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Abstract

Large language models (LLMs) exhibit intricate capabilities, often achieving high1

performance on tasks they were not explicitly trained for. The precise nature2

of LLM capabilities is often unclear, with different prompts eliciting different3

capabilities, especially when used with in-context learning (ICL). We propose a4

“Cognitive Interpretability” framework that enables us to analyze ICL dynamics to5

understand latent concepts underlying LLMs’ behavioral patterns. This provides6

a more nuanced understanding than posthoc evaluation benchmarks, but does not7

require observing model internals as a mechanistic interpretation would require.8

Inspired by the cognitive science of human randomness perception, we use random9

binary sequences as context and study dynamics of ICL by manipulating properties10

of context data, such as sequence length. In the latest GPT-3.5+ models, we find11

emergent abilities to generate pseudo-random numbers and learn basic formal12

languages, with striking ICL dynamics where model outputs transition sharply13

from pseudo-random behaviors to deterministic repetition.14

1 Introduction15

Large language models (LLMs), especially when prompted via in-context learning (ICL), demonstrate16

complex, emergent capabilities [1–12]. Specifically, ICL yields task-specific behaviors in LLMs17

via use of different prompts (or contexts) [1, 5, 13–20]. Although no weight updates occur in ICL,18

different input contexts can activate, or re-weight, different latent algorithms in an LLM, analogous19

to how traditional learning methods such as gradient descent use training data to re-weight model20

parameters to learn representations [21–26]. Two seemingly equivalent prompts can, however, evoke21

very different behaviors in LLMs [18]. Our central motivation is to interpret emergent capabilities and22

latent concepts underlying complex behaviors in LLMs by analyzing in-context learning behavioral23

dynamics, without directly observing hidden unit activations or re-training models on varied datasets.24

Inspired by computational approaches to human cognition [27–31], we model and interpret latent25

concepts evoked in LLMs by different contexts, without observing or probing model internals.26

This approach, which we call Cognitive Interpretability, is a middle ground between shallow27

test-set evaluation benchmarks on one hand [17, 32–40] and mechanistic neuron- and circuit-level28

understanding of pre-trained models’ capabilities on the other [12, 41–53]. Computational cognitive29

scientists have related algorithmic information theory to human cognition, where mental concepts30

are viewed as programs, and cognitive hypothesis search over concepts is viewed as Bayesian31

inference [30, 54–58]. In this vein, Griffiths and Tenenbaum [28] model subjective randomness in32

human cognition as probabilistic program induction, where a person must search over a space of33

non-random programs in order to answer the question, “was this sequence generated by a random34

process?” We argue that ICL can similarly be seen as under-specified program induction, where35

there is no single “correct” answer; instead, an LLM should appropriately re-weight latent algorithms.36

The domain of random sequences reflects this framing, in contrast to other behavioral evaluation37

methodologies, in that there is no correct answer to a random number generation or judgment task38

(Fig. 1). If the correct behavior is to match a target random process, then the right way to respond to39
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Task: Generate a sequence of 1000 random number samples from a fair coin:
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def simpleSequence:
print(H) 
for i in range(7): 

print(T)

def complexSequence:
print(T)
print(T)
print(H)
print(T)
print(H)
print(H)
print(T)
print(H)

def randomSequence:
for i in range(8): 

f = random.choice(H,T) 
print(f)

Hypothesis SpaceProblem

Q. Which sequence is 
more random?

TTHTHHTH

HTTTTTTT

vs.

TTHTHHTH HTTTTTTT

p(h |x) p(h |x)

simple

complex

random

Posterior Inference

Figure 1: Overview of our modeling framework. (Left) Given a pre-trained LLM, we systematically
vary input context prompts x. LLM outputs y vary as a function of x, based on some unknown
latent concept space embedded in the LLM. With very little context (x = 0), GPT-3.5+ generates
subjectively random sequences, whereas with adequate context matching a simple formal language
(x = 001001001001), behavior becomes deterministic ((001)n). (Right) Deciding whether a
sequence is random can be viewed as search for a simple program that could generate that sequence.
HTTTTTTT is described with a short program simpleSequence with higher p(h) according to a
simplicity prior, compared to TTHTHHTH and complexSequence. Both sequences can be generated
by randomSequence, with lower likelihood p(x|h)

a prompt Generate N flips from a fair coin is at best a uniform distribution over the tokens Heads and40

Tails, instead of a specific sequence, or a more complex algorithm that matches human behavior.41

2 Background42

Bayesian Inference and In-Context Learning A key methodological tool of cognitive modeling,43

recent work has also framed in-context learning as Bayesian inference over models [19, 59, 60].44

Specifically, the posterior predictive distribution p(y|x) in these works describes how an LLM45

produces output tokens y, given the context, or prompt, x. The key assumption is that a context x46

will activate latent concepts c within a model according to their posterior probability p(c|x), which47

the model marginalizes over to produce the next token y by sampling from the posterior predictive48

distribution: p(y|x) =
∫
c∈C p(y|c) p(c|x). This model selection takes place in network activation49

dynamics, without changing its weights. In our experiments, we assume a hypothesis space H50

that approximates the latent space of LLM concepts C used when predicting the next token, i.e.,51

p(y|x) =
∑

h∈H p(y|h) p(h|x), where
∑

h can be changed to maxh to represent deterministic52

greedy decoding with an LLM temperature parameter of 0. We specifically focus on Bernoulli53

processes, regular languages, Markov chains, and a simple memory-constrained probabilistic model54

as candidates for the hypothesis space H for estimating LLM concepts in random binary sequences.55

We use a subset of regular languages (x)n, where (x) is a short sequence of values, e.g., (010)n,56

where 0 maps to Heads and 1 to Tails.57

Algorithmic and Subjective Randomness Cognitive scientists studying Subjective Randomness58

model how people perceive randomness, or generate data that is subjectively random but algorithmi-59

cally pseudo-random [29, 61–64]. In a bias termed the Gambler’s Fallacy, people reliably perceive60

binary sequences with long streaks of one value as less random, and judge binary sequences with61

higher-than-chance alternation rates as being “more random” than truly random sequences [65, 66].62

One way to study subjective randomness is to ask people whether a given data sequence was more63

likely to be generated by a Random process or a Non-Random process (Fig. 1). While the posterior64

distribution of all non-random processes includes every possible computable function, estimating this65

distribution can be simplified to finding the single most probable algorithm to approximate the full66

hypothesis space. If the hypotheses are data-generating programs, a natural prior p(h) is to assign67

higher probabilities to programs with shorter description lengths, or lower complexity. This opti-68

mization problem is equivalent to computing the Kolmogorov complexity of a sequence K(x) [67]69

and has motivated the use of “simplicity priors” in a number of domains in computational cognitive70

science [30, 54, 56]. Following previous work [28, 29], here we define subjective randomness of71

a sequence as the ratio of likelihood of that sequence under a random versus non-random model,72

i.e., randomness(x) = logP (x|random) − logP (x|non-random). The non-random likelihood73

p(x|non-random) = 2−K(x) denotes the probability of the minimal description length program that74

generates x, equivalent to Bayesian model selection: P (x|non-random) = maxh∈H p(x|h) p(h). In75

this work, we study a small subset of H, which includes formal languages and probabilistic models76

inspired by psychological models of human concept learning and subjective randomness [29, 66, 68].77
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Figure 2: GPT-3.5 generates pseudo-random binary sequences that deviate from a Bernoulli
process. (Left) Running averages of p(Tails) for flips generated by each model. Compared to a
Bernoulli process, sequences generated by GPT and our Window Average model stay closer to the
mean. (Right) GPT-3.5 shows a Gambler’s Fallacy bias, avoiding long runs of the same value in a
row.

3 Experiments78

Randomness Generation and Judgment Tasks In order to assess text generation dynamics and79

in-context concept learning, we evaluate LLMs on random sequence Generation tasks, analyzing80

responses according to simple interpretable models of Subjective Randomness and Formal Language81

Learning. In these tasks, the model generates a sequence y of binary values, or flips, comma-separated82

sequences of Heads or Tails tokens. We also analyze a smaller set of randomness Judgment tasks,83

where the prompt includes a sequence of flips, and the model must respond whether the sequence was84

generated by Random or Non-Random process. In both cases, y is a distribution over tokens with two85

possible values: Random or Non in Judgment tasks, indicating whether the sequence was generated86

by a random process with no correlation, or some non-random algorithm. We analyze dynamics in87

LLM-generated sequences y simulating a weighted coin with specified p(Tails), with |x| ≈ 0.88

Subjective Randomness Models We compare LLM-generated sequences to a ground truth “ran-89

dom” Bernoulli distribution with the same mean (µ = yLLM), to a simple memory-constrained90

probabilistic model, and to Markov chains fit to model-generated data y. Hahn and Warren [68]91

theorize that the Gambler’s Fallacy emerges as a consequence of human memory limitations, where92

‘seeming biases reflect the subjective experience of a finite data stream for an agent with a limited short-93

term memory capacity’. We formalize this as a simple Window Average model, which tends towards94

a specific probability p as a function of the last w flips: p(y|x) = max(0,min(1, 2p− xt−w...t)).95

Sub-Sequence Memorization and Complexity Metrics Bender et al. [69] raise the question96

of whether LLMs are ‘stochastic parrots’ that simply copy data from the training set. To measure97

memorization, we look at the distribution of unique sub-sequences in y. If an LLM is repeating98

common patterns across outputs, potentially memorized from the training data, this should be99

apparent in the distribution over length K sub-sequences. Since there are deep theoretical connections100

between complexity and randomness [70, 71], we also consider the complexity of GPT-produced101

sequences. Compression is a metric of information content, and thus of redundancy over irreducible102

complexity [72, 73], and neural language models have been shown to prefer generating low complexity103

sequences [21]. As approximations of sequence complexity, we evaluate the distribution of Gzip-104

compressed file sizes [74] and inter-sequence Levenshtein distances [75].105

Formal Language Learning Metrics In our Formal Language Learning analysis, x is a subset of106

regular expression repetitions of short token sequences such as x ∈ (011)n, where longer sequences107

x correspond to larger n. This enables us to systematically investigate in-context learning of formal108

languages, as |x| corresponds to the amount of data for inducing the correct program (e.g. (011)n) out109

of the space of possible algorithms. In Randomness Judgment tasks, we assess formal concept learning110

by the dynamics of p(y = random|x = C |x|) as a function of |x|. In Randomness Generation tasks,111

we asses concept learning according to the language model predictive distribution p(y|x) over output112

sequences, inferred from next-token generation data: p(y0...T |x) = p(y0|x)
∏T

t p(yt|y0,...t−1, x).113

Given a space of possible outputs y with length d, y ∈ {0, 1}d, we estimate p(y|x) by enumerating114

all y up to some depth d, and computing p̂(yd|x, y1,...,d−1) =
1
N

∑N
i (yd == 1)(i) as the fraction115

of N responses that are “Tails” (or equivalently, by using token-level probabilities directly). We116

estimate the predictive probability p(yt ∈ C|x, y0...,t−1) assigned to a given regular language by117

computing the total probability mass for all trajectories in y0...d that exactly match C. For example,118

with C = (011)n, there will be 3 trajectories y0...d that exactly match C, out of 2d possible.119
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Figure 3: Sharp transitions in predictive distributions for Randomness Judgment and Gen-
eration (Left) In Randomness Judgment tasks, the predictive distribution p(y = random|x)
for text-davinci-003 transitions from high confidence in x being generated by a random pro-
cess, to high confidence in a non-random algorithm (Right) in Generation tasks, the predictive
p(y = Tails|x) transitions from pseudo-randomness to deterministic repetition of a particular
concept; text-davinci-003 is solid, gpt-3.5-turbo-instruct dashed.

4 Results120

Subjectively Random Sequence Generation121

In ‘InstructGPT’ models — text-davinci-003, ChatGPT (gpt-3.5-turbo,122

gpt-3.5-turbo-instruct) and GPT-4 — we find an emergent behavior of generating123

seemingly random binary sequences (Fig. 2). This behavior is controllable, where different p(Tails)124

values leads to different means of generated sequences y. However, the distribution of sequence125

means, as well as the distribution of the length of the longest runs for each sequence, deviate126

significantly from a Bernoulli distribution centered at y, analogous to the Gambler’s Fallacy bias127

in humans. Our Window Average model with a window size of w = 5 partly explains both biases,128

matching GPT-generated sequences more closely than a Bernoulli distribution. Our cross-LLM129

analysis shows that text-davinci-003 is controllable with P (Tails), with a bias towards130

y = .50 and higher variance in sequence means (though lower variance than a true Bernoulli131

process). ChatGPT (gpt-3.5-turbo-0301 and 0613) are similar for P (Tails) < 50%, but132

behave erratically with higher P (Tails), with most y repeating ‘Tails’. GPT-4 (0301, 0613) shows133

stable, controllable subjective randomness behavior, with lower variances than text-davinci-003.134

Earlier models do not show subjective randomness behavior. Also see Appendix.135

Sub-Sequence Memorization and Complexity We find significant differences between the136

distributions of sub-sequences for GPT-3.5 -generated sequences and sequences sampled from a137

Bernoulli distribution (see Appendix for figures). This difference is partly accounted for with a138

Window Average model with a window size w = 5, although GPT repeats certain longer sub-139

sequences, for example length-20 sub-sequences, that are far longer than 5. However, the majority140

of sub-sequences have very low frequency, and though further experiments would be required141

to conclude that all sub-sequences are not memorized from training data, it seems unlikely that142

these were in the training set, since we find thousands of unique length-k (with varying k) sub-143

sequences generated at various values of P (Tails). This indicates that GPT-3.5 combines dynamic,144

subjectively random sequence generation with distribution-matched memorization. Across three145

metrics of sequence complexity — number unique sub-sequences, Gzip file size, and inter-sequence146

Levenshtein distance — we find that GPT-3.5+ models, with the exception of ChatGPT, generate147

low complexity sequences, showing that structure is repeated across sequences and supporting prior148

work [21, 73].149

4.1 Distinguishing Formal Languages from Randomness150

GPT-3.5 sharply transitions between behavioral patterns, from generating pseudo-random values to151

generating non-random sequences that perfectly match the formal language (Fig. 3). We observe152

a consistent pattern of formal language learning in GPT-3.5 generating random sequences where153

predictions p(y|x) of depth d ≥ 4 are initially random with small |x|, and have low p(y ∈ C|x)154

where C is a given concept. This follows whether the prompt describes the process as samples155

from “a weighted coin” or “a non-random-algorithm”. We also find sharp phase changes in GPT-3.5156

behavioral patterns in Randomness Judgment tasks across 9 binary concepts (Fig. 3). These follow157

a stable pattern of being highly confident in that the sequence is Random (high p(y = random|x)158

when x is low, up to some threshold of context at which point it rapidly transitions to being highly159

confident in the process being non-random. Transition points vary between concepts, but the pattern160

is similar across concepts (see additional figures in Appendix).161
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