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Abstract: In-context imitation learning (ICIL) enables robots to learn tasks from1

prompts consisting of just a handful of demonstrations. By eliminating the need2

for parameter updates at deployment time, this paradigm supports few-shot adap-3

tation to novel tasks. However, recent ICIL methods rely on Transformers, which4

have computational limitations and tend to underperform when handling longer5

prompts than those seen during training. In this work, we introduce RoboSSM,6

a scalable recipe for in-context imitation learning based on state-space models7

(SSM). Specifically, RoboSSM replaces Transformers with Longhorn – a state-of-8

the-art SSM that provides linear-time inference and strong extrapolation capabili-9

ties, making it well-suited for long-context prompts. We evaluate our approach on10

the LIBERO benchmark and compare it against strong Transformer-based ICIL11

baselines. Experiments show that RoboSSM extrapolates effectively to varying12

numbers of in-context demonstrations, yields high performance on unseen tasks,13

and remains robust in long-horizon scenarios. These results of RoboSSM high-14

light the potential of SSMs as an efficient and scalable backbone for ICIL.15

Keywords: Imitation Learning, In-context Learning, State-Space Model16

1 Introduction17

Imitation Learning (IL) is a powerful framework that enables robots to learn behaviors from demon-18

strations without explicit programming or reward design [1, 2]. While IL has achieved notable19

success in manipulation and navigation tasks, a key limitation of conventional imitation learning20

lies in its restricted adaptation capability, particularly when faced with new tasks. Even with models21

trained on large multi-task datasets [3, 4, 5, 6], adapting to novel tasks still requires collecting a22

large amount of task-specific data and retraining, which can be computationally costly and often23

unstable [7, 8]. To address this challenge, In-Context Imitation Learning (ICIL) introduces a new24

paradigm, inspired by the success of large language models (LLMs) in adapting to unseen language25

tasks through few-shot learning [9]. ICIL integrates the concept of prompting into imitation learn-26

ing, allowing the model to infer and perform tasks based on a prompt composed of demonstrations,27

with no post-demonstration training.28

Given that ICIL formulates imitation learning as a sequence modeling problem, recent ICIL ap-29

proaches have naturally adopted Transformer-based models as their primary architecture [10, 11,30

12]. Although Transformers are the dominant architecture for sequence modeling, their time com-31

plexity scales quadratically with sequence length, and they struggle to extrapolate beyond training32

lengths [13, 14]. To enable the use of long prompts at test time in ICIL, it is essential to adopt33

alternatives to Transformers that enhance scalability with input length. In this paper, we introduce34

RoboSSM, a scalable in-context learning framework that replaces Transformers with state-space35

models (SSMs). Specifically, RoboSSM utilizes Longhorn [15], a state-of-the-art SSM with linear36

inference time and strong extrapolation capability for long-context sequences. Leveraging these37

properties, RoboSSM can process substantially longer prompts at test time compared to previous38
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Transformer-based ICIL methods. On the LIBERO [16] benchmark, RoboSSM uniquely benefits39

from using more in-context examples, maintaining high success rates on unseen tasks when trained40

with only a few demonstrations. For instance, RoboSSM achieves a higher success rate as more41

demonstrations are provided for the task pick up the plate and place it in the tray, even though42

the plate object was never seen in the training data. Furthermore, our framework performs well on43

unseen long-horizon tasks, which we simulate by repeating frames in the demonstrations to create44

time-dilated scenarios. Consequently, we observe that RoboSSM can handle prompts up to 16x45

longer than those used during training, whereas Transformer-based ICIL methods exhibit a perfor-46

mance collapse once the test prompt length exceeds the training length. These results demonstrate47

that RoboSSM can execute unseen tasks by leveraging long-range in-context information without48

any task-specific parameter updates, while outperforming Transformer-based ICIL methods.49

2 Related Work50

In this section, we provide an overview of prior ICIL methods and state-space models (SSMs), along51

with their recent applications to robotics.52

2.1 In-Context Imitation Learning53

Imitation learning has long been a foundation for imparting skills to robots by learning from demon-54

stration data. Standard behavior cloning approaches [17, 18] typically train a separate policy for55

each task or rely on large multi-task datasets to acquire broader skills. While multi-task imitation56

learning [3, 4] can handle diverse tasks, these methods still struggle to perform completely unseen57

tasks without additional data collection for fine-tuning.58

Inspired by the in-context learning paradigm in large language models (LLMs) [9], recent imitation59

learning methods aim to eliminate parameter updates at test time, instead prompting a multi-task60

policy with a few demonstrations of unseen tasks. Keypoint Action Tokens [11] introduce an ICIL61

framework that converts the visual observations and actions into tokens, which are fed into a pre-62

trained large language model. ICRT [10] performs in-context learning using a causal Transformer63

that predicts actions with next-token prediction, conditioned on a prompt consisting of a sequence64

of encoded teleoperated demonstrations. LipVQ-VAE [12] is an action tokenizer that uses vector65

quantization to address the lack of temporal smoothness in existing tokenizers and enable ICIL.66

Although ICIL methods have been extensively studied and have achieved significant progress, they67

are typically trained and evaluated on test prompts that closely match the training prompt distribution68

in terms of length. For instance, ICRT learns from inputs containing five demonstrations and masks69

the first random k of them as the prompt, then at inference time is evaluated with three demonstration70

prompts. LipVQ-VAE is trained and evaluated using only a single full demonstration as the prompt.71

In contrast, RoboSSM explicitly aims to handle prompts that significantly deviate from the training72

distribution, such as those containing a larger number of demonstrations or long-horizon tasks.73

2.2 State-Space Models74

State-space models (SSMs) have emerged as a promising alternative to Transformers for sequence75

modeling in language tasks, addressing the quadratic time complexity of Transformers and their76

limitations in handling long contexts. SSMs originate from classical control theory and are partic-77

ularly inspired by continuous-time linear dynamical systems. By discretizing the continuous-time78

formulation, SSMs can be expressed as discrete-time models that update the hidden state St via a79

linear recurrence:80

st = Ast−1 +Bxt, (1)

where xt is the input and A, B are state transition matrices. Recent SSMs aim to design the tran-81

sition matrices A, B and the recurrence formulation. S4 [19], H3 [20], S5 [21], Mamba [22], and82

Longhorn [15] have introduced structured state transition matrices and parallel computation schemes83
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Longhorn Longhorn

Training Inference

Task : pick up the alphabet soup and place it in the basket Task : pick up the orange juice and place it in the basket

Figure 1: Overview of RoboSSM. Training (left): Longhorn receives Ntrain trajectories from
Ptrain and a query trajectory for the same task. Inference (right): Given Ntest trajectories from
Ptest containing unseen tasks, the model predicts actions and updates the environment iteratively
from the initial observation embedding.

to enhance efficiency and capability. In particular, recent SSM architectures enable linear-time in-84

ference and demonstrate strong extrapolation capabilities over long-range contexts, while achieving85

comparable performance to Transformers in language modeling tasks.86

As SSMs have evolved, their applications have expanded beyond language modeling to various87

other domains, including robotics. For instance, S5 is applied to reinforcement learning by allowing88

hidden state resets within a trajectory [23]. MAIL [24] proposes a novel imitation learning policy89

by leveraging Mamba. Building on these extensions, we explore using Longhorn, a recent state-of-90

the-art model, to perform in-context imitation learning.91

3 Method92

Our objective is to learn an ICIL policy πθ that maximizes success rate on unseen tasks when condi-93

tioned on few-shot demonstrations. In this section, we describe how RoboSSM implements πθ with94

Longhorn [15] and how it processes trajectory prompts during training and inference.95

3.1 Architecture96

RoboSSM first processes the observations with multimodal encoders. The per-step encoded obser-97

vation embeddings are then passed through the Longhorn state-space block to generate actions.98

Input Encoding RoboSSM encodes multimodal observations at each time step of a demonstra-99

tion. At each time step, the observation includes front-view and hand-view RGB images, the robot’s100

joint angles, and the gripper state. To prevent the model from trivially copying the actions in the101

prompt, we exclude actions from the input representation. We further exclude any task language in-102

structions to force the model to attend to the in-context demonstrations. Visual data are processed by103

convolutional neural networks (CNNs), and proprioceptive data are embedded using multi-layer per-104

ceptrons (MLPs). The per-step features from each modality are concatenated and projected through105

an MLP to produce an observation embedding.106

Longhorn state-space block The sequence of observation embeddings {xt}Tt=1 is fed into107

Longhorn, which recurrently updates a memory state matrix st ∈ Rd×m. At each time step, the108

input is interpreted as a key–value pair (kt, xt), with xt ∈ Rd and kt ∈ Rm obtained via a linear109

projection of xt, analogous to how Transformers use keys in the attention mechanism. Longhorn110

then performs a recurrent update:111

st = At ⊙ st−1 +Bt, (2)
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where ⊙ denotes the element-wise product, and At, Bt : Rd → Rd×m are functions of xt, defined112

as113

At = (1d×m − εt ⊗ k⊙2
t ), Bt = (εt ⊗ 1m)⊗ kt, εt,i =

βt,i

1 + βt,ik⊤t kt
, (3)

where ⊗ denotes the outer product and βt ∈ Rd is a weighting vector.114

From the updated state, we compute a context vector:115

rt = stqt ∈ Rd, (4)

where qt ∈ Rm is a query vector derived from a linear projection of xt.116

Finally, this context vector is passed through an output head to produce the corresponding action at.117

Longhorn as an Online Learning Problem From the perspective of online learning, the recurrent118

form in (2) can be derived as the solution to the following online convex programming objective [25]:119

st = arg min
s∈Rd×m

{
∥s− st−1∥2F + ∥skt − xt∥2diag(βt)

}
, (5)

where ∥ · ∥F is the Frobenius norm and βt ∈ Rd is a weighting vector. This objective balances120

two competing goals inherent in online learning: the first term encourages the updated state st to121

remain close to the previous state st−1, promoting consistency over time and preventing forgetting,122

while the second term enforces that the current state st accurately reflects the new input–target123

pair (kt, xt), allowing the model to incorporate newly observed information. Together, these terms124

enable the model to integrate new data while retaining useful prior knowledge. The weighting125

vector βt modulates this trade-off by controlling the relative importance of the current observation126

embedding; it is obtained by applying a sigmoid activation to a linear projection of the input xt.127

In this online regression view, the use of βt in equation (5) naturally mitigates forgetting while128

integrating new information, thereby enabling efficient in-context learning with long context.129

3.2 In-Context Imitation Learning130

Following the standard ICIL formulation, RoboSSM conditions on a context of demonstration tra-131

jectories during both training and inference. At test time, the policy adapts to new tasks based solely132

on the provided demonstrations, without any parameter updates.133

Each input to the policy consists of a prompt and a query trajectory. The prompt P contains N134

trajectories that provide task context:135

P = [τ1, τ2, . . . , τN ] , (6)

where each demonstration trajectory τi is a sequence of Ti observation embeddings:136

τi =
{
o
(i)
1 , o

(i)
2 , . . . , o

(i)
Ti

}
, (7)

and o
(i)
t denotes the t-th observation embedding from the i-th demonstration.137

Figure 1 illustrates the training and inference procedure of the policy πθ. At each time step t, given138

a prompt P and the sequence of query observation embeddings oq1:t, the policy predicts the next139

action for the query trajectory as:140

at = πθ(P; oq1, . . . , o
q
t ) , t = 1, . . . , Tq. (8)

Both the prompt and the query trajectory are sampled from demonstrations of the same task. During141

training, the output actions of both the prompt and the query are supervised using the ground-truth142

actions. We adopt a multi-task learning approach following ICRT [10], enabling the policy to infer143

the task intent from the prompt and to generalize to unseen tasks.144

At inference time, the query trajectory is initialized with the first observation embedding oq0. The145

policy then iteratively outputs the next action using the contextual information in P and applies the146

action to the environment, gradually building on the resulting observations until the task is complete.147
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LIBERO-Object LIBERO-90
Study Scene

LIBERO-90
Living Room Scene

LIBERO-90
Kitchen Scene

Figure 2: We evaluate RoboSSM on challenging manipulation tasks from the LIBERO benchmark.
In LIBERO-90, the Study and Living Room suites each comprise 4 different scenes, while the
Kitchen suite comprises 10 difference scenes.

4 Empirical Results148

In this section, we evaluate whether RoboSSM can execute unseen tasks based on demonstration149

prompts, comparing it to previous state-of-theart ICIL methods. Section 4.1 describe the experi-150

mental setup, including dataset construction. We consider two regimes: out-of-distribution to assess151

length generalization with |Ptest| > |Ptrain| (Sec. 4.2), and in-distribution where |Ptest| = |Ptrain|152

(Sec. 4.3). We find that RoboSSM benefits from longer prompts that contain more demonstrations153

at test time by leveraging additional in-context information. Additionally, we compare RoboSSM to154

a multi-task learning policy in terms of its capability on unseen tasks (Sec. 4.4).155

4.1 Experimental Setup156

We conduct experiments on the LIBERO benchmark [16], a challenging benchmark for visuomotor157

robot manipulation. LIBERO consists of five task suites: LIBERO-Object, LIBERO-Goal, LIBERO-158

Spatial, LIBERO-Long, and LIBERO-90. LIBERO-90 consists of 90 tasks, while each of the other159

suites contains 10 tasks. Each task contains 50 demonstration trajectories.160

In our experiments, we use the full LIBERO-Object suite and divide LIBERO-90 into three task161

suites based on scene type, including kitchen, living room, and study scenes, as shown in Figure 2.162

For all experiments, the test set Dtest contains tasks that are completely disjoint from the training set163

Dtrain, ensuring that models are evaluated on entirely unseen tasks. We set |Dtest| = 2 for all task164

suites, and |Dtrain| = 8 except for the living room suite, where |Dtrain| = 14.165

We compare RoboSSM with ICRT [10], a Transformer-based in-context imitation learning method166

that employs LLaMA2-Base as its backbone. To ensure a fair comparison, we configure both back-167

bones to have a similar number of parameters. We also implement multi-task learning (MTL) for168

each backbone, where MTL-TF uses LLaMA2-Base and MTL-SSM uses Longhorn. Unlike Ro-169

boSSM and ICRT, these policies take language instructions as input to specify the task.170

During evaluation, we execute 20 rollouts per task, generate trajectories of up to 200 time steps, and171

compute the average success rate over all tasks in the suite across 6 random seeds.172

We design our experiments to answer the following research questions:173

• Q1: Can RoboSSM extrapolate to prompts composed of demonstrations that are longer174

than those used in training?175

• Q2: How many training demonstrations are required for RoboSSM to effectively infer with176

long prompts?177

• Q3: Can RoboSSM achieve comparable performance to Transformer-based baselines when178

the test-time prompt length is equal to that used in training?179
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Figure 3: Comparison of RoboSSM and ICRT across test-time demonstrations (Ntest), with both
models trained with Ntrain=2. ICRT’s performance drops sharply once Ntest>Ntrain.

Figure 4: Results with a fixed test-time prompt Ntest = 8 across models trained with different
numbers of demonstrations (Ntrain).

• Q4: Can RoboSSM achieve superior performance on unseen tasks compared to multi-task180

learning?181

4.2 Prompt Length Generalization182

We investigate long-range in-context imitation learning with RoboSSM, focusing on prompt-length183

extrapolation to out-of-distribution context. In this section, we consider two approaches to making184

the test prompt substantially longer than the training prompt (|Ptest| > |Ptrain|): (1) increasing the185

number of demonstrations and (2) applying temporal dilation to demonstrations. These experiments186

are conducted on LIBERO-Object, LIBERO-90 Study, and the Living Room Scene.187

4.2.1 Number of demonstrations188

To measure how performance changes when the number of test-time demonstrations differs from189

that of training, we train models with a small number of demonstrations Ntrain = 2. We then190

evaluate them on test prompts with Ntest ∈ {1, 2, 4, 8, 16, 32}.191

Additionally, to understand how many training demonstrations are needed for long-range in-context192

learning, we train with Ntrain ∈ {1, 2, 4, 8} and evaluate under a fixed test-time prompt of Ntest =193

8.194

As shown in Figure 3, RoboSSM maintains or even slightly improves its success rates as Ntest195

increases beyond Ntrain. On LIBERO-Object, RoboSSM achieves its best performance at Ntest =196

32, which is 16x longer than the training prompt length |Ptrain|, despite never having observed197

such long prompts during training. This result answers Q1 affirmatively, showing that RoboSSM198

extrapolates effectively to prompts far longer than the training horizon. In contrast, ICRT degrades199

sharply once Ntest > Ntrain and collapses at the long prompts. This result suggests that ICRT fails200

to generalize to longer prompts, performing reliably only when Ntest is equal to or shorter than201

Ntrain. Moreover, according to Figure 4, RoboSSM achieves strong long-range in-context learning202
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Figure 5: Comparison of RoboSSM and ICRT when evaluated on test-time prompts with temporally
dilated demonstrations.

even when trained with few task examples, addressing Q2. ICRT performs comparably to RoboSSM203

only when trained with as many demonstrations as provided at test time.204

4.2.2 Time dilation205

In real-world scenarios, robot demonstrations may vary in execution speed due to factors such as206

operator latency, hardware variability, or differing task conditions. To simulate such temporal vari-207

ability, we evaluate whether the model can generalize to time-dilated demonstrations at test time. We208

create temporally stretched demonstrations by repeating each observation embedding in the original209

trajectory α times, resulting in a new trajectory of length α · T , where T is the original trajectory210

length and α ∈ {1, 2, 4, 8, 16} is the dilation factor. Although models are trained with the origi-211

nal prompt length (α = 1), we evaluate their robustness under extended test-time prompts, where212

|Ptest| = α · |Ptrain|, with α up to 16.213

Figure 5 indicates that RoboSSM sustains competitive success rates across increasing dilation factors214

α, highlighting robustness to temporal stretching and long-context extrapolation (Q1). By contrast,215

ICRT exhibits a consistent performance decay with α, culminating in failure on the longest prompts.216

4.3 In-distribution ICIL217

We evaluate RoboSSM and ICRT on in-distribution tasks, where Ntrain = Ntest ∈ {1, 2, 4, 8}, cov-218

ering varying numbers of demonstrations. This evaluation addresses Q3 when both models operate219

under distributional conditions similar to those in training. Given that Longhorn exhibits perfor-220

mance parity with Transformers in language modeling tasks, we expect it to demonstrate comparable221

performance to Transformers in this setting.222

Figure 6: Results of RoboSSM and ICRT on in-context imitation learning, where the prompt consists
of the same number of demonstrations during training and testing (Ntrain = Ntest).

Nevertheless, as shown in Figure 6, RoboSSM consistently achieves higher success rates than ICRT223

across most scenarios, particularly in the LIBERO-90 Study and Living Room scene. This perfor-224

mance is likely due to the Longhorn architecture, whose formulation as an online regression prob-225

lem enhances its in-context learning capability. However, both models struggle in the LIBERO-90226

Kitchen scene, likely due to the inherent difficulty of the tasks in that suite.227
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Table 1: Comparison of RoboSSM and ICRT with multi-task learning policies using their respective
backbones. w/ lang denotes that language instructions are included in the input, and w/o lang denotes
that language instructions are excluded. Both ICIL frameworks consistently outperform the MTL
baselines.

LIBERO-90
Method LIBERO-Object Study Scene Living Room Scene Kitchen Scene
MTL-TF 24.6 ± 1.7 14.6 ± 6.4 2.5 ± 3.5 0.0 ± 0.0
MTL-SSM 20.4 ± 3.3 15.0 ± 4.3 0.4 ± 0.9 0.0 ± 0.0
ICRT [10]

w/o lang 66.3 ± 3.8 22.5 ± 6.1 23.3 ± 2.8 0.0 ± 0.0
w/ lang 48.3 ± 5.9 21.2 ± 3.8 27.1 ± 3.7 0.0 ± 0.0

RoboSSM
w/o lang 57.9 ± 3.5 34.2 ± 3.7 33.8 ± 4.5 3.8 ± 1.3
w/ lang 45.4 ± 2.3 35.4 ± 4.7 29.2 ± 5.3 0.0 ± 0.0

4.4 Comparison to Multi-Task Learning228

We compare RoboSSM against multi-task learning baselines, MTL-TF and MTL-SSM. During229

training, we set Ntrain = 4, and for evaluation, Ntest = 0 for MTL baselines, while Ntest = 4230

for RoboSSM and ICRT. To enable a fair comparison with language-conditioned MTL, we addition-231

ally train and evaluate RoboSSM and ICRT with language instructions. In response to Q4, Table 1232

shows that RoboSSM and ICRT reliably surpass the MTL baselines across their respective back-233

bone architectures. However, the inclusion of language does not lead to improved performance on234

unseen tasks, as the language instructions serve to identify tasks. These results demonstrate that Ro-235

boSSM effectively handles unseen tasks without any parameter updates, and that RoboSSM achieves236

stronger performance compared to prior methods.237

5 Conclusion238

In this work, we introduce RoboSSM, a method that leverages SSMs for scalable in-context imitation239

learning. RoboSSM executes unseen tasks and exhibits strong prompt-length extrapolation, handling240

many-shot prompts and time-dilated long-horizon tasks. Across the LIBERO benchmarks, it pro-241

cesses prompts up to 16× longer than those seen in training and outperforms Transformer-based242

ICIL methods, highlighting SSMs as a promising backbone for long-context robotics. Additionally,243

RoboSSM can support continual adaptation for lifelong learning by simply being fed demonstration244

prompts for new tasks, without any task-specific parameter updates Despite this potential, our study245

remains constrained in its ability to handle complex tasks. Moreover, comprehensively addressing246

novel tasks will require broader and more diverse training corpora. Future work will explore scaling247

datasets in both size and diversity to enable more effective generalization to novel tasks and complex248

task suites.249
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