (N = 128) |D|/64 2|D| 1.926 ± 0.005 912.03 ± 1.25
Coreset |D| 2|D| 2.107 ± 0.011 1037.100 ± 11.31
Perplexity |D| 2|D| 2.187 ± 0.008 1051.52 ± 15.54
AEPO (λ = 0) |D| 2|D| 2.063 ± 0.009 999.03 ± 1.43
AEPO (λ = 0.5) |D| 2|D| 2.230 ± 0.011 1094.20 ± 13.70
AEPO (λ = 1.0) |D| 2|D| 2.222 ± 0.009 1104.97 ± 15.33
AEPO (λ = 2.0) |D| 2|D| 2.219 ± 0.010 1085.78 ± 9.72

WoN (N = 128) |D| 128|D| 2.522 ± 0.008 1262.77 ± 5.62

Table 13: Win rate against the SFT model (Mistral) on AlpacaFarm. The best score is in bold, and
the second best is underlined. The mean and standard deviation of three runs are shown. Note that
OASST is used as a proxy reward model to annotate the preference of the training dataset.

Preference Dataset Configuration

Method #Insts #Annots OASST (w%) Eurus (w%) PairRM (w%)

SFT (Mistral) 0 0 50 50 50

Random (p = 0.8) |D| 2|D| 59.86 ± 1.44 57.87 ± 0.78 56.20 ± 0.31
Random (p = 0.9) |D| 2|D| 59.71 ± 0.52 57.10 ± 0.66 55.54 ± 0.62
Random (p = 1.0) |D| 2|D| 59.32 ± 0.85 57.49 ± 0.24 56.17 ± 0.74
WoN (N = 4) |D|/2 2|D| 60.34 ± 1.09 58.19 ± 1.07 56.61 ± 0.24
WoN (N = 8) |D|/4 2|D| 60.64 ± 0.61 58.03 ± 0.56 56.00 ± 0.62
WoN (N = 128) |D|/64 2|D| 51.55 ± 0.53 52.88 ± 0.20 50.16 ± 0.16
Coreset |D| 2|D| 56.71 ± 0.93 57.67 ± 0.52 56.57 ± 0.20
Perplexity |D| 2|D| 60.05 ± 0.52 57.91 ± 1.05 54.23 ± 0.56
AEPO (λ = 0) |D| 2|D| 56.83 ± 0.49 55.26 ± 1.05 54.92 ± 0.16
AEPO (λ = 0.5) |D| 2|D| 59.23 ± 0.91 60.31 ± 0.16 56.42 ± 0.31
AEPO (λ = 1.0) |D| 2|D| 62.40 ± 0.22 60.29 ± 0.50 56.97 ± 0.24
AEPO (λ = 2.0) |D| 2|D| 59.71 ± 0.45 59.79 ± 0.95 57.36 ± 0.38

WoN (N = 128) |D| 128|D| 70.12 ± 0.56 67.31 ± 0.25 64.17 ± 0.66
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Table 14: Evaluation of AEPO on Anthropic’s Helpfulness dataset using Mistral. The mean and
standard deviation of three runs are shown. Note that OASST is used as a proxy reward model to
annotate the preference of the training dataset.

Preference Dataset Configuration

Method #Insts #Annots OASST Eurus

SFT (Mistral) 0 0 4.690 1311.75

Random (p = 0.9) |D| 2|D| 5.182 ± 0.017 1570.70 ± 14.68
WoN (N = 4) |D|/2 2|D| 5.131 ± 0.021 1566.81 ± 11.38
WoN (N = 8) |D|/4 2|D| 5.170 ± 0.008 1609.48 ± 4.32
AEPO (λ = 0.5) |D| 2|D| 5.255 ± 0.018 1702.30 ± 9.405
AEPO (λ = 1.0) |D| 2|D| 5.177 ± 0.008 1582.73 ± 12.53
AEPO (λ = 2.0) |D| 2|D| 5.219 ± 0.011 1599.03 ± 18.620

WoN (N = 128) |D| 128|D| 5.186 ± 0.007 1648.45 ± 7.56

Table 15: Win rate against the SFT model on Anthropic’s Helpfulness dataset. The mean and
standard deviation of three runs are shown. Note that OASST is used as a proxy reward model to
annotate the preference of the training dataset.

Preference Dataset Configuration

Method #Insts #Annots OASST (w%) Eurus (w%) PairRM (w%)

SFT (Mistral) 0 0 50 50 50

Random (p = 0.9) |D| 2|D| 66.02 ± 0.65 61.48 ± 0.36 60.67 ± 0.81
WoN (N = 4) |D|/2 2|D| 64.31 ± 0.84 62.13 ± 0.48 59.71 ± 0.27
WoN (N = 8) |D|/4 2|D| 66.39 ± 0.14 63.04 ± 0.43 60.53 ± 0.30
AEPO (λ = 0.5) |D| 2|D| 68.02 ± 1.04 67.99 ± 0.52 61.78 ± 0.26
AEPO (λ = 1.0) |D| 2|D| 66.81 ± 0.36 62.06 ± 0.50 59.50 ± 0.31
AEPO (λ = 2.0) |D| 2|D| 65.67 ± 0.26 63.77 ± 0.90 59.49 ± 0.29

WoN (N = 128) |D| 128|D| 66.06 ± 0.29 65.31 ± 0.32 61.40 ± 0.15

Table 16: Evaluation of AEPO on Anthropic’s Harmlessness dataset using Mistral. The mean and
standard deviation of three runs are shown. Note that OASST is used as a proxy reward model to
annotate the preference of the training dataset.

Preference Dataset Configuration

Method #Insts #Annots OASST Eurus

SFT (Mistral) 0 0 -1.291 -43.87

Random (p = 0.9) |D| 2|D| -0.024 ± 0.003 433.93 ± 5.00
WoN (N = 4) |D|/2 2|D| 0.001 ± 0.021 446.87 ± 4.66
WoN (N = 8) |D|/4 2|D| -0.376 ± 0.019 313.01 ± 10.18
AEPO (λ = 0.5) |D| 2|D| 0.632 ± 0.031 779.87 ± 7.61
AEPO (λ = 1.0) |D| 2|D| 0.121 ± 0.002 502.79 ± 14.87
AEPO (λ = 2.0) |D| 2|D| 0.665 ± 0.023 685.82 ± 15.55

WoN (N = 128) |D| 128|D| 0.071 ± 0.010 530.02 ± 3.65

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 17: Win rate against the SFT model (Mistral) on Anthropic’s Harmlessness dataset. The mean
and standard deviation of three runs are shown. Note that OASST is used as a proxy reward model
to annotate the preference of the training dataset.

Preference Dataset Configuration

Method #Insts #Annots OASST (w%) Eurus (w%) PairRM (w%)

SFT (Mistral) 0 0 50 50 50

DPO (p = 0.9) |D| 2|D| 71.10 ± 0.26 68.30 ± 0.09 67.51 ± 0.33
WoN (N = 4) |D|/2 2|D| 72.45 ± 0.34 69.43 ± 0.15 67.71 ± 0.93
WoN (N = 8) |D|/4 2|D| 66.97 ± 0.43 64.21 ± 0.51 64.53 ± 0.34
AEPO (λ = 0.5) |D| 2|D| 79.47 ± 0.47 80.13 ± 0.46 69.72 ± 0.59
AEPO (λ = 1.0) |D| 2|D| 73.79 ± 0.13 71.62 ± 0.71 68.76 ± 0.09
AEPO (λ = 2.0) |D| 2|D| 80.55 ± 0.09 77.65 ± 0.62 67.87 ± 0.85

WoN (N = 128) |D| 128|D| 72.72 ± 0.25 72.54 ± 0.17 68.27 ± 0.32

Table 18: Evaluation of preference dataset configuration strategies for off-policy learning. We gen-
erate responses using Mistral and use the generated responses to train Dolly. LoRA hyperparameters
are set r = 32 and α = r/4. Note that OASST is used as a proxy reward model to annotate the
preference of the training dataset.

Preference Dataset Configuration

Method #Insts #Annots OASST Eurus OASST (w%) Eurus (w%) PairRM (w%)

SFT (Dolly) 0 0 -1.837 -1275.06 50 50 50

Random (p = 0.8) |D| 2|D| -1.672 -1206.83 55.53 52.11 53.19
Random (p = 0.9) |D| 2|D| -1.682 -1213.65 54.41 51.97 54.08
Random (p = 1.0) |D| 2|D| -1.685 -1232.98 52.42 51.08 52.19
WoN (N = 4) |D|/2 2|D| -1.664 -1221.01 53.17 51.71 53.80
WoN (N = 8) |D|/4 2|D| -1.700 -1233.16 52.92 50.99 53.00
WoN (N = 128) |D|/64 2|D| -1.794 -1255.30 50.87 49.72 49.35
AEPO (λ = 0) |D| 2|D| -1.786 -1248.58 51.12 50.03 50.54
AEPO (λ = 0.5) |D| 2|D| -1.609 -1208.81 55.78 52.34 53.75
AEPO (λ = 1.0) |D| 2|D| -1.555 -1177.69 55.40 53.95 53.92
AEPO (λ = 2.0) |D| 2|D| -1.590 -1207.26 56.89 52.53 52.89

WoN (N = 128) |D| 128|D| -1.409 -1140.61 60.50 56.02 56.44
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H.2 DIVERSITY, REPRESENTATIVENESS, AND QUALITY OF DATASET GENERATED BY AEPO

Figures 12, 13, and 14 show the diversity (pairwise sentence BERT and distinct-n) and represen-
tativeness of the preference dataset DAE generated by AEPO on AlpacaFarm and hh-rlhf datasets.
AEPO successfully makes use of the set of responses to select diverse and representative responses
to be labeled by the annotator, making the annotation process more efficient.

Figures 15, 16, and 17 show the diversity (distinct-n) and quality (mean reward) tradeoff. AEPO
successfully improves the diverse-quality tradeoff with a larger number of response texts.
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Figure 12: Diversity (↓Sentence BERT and ↑Distinct-n) and representativeness of the responses of
the preference datasets DAE generated by AEPO with different numbers of input responses. AEPO
successfully generates datasets with better diversity-representativeness tradeoffs.
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Figure 13: Diversity (↓Sentence BERT and ↑Distinct-n) and representativeness of the responses
of the preference datasets DAE generated by AEPO with different numbers of input responses on
Anthropic’s Helpfulness dataset.
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Figure 14: Diversity (↓Sentence BERT and ↑Distinct-n) and representativeness of the responses
of the preference datasets DAE generated by AEPO with different numbers of input responses on
Anthropic’s Harmlessness dataset.
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Figure 15: Diversity (↓Sentence BERT and ↑Distinct-n) and quality (↑mean reward) of the responses
of the preference datasets DAE generated by AEPO with different numbers of input responses.
AEPO successfully generates datasets with better diversity-quality tradeoffs.

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25 5.30
Mean Reward (OASST)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Pa
irw

is
e-

Se
nt

BE
R

T

Random (N = 2)
AEPO (N = 4)
AEPO (N = 8)
AEPO (N = 16)
AEPO (N = 32)
AEPO (N = 64)
AEPO (N = 128)

(a) ↓Sentence BERT

4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25 5.30
Mean Reward (OASST)

0.490

0.495

0.500

0.505

0.510

0.515

0.520

0.525

0.530

di
st

in
ct

-1
Random (N = 2)
AEPO (N = 4)
AEPO (N = 8)
AEPO (N = 16)
AEPO (N = 32)
AEPO (N = 64)
AEPO (N = 128)

(b) ↑Distinct-1

4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25 5.30
Mean Reward (OASST)

0.830

0.835

0.840

0.845

0.850

0.855

0.860

0.865

di
st

in
ct

-2

Random (N = 2)
AEPO (N = 4)
AEPO (N = 8)
AEPO (N = 16)
AEPO (N = 32)
AEPO (N = 64)
AEPO (N = 128)

(c) ↑Distinct-2

4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25 5.30
Mean Reward (OASST)

0.920

0.925

0.930

0.935

0.940

0.945

di
st

in
ct

-3

Random (N = 2)
AEPO (N = 4)
AEPO (N = 8)
AEPO (N = 16)
AEPO (N = 32)
AEPO (N = 64)
AEPO (N = 128)

(d) ↑Distinct-3

Figure 16: Diversity (↓Sentence BERT and ↑Distinct-n) and quality (↑mean reward) of the responses
of the preference datasets DAE generated by AEPO with different numbers of input responses on
Anthropic’s Helpfulness dataset.
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Figure 17: Diversity (↓Sentence BERT and ↑Distinct-n) and quality (↑mean reward) of the responses
of the preference datasets DAE generated by AEPO with different numbers of input responses on
Anthropic’s Harmlessness dataset.
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I LIMITATIONS

Although our method is motivated by the situation where the annotation is needed to align the lan-
guage model, the majority of our experiments (AlpacaFarm and Anthropic’s hh-rlhf) are conducted
using a proxy reward model to annotate preference on training datasets instead of using human an-
notation. We use human annotation for the JCM dataset but use an LLM to automatically evaluate
the agreement of the response text with the human annotation. Manual human annotation would be
desirable for future work.

Our focus is on developing a method to generate a diverse and representative set of responses. The
preparation of diverse and representative instructions is also an important task to generate an efficient
dataset (Sanh et al., 2022; Ding et al., 2023; Cui et al., 2023; Liu et al., 2024a; Xu et al., 2024a).
Our method is orthogonal to methods for generating high quality instructions and can be combined.
Comparing and combining AEPO with methods for generating diverse instructions is future work.

All experiments are performed using LoRA (Hu et al., 2022). The evaluation of AEPO with full
parameter fine-tuning is future work. Our experiments are limited to the evaluation on DPO. Eval-
uating AEPO on variants of DPO (Amini et al., 2024; Gheshlaghi Azar et al., 2024; Tang et al.,
2024b; Morimura et al., 2024; Zhang et al., 2024b) and other preference optimization algorithms
(Ouyang et al., 2022; Zhao et al., 2023; Ahmadian et al., 2024) is future work.

The performance of AEPO depends on the choice of the hyperparameter λ. We observe that λ = 1.0
is a good choice throughout the experiments, but developing a strategy to find an effective λ for a
given dataset is future work.

J COMPUTATIONAL RESOURCES

Text generation and DPO training run on an instance with an NVIDIA A100 GPU with 80 GB
VRAM, 16 CPU cores, and 48 GB memory. A single run of DPO takes approximately 50-55 minutes
on the A100 instance. AEPO runs on an NVIDIA A2 GPU with 8 GB VRAM, 8 CPU cores, and
24 GB memory. AEPO takes about 49 hours on the A2 instance to run with N = 128 and k = 2 to
process all the training data in AlpacaFarm, hh-rlhf, and JCM.

All the experiments are run using Huggingface’s Transformers library (Wolf et al., 2020) and Trans-
former Reinforcement Learning library (von Werra et al., 2020).

K REPRODUCIBILITY STATEMENT

All the datasets and models used in the experiments are publically accessible (Table 19) except for
GPT-4. Our code will be available on acceptance as an open source.

L IMPACT STATEMENT

We believe that this work will have a positive impact by encouraging work on AI systems that work
better with a diverse set of people. LLMs would be more useful if they could adapt to the preferences
of diverse groups of people, even if little preference annotation is available from their communities.

We foresee our method being useful for personalizing LLMs (Greene et al., 2023; Jang et al., 2023;
Kirk et al., 2023). Personalized LLMs could have far-reaching benefits, but also a number of worri-
some risks, such as the propagation of polarized views. We refer to Kirk et al. (2023) for a discussion
of potential risks and countermeasures for personalized LLMs.
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Table 19: List of datasets and models used in the experiments.
Name Reference

AlpacaFarm Dubois et al. (2023) https://huggingface.co/
datasets/tatsu-lab/alpaca_farm

Anthropic’s hh-rlhf Bai et al. (2022) https://huggingface.co/datasets/
Anthropic/hh-rlhf

JCommonsenseMorality Takeshita et al. (2023) https://github.com/
Language-Media-Lab/commonsense-moral-ja

mistral-7b-sft-beta (Mistral) Jiang et al. (2023a); Tunstall et al. (2024)
https://huggingface.co/HuggingFaceH4/
mistral-7b-sft-beta

dolly-v2-3b (Dolly) Conover et al. (2023) https://huggingface.co/
databricks/dolly-v2-3b

calm2-7b-chat (CALM2) https://huggingface.co/cyberagent/
calm2-7b-chat

OASST Köpf et al. (2023) https://
huggingface.co/OpenAssistant/
reward-model-deberta-v3-large-v2

PairRM Jiang et al. (2023b) https://huggingface.co/
llm-blender/PairRM

Eurus Yuan et al. (2024a) https://huggingface.co/
openbmb/Eurus-RM-7b

Gemma2-9B Team et al. (2024) https://huggingface.co/google/
gemma-2-9b-it

Gemma2-27B Team et al. (2024) https://huggingface.co/google/
gemma-2-27b-it

MPNet Song et al. (2020) https://huggingface.co/
sentence-transformers/all-mpnet-base-v2
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