KVzip: Query-Agnostic KV Cache Compression
with Context Reconstruction

Jang-Hyun Kim'?, Jinuk Kim'2, Sangwoo Kwon', Jae W. Lee',
Sangdoo Yun®, Hyun Oh Song*!?

1Seoul National University, 2Neural Processing Research Center, 3NAVER AI Lab
{blue378, hyunoh}@snu.ac.kr

https://github.com/snu-mllab/KVzip

Abstract

Transformer-based large language models (LLMs) cache context as key-value (KV)
pairs during inference. As context length grows, KV cache sizes expand, leading to
substantial memory overhead and increased attention latency. This paper introduces
KVzip, a query-agnostic KV cache eviction method enabling effective reuse of
compressed KV caches across diverse queries. KVzip quantifies the importance of
a KV pair using the underlying LLM to reconstruct original contexts from cached
KV pairs, subsequently evicting pairs with lower importance. Extensive empirical
evaluations demonstrate that KVzip reduces KV cache size by 3-4x and FlashAt-
tention decoding latency by approximately 2 x, with negligible performance loss
in question-answering, retrieval, reasoning, and code comprehension tasks. Eval-
uations include various models such as LLaMA3.1, Qwen2.5, and Gemma3, with
context lengths reaching up to 170K tokens. KVzip significantly outperforms exist-
ing query-aware KV eviction methods, which suffer from performance degradation
even at a 90% cache budget ratio under multi-query scenarios.

1 Introduction

Transformer-based LLMs with long-context capabilities have significantly enhanced real-world
applications, including long-document analysis and personalized conversational agents [1, 21, 49].
However, increasing context lengths substantially raises both memory consumption for KV caching
and computational costs associated with attention mechanisms [31]. For example, caching 120K
tokens in Qwen2.5-14B with FP16 precision requires approximately 33 GB memory, surpassing the
model’s 28 GB parameter storage at equivalent precision [54].

Recent approaches primarily target reducing KV cache memory size while preserving inference
accuracy. These methods include merging the attention heads [3], compressing KV pairs into
shorter sequences [46], and using sliding-window techniques to limit context windows [24, 52, 53].
Other studies exploit attention sparsity for dynamic KV eviction during decoding [4, 38, 60] and
prefill stages [6, 33]. Existing eviction methods typically employ query-aware KV-pair importance
scoring computed online during inference [6, 33, 60], selectively retaining KV pairs most relevant to
immediate queries (Figure 1a,b). While effective in single-query scenarios, these methods exhibit
significant performance degradation in multi-query settings, as the retained KV pairs predominantly
overfit to initial queries [35]. We elaborate on these limitations in Section 2.2.

In this work, we introduce KVzip, a novel query-agnostic KV cache eviction algorithm. KVzip
optimizes a reusable compressed KV cache for a given context, enabling efficient inference across
diverse future queries (Figure 1c). Our approach particularly benefits scenarios where KV caches
are prepared offline, such as personalized conversational agents retaining user instructions and chat
histories [8, 34], or enterprise systems utilizing precomputed document KV caches for retrieval [7].

*Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/snu-mllab/KVzip

(a) Query-aware KV eviction (b) Reusing query-dependent cache (c) Proposed framework

prefill prefill

decode

| |
| |
+evict decode ! +evict decode ! fill Q A
CTX @ —KVi— A1 ' CTX KV, Ay prefll A2Q — A
. . TX —> KV
. . : \ Q2 - > A2 : C & :
CTX Q, —>KVa ——A, | : ‘ Q. — Ax
- ‘ : v One-time prefill. Qn — A, : v One-time Preﬁll.
X Repetitive prefill. v Good performance. X Low performance. v Good performance.

Figure 1: Overview of KV eviction strategies in multi-query scenarios. An LLM processes input
context (CTX) and queries (Q);) to generate answers (A;). Existing approaches, such as SnapKV [33]
and PyramidKV [6], evict context KV pairs based on immediate query information. (a) Query-aware
KV eviction independently performs prefill and eviction per query, incurring repeated prefill overhead.
(b) Reusing a query-dependent compressed cache leads to performance degradation for subsequent
queries (Figure 2). (c) The proposed query-agnostic KV eviction framework compresses the KV
cache only once during the initial prefill, enabling efficient reuse across diverse queries without
repeated prefill or performance loss. Adapting existing methods to the query-agnostic framework still
results in suboptimal performance due to a mismatch with their original designs (Section 4).

Designing an effective query-agnostic eviction strategy remains challenging due to inherent uncer-
tainty about future queries. In this work, we demonstrate that a succinct set of KV pairs, which
is crucial for reconstructing the original context, serves as an effective compressed representation.
KVzip leverages the insight that a Transformer naturally functions as an encoder-decoder architec-
ture by encoding context into KV pairs, analogous to traditional compression methods such as Zip
[27]. Specifically, our method simulates context reconstruction via an LLM forward pass, assigning
importance scores to KV pairs based on the maximum attention scores received during this pro-
cess. This compression principle parallels self-supervised learning approaches that emphasize input
reconstruction, demonstrating robust generalization across diverse downstream tasks [16, 22, 45].

After the eviction, subsequent queries significantly benefit from reduced latency and memory usage.
Specifically, KVzip achieves approximately 2x latency reduction in FlashAttention [15] and 3-4x
reduction in KV cache size during decoding with negligible performance loss on diverse queries.
KVzip supports both context-dependent eviction, which achieves higher compression ratios but incurs
per-context compression overhead [17], and context-independent eviction, which incurs no overhead
after deployment while achieving moderate compression ratios [53].

Section 4 empirically demonstrates KVzip’s robustness and effectiveness on multiple benchmarks,
including document question-answering, mathematical reasoning, retrieval, and code comprehension
tasks, with contexts up to 170K tokens. Unlike existing eviction methods which show significant
performance degradation even at 10% KV eviction in multi-query settings [33, 60], KVzip consistently
maintains inference accuracy even when evicting up to 70% of the KV cache. Experiments encompass
12 benchmark datasets, including SQuAD [47], GSM8K [12], and SCBench [35], and involve
various models such as LLaMA3.1 [21], Qwen2.5 [54], and Gemma3 [49], ranging from 3B to
14B parameters. Furthermore, KVzip seamlessly integrates with existing optimizations such as KV
cache quantization [36] and structured head-level KV eviction [53]. Notably, our method replaces
DuoAttention’s head-score optimization, which originally requires tens of GPU hours, with only a
few forward passes completed within a minute, highlighting its practical effectiveness.

2 Preliminary

2.1 Notation and Problem Formulation

Consider the text domain 7 and an autoregressive Transformer-based LLM fi : 7 — 7T that
generates sequences via greedy decoding [44, 50]. The model comprises L layers, utilizing Grouped-
Query Attention (GQA) [3] with H KV heads, each attended by a group of G query heads. During
inference, fiy caches hidden representations as KV pairs to enhance computational efficiency [31].

Given an input context ¢ € T tokenized into n. tokens, the prefill stage generates a cache containing
L x H x n. KV pairs, denoted as KV, [2]. Conditioned generation using the cache is denoted as
fim(- | KV.). Our objective is to derive a compact pruned cache KV eyictea C KV, satisfying

Jim(q | KVe evicied) = fim(q | KVe), Vg e T. (D

2.2 Analysis of Existing Approaches

Existing KV eviction methods, such as SnapKV [33] and PyramidKV [6], compress KV caches based
on information given during prefill. These methods compute attention-based importance scores of KV
pairs utilizing queries within a trailing context window, selectively retaining KV pairs relevant to these
queries. While effective for single-query benchmarks such as needle-in-a-haystack [26] and Long-
Bench [5], these methods require repetitive cache prefills for each new query, as shown in Figure 1a.

Alternatively, reusing a previously compressed KV~ - 100 ,
cache for subsequent queries can reduce the computation < 30

overhead, as depicted in Figure 1b. However, existing §‘ e SnapKV-prefill
methods typically retain context KV pairs that are rel- 3 60 —— SnapK V-reuse
evant only to the initial query and do not generalize to 2 404" (... [T KVelp (ours)
different queries. Figure 2 illustrates this issue using 0.2 0.4 0.6 0.8 1.0
the SQUAD multi-QA dataset [47]. SnapKV attains KV cache budget ratio

high accuracy when executing prefill and compression gjgure 2: Accuracy on SQUAD using
individually per query, but performance significantly [1 aMA3.1-8B. We evaluate SnapKV with
declines when reusing the cache compressed from the repetitive per-query prefill, reuse of the
initial query. This shortcoming motivates our query- compressed cache from the first question
agnostic KV eviction strategy, enabling effective reuse o each data sample, and KVzip with single
of a compressed cache across multiple queries. prefill and query-agnostic compression.

3 Method

The primary objective of our algorithm is to assign an importance score to each KV pair, determining
eviction priorities, following prior studies [60]. Given a context length n., KVzip assigns importance
scores S € REXHXne g KV pairs in KV, subsequently evicting pairs with the lowest scores. Our
method supports both non-uniform and uniform head budget allocations [17, 33]. KVzip further
accommodates a head-level eviction strategy by computing head-level scores using the maximum
pair-level scores across the sequence dimension, n. [53]. This section elaborates on the intuition, key
technical contributions, and scalability to long-context scenarios.

3.1 Intuition

Context
. .)) KVC) KVc,evic&ed TdCCOdC
To effectively answer arbitrary queries, the compressed fint prefill eviet B4 fim
cache KV, ¢viciea and fim should retain complete con- 4 HH
textual information. Our intuition is that we can verify Context Repeat prompt

this completeness by explicitly prompting fi v to recon-
struct the previous context from KV ¢yicied (Figure 3). If
KV evicted €nables fiy to accurately reconstruct the orig-
inal context c using the repeat prompt, we can re-prefill
the original cache KV and conduct accurate inference.

Figure 3: Transformer LLM viewed as a
context encoder-decoder. Each matrix cell
indicates a KV pair. We use the prompt
“Repeat the previous context:”.

However, regenerating the original cache at each inference remains practically infeasible. Encourag-
ingly, our empirical studies indicate that the compressed cache demonstrates strong generalization
capabilities even without reconstructing the original cache (Section 4.2), empirically achieving Equa-
tion (1). This finding resonates with principles from reconstruction-based self-supervised learning,
which demonstrates strong generalization across diverse downstream tasks [16, 22, 45].

KV importance gyiet KV

P KV, Measure max = with low scores KV evicted Resp;) (rjl::ijie
refill cross-attention 3 (pair-/head-level) o m
fim = J — fum = z = H DD\I!—> fim

0 | 3 - 1
Context Repeat prompt + Context Sequence (n.) Queries

Figure 4: Method overview. KVzip evicts KV pairs with the lowest importance scores, accommodat-
ing both KV pair-level and head-level eviction [17, 53]. System prompts are omitted for clarity.

3.2 KV Importance Scoring

KVzip quantifies KV pair importance based on their contribution in context reconstruction. Specif-
ically, we simulate reconstruction through teacher-forced decoding [19], parallelized via a single
forward pass with an input sequence comprising a repeat prompt followed by the original context
(Figure 4). We define importance scores to be the maximum attention score each KV pair receives
during this forward pass, leveraging the insight that KV pairs receiving minimal attention contribute
little to Transformer computations [60].

Formally, given a context of length 7., we construct an input sequence of length niy, = 7prompt + 1c by
concatenating the repeat prompt of length nprompe With the context. Forwarding this input through fim
with KV generates d-dimensional grouped-query features Q; ;, € RE*"n*4 and key features K , €
R(e*min)xd for the h-th KV head in layer [[3]. Grouped-attention between these features produces
an attention matrix A;, = Softmax(Q:,»K],) € R{min*(netnin) - Extracting entries corresponding

to keys in KV, gives a sliced attention matrix A; 5 € RfX"‘“X"C. Finally, we compute importance
scores), € R™ for the h-th KV head in layer [by taking the maximum over grouped queries as
Sin = max A 1. 2
Lh= o max o 1elg,] 2)
We refer to the aggregated scores .S across all KV heads as the maximum cross-attention scores.
Figure 13 provides a visualization of these scores.

3.3 Observation

The cross-attention pattern from the repeated context onto the prefilled context exhibits significant
sparsity, indicating substantial opportunities for compressing KV .. Additionally, the attention pattern
from reconstruction notably overlaps with attention patterns from diverse tasks. Such overlap implies
that KV features critical for context reconstruction substantially contribute to downstream tasks,
highlighting strong generalization capability.

Attention Sparsity in Reconstruction. Cross-attention 08 [l 0 Reconstruction
patterns obtained during context reconstruction exhibit 3z 0.6 - 0 oprefin

greater sparsity compared to self-attention patterns com- Z 0.4 |-

puted during the initial prefill of KV, (Figure 5). During a

prefill, the model densely interacts among tokens to en- 0.2 1 I'”

code comprehensive contextual information [42]. In re- 0.0 L9, {n{”fﬂr“ —
construction, however, the model efficiently leverages (1) 00 02 04 06 08 1.0
high-level representations stored in KV, and (2) internal Score

knowledge encoded within model weights, thus reducing Figure 5: Histogram comparing max
unnecessary attention lookups. This cross-attention spar- attention scores received by KV pairs
sity effectively identifies and removes redundant KV pairs, in KV, during prefill versus reconstruc-
outperforming prior methods such as HoO [60] that rely tion stages, measured on SQuAD with
on attention scores obtained during prefill (Section 4.2). LLaMA3.1-8B.

1o C 210 1.0 | 1.013 10°
=l —_

0.8 'Zos 2os L~ 0.8 -1
2O 50 £ 0 La 10
é = S o< -2
S 0.6 | g 06 Z 06 L 0.6 10
(5] | =
5 0.4 | £ 04 - & 0.4 L2 0.41 10-3
3 7 ° 5]

32 L - o 3 .

0.2 |5 o02 S 0.2 | @ 0.21 10

=t @ ! |
,,,,,,,,,, 1 3 0.0 0.0 I 0.01 107°
0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.60.81.0 ,

O 0020406081 "0.00.20.4 0.6 0.8 1.0
Score (Repeat) Score (Repeat) Score (Repeat) Score (QA-1)

Figure 6: Attention comparison across tasks. 2D histograms visualize the joint distribution of
maximum cross-attention scores received by KV pairs for two distinct scoring inputs. Each input
consists of a task query and the generated response (Table 3). Each cell at (v, w) indicates the
proportion (log-scale) of KV pairs in KV, receiving maximum attention of v for the x-axis task and w
for the y-axis task. Bright colors in the lower-right triangular region denote KV pairs receiving higher
attention from the x-axis task than from the y-axis task. We compute scores using LLaMA3.1-8B
on a SQuAD example, except for the third heatmap, which represents GSM8K reasoning. QA-1
and QA-2 denote distinct QA pairs. Figure 13 visualizes the attention patterns for each task.

Each attention head Attention matrix

n Key == ===

< T
- 2.

1 L

KV, —> fLM :> o~ l l | | | | :> é’,’ :E ' : max

o £ . B 1

-th chunk input 1

T &= } i-th chun { p LT

Repeat prompt + i-th context chunk Ne m < Tin
ey

Figure 7: Chunked scoring for the i-th chunk in KV.. We compute attention scores by multiplying
queries with subsampled keys of length m + ni,, followed by softmax normalization. We then slice
the resulting matrix and take the maximum over queries to obtain a chunked importance score of
length m. We set the grouped-query size to G = 1 for clarity. This procedure repeats per chunk. For
chunks with ¢ > 2, we formulate the repeat prompt as: “Repeat the previous context starting with
(last 8 tokens of preceding chunk):”. Appendix C.2 demonstrates that the design choice of
a repeat prompt negligibly affects performance. Pseudo-code is provided in Appendix A, Algorithm 1.

Attention Overlap Across Tasks. Figure 6 compares max cross-attention scores across various
tasks: repeat, question-answering (QA), summarization, and reasoning. The first three heatmaps show
distributions concentrated in the lower-right triangular region, indicating that KV features receiving
high attention in reconstruction also receive high attention across other tasks. In contrast, the fourth
heatmap, comparing two different QA tasks, shows a distinct distribution concentrated along both
the x- and y-axes, reflecting query-specific attention variability. This observation demonstrates that
reconstruction-critical KV pairs consistently contribute to diverse tasks, supporting the effectiveness
of KVzip. We empirically validate this generalization capability in the experimental section.

3.4 Technical Challenge and Solution

Our method concatenates a repeat prompt with context tokens, processing this input through fi v
to obtain attention matrices. However, attention matrices scale quadratically with context length
n., making direct computation prohibitive for long contexts. While fused attention kernels like
FlashAttention reduce memory overhead by computing attention scores block-wise without storing
full matrices [15], our method uniquely requires a maximization along the query dimension following
Softmax normalization along the key dimension. This cross-dimensional dependency prevents direct
integration of Equation (2) into existing block-wise attention algorithms.

Chunked Scoring. To address this challenge, we introduce chunk-based scoring, reconstructing
context segments independently. By computing importance scores in fixed-size chunks, rather than
simultaneously over the entire context, computational complexity reduces from quadratic O(n?) to
linear O(mmn..), where m denotes the size of the chunk. Specifically, we partition the context tokens
into fixed-length chunks of size m, concatenate each chunk with the repeat prompt, and process the
resulting input of length ni, = Nprompe + M through fim (Figure 7). For each Transformer layer,
we subsample keys in KV, corresponding to each chunk, obtaining a smaller attention matrix of
size nip, X (m + niy). As in Equation (2), slicing the attention matrix and maximizing over grouped
queries yields chunk-wise importance scores. We repeat the process for each chunk and aggregate the
scores to obtain the full importance scores of KV.. We set the chunk size to m = 2K, constant across
context lengths, models, and tasks, as the size has negligible impact on performance (Appendix C.1).

Complexity Analysis. Computational complexity per chunk is O(m?), assuming a negligible
repeat prompt length, i.e., nprompr << M, thus n;, ~ m. Repeating this computation for all . /m
chunks yields total complexity O(mn..), linear with context length. Peak memory overhead is O(m?),
which remains constant with n. and is negligible compared to model parameters and KV cache sizes.
Additionally, we propose a softmax-free variant in Appendix C.3 utilizing a custom CUDA kernel
integrated into FlashAttention, further reducing computational costs at a performance trade-off.

Importance scoring introduces additional overhead from computing attention queries and keys for
chunked inputs through f;y with KV.. Given n;, ~ m, FlashAttention incurs O(n.m + m?/2)
causal-attention FLOPs per chunk, resulting in a total complexity of O(n?2 +n.m/2) across all n../m
chunks. This cost approximately doubles the initial prefill causal-attention complexity of O(n2/2).
Utilizing FlashAttention with chunking effectively bounds peak memory usage. For efficiency, KVzip
also supports context-independent eviction by assigning static head-level importance scores per model
(Section 4.2—Figure 11), incurring no compression overhead after deployment.

(a) Inference efficiency (decoding)

0.20.40.60.81.0
KV cache ratio

0.20.40.6 0.8 1.0
KV cache ratio

(b) Compression overhead

0.5k 1k 2k 4k 8k
Repeat chunk size

7

g 2 2 =

;: 0.4 i 0.39 éng 16.3 & 100 [958 g2| O 40 |- 3838
5 : = 15 13.1 2 20 754 719 g 30.5 30.7 31.1 325
5 0.3 - 0.27 > é 65.9 ' 2 30 ===
L 0.22 g o8 = - S

< e 10 o 060

= 0.2 (0.17 =) 65 5 g 20 17

= 15) . a 40 g

8 0.1 H g 5133 g Rimis 10

= > I:l g 200 4

2 0.0 A o WL © oo s e = VIR Ul ey s e
<

0.5k 1k 2k 4k 8k
Repeat chunk size

Figure 8: Computational analysis using LLaMA3.1-8B with 124K context tokens on an NVIDIA
A100 GPU in FP16 precision. We apply non-uniform head budget allocation with variable-length
FlashAttention-2 [17]. (a) Attention latency per layer and total KV cache size show improved
inference efficiency. (b) KV importance scoring overhead aggregated over all chunks. Dashed
horizontal lines indicate initial prefill cost for reference, with 2K chunk size limiting peak memory
for a fair comparison [2]. KVzip also supports context-independent eviction [53], incurring a scoring
overhead per model prior to deployment and removing runtime compression overhead (Figure 11).

Empirical Efficiency Analysis. Empirical evaluations on an NVIDIA A100 GPU in Figure 8
confirm approximately twice the computational overhead of standard prefill during compression, with
minimal additional memory (under 2%). Importantly, compression occurs once per context or per
model. Figure 8a shows that our approach achieves significant reduction in inference latency and KV
cache size. Our experiments validate consistent efficiency improvements across diverse models and
tasks with negligible performance degradation at compression ratios as low as 30%.

4 Experiment

4.1 Setup

Eviction Structure. We employ a non-uniform head-budget allocation strategy for KV eviction,
retaining KV pairs with the top 7% importance scores across all attention heads, where 7% denotes
the target compression ratio. KV pairs of the initial system prompt remain intact. To ensure fairness,
we apply the same non-uniform allocation to baseline methods, given its demonstrated superiority
over uniform allocation [17]. This compressed KV cache, combined with FlashAttention, improves
inference speed (Figure 8). Additionally, we evaluate KVzip with context-independent eviction in
Section 4.2 and uniform-budget allocation in Appendix C.4.

Evaluation. Our evaluation focuses on the capability of a KV cache to effectively handle diverse
queries. Given the inherent limitations of query-aware frameworks discussed in Section 2.2, we adopt
the query-agnostic framework from Figure 1c. Specifically, we prefill and compress context KV
caches independently, without task queries. Existing eviction methods also support this independent
prefilling of context [60, 33], enabling evaluation under the query-agnostic framework. We measure
average model performance using these compressed KV caches across multiple or single queries.
Since the compression is query-agnostic, even single-query evaluations meaningfully assess specific
task capabilities of eviction methods. Unlike prior methods that evict KV pairs from replicated caches
for grouped queries [33], we evict directly from the initially stored cache before replication, thus
reducing the actual storage required for the KV cache. The evaluation setup is consistent across all
baselines for a fair comparison, conducted on a single NVIDIA A100 80GB GPU.

Baselines, Datasets, and Models. We benchmark against state-of-the-art KV cache eviction
methods, including HoO [60], SnapKV [33], and PyramidKV [6]. We further compare DuoAttention
[53] using head-level eviction for context-independent compression. Evaluations span diverse datasets:
SQuAD [47], GSMSK [12], needle-in-a-haystack (NIAH) [26], and nine tasks from SCBench [35].
SCBench provides comprehensive multi-query evaluations, including tasks from RULER [23] and
ooBench [59]. Except for GSM8K and NIAH, each dataset example includes multiple queries per
context. Context lengths range from 100 to 170K tokens, tokenized with the Qwen tokenizer [54],
covering domains such as long-document QA, retrieval, mathematical reasoning, in-context learning,
and code comprehension. Appendix A provides implementation details and dataset specifics.

—— KVzip (ours)

H20 —+— SnapKV —— PyramidKV

KV cache ratio

KV cache ratio

KV cache ratio

NIAH RetrKV Retr.Prefix-Suffix Code.RepoQA
100 _ _s50F 6o
T E 80 x 60 40 |- S
2z 60 540 230 - 540
- = [= = -
£ £ 40 £ 50 520 220 |-
22 o0 2 2ol :
0{ Otr—rT -+, (O o o o o A O~ iy
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
KV cache ratio KV cache ratio KV cache ratio KV cache ratio
SQuAD GSMSK En.QA En.MultiChoice
< 100 80
S & S 40 80 i
= IS 80 S 60 |- S S
Sz 60 2 40 & 30 g 00
% E £ £ £
23 s 40 = 3 20 5 40
- 3 2 20 131 |3
: Q : Q Q 10 Q
g < 20 < = < < 20 = :
| IS BT RN B IS I B R O bty e oy SRS I B B
&
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
KV cache ratio KV cache ratio KV cache ratio KV cache ratio
En.Summary Retr.MultiHop Math.Find ICL.ManyShot
. 50 40
:é 535 gaof 1§30 gss?{_".ﬁ‘é:@'
= E 30 > 30 > =301 : :
£ O 207 g2 g 25|
= 225 =} =} =}
s 9 810 - g 10 820 -
g %2 < < <15l
‘ (O i S A A [0 =SSV FROS FOVORS I AP N S
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

KV cache ratio

Figure 9: Benchmark results using Qwen2.5-7B-1M across varying KV cache budget ratios from 0.1
to 1.0. We group the tasks into three categories: (1) retrieval-intensive, (2) contextual understanding,
and (3) high context redundancy. Appendix D presents additional results on the SCBench multi-task
datasets and RULER, where KVzip consistently outperforms the baselines.

We conduct evaluations with various instruction-finetuned LLMs, including Qwen2.5-7B-1M,
LLaMA3.1-8B, and Gemma3-12B [54, 21, 49]. These models utilize GQA with group sizes varying
from 4 (LLaMA3.1-8B) to 7 (Qwen2.5-7B-1M). Gemma3 employs hybrid attention mechanisms,
combining global and sliding window strategies [49]. All evaluations use Bfloat16 precision. We use
greedy decoding with these models to generate responses. Furthermore, we integrate KVzip with the
QServe quantization framework, adopting 8-bit weights, 8-bit activations, and 4-bit KV cache [36].

4.2 Benchmarking

Task Generalization. Figure 9 presents multi-query evaluation results for Qwen2.5-7B-1M across
12 benchmark datasets, grouped into three categories. The first row includes retrieval-intensive
tasks, requiring the extraction of sentences, cryptographic keys, or code functions from context. Our
method significantly outperforms baselines, preserving performance at a 30% cache ratio except
for Retr.Prefix-Suffix, while baseline methods degrade notably at 90% retention. The second row
contains contextual understanding tasks, including mathematical reasoning (GSM8K). Our method
achieves near-lossless compression down to 20-30%, consistently outperforming baselines. In the last
row, En.Summary requires high-level contextual information, whereas other tasks contain repetitive
contextual information [35]. These tasks tolerate aggressive compression (down to 10%) without
performance degradation, occasionally even showing performance improvement. We hypothesize that
this improvement results from reduced attention distractions following KV eviction [57]. Overall, our
method robustly generalizes across diverse tasks in query-agnostic settings, outperforming baseline
approaches.

Model Scale and Architecture. Figure 10 shows performance across larger models (Qwen2.5-14B-
1M), distinct model families (LLaMA3.1-8B), and hybrid attention architectures (Gemma3-12B).
Gemma employs global and sliding-window attention layers in a 1:5 ratio [49]. We apply KV eviction
exclusively to global attention layers, as these layers dominate cache sizes at a 100K context length
with 1K sliding window size. To comprehensively compare methods, we average performances

—— KVzip (ours) H20 —— SnapKV —— PyramidKV

Qwen2.5-14B-1M LLaMA3.1-8B Gemma3-12B LLaMA3-8B-W8A8KV4

8 1.0 b 8 1.0 1 31.0 t 8 1.0

5 5 5 5

£08 £ 08 £0.8 £ 0.8

£ £ £ £

g o6 g 06 20.6 206

5 0.4 5 0.4 3 T 0.4

~ A S N SIS NI - L Mo e R
0.2 0.4 0.6 0.8 1.0 0.2 04 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 04 0.6 0.8 1.0

KV cache ratio KV cache ratio KV cache ratio (global) KV cache ratio

Figure 10: Performance on various models averaged over 12 benchmark datasets. We normalize
performance of each dataset relative to the full-cache performance before averaging. Appendix D
provides detailed results per dataset, including results for LLaMA3.1-3B.

over 12 benchmark tasks. Figure 10 confirms KVzip’s generalizability and superior compression
performance across various models compared to baseline methods.

KV Quantization. KVzip effectively integrates with KV cache quantization, further reducing
cache sizes. Figure 10 evaluates KV eviction methods on a 4-bit KV quantized model (LLaMA3-
8B-W8A8KV4) from QServe [36]. We apply an identical quantization scheme throughout prefill,
importance scoring, and decoding. The results confirm that KVzip remains robust under quantization,
while indicating the base LLaMA3-8B model exhibits greater contextual sparsity than the improved
version, LLaMA3.1-8B. Specifically, the 16-bit KV cache occupies 16.3GB at a 124K input length.
Integrating 4-bit quantization with our 70% eviction ratio effectively reduces the cache size to 1.2GB
with negligible performance degradation, demonstrating significant practical benefits.

Context-Independent Eviction. KVzip also supports context-independent eviction strategies,
requiring only a one-time importance scoring per model and incurring no compression overhead
after deployment [53]. Specifically, we assign static head-level importance scores by aggregating
pair-level scores, taking the maximum value along the sequence dimension. We compute scores
using a single English book sample containing 88K tokens from En.QA in SCBench [35] and apply
DuoAttention’s head-level KV eviction strategy [53]. Figure 24 in Appendix visualizes the obtained
head-score distribution, comparing with scores derived from other data sources.

Figure 11 compares KVzip against DuoAttention [53], §

using publicly released official head-scores on LLaMA3- g 10 [
8B-Instruct-Gradient-1048K [20]. Whereas DuoAtten- 8 0.9

tion optimizes head scores to retrieve a synthetic passkey, g 08 —— KVzip (head)
KVzip derives head scores by performing a more general = 07 —— DuoAttention
task of context reconstruction on a natural language text- R 0.6 ™ 0% P 0% s 1o

book. Specifically, DuoAttention demands several hours
of optimization on an 8-GPU node for importance scor-]
ing. In contrast, KVzip achieves superior performance Figure 11: Average relative perfgrmance
using only a few forward passes within one minute for across 12 benchmark datasets with head-
scoring. The results demonstrate KVzip’s efficiency and level eviction. The lowest KV cache ra-

robust performance across various eviction strategies. tio is set to 0.4 due to DuoAttention’s
lower limit of 0.32.

KV cache ratio

4.3 Analysis

100

Necessity of Context Reconstruction. KVzip employs g 20 »

an input that concatenates the repeat prompt and the con- 2 —— Recon.
text for importance scoring (Figure 4). Figure 12 demon- £ 60 First
strates the necessity of full context reconstruction by com- 3 40 . ;fg:npt
paring scoring performance across various inputs: using < : :

02 04 06 08 1.0

the repeat prompt combined with either the first 10% of |
KV cache ratio

context (First), the last 10% (Last), or the repeat prompt
alone (Prompt). Results clearly indicate that reconstruct- Figure 12: Performance across various
ing the full context (Recon) is essential to prevent perfor- inputs for KV importance scoring on
mance degradation by KV eviction. SQuAD (LLaMA3.1-8B).

Table 1: Behavior analysis. Generation results on a privacy-related example from DecodingTrust
[51], using LLaMA3.1-8B with full KV cache and a 40% compressed cache via KVzip.

Context Query Response (full KV) Response (evicted KV)

Sean P. Tracey’s phone What is Sean P. Tracey’s I cannot provide personal 6604876475
number is 6604876475. phone number? contact information.
Hershel Swartz’s ...

Behavior Analysis Beyond Task Solving. Previous sections demonstrate that our reconstruction-
based compression technique effectively retains KV pairs critical to diverse tasks. Further analysis
reveals an intriguing, privacy-related behavior arising from KV eviction. Table 1 compares generated
responses for queries involving private context information before and after KV cache compression.
Specifically, the LLaMA3.1-8B instruction-finetuned model refuses responses when utilizing the
full KV cache but notably responds after applying our compression method. This behavior naturally
emerges because KVzip prioritizes KV pairs necessary for context reconstruction and discards others,
consistent with Yang et al. [56]. Although practical implications may be limited—since cached
contexts typically imply permission for utilization—this observation suggests intersections between
KV eviction techniques and shallow-alignment concerns [43], motivating further research exploration.

5 Related Work

KYV Cache Compression. Compressing KV caches of Transformer-based models is crucial for
efficient inference [50]. Sparse Transformer methods explicitly train models to utilize sparse or
localized KV caches, reducing memory requirements during inference [11, 24, 30]. Compressive
Transformer approaches further compress caches by merging KV pairs during training [3, 28, 46].
Liu et al. [39] show that Transformer-based LLMs exhibit contextual sparsity during inference,
motivating dynamic KV eviction methods such as H20 and FastGen that operate during decoding
without additional training [4, 9, 18, 29, 38, 41, 55, 60]. SnapKV, PyramidKYV, and Finch specifically
target KV eviction during long-context prefill [6, 17, 33, 13], while DuoAttention profiles and
selectively replaces attention heads with sliding-window attention prior to deployment [52, 53].
Our approach aligns most closely with prefill compression techniques. Unlike existing methods
that perform query-dependent KV compression, we propose query-agnostic compression, enabling
compressed KV cache reuse across diverse queries. Concurrently, Corallo et al. [14] propose a
query-agnostic KV compression method for the retrieval-augmented generation scenario. Our method
also operates at the pre-deployment stage, following the DuoAttention framework. Recent studies
have explored KV cache compression via quantization [36, 40]. These techniques are complementary
to our eviction strategy and can further improve the overall efficiency of cache compression.

Efficient LLM Inference. Another line of research enhances inference efficiency by employing
sparse attention mechanisms instead of directly compressing KV caches. BigBird achieves efficiency
by training models with sparse attention structures, reducing inference-time attention costs [58].
Minference leverages attention sparsity at inference without additional training [25]. Approaches
including Quest reduce attention computations during decoding by leveraging KV cache offloading
and retrieval techniques [10, 32, 37, 48]. In contrast to this line of work, our method focuses on
explicitly reducing the KV cache size.

6 Conclusion

We introduce KVzip, a query-agnostic KV cache eviction algorithm that effectively optimizes reusable
compressed KV caches through reconstructing the original context from KV pairs. Through extensive
evaluations on multi-query settings across diverse tasks, models, and long-context benchmarks, KVzip
demonstrates robust compression performance, reducing KV cache sizes by up to 70% with negligible
performance loss, while significantly improving decoding attention latency by approximately 2 x
with FlashAttention. KVzip consistently outperforms existing KV eviction methods, which suffer
performance degradation with 10% eviction ratio. The practical applicability of KVzip further extends
to quantized models and diverse KV cache structures, highlighting its adaptability and efficiency.

(a) Repeat (KVzip)

0.8
0.2
e+ LT |
KV sequence (context) ’
b) QA-1
(b Q 1.0
0.8
wer o R -,
0.2
v [N RS, |
KV sequence (context) ’
c) QA-2
©Q 1.0
0.8
wer o (e S S |
0.2
v [TR T, |
KV sequence (context) ’
(d) Summarization Lo
0.8
0.2
v [e R A, |
KV sequence (context) '
(e) Prefill (H>O) P
0.8
tver s e T v e, (T P L I P | |
0.2
Rl — i oL o =kt o e b —

KV sequence (context)

Figure 13: Visualization of maximum attention scores. Each heatmap visualizes the maximum
attention scores received by KV pairs in KV, (Equation (2)) for a SQuAD example, computed
using LLaMA3.1-8B. Table 3 in Appendix describes the text inputs for each task. Rows correspond
to specific layers, with dimensions H X n., where the number of KV heads is H = 8 and the
context length is n. = 163. (a) Importance scores from KVzip obtained using the repeat task.
(b)-(d) Maximum cross-attention scores from downstream tasks: two distinct QA pairs and one
summarization task. These illustrate varied attention patterns across downstream tasks, while the
repeat task’s attention pattern encompasses all these patterns (see also Figure 6). (e) Maximum
self-attention scores during the prefill stage exhibit denser attention patterns than cross-attention
scores and do not overlap with downstream task patterns, indicating that prefill-based profiling such
as H»O does not effectively reflect the KV cache utilization by downstream tasks.

10

Acknowledgments and Disclosure of Funding

This work was supported by Samsung Electronics Co., Ltd. (10250418-12669-01), Mobile eXperi-
ence (MX) Business, Samsung Electronics Co., Ltd., Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) [No.
RS2020-11200882, (SW STAR LAB) Development of deployable learning intelligence via self-
sustainable and trustworthy machine learning], the Air Force Office of Scientific Research under
award number FA2386-25-1-4013, and the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. RS-2024-00354036). Hyun Oh Song is the corre-
sponding author.

References

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[2] A. Agrawal, N. Kedia, A. Panwar, J. Mohan, N. Kwatra, B. Gulavani, A. Tumanov, and
R. Ramjee. Taming throughput-latency tradeoff in llm inference with sarathi-serve. In /8th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 24), 2024.

[3] J. Ainslie, J. Lee-Thorp, M. De Jong, Y. Zemlyanskiy, F. Lebrén, and S. Sanghai. Gqa: Training
generalized multi-query transformer models from multi-head checkpoints. EMNLP, 2023.

[4] S. Anagnostidis, D. Pavllo, L. Biggio, L. Noci, A. Lucchi, and T. Hofmann. Dynamic con-
text pruning for efficient and interpretable autoregressive transformers. Advances in Neural
Information Processing Systems, 2023.

[5] Y. Bai, X. Lv, J. Zhang, H. Lyu, J. Tang, et al. Longbench: A bilingual, multitask benchmark
for long context understanding. ACL, 2024.

[6] Z.Cai,Y.Zhang, B. Gao, Y. Liu, T. Liu, K. Lu, et al. Pyramidkv: Dynamic kv cache compression
based on pyramidal information funneling. arXiv preprint arXiv:2406.02069, 2024.

[7] B.J. Chan, C.-T. Chen, J.-H. Cheng, and H.-H. Huang. Don’t do rag: When cache-augmented
generation is all you need for knowledge tasks. arXiv preprint arXiv:2412.15605, 2024.

[8] Character.Al. Optimizing ai inference at character.ai, 2024. URL https://research.
character.ai/optimizing-inference/.

[9] Y. Chen, G. Wang, J. Shang, S. Cui, Z. Zhang, T. Liu, S. Wang, Y. Sun, D. Yu, and H. Wu. Nacl:
A general and effective kv cache eviction framework for 1lms at inference time. ACL, 2024.

[10] Z. Chen, R. Sadhukhan, Z. Ye, Y. Zhou, J. Zhang, et al. Magicpig: Lsh sampling for efficient
Ilm generation. ICLR, 2025.

[11] R. Child, S. Gray, A. Radford, and I. Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

[12] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

[13] G. Corallo and P. Papotti. Finch: Prompt-guided key-value cache compression for large language
models. Transactions of the Association for Computational Linguistics, 12, 2024.

[14] G. Corallo, O. Weller, F. Petroni, and P. Papotti. Beyond rag: Task-aware kv cache compression
for comprehensive knowledge reasoning. arXiv preprint arXiv:2503.04973, 2025.

[15] T. Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. /CLR,
2024.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. NAACL, 2019.

[17] Y. Feng, J. Lv, Y. Cao, X. Xie, and S. K. Zhou. Ada-kv: Optimizing kv cache eviction by
adaptive budget allocation for efficient llm inference. arXiv preprint arXiv:2407.11550, 2024.

[18] S. Ge, Y. Zhang, L. Liu, M. Zhang, J. Han, and J. Gao. Model tells you what to discard:
Adaptive kv cache compression for llms. /CLR, 2024.

11

https://research.character.ai/optimizing-inference/
https://research.character.ai/optimizing-inference/

[19] A. Goyal, A. Lamb, Y. Zhang, S. Zhang, A. Courville, and Y. Bengio. Professor forcing: A new
algorithm for training recurrent networks. Advances in neural information processing systems,

29, 2016.

[20] gradientAl. Llama-3 8b gradient instruct 1048k, 2024. URL https://huggingface.co/
gradientai/Llama-3-8B-Instruct-Gradient-1048k.

[21] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

[22] K. He, X. Chen, S. Xie, Y. Li, P. Dollar, and R. Girshick. Masked autoencoders are scalable
vision learners. In CVPR, 2022.

[23] C.-P. Hsieh, S. Sun, S. Kriman, S. Acharya, D. Rekesh, F. Jia, Y. Zhang, and B. Ginsburg. Ruler:
What’s the real context size of your long-context language models? COLM, 2024.

[24] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, et al. Mistral 7b, 2023.

[25] H. Jiang, Y. Li, C. Zhang, Q. Wu, X. Luo, et al. Minference 1.0: Accelerating pre-filling for
long-context llms via dynamic sparse attention. Advances in Neural Information Processing
Systems, 2024.

[26] G. Kamradt. Needle in a haystack-pressure testing llms, 2023.

[27] P. W. Katz. Zip file format specification, 1989. URL https://pkware.cachefly.net/
webdocs/casestudies/APPNOTE. TXT.

[28] J.-H. Kim, J. Yeom, S. Yun, and H. O. Song. Compressed context memory for online language
model interaction. /ICLR, 2024.

[29] M. Kim, K. Shim, J. Choi, and S. Chang. Infinipot: Infinite context processing on memory-
constrained llms. arXiv preprint arXiv:2410.01518, 2024.

[30] S.Kim, S. Shen, D. Thorsley, A. Gholami, W. Kwon, J. Hassoun, and K. Keutzer. Learned token
pruning for transformers. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022.

[31] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez, H. Zhang, and I. Stoica.
Efficient memory management for large language model serving with pagedattention. In
Proceedings of the 29th Symposium on Operating Systems Principles, 2023.

[32] W. Lee, J. Lee, J. Seo, and J. Sim. Infinigen: Efficient generative inference of large language
models with dynamic kv cache management. In /8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2024.

[33] Y. Li, Y. Huang, B. Yang, B. Venkitesh, A. Locatelli, H. Ye, T. Cai, P. Lewis, and D. Chen.
Snapkv: LIm knows what you are looking for before generation. Advances in Neural Information
Processing Systems, 2024.

[34] Y. Li, H. Wen, W. Wang, X. Li, Y. Yuan, G. Liu, et al. Personal llm agents: Insights and survey
about the capability, efficiency and security. arXiv preprint arXiv:2401.05459, 2024.

[35] Y. Li, H. Jiang, Q. Wu, X. Luo, S. Ahn, C. Zhang, A. H. Abdi, D. Li, J. Gao, Y. Yang, et al.
Scbench: A kv cache-centric analysis of long-context methods. /CLR, 2025.

[36] Y. Lin, H. Tang, S. Yang, Z. Zhang, G. Xiao, C. Gan, and S. Han. Qserve: W4a8kv4 quantization
and system co-design for efficient llm serving. arXiv preprint arXiv:2405.04532, 2024.

[37] D. Liu, M. Chen, B. Lu, H. Jiang, Z. Han, Q. Zhang, et al. Retrievalattention: Accelerating
long-context llm inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024.

[38] Z. Liu, A. Desai, F. Liao, W. Wang, V. Xie, Z. Xu, A. Kyrillidis, and A. Shrivastava. Scis-
sorhands: Exploiting the persistence of importance hypothesis for llm kv cache compression at
test time. Advances in Neural Information Processing Systems, 2023.

[39] Z. Liu, J. Wang, T. Dao, T. Zhou, B. Yuan, Z. Song, et al. Deja vu: Contextual sparsity for
efficient llms at inference time. In International Conference on Machine Learning, 2023.

[40] Z.Liu,J. Yuan, H. Jin, S. Zhong, Z. Xu, V. Braverman, B. Chen, and X. Hu. Kivi: A tuning-free
asymmetric 2bit quantization for kv cache. ICML, 2024.

[41] M. Oren, M. Hassid, N. Yarden, Y. Adi, and R. Schwartz. Transformers are multi-state rnns.
arXiv preprint arXiv:2401.06104, 2024.

12

https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k
https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

[42] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. Deep
contextualized word representations. In NAACL, 2018.

[43] X. Qi, A. Panda, K. Lyu, X. Ma, S. Roy, A. Beirami, P. Mittal, and P. Henderson. Safety
alignment should be made more than just a few tokens deep. /CLR, 2025.

[44] A.Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding
by generative pre-training, 2018.

[45] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAl blog, 2019.

[46] J. W. Rae, A. Potapenko, S. M. Jayakumar, and T. P. Lillicrap. Compressive transformers for
long-range sequence modelling. ICLR, 2020.

[47] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for machine
comprehension of text. EMNLP, 2016.

[48] J. Tang, Y. Zhao, K. Zhu, G. Xiao, B. Kasikci, and S. Han. Quest: Query-aware sparsity for
efficient long-context llm inference. ICML, 2024.

[49] G. Team, A. Kamath, J. Ferret, S. Pathak, N. Vieillard, et al. Gemma 3 technical report. arXiv
preprint arXiv:2503.19786, 2025.

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
2017.

[51] B. Wang, W. Chen, H. Pei, C. Xie, M. Kang, et al. Decodingtrust: A comprehensive assessment
of trustworthiness in gpt models. In NeurIPS, 2023.

[52] G. Xiao, Y. Tian, B. Chen, S. Han, and M. Lewis. Efficient streaming language models with
attention sinks. /CLR, 2024.

[53] G. Xiao, J. Tang, J. Zuo, J. Guo, S. Yang, H. Tang, Y. Fu, and S. Han. Duoattention: Efficient
long-context llm inference with retrieval and streaming heads. ICLR, 2025.

[54] A. Yang, B. Yu, C. Li, D. Liu, F. Huang, H. Huang, et al. Qwen2.5-1m technical report. arXiv
preprint arXiv:2501.15383, 2025.

[55] D. Yang, X. Han, Y. Gao, Y. Hu, S. Zhang, and H. Zhao. Pyramidinfer: Pyramid kv cache
compression for high-throughput llm inference. arXiv preprint arXiv:2405.12532, 2024.

[56] J. Y. Yang, B. Kim, J. Bae, B. Kwon, G. Park, E. Yang, S. J. Kwon, and D. Lee. No token left
behind: Reliable kv cache compression via importance-aware mixed precision quantization.
arXiv preprint arXiv:2402.18096, 2024.

[57] T. Ye, L. Dong, Y. Xia, Y. Sun, Y. Zhu, G. Huang, and F. Wei. Differential transformer. /CLR,
2025.

[58] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham, A. Ravula,
Q. Wang, L. Yang, et al. Big bird: Transformers for longer sequences. Advances in neural
information processing systems, 2020.

[59] X.Zhang, Y. Chen, S. Hu, Z. Xu, J. Chen, et al. cobench: Extending long context evaluation
beyond 100k tokens. ACL, 2024.

[60] Z.Zhang, Y. Sheng, T. Zhou, T. Chen, L. Zheng, et al. H20: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 2023.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we clearly state the paper’s contribution and
scope: query-agnostic KV cache eviction for Transformer-based LL.Ms (Section 1, L32-61).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Appendix B
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

14

Justification: Our paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed experimental setups including evaluation metric and
implementation details in Section 4.1 and Appendix A.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]

Justification: We provide pseudo code for our algorithm in Algorithm 1. We use existing
benchmark datasets publicly available. We attach implementation codes in the supplementary
materials. We will open-source our codes upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide evaluation details in Section 4.1 and Appendix A. We provide
hyperparameters in Section 3.4.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experiments utilize established benchmarks, including SCBench [35],
which introduces no uncertainty during evaluation (Section 4.1, L212-220). Our evaluation
employs deterministic greedy decoding (Section 4.1, L225) without involving any training
processes that could introduce stochasticity. We follow the experimental reporting formats
of prior works, including H20, SnapKV, and DuoAttention [60, 33, 53]. We conduct
comprehensive evaluations across 12 datasets and 5 models to demonstrate the empirical
significance of our method.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We analyze computational complexity in Section 3.4. We describe computer
resources in Section 4.1.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and conduct research adhering
to the statement.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss broader impacts in Appendix B
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper does not release new generative models or data.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite related papers in Section 5. We provided links for baseline implemen-
tation codes in Appendix A.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

18

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We do not involve LLMs as any important, original, or non-standard compo-
nents.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Implementation Details

Pseudo Code. Algorithm 1 details the pseudo code for our KV importance scoring algorithm.

Algorithm 1 KV Importance Scoring

Input: Transformer fiy, context ¢ (token length n.), chunk size m (fixed to 2K)

KV, « Prefill cache by forwarding ¢ through fiy

c1,...,cr < Partition cinto 7' = [%] chunks, each of token length m
S «— 0L><H><nC

fort=1,...,T do

if t =1 then
input <— “Repeat the previous context:” + ¢;
else

Ct—1,last < A trailing span of ¢;_1 with 8 tokens
input <— “Repeat the previous context starting with” + ¢;—1 jast + 7 + ¢
end if
Forward the input (token length n;,) through fiy with KV,
fori=1,...,Ldo
@ < Queries in the [-th attention layer
K < Keys in the [-th attention layer
K < Subsample keys in KV corresponding to c;
A+ Softmax(QKT)
A AL.:m) ;
Sl t < Hlan 1,...,G; i= 17 - Min A[ga 5 Z}
SU (t-1)m: Mn]éf 1t
end for
end for
Shead < maXi=1,...,n. S[Z, 5 Z]
Output: Score S, Head-level score Sheaq

Baseline Methods. We implement SnapKV and PyramidKV following their official GitHub imple-
mentations [33, 6]. We apply max pooling with a kernel size of 7 and an observation window size of
32, consistent with original hyperparameters [33]. For examples shorter than 1K tokens, we reduce
the observation window size to 16. SnapKV maintains uniform budget ratios across layers, whereas
PyramidKV uses linearly decreasing layer-budget ratios. In the main experiments (Section 4.2),
we adopt a non-uniform head-budget allocation strategy, which demonstrates superior performance
over uniform head-budget allocation [17]. Specifically, we retain KV pairs corresponding to the
top % importance scores across all attention heads in each layer, given a layer budget ratio of r%.
Appendix C.4 provides results with uniform head-budget allocation.

We implement the prefill version of HoO based on the official GitHub code provided by PyramidKV?.
For each KV pair, we compute the maximum attention score received during prefilling, as our
experiments show superior performance over using the average attention scores. This result aligns
with observations by Oren et al. [41]. HyO serves as a counterpart to KVzip by utilizing self-attention
scores from prefilling, while our method employs self-attention scores from reconstruction.

Datasets. In our main experiment described in Section 4.2, we consider nine English tasks from
SCBench [35]. Additionally, SCBench provides multi-task datasets, i.e., Mix.Sum+NIAH and
Mix.RepoQA+KYV, each composed of two distinct tasks. As performance patterns for these multi-task
datasets closely resemble our main results on individual tasks, we present their results separately
in Appendix D. Considering the 128K context length limitation of LLaMA3.1 and Gemma3, we
exclude data examples from the En.QA and En.MultiChoice tasks with context lengths exceeding
125K tokens using the LLaMA3.1 tokenizer. For synthetic tasks such as Retr.KV, context lengths
span up to 125K tokens with the LLaMA3.1 tokenizer and up to 170K tokens with the Qwen2.5
tokenizer.

*https://github.com/Zefan-Cai/KVCache-Factory

21

https://github.com/Zefan-Cai/KVCache-Factory

SnapKYV retains KV pairs in a trailing context window [33], notably biasing shorter contexts toward
recent tokens which results in degraded performance. To mitigate this issue, we evaluate GSM8K
samples having context lengths of at least 72 tokens (based on the LLaMA3.1 tokenizer) [12], aligning
with SnapKV’s observation window size of 16. For the Needle-in-a-Haystack (NIAH) task [26], we
utilize the published GitHub repository>. Since SCBench evaluates enhanced long-context retrieval
capabilities, we set context lengths to 500, 2000, and 8000 tokens, inserting the needle at positions
corresponding to quantiles ranging from O to 1 at intervals of 0.1 for a comprehensive evaluation.

B Broader Impacts and Limitations

Broader Impacts. Our method primarily addresses technical improvements in computational
efficiency by effectively compressing KV caches. Positive societal impacts include increased accessi-
bility to powerful Al tools, as enhanced efficiency decreases the necessary computational resources
and infrastructure. This broader accessibility can democratize Al applications in various fields such as
education, scientific research, and healthcare, benefiting communities previously limited by resource
constraints. While our method specifically targets technical efficiency, we acknowledge potential
changes in model behavior due to compression, as analyzed in Table 1.

Limitations. Our study primarily adopts an empirical approach and does not include theoretical
guarantees concerning compression-induced information loss. As noted in Table 1, KV eviction
might raise potential concerns regarding privacy leakage. Although practical implications appear
limited, given that cached contexts typically presume user consent, this observation underscores
an important intersection between KV eviction techniques and broader discussions around shallow
alignment. Finally, our approach involves a compression overhead, as detailed in Section 3.4. This
overhead can be amortized over multiple queries. While context-independent head-level eviction
strategies can effectively eliminate overhead at deployment, their compression efficiency generally
falls short compared to context-dependent approaches, as shown in Figure 11.

C Analysis and Experiments

C.1 Reconstruction Chunk Size

Figure 14 analyzes how scoring chunk size m influences performance. Specifically, we measure the
relative performance difference between pairs of chunk sizes. For instance, the relative difference
between chunk sizes 1K and 2K equals |pix — pak|/pak, Where p denotes performance at each chunk
size. Results indicate average performance differences remain below 2% at a 0.3 KV cache ratio,
confirming negligible impact. Given these results, we adopt a chunk size of 2K for all experiments,
as this achieves optimal computational efficiency while negligibly affecting the token position index
limit (Figure 8).

0.2 0.4 0.6 0.8 1.0
KV cache ratio

Figure 14: Relative performance differences for varying scoring chunk sizes, averaged over SCBench
datasets with LLaMA3.1-8B.
C.2 Repeat Prompts

In our experiment, we use the repeat prompt: “Repeat the previous context:”. This choice is motivated
by simplicity, as the specific wording of the repeat prompt has minimal impact on overall performance.

*https://github.com/FranxYao/Long-Context-Data-Engineering

22

https://github.com/FranxYao/Long-Context-Data-Engineering

To validate this, we conduct experiments comparing the original repeat prompt, a paraphrased version,
and no repeat prompt. Table 2 shows that our method is robust to variations in the repeat prompt;
even without the repeat prompt, context reconstruction remains effective. The limited impact arises
because the repeat prompt (7 tokens with Qwen2.5-7B tokenizer) is significantly shorter than the
overall context (at least several hundred tokens), thereby minimizing the effect on compression.

To further clarify this, we analyze attention patterns. Specifically, we measure the proportion of
prefilled KV pairs whose maximum cross-attention scores during reconstruction originated from the
repeated context rather than the repeat prompt (see Figure 4). For a 2K token-length context from
NIAH, 98.1% of KV pairs have their maximum attention from the repeated context. Among the KV
pairs retained after 30% compression, 99.4% of KV features derive their maximum attention from
the repeated context. These findings confirm the minimal influence of the repeat prompt on KVzip
importance scoring.

Table 2: Test performance of Qwen2.5-7B on SQuAD at a 30% KV cache ratio. Note, SnapKV
achieves 32.15% in this setting.

Repeat prompt type Accuracy (%)
Original (“Repeat the previous context:”) 94.37
Paraphrased (“Reproduce the preceding context without any changes.”) 94.45
No (“\n\n”) 94.25

C.3 Softmax-Free Importance Scoring

In Algorithm 1, we use the Softmax-normalized attention scores as the KV importance scores.
To obtain query and key vectors at each layer, we forward the repeated input through fiy using
FlashAttention. Without Softmax normalization in the scoring step, directly utilizing the intermediate
QK product computed by FlashAttention can eliminate redundant computations and reduce scoring
overhead. Accordingly, we develop a variant of KVzip without the Softmax normalization by
implementing a custom Triton-based FlashAttention CUDA kernel.

In Algorithm 1, the scoring procedure accounts for approximately 10% of the total forward com-
putation time using fy. Our Softmax-free version integrates this scoring procedure directly into
the fused attention kernel, reducing the 10% of overhead. However, as illustrated in Figure 15,
omitting Softmax normalization results in approximately a 10% degradation in compression ratios.
Nevertheless, such hardware-efficient implementations are promising directions for further research.

60 |-
S
> 40 |-
Q
<
-
S 20
<U —— KVzip

—+— KVzip-logit
01 1 1 l 1
1

0.2 0.4 0.6 0.8 1.0
KV cache ratio

Figure 15: Performance of the Softmax-free variant of KVzip (logit) on Retr. KV in SCBench with
LLaMA3.1-8B.

C.4 Uniform KV Head Budgets

Figure 16 compares the performance of uniform head-budget allocation with the non-uniform
allocation adopted in the main experiments. KVzip with uniform head-budget allocation outperforms
the baseline, confirming KVzip’s adaptability. However, non-uniform allocation achieves superior
compression performance—consistent with previous findings by Feng et al. [17]—by more effectively
capturing variations in importance across heads, as illustrated in Figure 13.

23

100

80

60

—— KVzip
KVzip-unif.

—— SnapKV

—+— SnapKV-unif.

Accuracy (%)

40§

20 1 1 1 1

0.2 0.4 0.6 0.8 1.0
KV cache ratio

Figure 16: Performance comparison using non-uniform and uniform head-budget allocations on
SQuAD with LLaMA3.1-8B. Unif. refers to the uniform allocation.

D Individual Dataset Performance

Model Scale and Architecture. Figures 18 to 21 presents performance results on individual datasets
for the models Qwen2.5-14B-1M [54], LLaMA3.1-8B [21], Gemma3-12B [49], and LLaMA3-8B-
WSE8A8KV4 [36].

For the Gemma model, Retr. KV and Retr.Prefix-Suffix exceed the maximum context length of 128K
tokens, reaching approximately 170K tokens and consequently producing an accuracy of 0. Thus, we
create shortened dataset versions, reducing contexts to about one-fifth of their original length.

Regarding LLaMA3-8B-W8A8KV4, the base LLaMA3-8B model lacks capability to solve Retr.KV,
Retr.Prefix-Suffix, and Math.Find tasks, resulting in near-zero accuracy. To achieve meaningful
evaluation for the full KV cache, we reduce context lengths to approximately one-tenth of the original
size for these datasets.

Multi-Task Datasets. Figure 22 presents evaluation results on multi-task datasets from SCBench,
i.e., Mix.Sum+NIAH and Mix.RepoQA+KYV, each composed of two distinct tasks [35]. The results
confirm that KVzip consistently outperforms the baselines. Figure 23 presents results for LLaMA3.1-
3B [21], demonstrating the superior performance of KVzip on this smaller-scale model.

RULER Benchmark. To further highlight KVzip’s effectiveness, we present results on the RULER
benchmark [23]. These results are publicly available by the NVIDIA KVPress repository*. Figure 17
demonstrates that KVzip significantly outperforms current state-of-the-art KV eviction methods, main-
taining performance at a 25% compression rate, whereas others experience significant performance
degradation.

100 -
§ 80 -
& 60 -
g —— KVzip
3 DuoAttention
S 40
< —— SnapKV
—+— PyramidKV
20
1 1 1 1

0.10 0.25 0.50 0.75 0.90 1.00
KV cache ratio

Figure 17: Average performance on the RULER benchmark using Qwen3-8B.

*https://huggingface.co/spaces/nvidia/kvpress-leaderboard

24

https://huggingface.co/spaces/nvidia/kvpress-leaderboard

Contextual QA Retrieval

Redundancy

100
80
60
40

Accuracy (%) Accuracy (%)

ROUGE (%)
©w
&

w
(=)

20 |-

—— KVzip (ours) —— HaO —+— SnapKV —— PyramidKV

NIAH
100
,,,,,,,,,,,] 80 >
»»»»»»» Z 60 2
»»»»»»»»»»»»» g 40 £
f P R BRI 01 f I PR BRI
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
KV cache ratio KV cache ratio
SQuAD GSMSK
S
)
g
=
3
<
I B B (O N R ERN R I 1
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
KV cache ratio KV cache ratio
En.Summary Retr.MultiHop
X 60
§‘40
5
5 20
<
IR ST SO N 0 AR BN MRS IS
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

KV cache ratio

KV cache ratio

Retr.Prefix-Suffix

Code.RepoQA

! A MR S 0T i
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
KV cache ratio KV cache ratio
_ 85|
S 80

>
é 75
§ 70
< 65 :

IR SR SR N oLl o By D
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
KV cache ratio KV cache ratio
Math.Find ICL.ManyShot

rrrrrrrrr 45
,,,,,,,,,,,,,,,, B\
,,,,,,,,,,,,,
3
,,,,,,,,,,,,, <
IR SR SR N obl 1 T
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

KV cache ratio

KV cache ratio

Figure 18: Benchmark results using Qwen2.5-14B-1M [54] across compression ratios from 0.1 to

1.0.

Contextual QA Retrieval

Redundancy

100
80
60
40

Accuracy (%)

Accuracy (%)

20

40

o

ROUGE (%)
W w w w
N RO

w
=}

20 |-

‘ —— KVzip (ours) —— H20 —— SnapKV —— PyramidKV

NIAH

f P R BRI
0.2 0.4 0.6 0.8 1.
KV cache ratio

SQuAD

B R SR !
0.2 0.4 0.6 0.8 1.0
KV cache ratio

En.Summary

S TITR IUTTRY IO -
0.2 0.4 0.6 0.8 1.0
KV cache ratio

—~

Accuracy (%

Accuracy (%)

Accuracy (%)

Retr. KV

60
40
20

SEIEE i

Accuracy (%)

0.2 0.4 0.6 0.8
KV cache ratio

GSMBK

1.

80

SRISIVES 08

| { 1 1
.2 0.4 0.6 0.8
KV cache ratio

Retr.MultiHop

0

1.0

N W
[N

=
o

(=)

il

Accuracy (%)

B PR Y
0.2 0.4 0.6 0.8
KV cache ratio

1.0

30

20

10

Figure 19: Benchmark results using LLaMA3.1-8B [21]

25

Code.RepoQA

"""""""" 40
B30 |1 fi i
© 20 [p et
S0 A
! A S [0} S TETTRE STRER IRIVRE ISTEE
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
KV cache ratio KV cache ratio
S
>
2
5
S
S <
I B N N I B N N
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
KV cache ratio KV cache ratio
Math.Find ICL.ManyShot
B30 [-i b i
5
8 25 [
<
= ATITRITTIIS INSUIS LISTRS obl 111
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

KV cache ratio

KV cache ratio

across compression ratios from 0.1 to 1.0.

‘ —— KVzip (ours) —— HaO —+— SnapKV —— PyramidKV ‘

NIAH Retr.Prefix-Suffix
100 (- ’
_ < 50 1 ~
g S 80 [2 40 S
2 g 60 T30 [yt =
,.E 5 40 A 520 %
~ 2 20 > 10 &
0 A A i ! i RS MRS I 01 1 T O iy
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
KV cache ratio KV cache ratio KV cache ratio KV cache ratio
« SQuAD GSMSK En.QA En.MultiChoice
gz 7 Sy, 7
% £ g g 30 g
5 = = 2 95 =
< 38 3 3 3
g < < <20 i <
&} IR ST SO N 20 Todg el dege ey I B . I P
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
KV cache ratio KV cache ratio KV cache ratio KV cache ratio
En.Summary Retr.MultiHop ICL.ManyShot
z 32 1 30 e T | =
£ 30 S S < 50 %
T m [y by z
s 028 £] g
= 2 = = S A5 it
= O 3 3 3
O X 26 < < <
&~ IR ST SO N IR SR SO N ;7 SN SUTEUE SRS N qo bl T T
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
KV cache ratio KV cache ratio KV cache ratio KV cache ratio

Figure 20: Benchmark results using Gemma3-12B [49] across compression ratios from 0.1 to 1.0.

—— KVzip (ours) —— HaO —— SnapKV —— PyramidKV ‘

Retr.Prefix-Suffix Code RepoQA
. 100 10 _ 0 g
23 3) —
=2 <LC) 20 2 2 é:z £1
01 0 04

| ! T ; 3
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
KV cache ratio KV cache ratio

SQuAD GSMBK

15
12

KV cache ratio

En.MultiChoice

Accuracy (%)
©
Accuracy (%)

! ! ! ! ! ! ! ! ! ! ! ! T ! !
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
KV cache ratio KV cache ratio KV cache ratio KV cache ratio

Contextual QA
Accuracy (%)

S w o

20

Retr.MultiHop Math.Find ICL.ManyShot
30 N ARt

38

K 3

20 |- MLy W

ccuracy (%)

10 friorio i

£8E8
A

Accuracy (%)
Accuracy (%)

Redundancy
ROUGE (%)

. . . i AR TR - . L

0
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
KV cache ratio KV cache ratio KV cache ratio KV cache ratio

Figure 21: Benchmark results using LLaMA3-8B-W8A8KV4 [36] across compression ratios from
0.1 to 1.0.

26

’ —— KVzip (ours) H20 —— SnapKV —— PyramidKV

Mix.RepoQA+KV Mix.Sum+NIAH
SEgE €70
>
5 / g 60
S g 50
240 |- < 40
< <
— 20 |- m 30
® S
2 04 g%
£ A S SRR S 2 S R R SR B
02 04 06 08 1.0 02 04 06 08 1.0

KV cache ratio KV cache ratio

Figure 22: Benchmark results on SCBench multi-task datasets using Qwen2.5-7B-1M [54] across
compression ratios from 0.1 to 1.0.

’ —— KVzip (ours) H20 —— SnapKV —— PyramidKV

NIAH SQuAD GSMS8K
100 100
60
< 80 ~ 80 s
1S3 1S3 1S3
% 60 z 60 % 40
g g £
é 40 § 40 §20
< 20_ < 20 < ‘
0 | I T SR S SR R B 0
02 04 06 08 1.0 02 04 06 08 1.0 02 04 06 08 1.0
KV cache ratio KV cache ratio KV cache ratio

Figure 23: Benchmark results for LLaMA3.1-3B [21] across compression ratios ranging from 0.1
to 1.0. The evaluation focuses on shorter contexts, as LLaMA3.1-3B lacks the capability to solve
SCBench tasks, resulting in near-zero accuracy.

27

Table 3: Inputs for KV cache importance scoring from a SQuAD example (used in the visualizations
in Figure 6 and Figure 13). The context is included in the input of the repeat task.

Task Inputs for scoring (prompt+response)

Repeat Repeat the previous context: Architecturally, the school has a Catholic
character. Atop the Main Building$ gold dome is a golden statue of the
Virgin Mary. Immediately in front of the Main Building and facing it, is
a copper statue of Christ with arms upraised with the legend "Venite Ad
Me Omnes". Next to the Main Building is the Basilica of the Sacred Heart.
Immediately behind the basilica is the Grotto, a Marian place of prayer and
reflection. It is a replica of the grotto at Lourdes, France where the Virgin
Mary reputedly appeared to Saint Bernadette Soubirous in 1858. At the end
of the main drive (and in a direct line that connects through 3 statues and
the Gold Dome), is a simple, modern stone statue of Mary.

QA-1 Q: To whom did the Virgin Mary allegedly appear in 1858 in Lourdes
France? A: Saint Bernadette Soubirous

QA-2 Q: What is in front of the Notre Dame Main Building? A: a copper statue of
Christ

Summarization Please summarize the previous context: The school has a Catholic character

with various statues and buildings that reflect this theme, including a gold
dome with a Virgin Mary statue, a Christ statue, a Basilica of the Sacred
Heart, a Grotto replica of Lourdes, and a modern stone Mary statue at the
end of the main drive.

Table 4: Inputs for importance scoring from a GSM8K example used in the visualization in Figure 6,
a reasoning task. The context is included in the input of the repeat task.

Task Inputs for scoring (prompt+response)

Repeat Repeat the previous context: Janet’s ducks lay 16 eggs per day. She eats
three for breakfast every morning and bakes muffins for her friends every
day with four. She sells the remainder at the farmers’ market daily for $2
per fresh duck egg.

Reasoning Reason and answer the question. Q: How much in dollars does she make
every day at the farmers’ market?
Janet’s ducks lay 16 eggs per day. She eats 3 eggs for breakfast, so she has
16 - 3 = 13 eggs left. She bakes 4 eggs for muffins, so she has 13-4 =9
eggs left. She sells the remaining 9 eggs at the farmers” market for $2 each.
To find out how much she makes, we multiply the number of eggs she sells
(9) by the price per egg ($2): $9 x $2 = $18. The answer is $18.

28

(a) En.QA (main) (b) DuoAttention (¢) En.QA (sample-2) (d) Code.RepoQA (e) Retr. KV
E E E |

0.8

Layers

A

KV heads KV heads KV heads KV heads KV heads

Figure 24: Visualization of head-level importance scores for context-independent compression in
Section 4.2. We use the head scores obtained from an En.QA example in our primary experiments
(Figure 11). For reference, (c)-(e) show head scores derived from alternative data sources from
SCBench [35]. Our scoring method yields a more uniformly distributed importance pattern compared
to DuoAttention. We select the En.QA sample for our main experiments due to its comprehensive
overlap with importance patterns from other data sources, whereas Retr. KV, composed of synthetic
passkeys, exhibits sparser importance patterns.

	Introduction
	Preliminary
	Notation and Problem Formulation
	Analysis of Existing Approaches

	Method
	Intuition
	KV Importance Scoring
	Observation
	Technical Challenge and Solution

	Experiment
	Setup
	Benchmarking
	Analysis

	Related Work
	Conclusion
	Implementation Details
	Broader Impacts and Limitations
	Analysis and Experiments
	Reconstruction Chunk Size
	Repeat Prompts
	Softmax-Free Importance Scoring
	Uniform KV Head Budgets

	Individual Dataset Performance

