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Abstract

In the context of classification, domain generalization (DG) aims to predict the1

labels of unseen target-domain data using only labeled source-domain data, where2

the source and target domains usually share the same label set. However, in3

the context of regression, DG is not well studied in the literature, and the main4

reason is that the ranges of response variables in two domains are often different,5

even disjoint under some extreme conditions. In this paper, we systematically6

investigate domain generalization in the regression setting and propose a weighted7

meta-learning strategy to obtain optimal initialization across domains to tackle8

the challenge. Unlike classification, the labels (responding values) in regression9

naturally have ordinal relatedness. The relatedness brings a core challenge in10

meta-learning for regression: the hard meta-tasks with less ordinal relatedness11

are under-sampled from training domains. To further address the hard meta-tasks,12

we adopt the feature discrepancy to calculate the discrepancy between any two13

domains and take the discrepancy as the importance of meta-tasks in the meta-14

learning framework. Extensive regression experiments on the standard benchmark15

DomainBed demonstrate the superiority of the proposed method.16

1 Introduction17

Domain generalization (DG) receives increasing attention due to its challenging setting: learning18

models on source domains and inferring on unseen but related target domains [1, 2]. However,19

most existing approaches focus on semantically invariant representations for classification, limiting20

their practical applications to regression tasks. For example, real-world applications often involve21

predicting the recovery/survival time of patients in clinic or estimating the ages/skeleton joints/gaze22

direction of humans [3, 4, 5]. These tasks can be grouped into cross-domain regression problems.23

In cross-domain regression, the label’s marginal distribution shift can differ significantly compared to24

DG for classification. In DG classification, the shift typically represents variations in class probability25

densities across domains [6]. In regression, the shift can take on a specific form, e.g., when the26

responding (regression) interval of the source domain is [0, 0.7], the shifted responding interval of the27

target domain can be [0.5, 1]. This type of shift often occurs in regression settings such as predicting28

unseen ages, depths and rentals. In some cases, these regression intervals even have no overlap.29

We refer to this particular regression scenario as domain generalization in regression (DGR). Fig. 130

illustrates the differences between imbalanced domain regression and the DGR. Unlike imbalanced31

regression [7], DGR focuses on exploration or interpolation for regression.32

Comparisons to traditional DG. From the perspective of domain generalization, DGR can be33

viewed as a special generalization case where the target labels are continuous. However, most domain34

generalization methods are suboptimal for addressing the DGR problem due to the ordinal relatedness35

of regression labels. For example, feature alignment [8] might be unnecessary and even harmful in our36

DGR setting. Assuming that a closer feature discrepancy implies closer predictions, feature alignment37

methods may cause the model to exclusively map all predictions into one source interval, which38
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Figure 1: The label distributions of two different regression settings. (a) In the imbalanced domain
regression, the response values Y ∈ [0, 1] exhibit varying probability densities across domains. (b)
The DGR problem focuses on predicting unseen response values in the target domain. The response
values might encompass both overlapping (just like source interval [0, 0.7] and target interval [0.5, 1])
and non-overlapping intervals.

does not reduce total generalization risks. In addition to feature alignment, feature disentanglement39

usually disentangles semantically related discriminant representation for classification [9], while40

overlooking the ordinal relatedness of the target domain. Furthermore, semantic-related discriminant41

representation might be unnecessary for regression tasks like age estimation. Robust optimization42

methods [10] can perform moderately distributional exploration, but also lack the ability to tackle43

ordinal relatedness in regression.44

Comparisons to open-set DG [1, 11]. Open-set DG primarily focuses on classification applications45

and the ability to detect unknown classes. If open-set DG methods are used to address our problem,46

they can only identify these samples whose response intervals differ from that of the source domain47

but cannot obtain their response values.48

To effectively capture ordinal relations and facilitate modest extrapolation in the DGR problem,49

we propose a robust optimization algorithm via meta-learning. Meta-learning algorithms, e.g.,50

model agnostic meta-learning (MAML, [12]) have been extensively utilized in traditional domain51

generalization [13, 14, 15]. In each meta-task, these methods usually sample a support and a query52

classification task from two distinct domains and optimize the meta-model by a bi-level paradigm.53

However, this paradigm alone falls short for addressing the complexities of DGR. The task sampling54

strategy employed in these methods typically follows an implicit assumption, assuming that all55

training meta-tasks have equal importance [16, 17]. We argue that this implicit assumption no longer56

holds in our regression setting.57

In contrast to classification, regression tasks exhibit ordinal relations between each pair of labels58

[18]. When considering the label discrepancy between the support and query domains, it is observed59

that meta-tasks with a larger regression margin are sampled less frequently compared to those60

with a smaller margin. Additionally, meta-tasks with a larger regression margin tend to be more61

challenging to optimize within the meta-learning framework. These key factors bring a sampling62

bias that harder meta-tasks are less sampled from training data. Consequently, the sampling bias63

makes harder meta-tasks underrepresented in the training data, i.e., the meta-model tends to choose64

the easier meta-tasks, limiting the exploration and interpolation capabilities of the model. To mitigate65

this sampling bias, we propose a simple yet effective strategy: assigning higher weights to harder66

meta-tasks. These weights are computed based on the feature discrepancy between the query and67

support examples of each meta-task.68

In conclusion, we have developed a DGR benchmark that encompasses both overlapping and non-69

overlapping labels between the source and target domains. We conduct experiments on three70

regression tasks, including causality exploration with a toy logic dataset, predicting unseen ages71

according to face images, and forecasting rental prices across different regions. Our proposed method,72

named margin-aware meta regression (MAMR), makes the following main contributions:73

• We investigate generalized regression from the perspective of domain generalization, a74

previously understudied area with significant practical implications.75

• To enhance exploration and interpolation capabilities, we introduce a margin-aware meta-76

learning framework that mitigates sampling bias and encourages the model to recognize77

long-range ordinal relations.78

• Although our solution achieves considerable improvements regarding baselines, our empiri-79

cal analyses demonstrate that generalizing to unseen responses is still challenging.80
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2 Related Work81

In this section, two related research areas are briefly introduced. One is domain adaptation for ordinal82

regression and classification, and the other one is generalization for regression.83

2.1 Domain Adaptation for Ordinal Regression and Classification84

Domain adaptation aims to migrate the knowledge from a source domain to a target domain, where85

there may exist a distribution shift between them. Typical domain adaptation methods try to get confi-86

dent decision boundaries for classification tasks based on clustering assumption [19]. However, when87

it comes to cross-domain regression (also known as ordinal classification [18]), these assumptions88

are not satisfied, posing challenges for existing domain adaptation methods. Some pioneer works89

like [20] try to provide regression discrepancy in reproducing kernel Hilbert space. Most recent90

works address cross-domain regression in specific application scenarios, such as estimating object91

boxes in cross-domain/few-shot object detection [21, 17], regressing human skeleton key-points in92

cross-domain gesture estimation [4] and calculating the gaze direction in cross-domain gaze tracing93

[22]. Furthermore, [3] proposes a general cross-domain regression method via subspace alignment,94

which reduces domain gap by minimizing representation subspace distance (RSD) with the principal95

angles of representation matrices. [23] proposes an adversarial dual regressor to achieve a direct96

alignment between two domains.97

However, nearly all cross-domain regression methods inherently assume there only exists covariate98

shift in input examples, i.e., p(xs) ̸= p(xt), where p(·) is the probability density function and xs, xt99

denote the source and target examples. This assumption implies that these methods may not be100

capable of handling label shift across domains. The label shift in cross-domain regression can arise101

as interval shift of responding values, e.g., the source interval ys ∈ [0.3, 0.5] while the target interval102

yt ∈ [0.6, 0.7]. The responding values in the real world can be gasoline consumption data and103

vary significantly across developed and developing countries [24]. [25] also considers the interval104

shift problem and tries to learn a ranking on the target domain, followed by mapping the ranking105

to responding values. This method assumes the availability of the responding interval on the target106

domain at the adaptation stage, which might be contradictory to the setting of unavailable labels.107

In contrast, we assume all target domain data are not available at the training stage, which is more108

practical and challenging in real-world scenarios.109

2.2 Generalization/Causality for Regression110

Domain generalization introduces a more challenging setting where the model can only access the111

labeled source data at the training stage [1, 2, 26, 27, 28, 29, 30, 31]. A thorough discussion of112

domain generalization might exceed the scope of our paper. We focus on potential methods that113

can be applied to regression settings. Among existing generalization methods, some works try to114

generalize to continuous outputs by capturing causal relations [32, 33]. Recent works like DDG [9]115

concentrate on capturing invariant semantic features, which might overlook the variational features116

for continuous predictions. In contrast, the meta-learning paradigm holds potential for regression117

settings due to its model-agnostic property and strong generalization ability.118

The spearhead work MLDG [13] introduces MAML [12] into the domain generalization framework.119

[14] leverages class relationships and local sample clustering to capture the semantic features of120

different classes. These two operations are hard to be migrated to regression settings because the121

clustering assumption is usually not reasonable for regression. Moreover, in many regression tasks122

like age estimation, the semantic features might be unimportant, e.g., distinguishing each face might123

be useless for age regression. Instead, the style features, like the texture of the faces might be124

important information for age regression. Moreover, [30] proposes an implicit gradient to get stable125

meta-learning loss, which may provide orthogonal solution compared to our method.126

3 Problem Setting and Notations127

In this section, we introduce the formal definition of the DGR problem. We denote the input128

space and the label space by X and Y , where Y has a continuous range from 0 to 1 and can129

include two sub-spaces, e.g., Ysource and Ytarget. Ds = {(x,y) ∈ {X × Ysource}} and Dt =130
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{(x,y) ∈ {X × Ytarget}} respectively denote the source and target domain data. The model can131

only utilize Ds at the training stage, and then predicts labels in Dt without further adaptation. The132

above settings are very similar to the classification tasks of domain generalization. But the label133

spaces across domains are different in our regression setting. A prediction ŷ from regression model R134

can be denoted with ŷ = R(x) = G(F (x)). We use F : X → Z to denote a feature encoder, where135

Z is a feature space. After the encoder, we use a linear regressor with sigmoid activation to map the136

range of predictions into [0, 1], i.e., G : Z → Y .137

4 Margin-Aware Meta Regression138

4.1 Distribution Alignment Produces Regression Margin139

Following the typical setting of domain generalization that domain labels are available. We split Ds140

into K source domains {D1, D2, · · · , DK} and simulate the generalization setting between Ds and141

Dt. As we know, feature alignment is the core idea of many typical domain alignment solutions142

for domain adaptation [34] as well as domain generalization [8]. For domain generalization, the143

alignment is usually performed among multiple source domains to find domain-invariant semantic144

features. This alignment can be formalized using a general discrepancy measure, i.e., integral145

probability metric (IPM, [35]). Let X1, X2 denote two independent random variables from domain146

distributions Pi and Pj . The domain discrepancy can be defined with:147

IPM(Pi,Pj) := sup
f∈H

[E[f(X1)]− E[f(X2)]], (1)

where E denotes the expectation, f denotes the transformation function in function space H. Applying148

specific condition on H, IPM can be transformed into many popular measures, such as maximum149

mean discrepancy (MMD, [36]) and wasserstein distance (WD, [37]).150

Incorporating the domain discrepancy between Pi and Pj , the objective of the regressor can be151

formulated as:152

min
Θ

sup
(x1,y1)∈Di,

(x2,y2)∈Dj

[
LΘ(x1,y1) + LΘ(x2,y2) + ÎPM(x1,x2)

]
, (2)

where Θ is model parameter, LΘ(x,y) = ||RΘ(x)−y)|| is the empirical risk and can be the squared153

loss, ÎPM is the estimator from two batch examples x1 and x2. For example, ÎPM can be the unbiased154

U-statistic estimator M̂MD
2

u(x1,x2) [36]. In general domain generalization for classification tasks,155

all terms in the above objective could be minimized. However, our regression setting is like open156

domain generalization, which learns a model from the source domain and inferences in unseen target157

domains with novel classes [11]. To regress unseen target values, one strategy is to simulate the158

setting in the training stage. That means the labels in Di and Dj have few or no overlaps. Therefore,159

when the domain discrepancy ÎPM is minimized, there might be only one term minimized between160

LΘ(x1,y1) and LΘ(x2,y2). This problem can be formally introduced with the following definition:161

Proposition 1 (Regression Margin). Let (X1, Y1) and (X2, Y2) be the random variables correspond-162

ing to two source domains Di, Dj , the [a, b] and [c, d] be the regression interval of Y1, Y2. When163

ÎPM is reduced to 0 for a function f , we have164

Mi,j = inf |E[f(X1)− Y1]− E[f(X2)− Y2]| (3)
= inf |(E[f(X1)]− E[f(X2)]) + E[Y2 − Y1]| (4)
= min(|c− b|, |a− d|). (5)

The regression margin represents the minimal margin (or difference) between errors in the two165

domains (i.e., Eq. (3)). Eq. (4) is the rearrangement of Eq. (3). In Eq. (4), because ÎPM is reduced166

to 0 for the function f , E[f(X1)]− E[f(X2)] = 0, then obtaining the Eq. (5). The above analysis167

suggests that a large domain margin Mi,j can lead to a divergent optimization when simultaneously168

minimizing the domain discrepancy and the empirical risks. One strategy is to bypass explicit feature169

alignment. For example, in the meta-learning paradigm towards domain generalization, one can learn170

a meta-model by a bi-level optimization. In the inner optimization, the model learns on a support171

(source) domain. In the outer optimization, the learned model tries to generalize to a query (target)172
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domain. This training strategy naturally avoids explicit feature alignment. Moreover, the bi-level173

optimization emphasizes the importance of query loss, which might alleviate the above regression174

margin because the inner model and outer model can be viewed as different sampling instances in175

parameter space.176

4.2 Regression Margin Leads to Sampling Bias in Meta-Learning177

Existing meta-learning domain generalization methods are sub-optimal for the DGR problem. In178

the classification, each meta-task consisting of support tasks and query tasks is assumed to have the179

same sampling probability. However, the responding intervals of the support and query have ordinal180

relations in regression. When the regression margin between the support and query tasks is larger, the181

sampling probability is smaller. The left part of Fig. 2 depicts the relationship between the regression182

margin and the sampling strategies of meta-tasks. Intuitively thinking about the extreme case that183

when the regression margin is close to 1, the corresponding sampling probability of meta-tasks is184

close to 0. We formalize this using a simple theorem:185

Theorem 1 (Sampling Bias in Meta-Learning). Given a support domain i, let S(j|i) denote the186

number of available query domain j that can be sampled. Let M1
i,j ,M

2
i,j denote the regression187

margin of the meta-task 1 and meta-task 2. if M1
i,j > M2

i,j , then S1
(j|i) < S2

(j|i).188

The intuitive explanation is: the number of sampling strategies of a larger regression margin meta-task189

is always less than a small margin meta-task. We will provide a simple and intuitive proof below.190

Proof. Following the previous description, the source data Ds can be sorted into K disjoint source191

domains {D1, D2, · · · , DK} according to their regression interval. The query and support tasks are192

sampled from Di, Dj with regression interval [a, b] and [c, d] respectively. Let ∆ denote the length193

of single regression interval, n =
Mi,j

∆ denote the number of spanning intervals of regression margin194

Mi,j . Given a support task on domain index i, the query tasks on j-th domain have S(j|i) choices:195

S(j|i) =


K − (i+ n), if i ≤ n

(i− n), if i > K − n

K − 2n+ 1, if i > n and i ≤ K − n

(6)

From the above equation, when the regression margin Mi,j increases (i.e., n is increasing), the number196

of available-to-sample query tasks decreases, leading to a smaller number of eligible meta-tasks.197

4.3 Margin-Aware Meta-Training198

As illustrated by the left part of Fig. 2, a larger regression margin between the support and query199

tasks usually means a harder meta-task. Therefore, without any specialized sampling strategy, the200

meta model is prone to be biased towards the small margin tasks. To alleviate this issue, we want the201

large margin meta-task to have a larger weight in the meta-learning process. One direct strategy is to202

calculate the weight using the domain discrepancy, i.e., a larger regression margin means a larger203

meta-task weight. The learning objective can be redefined with:204

min
Θ

sup
(xq,yq)∈Di,

(xs,ys)∈Dj

LΘ′ (xq,yq) · d(xs,xq) s.t. Θ
′
= Θ− β∇Θ [LΘ(xs,ys] , (7)

where Di, Dj respectively denote the query domain and the support domain, d is discrepancy205

functions like M̂MD
2

u(·, ·) or simple Euclidean metric, and β is the inner loop learning rate on the206

support domain {xs,ys}.207

The graphical training process of one meta-task can be seen in the right part of Fig. 2. Different from208

existing meta-learning models, our MAMR model considers the domain discrepancy by discrepancy209

function d(·), but the data node in d(xs,xq) does not have gradients. The reason is directly minimizing210

this domain discrepancy might harm the generalization ability of our MAMR model. Our task211

weighting method is similar to recent sharpness-aware minimization [38], which simultaneously212

minimizes loss value and loss sharpness. The related topic can also have an extension to penalizing213

gradient norm [39] and independence-driven importance weighting [40]. With Euclidean distance214

d(·), we describe the detailed method in Algorithm 1.215
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Figure 2: Left: The graphical illustration of the regression margin with sampling strategies of
meta-tasks. Right: Our model’s training process. Note that in the training process, meta-models
share identical parameters Θ, and the blue data flow does not involve gradient backpropagation.

Algorithm 1 Training Algorithm of MAMR
Input: The source domains data Ds, the inner loop learning rate β, the out-loop learning rate α, the
domain number K to split Ds, model parameters Θ.
Output: The learned Θ.

1: Split the source data Ds into sub-domains {D1, D2, · · ·DK}.
2: while not convergence do
3: Sample T = K(K − 1)/2 domain pairs {(Di, Dj)} that i ̸= j.
4: for index = 0 → T do
5: Sample a batch of support data (xs,ys) ∈ Dj and query data (xq,yq) ∈ Di;
6: Compute task discrepancies: d(xs,xq) = ||F (xs)− F (xq)||2;
7: Get task-specific model parameters: Θ

′
= Θ− β∇Θ [LΘ(xs,ys];

8: Compute the weighted regression error: LΘ′ (xq,yq) · d(xs,xq);
9: Update Θ: Θ = Θ− α∇Θ [LΘ′ (xq,yq) · d(xs,xq)];

10: end for
11: end while

5 Experiments216

In this section, we will empirically explore what MAMR can learn and compare it to related works217

from the view of performance and methodology, including introductions to baselines and experimental218

details, results on three datasets, and detailed analyses.219

5.1 Baselines220

We use multiple domain generalization and the variants of domain adaptation methods as baselines,221

including: (1) risk minimization methods (ERM [41], IRM [42]); (2) feature alignments and robust222

optimization (MMD [8], CORAL [43], DANN [34], SD [44], Transfer [45]), MODE [10]; (3)223

subspace alignments (RSD [3]); (4) self-supervised and data augmentation methods (SelfReg [46],224

CAD [47], MTL [48]) (5) meta-learning (MLDG [13]) and (6) disentanglement and causality method225

(DDG [9], CausIRL [49]). All the introductions of baselines can be seen in Appendix A.226

5.2 Training and Evaluation227

To ensure fairness and comparability, we put all the baselines into a public evaluation benchmark228

DomainBed [50]. For age regression, we uniformly use ResNet12 as the backbone encoder F for all229

methods. ResNet12 is a popular encoder in meta-learning for few-shot learning. For rental regression,230

we uniformly use a 5-layer MLP as the backbone encoder F . For regressor G, we use a single linear231

neural network followed by a sigmoid function. Note that all labels are normalized from 0 to 1.232

Including toy experiments, all methods are implemented with Pytorch and can be executed on an233

NVIDIA RTX 3090 GPU. Appendix B provides detailed settings of the hyper-parameters, such as234

the learning rates, the training seeds, etc.235

5.3 Toy Causality Dataset and Results236

To figure out what the MAMR model can learn in regression problems, we create a toy dataset in237

which the input examples and their responding values obey some causal mechanism. We assume the238
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Figure 3: The toy experiments illustrate the ground truth test landscape (gray color) and prediction
regions (blue color). Each method’s performance is reported with Mean Squared Error (MSE).

1-dimensional random variables X1 and X2 follow a uniform distribution in [0,1], and the responding239

values Y are under the control of X1 and X2. The control mechanism can be complex as given in240

Appendix C. At training stage, regression models can only use X1 ∈ [0, 0.6] and X2 ∈ [0, 0.6]. At241

the test stage, we record the regression values when given X1 ∈ [0.6, 1] and X2 ∈ [0.6, 1].242

The toy experiments sample 15000 and 10000 regression tasks at the training and test stage, respec-243

tively. We use a 4-layers fully connected neural network for ERM, RSD and our MAMR. Fig. 3244

provides the test time explorations results of the three methods. On 10000 test tasks, the ground-truth245

responding values and the predicted values respectively form a gray region and a blue region. When246

given unseen values of X1 and X2, ERM fails to use the causal mechanism. The strong baseline247

method RSD captures a part of the causal mechanism. MAMR gets the best exploration performance248

by maximum causal discovery.249

5.4 Cross-Domain Age Estimation Datasets250

Perfect age estimation is based on the assumption that all age data are available, while many real-251

world datasets are not perfect and have partial ages due to privacy concerns. Hence age estimation252

has been introduced in cross-domain works [18, 51].253

CACD1. Cross-Age Celebrity Dataset (CACD) contains 163,446 images from 2,000 celebrities254

collected from the Internet. The age of celebrities ranges from 16-62 and can be classified into 5255

disjoint age intervals (domains), i.e., [15−20), [20−30), [30−40), [40−50), [50−60]. The images256

of each celebrity are sampled by different devices across multiple years. Therefore each domain257

has different facial characteristics. To consider the overlapped intervals, we further create CACD-O258

dataset, where each interval has 3 ages of neighbors, e.g., [15− 20) includes 8 different ages from 15259

to 22 and [20− 30) has 15 ages from 18 to 32.260

AFAD2. The Asian Face Age Dataset (AFAD) originally is an age estimation dataset containing more261

than 160K face images and aging labels. We split the dataset into 5 age intervals (domains), i.e.,262

[15− 20), [20− 25), [25− 30), [30− 35), [35− 40]. Like CACD, each age interval has its own face263

characteristics and can be viewed as 5 related domains for regression.264

In each task, only one domain is viewed as the target domain, and the left is viewed as sources. Please265

refer to Appendix E for more details on these age estimation datasets.266

5.5 Cross-Domain Rental Prediction Dataset267

The Rental dataset 3 was released by an online competition in 2019 to predict housing rental in Shang268

Hai, China. The data categories include rental housing, regions, second-hand housing, supporting269

facilities, new houses, land, population, customers, real rent, etc. We split 15 regions into 4 groups as270

4 different domains. Each domain has different rentals due to its population and economic conditions.271

Please refer to Appendix D for more introduction to this dataset.272

1http://bcsiriuschen.github.io/CARC/
2https://afad-dataset.github.io/
3https://ai.futurelab.tv/contest_detail/3#contest_des
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Table 1: Regression results on 4 cross-domain datasets with training-domain validation. The "Av-
erage" denotes the average Mean Squared Errors on 4 datasets. The "-" denotes not comparable
results due to different architectures. The minimum values are bolded. Note that we set the standard
variances to 0 if they are less than 0.001. More performance details for each dataset can be seen
in Appendix D and Appendix E.

Algorithms/Datasets CACD CACD-O AFAD Rental Average

ERM ([41], 1998) 0.0258±0.001 0.0236±0.000 0.0269±0.000 0.0477±0.003 0.0310
IRM ([42], 2019) 0.0368±0.017 0.0256±0.000 0.0285±0.001 0.0496±0.000 0.0351
MLDG ([13], 2018) 0.0260±0.000 0.0235±0.000 0.0268±0.001 0.0465±0.001 0.0307
MMD ([8], 2018) 0.0286±0.000 0.0263±0.000 0.0301±0.000 0.0461±0.000 0.0328
CORAL ([43], 2016) 0.0255±0.000 0.0231±0.000 0.0272±0.003 0.0615±0.019 0.0343
DANN ([34], 2016) 0.0269±0.000 0.0259±0.001 0.0290±0.001 0.0474±0.002 0.0323
SD ([44], 2021) 0.0248±0.000 0.0227±0.000 0.0270±0.001 0.0493±0.000 0.0598
MTL ([48], 2021) 0.1447±0.000 0.1456±0.000 0.2122±0.001 0.0467±0.001 0.1373
SelfReg ([46], 2021) 0.0252±0.000 0.0232±0.000 0.0281±0.000 0.0526±0.010 0.0323
Transfer ([45], 2021) 0.1446±0.000 0.1379±0.000 0.2122±0.000 0.0475±0.001 0.1355
RSD ([3], 2021) 0.0313±0.000 0.0264±0.000 0.0298±0.000 0.0497±0.005 0.0343
CAD ([47], 2022) 0.1447±0.000 0.1849±0.000 0.2122±0.000 0.0555±0.015 0.1493
CausIRL ([49], 2022) 0.0278±0.000 0.0257±0.002 0.0296±0.000 0.0463±0.000 0.0323
DDG ([9], 2022) 0.0490±0.000 0.0268±0.000 0.0302±0.000 − −
MODE ([10], 2023) 0.0283±0.000 0.0268±0.000 0.0299±0.000 0.0464±0.000 0.0329

MAMR 0.0189±0.000 0.0225±0.000 0.0238±0.000 0.0459±0.000 0.0278

5.6 Quantitative Comparisons273

Comparison to risk minimization methods. ERM and IRM are typical risk minimization methods.274

From Tab. 1, we find that ERM is better than IRM, which might imply that the gradient invariance in275

IRM is useless for our problem. Another result is that the naive ERM is surprisingly comparable with276

advanced methods, e.g., MMD, DANN and MLDG. Even on AFAD dataset, ERM is a very strong277

baseline. Previous works [50, 52] also find a similar phenomenon in classification tasks.278

Comparison to the methods using feature alignments and robust optimization. As discussed in279

Sec. 4, directly using feature alignments, e.g., MMD, DANN and CORAL, may perform poorly due280

to the regression margin. Furthermore, DANN and Transfer try to apply adversarial robustness, and281

MODE uses style augmentation for distribution robustness. Our results demonstrate the robustness282

design in these methods might bring the opposite impact on ordinal predictions.283

Comparison to subspace alignments, e.g., RSD. We find that RSD gets comparable performance284

with respect to feature alignment methods. With principal angle alignment between sub-spaces, the285

sub-space alignments effectively slack the traditional feature alignments. This might imply that the286

domain adaptation method RSD can also generalize to out-of-distribution data.287

Comparison to self-supervised and data augmentation methods, e.g., SelfReg. The self-supervised288

methods, especially with contrastive learning, can be strong baselines for our problem. The reason289

might be that SelfReg uses strong data augmentation and mixup operation in their models. We find290

the follow-up work CAD does not surpass SelfReg. The reason might be that the part of marginal291

distribution alignment in CAD harms the generalization ability like DANN. MTL augments the292

original feature space with the marginal distribution of feature vectors. However, MTL performs293

poorly in our regression settings. The reason might be augmenting the original feature space destroys294

the ordinal information of features.295

Comparison to meta-learning method. MLDG simultaneously optimizes the support risks and query296

risks. While in DGR, the support and the query tasks usually change a lot, which makes the MLDG297

hard to be optimized. Our method does not simultaneously optimize the two risks and is attentive to298

hard tasks. The experiments also demonstrate that our method outperforms MLDG.299

Comparison to disentanglement/causality. DDG disentangles the latent representations into semantic300

features and variation features. DDG may capture the causal mechanism between the inputs and their301

responding values. However, our further experiments with CausIRL method demonstrate that DDG302

can collapse with generated variational samples. DDG is originally proposed to minimize the semantic303

difference among generated samples from the same class while diversifying the variation across304
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Table 2: Ablation studies on CACD dataset with training-domain validation. Each regression interval
(domain) denotes the target interval with the others as source intervals.

Methods [15-20) [20-30) [30-40) [40-50) [50-60] Avg

MAMR- 0.0348±0.01 0.0284±0.01 0.0015±0.00 0.0156±0.01 0.0235±0.01 0.0208
MAMR-G 0.0475±0.00 0.0505±0.03 0.0248±0.02 0.0431±0.02 0.0754±0.04 0.0483
MAMR-P 0.0331±0.01 0.0143±0.00 0.0021±0.00 0.0078±0.00 0.0371±0.01 0.0189
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Figure 4: (a) The performances when changing regression margins. (b,c) The MSE heatmaps of
regression tasks [20, 30) and [30, 40) in CACD by Oracle validation.

source domains. This design may let DDG overlook the variation features, which are coincidentally305

important in regression setting. Instead, CausIRL captures the style variables and finds sufficient306

conditions that do not rely on source domains.307

5.7 Detailed Analyses308

Tab. 2 provides 3 ablation models. MAMR- is our method without the margin-aware weighting309

mechanism. MAMR-G computes a mean weight for query tasks using the MMD with Gaussian310

kernel. MAMR-P computes the pair-wised Euclidean distances among the support and query tasks311

and provides a weight for each query task. We encourage MAMR-P to perform long range exploration312

by our proposed margin-aware weighting, which helps achieve better average regression performance.313

Besides that, the results demonstrate the averaged weight in MAMR-G may be invalid compared to314

pair-wised weights. The pair-wised Euclidean distances can be viewed as a special case of optimal315

transport distances [53] between the query data points and the support data points. Furthermore,316

Fig. 4(a) provides the regression performances of MAMR- and MAMR-P (MAMR). When manually317

enlarging the regression margin on the CACD dataset, MAMR consistently demonstrates better318

performance and smaller variance. Note that we set 0.1 as the start regression margin between the319

domain [20, 30) and [30, 40) in CACD.320

The key hyper-parameters of the MAMR model include the inner loop learning rate β, the outer loop321

learning rate α and the iteration steps of the inner loop. To reduce the search of hyper-parameters, we322

set α = 0.1∗β. We conduct a grid search for β and the iteration steps. Fig. 4(b) and Fig. 4(c) provide323

the MSE heatmaps on the CACD dataset using two generalization tasks. We find that more inner324

iteration steps do not have a significant influence on the generalization results. This phenomenon is325

consistent with our analysis of the method: different from 5 or 10 inner steps in meta-learning for326

few-shot learning, fast adaptation by multi-steps is not necessary for DGR.327

6 Conclusion and Limitations328

We investigate domain generalization for ordinal regression problems. A margin-aware meta-learning329

regression method is proposed to achieve long-range exploration and interpolation. We build a330

regression benchmark to systematically investigate the performance of existing domain generalization331

methods for regression. Limitations: (1) Our empirical analyses demonstrate that domain generaliza-332

tion for regression still has a large exploration space when dealing with high-dimensional data. (2)333

Initial calculation of representation distance in meta-space is not reliable, one strategy is to consider334

a suitable warm-up strategy. (3) Finally, most used datasets have balanced source labels, applying335

MAMR to imbalanced source domains is also a more practical setting.336
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