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ABSTRACT

Differential privacy (DP) is obtained by randomizing a data analysis algorithm,
which necessarily introduces a tradeoff between its utility and privacy. Many DP
mechanisms are built upon one of two underlying tools: Laplace and Gaussian
additive noise mechanisms. We expand the search space of algorithms by investigat-
ing the Generalized Gaussian (GG) mechanism, which samples the additive noise
term x with probability proportional to e−

|x|
σ

β

for some β ≥ 1. The Laplace and
Gaussian mechanisms are special cases of GG for β = 1 and β = 2 respectively.
In this work, we prove that all members of the GG family satisfy differential privacy,
and provide an extension to an existing numerical accountant (the PRV accountant)
to do privacy accounting. We apply the GG mechanism to two canonical tools
for private machine learning, PATE and DP-SGD; we show that β has a weak
relationship with test-accuracy, and that β = 2 (Gaussian) is often a near-optimal
value of β for the privacy-accuracy tradeoff of both algorithms. This provides
justification for the widespread adoption of the Gaussian mechanism in DP learning.
That said, we do observe a minor improvement in the utility of both algorithms for
β ̸= 2, suggesting that further exploration of general families of noise distributions
may be a worthy pursuit to improve performance in DP mechanisms.

1 INTRODUCTION

As applications of machine learning (ML) often involve sensitive information, there is an increasing
need to provide privacy protections for the individuals whose data are included in the training
datasets. Privacy concerns have prompted the development of privacy-preserving ML techniques,
which aim to prevent the leakage of private information analyzed during training. One of the primary
frameworks for achieving this goal is differential privacy (DP), a mathematical framework that
provides quantifiable privacy guarantees (Dwork et al., 2006).

Two popular techniques for implementing DP in ML are Differentially Private Stochastic Gradient
Descent (DP-SGD) (Abadi et al., 2016) and Private Aggregation of Teacher Ensembles (PATE)
(Papernot et al., 2017). Traditionally, DP-SGD entails Poisson sampling from the dataset, gradient
clipping, and then the addition of Gaussian noise to the gradient. PATE, on the other hand, involves
training an ensemble of teacher models on disjoint subsets of the data, then privately aggregating the
votes of the teacher models on a public dataset, and training a student model on the privately labeled
public dataset. PATE achieves private vote aggregation through a private variant of Argmax, which is
obtained by adding noise to the vote counts, and then finding the Argmax of the noisy histogram.

Both DP-SGD and PATE achieve privacy protection through mechanisms that add noise drawn from
specific probability distributions, e.g., Laplace or Gaussian. The choice of this distribution plays a
crucial role in determining the privacy-accuracy tradeoffs of an algorithm, and algorithm designers
often make problem-dependent decisions in choosing between Laplace and Gaussian Mechanisms.
However, many of the underlying tradeoffs between these two discrete choices remain unclear. In
this work, we explore a continuum of private mechanisms that extends these two special cases of
noise distributions. We investigate the Generalized Gaussian Mechanism (GG) (Liu, 2019), denoted
GGβ,σ(f,D), which adds noise to the true function value f(D) sampled from the Generalized
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Gaussian distribution1, denoted Nβ(µ, σ), with probability density function (PDF),

p(x|µ, σ, β) ∝ e−
|x−µ|β

σ . (1)

We focus on the GG Mechanism because it generalizes both the Laplace and Gaussian Mechanisms,
which are are special cases of the GG Mechanism for β = 1 and β = 2, respectively.

In Figure 1 we show several PDFs of the Nβ(0, σ) for different β and σ values (and µ = 0)
corresponding to GG Mechanisms that satisfy equivalent (ϵ, δ) DP guarantees. For more details on
this, we explore this further in Section 3.2 and Appendix B.4.
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Figure 1: Linear (left) and log-scale (right) PDFs of the Generalized Gaussian distribution corresponding with
GG mechanisms that satisfy an equivalent (ϵ, δ)-DP guarantee. For an equivalent value of σ, a larger value of β
yields a PDF that is more concentrated around the mean; yet, in order to satisfy the same (ϵ, δ)-DP, one must
simultaneously increase σ to compensate for a lighter tail.

We explore two settings relevant to ML: PATE and DP-SGD. Our findings show that the the choice of
β has a relatively small effect of test-accuracy, but that values around β = 2 perform near-optimal.
This helps explain why Gaussian noise may be so popular, but suggests that the choice of Gaussian or
Laplace Mechanism plays a smaller role than anticipated. Yet, for settings where small improvements
are critical, hyperparameter searching of β can provide important, incremental gains. Importantly,
we find the Gaussian mechanism does not appear to be completely optimal, and thus our work also
suggests future directions for further hyperparameter search in DP algorithm design.

1.1 RELATED WORK

There exist numerous alternative DP mechanisms. The Staircase Mechanism (Geng & Viswanath,
2013) and Podium Mechanism (Pihur, 2019) were derived as alternatives to the Laplace Mechanism
by minimizing the variance of the noise distribution in order to improve utility guarantees. While
both mechanisms have rigorous analysis of utility in the single-shot regime, they are neither studied
nor optimized for high-composition regimes, and are not used in ML for this reason.

Alghamdi et al. (2022) developed the Cactus Mechanism to address the high-composition regime by
numerically computing a mechanism that minimizes the Kullback-Leibler divergence between the
conditional output distributions of a mechanism given two different inputs, under a high number of
compositions. However, they only considered privacy for 1-dimensional outputs, making the result
not applicable to ML models. Further, their mechanism is only optimal in the high-composition
setting. Awan & Dong (2022) addresses the multivariate setting by deriving a family of multivariate
log-concave canonical noise distributions (Awan & Vadhan, 2023), allowing addition of minimal noise
for a particular f-DP guarantee. However, their work is constrained to ℓ1 and ℓ∞ sensitivity settings
and does not analyze the privacy-utility tradeoff of these mechanisms for private ML. Unfortunately,
the proposed mechanisms are either only for Gaussian DP (known to underestimate privacy (Gopi
et al., 2021)), or are not easily integrated with existing privacy accountants in the subsampled regime.

Liu (2019) introduced and partially analyzed the Generalized Gaussian Mechanism, which adds noise
from the Generalized Gaussian distribution (Definition 7). They provided probabilistic-DP guarantees
for β ≥ 2, and gave empirical results for integer β-values in the GG mechanism applied to training
Support Vector Machines on tabular datasets. Separately, Liu et al. (2021), provides a relatively
weak bound for the Rényi Differential Privacy (RDP 6) when β > 2, for the limited use case of
α = 1, which restricts much of the usefulness of the RDP formulation. To best of our knowledge, no
previous work provides tight (ϵ, δ)-DP guarantees for the GG Mechanism that are useful in the high
composition regime. In our work, we consider all β ≥ 1, and explore the privacy-accuracy tradeoff

1Sometimes referred to as the Exponential Power Distribution or Generalized Normal Distribution.
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of the GG mechanism and its applications to PATE and DP-SGD, and empirically provide tighter
privacy guarantees than those provided by prior works, for any number of compositions.

1.2 OUR CONTRIBUTIONS

In this work, we investigate the Generalized Gaussian Mechanism, a little-explored family of mecha-
nisms that satisfies DP. We also introduce the Sampled Generalized Gaussian Mechanism (SGG),
which is a variant of the GG-Mechanism that involves first subsampling the database to make use
of privacy amplification by subsampling. In Section 4, we introduce the GGNMax algorithm for
computing a private argmax. And in Section 5, we show how to use the Sampled GG Mechanism for
DP-SGD in a new mechanism that we name β-Differentially Private Stochastic Gradient Descent
(β-DP-SGD). We show that all 4 mechanisms satisfy differential privacy (Theorems 3.1, 4, 4.1, and
A.2). We also show how to extend an existing privacy accountant (the PRV accountant) to track
privacy budget over many compositions of these mechanisms.

In Section 4, we empirically find that in privately computing an argmax in PATE, the choice of β has a
weak relationship with the accuracy. In Section 5, we find that β-DP-SGD performs similarly for most
β ∈ [1, 4] when hyperparameters can be tuned based on the choice of β. Yet, small improvements
do exist, typically around the neighborhood of β ≈ 2, which can be valuable when accuracy is very
critical; this effect is more noticeable when specific hyperparameters are fixed.

One key finding of our work is that although the Gaussian mechanism (β = 2) achieves near-optimal
performance in these application domains, it is not exactly optimal in all regimes, thus suggesting
space for further optimization. Previously, explorations of new mechanisms were confined to those
noise distributions that exhibited well-behaved mathematical properties (such as analytically derivable
Rényi Divergence values between distributions); this work develops a framework for using the PRV
accountant (Gopi et al., 2021) to explore new mechanisms, which can enable new directions for
research in novel DP mechanisms that cannot be directly analyzed analytically.

2 PRELIMINARIES

2.1 DIFFERENTIAL PRIVACY

Differential privacy (DP) is a framework for designing privacy-preserving data analysis algorithms that
protect the privacy of individuals in a dataset while allowing accurate statistical analysis. Informally,
DP provides a mathematical guarantee that an individual’s data will have only a limited affect on the
result of analysis on a large database. Two datasets are said to be neighboring if they differ only in a
single data record.
Definition 1 (Differential privacy (Dwork et al., 2006)). A mechanism M : D → R satisfies
(ϵ, δ)-differential privacy if for any two neighboring datasets D,D′ ∈ D and for any S ⊆ R,

Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ.

Smaller values of the parameters ϵ and δ correspond to stronger privacy guarantees. The Laplace
and Gaussian Mechanisms are examples of output perturbation mechanisms, which first evaluate a
function on the input dataset, and then add mean-zero noise to the result. The variance of the noise
scales with the sensitivity of the function ∆f , defined as the maximum change in the function’s value
due to the removal or addition of a single database entry: ∆f = maxD,D′ neighbors |f(D)− f(D′)|.
Two of the most common mechanisms in DP are the Laplace Mechanism and the Gaussian Mechanism.

Definition 2. The Laplace Distribution (centered at 0) with scale b is the distribution with probability
density function:

Lap(x|b) = 1

2b
exp(−|x|

b
).

Definition 3 (Laplace Mechanism (Dwork et al., 2006)). For any ϵ > 0, given a real-valued function
f : D → R, the Laplace mechanism is defined as

ML(D, f, ϵ) = f(D) + Y,

where Y ∼ Lap(∆f/ϵ). The Laplace Mechanism is (ϵ, 0)-DP.
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Definition 4 (Gaussian Mechanism (Dwork & Roth, 2014)). For any ϵ > 0 and δ ∈ (0, 1], given a
real-valued function f : D → R, the Gaussian mechanism is defined as

MG(D, f, ϵ) = f(D) + Y,

where Y ∼ N (0, σ) for σ > ∆f
√
2 log(1.25/δ)/ϵ. The Gaussian Mechanism is (ϵ, δ)-DP.

One main feature of differential privacy is that the guarantees compose, meaning that the overall
privacy loss (as measured by ϵ and δ) of running multiple DP mechanisms can be bounded as
a function of the privacy parameters of the individual mechanisms. In the simplest version of
composition (Dwork et al., 2006), the privacy parameters “add up” so that running two (ϵ, δ)-DP
mechanisms results in (2ϵ, 2δ)-DP overall. In practice, however, this naive composition dramatically
overestimates the incurred privacy risk, and more advanced composition algorithms (Dwork et al.,
2010) and privacy accountants (Abadi et al., 2016) are used to more accurately bound privacy risk.

A privacy accountant is a tool to track the privacy budget of a system by recording the privacy cost
associated with each query; accountants are particularly important for applications like DP-SGD,
where DP mechanisms are composed a large number of times, e.g., as many as the number of steps in
gradient descent. The introduction of the Moments Accountant (Abadi et al., 2016) enabled the first
use of DP-SGD with reasonable privacy guarantees on common datasets like MNIST (Lecun et al.,
1998). This was later replaced in many settings by accountants that rely on Renyi Differential Privacy
(RDP), introduced by Mironov (2017).

2.2 RÉNYI DIFFERENTIAL PRIVACY

Rényi Differential Privacy (RDP) generalizes pure differential privacy (δ = 0) and is closely related
to the moments accountant. Defined below, the RDP guarantee of a mechanism is stated in terms of
Rényi divergence.
Definition 5 (Rényi Divergence). The Rényi divergence of order α between two distributions P and
Q is defined as:

Dα(P ||Q) =
1

α− 1
logEx∼Q [(P (x)/Q(x))α] =

1

α− 1
logEx∼P

[
(P (x)/Q(x))α−1

]
.

Definition 6. (Rényi Differential Privacy (Mironov, 2017)). A randomized mechanismM satisfies
(α, ϵ)-RDP with α ≥ 1 if for any neighboring datasets D and D′:

Dα(M(D)||M(D′)) =
1

α− 1
logEx∼M(D)

[(
Pr[M(D) = x]

Pr[M(D′) = x]

)α−1
]
≤ ϵ.

RDP is desirable in ML applications because of its straightforward composition properties: the adap-
tive composition of mechanismsM1, . . . ,Mk where eachMi satisfies (α, ϵi)-RDP, will together
satisfy (α,

∑k
i=1 ϵi)-RDP.

Pure (ϵ, 0)-DP corresponds to (∞, ϵ)-RDP; Mironov (2017) provided more general guarantees for
converting between RDP and DP: ifM is an (α, ϵ)-RDP mechanism, it also satisfies (ϵ+ log(1/δ)

α−1 , δ)-
DP for any δ ∈ (0, 1).

2.3 PRV ACCOUNTANT

The privacy guarantees of a DP mechanism can be defined as a function δ(ϵ), since the probability
of failure (δ) generally depends on the required ϵ-bound. This naturally leads to the definition of
a privacy curve, such that for every ϵ ∈ R, M is (ϵ, δ(ϵ))-DP for the appropriate function δ(ϵ).
Gopi et al. (2021) provided an efficient method for composing privacy curves directly that gave
much tighter privacy guarantees, using an accountant called the Privacy Random Variable accountant
(PRV). This relies on a connection between a DP mechanism’s privacy curve δ(ϵ) and its uniquely
defined privacy loss random variables (X,Y ), which represent the likelihood of returning a particular
outcome on two neighboring databases, respectively defined as:

X = log(Q(ω)
P (ω) ) where ω ∼ P ; Y = log(Q(ω)

P (ω) ) where ω ∼ Q,
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where P and Q are the distribution of the mechanism’s output over two neighboring datasets. Intu-
itively, the privacy loss random variables can be thought of as the actual ϵ value for a specific output;
it is a random variable because the outputM(D) is itself a random function.

Gopi et al. (2021) introduced the algorithm ComposePRV, which efficiently computes the privacy
guarantees for the composition of multiple DP mechanisms. ComposePRV takes as input the CDFs
of PRVs Y1, . . . , Yk (as well as a few other hyperparameters), and returns an estimate of the privacy
curve for all the mechanisms composed, represented by δ(ϵ), allowing for the direct computation of ϵ.

3 GENERALIZED GAUSSIAN MECHANISM AND PRIVACY GUARANTEES

We first introduce the Generalized Gaussian (GG) Mechanism and show that it satisfies DP (Section
3.1). Since these privacy results are existential, rather than descriptive – i.e., we show that there exists
some ϵ and δ values, rather than providing a closed form relationship between (β, σ) and (ϵ, δ) –
we also present a PRV-based privacy accounting method (Section 3.2) that can be used to measure
explicit (ϵ, δ)-DP guarantees when applying this mechanism to ML tasks, (see Sections 4 and 5).

3.1 GENERALIZED GAUSSIAN MECHANISM

We first formally define the Generalized Gaussian distribution and introduce the Generalized Gaussian
Mechanism (Algorithm 1), which is an output perturbation mechanism that adds noise sampled from
the Generalized Gaussian distribution.

Definition 7 ((Dytso et al., 2018)). The Generalized Gaussian distribution, denoted Nβ(µ, σ), is

specified by the pdf p(x|µ, σ, β) ∝ e−
|x−µ|β

σ with normalizing constant β

2σ
1
β Γ( 1

β )
.

Algorithm 1 Generalized Gaussian Mechanism, GGβ,σ(f,D). (Ganesh & Zhao, 2020)

1: Input: noise parameters β ≥ 1, σ > 0, vector-valued function f : D → Rd, database D ∈ D.
Let ∆2f = maxD,D′ neighbors ∥f(D)− f(D′)∥2

2: for i = 1 to d do
3: Sample Yi ∼ Nβ(0, σ ·∆2f)
4: end for
5: Output: f(D) + (Y1, . . . Yd)

Next, Theorem 3.1 states that the GG Mechanism satisfies DP. Critically, this theorem is only a claim
about existence of a DP bound; this is because the guarantee that the mechanism is DP for some ϵ
and δ is sufficient to apply the PRV accountant described in Section 3.2.

Theorem 1. For any dataset D ⊂ Rn×d, and any function f : Rn×d → R, with sensitivity ∆f ≥ 0,
then ∀β ≥ 1,∀σ > 0, the GGβ,σ(f,D) is differentially private.

We leave the proof of Theorem 3.1 in Appendix C.2.

In Appendix A, we introduce and analyze the Sampled Generalized Gaussian Mechanism, SGG
(Algorithm 2), which is a variant of the GG Mechanism that first applies Poisson subsampling to the
input database, evaluates the function f on the sample, and then adds Generalized Gaussian noise to
the result. This mechanism is motivated by privacy amplification by subsampling, which is popular
in ML applications and strengthens privacy guarantees without increasing the level of noise added by
the mechanism, by subsampling the database before applying a DP mechanism.

3.2 PRIVACY ACCOUNTING FOR GG MECHANISMS

In this work we focus on the PRV accountant because: it empirically provides tighter guarantees
than other accountants (Gopi et al., 2021), it is implemented in common codebases such as Opacus
(Yousefpour et al., 2021), and we are able to extend the PRV accountant to work for privacy accounting
of arbitrary DP mechanisms such as the GG mechanism, which do not typically exist in closed-form.
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In order to calculate the privacy consumed using a PRV accountant, one must solely input the CDF
of the PRV, along with a few hyperparameters. In Appendix C.4, we extend the known PRVs for
Laplace and Gaussian Mechanisms and compute a closed-form expression for the PRVs of the
Generalized Gaussian Mechanism, which enables us to apply the PRV accountant.

We compute the privacy guarantees of GGβ,σ(f,D) using the PRV accountant by sampling from
the appropriate Nβ(µ, σ) distribution and numerically computing the CDF of Y . (Gopi et al.,
2021) provides a tight estimate of the error in the PRV accountant’s estimate; our work extends
this computation to provide a similarly tight error analysis bounding the contribution of error from
sampling to the estimate, which is included inAppendix B.3. We pass the sampled CDF as input to
the ComposePRV algorithm of Gopi et al. (2021), which takes the CDFs of the PRVs of the composed
mechanisms, and returns a composed privacy curve δ(ϵ), providing an ϵ value for a specified choice
of δ. More implementation details of this change to the PRV accountant are in Appendix C.4.

Figure 2 illustrates the resulting value of ϵ as a function of σ for different values of β and fixed values
of δ = 10−5 and ∆f = 1. All curves have a similar shape as known privacy curves for Gaussian
(β = 2) and Laplace (β = 1) Mechanisms. Additionally, as β grows, the same (ϵ, δ)-DP guarantee
necessitates a larger value of σ. Here, we show the privacy curves for a single composition of the
GG mechanism, but importantly, these privacy curves and their relative differences change with the
number of times the mechanisms are composed.
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Figure 2: DP parameter ϵ as a function of noise parameter σ with fixed δ = 10−5 and ∆f = 1, calculated
using the PRV accountant. Mechanisms with equivalent DP guarantees can be identified by computing a privacy
curve’s intersection with a horizontal line, illustrated here with a red line for (arbitrarily chosen) ϵ = 4.

Remarkably, when using sensitivity defined in the ℓβ norm we observe that the privacy cost of the
multi-dimensional mechanism is equivalent to the single dimension mechanism. This makes privacy
accounting for GGβ,σ(f,D) dimension independent with regards to some ℓβ senstivity of f . We
prove this in result Appendix B.2, and also provide an analytic solution for the one dimensional GG
mechanism in Appendix C.3.

Further, for a fixed privacy budget (ϵ, δ), varying β will subsequently change the weight of the tails of
the distributions. Thus, for a 1-dimensional definition of “outlier”, it is possible to derive the optimal
GG mechanism that minimizes the likelihood of outliers; we explore this in Appendix B.5.

4 GG MECHANISM FOR PATE AND PRIVATE ARGMAX

Private Aggregation of Teacher Ensembles (PATE) (Papernot et al., 2017) is an algorithm for training
a private machine learning model. In PATE, a dataset is partitioned and a model is trained on each
partition, then the models in the ensemble privately vote on the labels of an unlabeled dataset, and
finally a model is trained on the privately labeled dataset; see Appendix D.2 for a more detailed
explanation. The core step in PATE that provides formal privacy is the private computation of
the Argmax over the votes of an ensemble of models. This is done based on a variation of the
ReportNoisyMax algorithm, and is the center of our focus in this section.

PATE has been extensively studied with variations of Laplace and Gaussian Mechanisms; Papernot
et al. (2017) employed LNMax, which privately aggregates votes from an ensemble of models by
taking the argmax of a histogram after adding Laplace noise. Later, Papernot et al. (2018) developed
several variations based on adding Gaussian noise, including GNMax, and empirically found them
to be superior to their Laplace counterpart. We introduce a new algorithm, GGNMax, generalizing
the GNMax and LNMax algorithms, which adds noise from the Generalized Gaussian Distribution
Nβ(0, σ). We show that the effect of β on average label accuracy is relatively weak and Laplace and
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Gaussian noise work produce nearly equivalent privacy-accuracy tradeoffs. We supplement these
findings with simulations in Appendix D.3, and we empirically show that the Gaussian mechanism is
near-optimal when the correct label of the histogram aligns with the majority vote.

4.1 PRIVATE ARGMAX AND THE GGNMAX MECHANISM

We present our Generalized Gaussian Private Argmax algorithm (GGNMax), which takes in noise
parameters (β, σ), a set of real-valued functions with sensitivity ∆, and a database. The algorithm
adds noise sampled from Nβ(0, σ∆) to each coordinate and then returns the index of the coordinate
with the largest value. We provide a definition below and include an algorithm in Algorithm 5.
Definition 8. Generalized Gaussian Private Argmax(GGNMax) GGNMax(β, σ, {f},∆, D) is defined
as the argmaxi∈[N ]{fi(D) + Yi}, where Yi ∼ Nβ(0, σ∆); for noise parameters β ≥ 1, σ > 0,
functions f1, . . . , fN : D → R each of sensitivity ∆, database D ∈ D.

Importantly, like the Laplace-based Report Noisy Max algorithm (Dwork & Roth, 2014) and the
Gaussian-based GNMax algorithm (Papernot et al., 2018), the privacy of the GGNMax mechanism
satisfies (ϵ, δ)-DP guarantees of the GG mechanism in 1 dimension. We state this formally in
Theorem 2 and prove this in Appendix C.5.
Theorem 2. If the (β, σ)-Generalized Gaussian Mechanism is (ϵ, δ)-DP for a fixed ϵ > 0 and δ ≥ 0,
then (β, σ)-Generalized Gaussian Private Argmax is also (ϵ, δ)-DP.

4.2 PATE EXPERIMENTS

In order to study the GGNMax algorithm’s application to PATE, we evaluate the effect of β on the
label accuracy of the GGNMax algorithm when applied to the histograms produced in an intermediate
step of PATE. To study this for a realistic setting, we use the histograms generated on the MNIST and
the Street View House Numbers (SVHN) dataset (Netzer et al., 2011), produced by the Papernot et al.
(2017), which introduced the PATE algorithm. For each of these datasets, we start with a collection
of 10, 000 histograms; each histogram is the collection of 250 models trained on a partition of the
dataset, and evaluated on an unlabeled datapoint x. Then, for each histogram, we compute the private
label produced by the GGNMax mechanism for 20 evenly spaced values β ∈ [1, 4] and 100 values
of σ ∈ [0.01, 7]. For each fixed (ϵ, δ) and value of β, we compute the average label accuracy with
respect to the ground truth labels provided by the dataset, averaged across 25 trials.
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Figure 3: Average label accuracy of GGNMax mechanisms with equivalent privacy guarantees and varying
values of β, evaluated on histograms which were generated by Papernot et al. (2017) as an intermediate state
produced by 250 teachers trained on MNIST (left) and SVHN (right)
Figure 3 shows the average label accuracy for the GGNMax mechanism applied to histograms
generated as part of PATE for MNIST and SVHN, as a function of β. We observe that values of
β in the region of β ∈ [1, 2.5] perform roughly equivalently, and for larger choices of β, the label
accuracy decreases slightly. 2

In Appendix D.3, we investigate the privacy-accuracy tradeoff of the GGNMax algorithm on simulated
histograms where the true label is the same as the argmax of the unnoised histograms. In this simulated
setting, we find that β values close to 2 perform near-optimally.

2We observe a small drop in performance around β = 2.6, which we believe is an artifact of how the
mechanisms of equivalent DP guarantees are generated. First, we add noise from an evenly distributed grid of
β ∈ [1, 4] and σ ∈ [0.01, 7] values, and then we compute the privacy for each (β, σ) tuple; only then do we
compute the corresponding mechanisms of approximately equal DP guarantees. This can cause us to add more
noise than is required, particularly for larger β.
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5 GG MECHANISM FOR DP-SGD

We now turn to Differentially Private Stochastic Gradient Descent (DP-SGD), which is one of the most
commonly used mechanisms for private ML. We propose a simple change to DP-SGD: replacing the
Gaussian noise used in DP-SGD with Generalized Gaussian noise and using the ℓβ norm for clipping
rather than ℓ2

3. We call the resulting mechanism the β-Generalized Gaussian Differentially Private
SGD (β-DP-SGD). This is corresponds to changing the underlying mechanism in DP-SGD from
the Sampled Gaussian Mechanism to the Sampled Generalized Gaussian Mechanism (SGG), as
DP-SGD performs Poisson subsampling on the dataset before computing the gradient update and
adding Gaussian noise. This can be presented as replacing the gradient update step in the original
DP-SGD algorithm with G̃t ← 1

L

(∑
i Ḡt(xi) + Y⃗

)
, where Y⃗ is computed as a vector as follows

Y1, . . . , Yd ∼i.i.d. Nβ(0, σ · C). We present β-DP-SGD formally in Algorithm 6. We prove that
β-DP-SGD is DP and its privacy can be computed using an accountant for the SGG Mechanism with
appropriate hyperparameters in Appendix A.2

5.1 DP-SGD EXPERIMENTS

We seek to find a relationship between β and DP-SGD’s privacy-accuracy trade-off for non-convex
optimization tasks by comparing test-accuracy as a function of ϵ, for different β. It is only possible
to study this relationship empirically, because even in the absence of privacy, theoretical bounds on
the performance of SGD are not known for general non-convex optimization tasks. Further, we use
the PRV accountant because it outperforms accountants that provide closed-form privacy guarantees
(like the RDP accountant), but it only provides a numerically computed privacy guarantee.

To provide a robust evaluation of the role of β in the β-DP-SGD algorithm, we focus on 4 datasets in
different domains: CIFAR-10 (Krizhevsky, 2009) and Street View House Numbers (SVHN) (Netzer
et al., 2011), two common computer vision datasets; the Adult dataset (Becker & Kohavi, 1996), a
tabular dataset with a binary classification task; and the IMDB dataset (Maas et al., 2011), a collection
of movie reviews meant for binary sentiment classification. We train four different architectures; for
the vision classification tasks, we use the models described in in Tramèr & Boneh (2020), which
previously achieved SOTA results for the ϵ ≤∼ 2.5 regime (ScatterNet CNNs)4. For the the Adult
Dataset we train a 2-layer Fully Connected Network (FCN). And for the IMDB dataset, we train a
Long-Short Term Memory (LSTM) network with ∼ 1M parameters.

A full description of the hyperparameters, datasets, and models is included in Appendix E.2. Each
experiment is run 3 times, which we found sufficient given standard deviations that generally fell
below 0.3%. We find that when fixing a choice of β and allowing for hyperparameter tuning along all
other hyperparameters, we see a weak but noticeable relationship with final test accuracy.

Results: To isolate the effect β in β-DP-SGD we report the maximum test-accuracy achieved by
each architecture, by extracting the maximum across all hyperparameters, and we report the standard
deviation across 3 trials for each set of hyperparameters. Our β-DP-SGD algorithm produces a
relatively weak relationship between β and test accuracy, but it is more noticeable in lower ϵ regimes
(high privacy). We present this in Figure 4.

Figure 4 presents the the maximum test accuracy for 3 different values of ϵ, evaluated for 3 different
models on 4 different datasets (ScatterNet on CIFAR-10 and SVHN, a FCN on the Adult dataset,
and an LSTM on the IMDB dataset), across different values of β. Similar to our results with the
GGNMax, we find that for all ϵ values tested, the choice of β has a weak relationship with final test
accuracy, across most values of ϵ. However, unlike the results in Section 4, β-DP-SGD seems to
perform worse for larger values of β, particularly for values larger than β ≥ 3.0. In Appendix E.3, we
explore the relationship of individual hyperparameters with β and find a weak, but more noticeable
effect of β on the final test accuracy, particularly for larger ϵ 5.

3We choose to use ℓβ clipping rather than a fixed choice like ℓ2 because when using the GGβ,σ(f,D)
mechanism with ℓβ sensitivity, privacy accounting dimension-independent, as proven in Appendix B.2.

4We also train an ordinary CNN for the vision tasks, but leave these results in Appendix E.3
5We leave a description of this in the appendix, as full-hyperparameter search is common.
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Figure 4: β-DP-SGD results for different architectures trained on CIFAR-10, SVHN, Adult, and IMDB, for
δ = 10−6. The test-accuracy is reported for 3 values of ϵ, computed for each architecture and dataset. A vertical
dashed line denotes the Gaussian mechanism. Note: Some values are not presented (for lower ϵ), because larger
β tends to consume more privacy per step, and the model’s privacy budget exceed the target in the first step.

Importantly, despite a relatively weak relationship between β and test-accuracy, β-DP-SGD is able to
reach – and slightly surpass – SOTA results, in the example case of CIFAR-10, presented in Table 1.
Before directly comparing results, we observe that most existing SOTA results use privacy guarantees
provided by an RDP accountant, which can overestimate privacy loss relative to PRV accounting. In
order to disambiguate empirical differences due to improved accounting versus the GG mechanism,
we present our recreated SOTA results with the PRV accountant, alongside the results for β-DP-SGD.

Architecture Accountant Training Algorithm ϵ = 1 ϵ = 2 ϵ = 3 β value
sCNN RDP DP-SGD 60.3 (-) 67.2 (-) 69.3 (-) -

WRN-40-4 RDP DP-SGD 56.4 (0.6) 65.9 (0.5) 70.7 (0.2) -
sCNN PRV DP-SGD 63.5 (0.4) 67.6 (0.1) 69.2 (0.3) -
sCNN PRV β-DP-SGD (ours) 63.7 (0.1) 67.7 (0.1) 69.4 (0.1) (2.33, 2.33, 2)

Table 1: SOTA Results for private ML, evaluated on CIFAR-10, grouped by privacy accountant. The β value
column is set to ‘-’ if trained with traditional DP-SGD, otherwise it reports a tuple of β values that achieve
max accuracy for ϵ = 1, 2, 3, respectively (ties broken by smaller std values). sCNN is a CNN model (∼ 5e5
parameters) trained on Scatternet features, and WRN-40-4 is a Wide Resnet (∼ 1e7 parameters).

While Figure 4 shows that the choice of β in β-DP-SGD has relatively minimal effect on the final
test accuracy for a model, Table 1 reveals that for models that produce SOTA (or nearly-SOTA) test
accuracies, the minor improvements in performance that result from optimizing β may push the test
accuracy beyond the existing SOTA. Though this needs to be traded off against the privacy cost of
hyperparameter search (Papernot & Steinke, 2022).

6 CONCLUSION

We studied the Generalized Gaussian Mechanism, its privacy guarantees, and its applications to
private ML, particularly for PATE (via private Argmax) and DP-SGD. This work reveals that the
choice of β has a relatively modest influence on test accuracy, and the difference between Gaussian,
Laplace, and other GG Mechanisms is smaller than anticipated. Interestingly, values close to β = 2
exhibit near-optimal performance, which provides insight into the popularity of Gaussian noise in
DP-SGD, PATE, and other private ML applications. Our observations that the Gaussian is not always
exactly optimal in specific settings suggests new opportunities for the design of DP mechanisms.

An interesting extension for future work is that our GG Mechanism – as well as its variants SGG,
GGNmax, and β-DP-SGD – sample noise independently across dimensions. For the Laplace
Mechanism (β = 1), it is known that sampling from a high-dimensional Laplace variant can improve
performance in private ML settings such as private empirical risk minimization (Chaudhuri et al.,
2011). Interestingly, multi-dimensional Gaussian distributions are the only spherically symmetric
distribution, where all the component random variables are independent Ali (1980), so such high-
dimensional variants would not improve performance for β = 2. This suggests that for β ∈ [1, 2), it
may be possible to significantly improve utility for the same privacy guarantee by sampling from a
single high-dimensional distribution rather than sampling independently for each coordinate.
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A SAMPLED GENERALIZED GAUSSIAN MECHANISM

Privacy amplification by subsampling is a technique to strengthen DP guarantees without increas-
ing the level of noise, by randomly sampling a subset of the input dataset before applying a DP
mechanism; it is commonly used in ML applications. The DP parameters improve proportionally to
the subsampling rate (as seen in Theorem 3). Intuitively, each point is less likely to be used in the
analysis, and the noise from sampling can be “counted” toward the privacy budget.

For our mechanism, we will focus on Poisson subsampling, a sampling process where each element
of a population is included in a set according to the outcome of an independent Bernoulli trial; we
use S(q) to refer to a Poisson sampling procedure with sampling rate q.

Theorem 3 (Privacy Amplification by Poisson Subsampling (Kasiviswanathan et al., 2010) (Beimel
et al., 2013)). LetM be an (ϵ, δ)-DP mechanism, and let S(q) be a Poisson sampling procedure
with sampling rate q. ThenM◦ S(q) is (O(log(q)ϵ), qδ)-DP.

A.1 SAMPLED GENERALIZED GAUSSIAN MECHANISM

Next, we present the Sampled Generalized Gaussian Mechanism, SGG, which is a sampled variant
of the GG Mechanism. It generalizes the Sampled Gaussian Mechanism (Mironov et al., 2019), a
common mechanism in private ML, and it similarly relies on privacy amplification by subsampling
(Theorem 3) to attain improved privacy guarantees relative to its non-sampled counterpart. We state
SGG in terms of Poisson sampling because the PRV accountant is defined only for Poisson sampling;
the mechanism can immediately be extended other types of sampling and the privacy guarantees
would still hold under the appropriate accountant.

Algorithm 2 Sampled Generalized Gaussian Mechanism, SGGβ,σ,q(f,D)

1: Input noise parameters β ≥ 1, σ > 0, sample rate q ∈ (0, 1] a vector-valued function f : D →
Rd, database D ∈ D

2: Compute l2 sensitivity of f : ∆2f = maxD,D′ neighbors ∥f(D)− f(D′)∥2
3: S = ∅
4: for each data element xj ∈ D do
5: With probability q, add xj to S
6: end for
7: for i = 1 to d do
8: Sample Yi ∼ Nβ(0, σ ·∆2f)
9: end for

10: Output f(S) + (Y1, . . . Yd)

The privacy guarantees of the SGG Mechanism follow nearly immediately from privacy of the GG
Mechanism (Theorem 3.1), due to privacy amplification by sampling (Theorem 3).

Theorem 4. For any β ≥ 1, σ > 0, δ > 0, q ∈ (0, 1], there exists a value ϵ such that SGGβ,σ,q(f,D)
satisfies (ϵ, δ)-DP for all vector valued f and for all D.

Proof. In proof C.2 we show that the GG mechanism is differentially private for any β ≥ 1, σ > 0
for any function f with bounded sensitivity ∆f ≥ 0. Therefore, by the privacy amplification theorem
(Theorem 3.1), the GG mechanism applied on a subset S(q,D) ⊆ D, where S is generated by
Poisson subsampling from dataset D with probability q, is also differentially private.

A.2 β-DP-SGD IS DIFFERENTIALLY PRIVATE

In Algorithm 6, we introduced a new algorithm β-DP-SGD; in this section we show that the algorithm
is private, and that is satisfies the same DP guarantees as the application of the SGG mechanism, given
the correct parameter assignment. At a high-level, this follows because the β-DP-SGD algorithm is
the SGG mechanism applied repeatedly, which we showed is differentially private in Theorem 4.

The following theorem states that β-DP-SGD is differentially private
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Theorem 5. For any δ > 0, β ≥ 1, σ > 0, f : D → Rd,database D ∈ D, for any loss function of
the form l(θ, xi), learning rate η ≥ 0, average group size L, clipping norm C ≥ 0, there exists ϵ ≥ 0
such that algorithm β-DP-SGD(β, σ,D, l, η, L,C) satisfies (ϵ, δ)-DP.

Proof. Looking to Algorithm 6, the final output θT can be written as θT = θ0 + η
∑T

t G̃t. As such,
the final model only accesses the dataset through the computation of G̃t, necessitating that if each G̃t

is differentially private then the final model is as well, through the principle of post-processing.

We next claim that the computation of G̃t ← 1
L

(∑
i Ḡt(xi) + Y⃗

)
is differentially private. First,

we observe that by construction, the contribution of a single element xi to the function Ḡt(xi) ←
Gt(xi)/max

(
1, ∥Gt(xi)∥2

C

)
is clipped, and thus the sensitivity of G̃t is bounded. Next, we observe

that G̃t is computed by summing the output of the Gaussian Mechanism on a set of Ḡt values. As the
Gaussian Mechanism is differentially private, and Ḡt(xi) is bounded, β-DP-SGD is differentially
private.

The following corollary enables us to use the PRV accountant to provide privacy accounting for
β-DP-SGD.

Corollary 5.1. If the SGGβ,σ,q(f,D) mechanism composed T times on function f with sensitivity
∆f satisfies (ϵ, δ)-DP, then for any L ≤ |D|, C = ∆f , and loss function of the form l(θ, xi), the
β-DP-SGD(β, σ,D, l, η, L,C) also satisfies (ϵ, δ)-DP.

Proof. By Appendix A.2 we know that β-DP-SGD is differentially private. As argued in the theorem,
β-DP-SGDis the repeated application of the Gaussian Mechanism on a Poisson subsampled set
Lt ⊆ D. By construction, this is the Sampled Gaussian Mechanism, and as such satisfies the same
guarantees.

B PRIVACY ACCOUNTING FOR THE GENERALIZED GAUSSIAN MECHANISM

Underpinning any statement about the privacy-accuracy tradeoff of a particular mechanism is the
specific implementation of the privacy accountant used for computing the privacy consumed by the
mechanism. At the time of writing, numerical accountants such as the PRV accountant achieve the
tightest privacy guarantees, however, as a result closed form solutions for the privacy consumed do
not typically exist.

Specifically, Gopi et al. (2021) introduced the algorithm ComposePRV, which efficiently computes
the privacy guarantees for the composition of multiple DP mechanisms. It takes as input the CDFs of
PRVs Y1, . . . , Yk, a mesh size h, and truncation parameter L, and returns an estimate of the privacy
curve for all the mechanisms composed, represented by δ(ϵ), enabling the direct computation of ϵ.
Given ComposePRV, the PRV accountant can be directly used to accurately compute the privacy loss,
and can also be used with Poisson subsampled variants like SGG.

However, when using the PRV accountant one must compute the CDF of the PRV, which is not
simple to compute for all differentially private mechanisms. In this work, we get around this by
estimating the CDF of the PRV numerically; and while this does introduce error, it also makes the
privacy accounting of arbitrary mechanisms possible. In this section we provide error bounds for
replacing that function with an empirically computed function; such that CDF (PRV ) is replaced
with CDF (Hist(PRV,N, b, A,B)), where Hist is a histogram over the region [A,B] with b bins,
computed by sampling the PRV N times.

B.1 MULTI-DIMENSIONAL PRVS

As derived in Proposition 1, the PRVs for the single dimensional GG mechanism are Y = |Z−µ|β −
|Z|β and X = |Z|β − |Z − µ|β where Z ∼ Nβ(σ = 1, µ = 0). And in our work we sample from
this distribution in order to generate our CDFs-of-the-PRVs for the PRV accountant. However, the
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PRVs for the multidimensional GG mechanism are 6

Y ∼ log
( exp(−|⃗t|β/σ)
exp(−|⃗t− µ⃗|β/σ)

)
(2)

As we are sampling along each dimension independently, this can be rewritten:

Y ∼ log

d∏
i

( exp(−|ti|β/σ)
exp(−|ti − µ|β/σ)

)
(3)

=

d∑
i

(|ti − µi|β − |ti|β)/σ (4)

B.2 DIMENSION INDEPENDENCE FOR PRIVACY ACCOUNTING OF THE GENERALIZED
GAUSSIAN MECHANISM

One important observation is that Y =
∑d

i (|ti − µi|β − |ti|β)/σ can be rewritten as

Y =
1

σ
ℓβ(|⃗t− µ⃗|)β − ℓβ(|⃗t|)β (5)

Now the task is to properly account for the µ⃗ term. In order to provide a worst-case guarantee of
DP, one must choose µ⃗ such that it maximizes difference in probability of t⃗ versus t⃗+ µ⃗. Generally,
we say that µ⃗ sits on a ball such that ℓ2(µ⃗) = 1. However, we observe we can make an important
cancellation when µ⃗ is on a unit-ball in ℓβ (µ ∈ {x|ℓβ(x) = 1}). In this case, any choice of µ⃗ will
satisfy this maximal-difference constraint, because all points on the ℓp ball are, by definition, exactly
ℓp = 1 1 away. This is seen because Y = ℓβ(|⃗t− µ⃗|)β − ℓβ(|⃗t|)β is equivalent for any µ⃗ on the ℓβ
unit-ball. This includes the one-hot vector µ⃗ =< 1, 0, . . . , 0 >. For this µ⃗, we have

Y ∼
d∑
i

(|ti − µi|β − |ti|β)/σ = (6)

=

(
(t0 − 1)β − tβ0 + 0 + . . .+ 0

)
/σ (7)

Y ∼ ((t0 − 1)β − tβ0 )/σ (8)

As such, for β-GG mechanism with sensitivity measured with a ℓβ norm, the PRV for the multi-
dimensional GG distribution is equivalent to the PRV for a single-dimensional GG distribution, when
the sensitivity is ℓβ .

B.3 PRIVACY OF THE SAMPLED PRV ACCOUNTANT

As a refresher, we rewrite the core algorithm from (Gopi et al., 2021), ComposePRV, which takes the
CDF of multiple PRVs (Yi), and returns an estimate of the composed PRV (δỸ (·)).

Algorithm 3 ComposePRV algorithm (Gopi et al., 2021)

1: Input: CDFs of PRVs Y1, Y2, . . . Yk, mesh size h, truncation parameters L ∈ h
2 + hZ>0

2: output PDF of an approximation Ỹ for Y =
∑k

i=1 Yi. Ỹ will be supported on µ+(hZ∩[−L,L])
for some µ ∈ [0, h

2 ]
3: for i = 1 to k do do
4: Ỹi ← DiscretizePRV(Yi, L, h)
5: end for
6: Compute PDF of Ỹ = Ỹ1⊕L Ỹ2⊕L . . .⊕L Ỹk by convolving PDFs of Ỹ1, Ỹ2, . . . , Ỹk using FFT.
7: Compute δỸ (ϵ) = EỸ

[(
1− eϵ−Ỹ

)
+

]
for all ϵ ∈ [0, L].

8: Return Ỹ , δỸ (·).

6And subsequently X ∼ log
( exp(−|⃗t−µ⃗|β/σ)

exp(−|⃗t|β/σ)

)
= −Y
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We seek to extend the ComposePRV algorithm to work even when the CDF of the PRVs is not known.
We do this by sampling from the PRV and generating a histogram as an estimate for the CDF of the
PRV. We call this the Sampled PRV accountant. Importantly, the ComposePRV algorithm produces
an estimate of the composed privacy curve, along with arbitrarily small error bars; in our work, we
extend the error analysis to provide error bounds for when using a sampled CDF as well.

Prior to the proof our theorem B.3 about the correctness of a Sampled PRV accountant, we need to
define a few terms. We first define a sampled random variable Z ′

n,L,h, which is defined by the
PMF PZ,n,L,h generated from sampling from RV Z, n times with bins of width h, supported over
the domain [−L,L]. In other words, we sample from Z n times each, generating a PMF, defining
a random variable. Importantly, we observe that while the sampled RV Z ′

n,L,h is itself a random
variable, the PMF generated by Z is the output of a random variable, and varies. We use the term
sampled-PRV to refer to a sampled RV generated from a PRV.

We also borrow the notation of couple approximation from (Gopi et al., 2021), as follows.

Definition 9 (Coupling Approximation). Given two random variables Y1, Y2, we write that |Y1 −
Y2| ≤η h if there exists a coupling between Y1, Y2 such that Pr[|Y1 − Y2| > h] ≤ η.

Sampling is by definition a random process, and so it is fundamentally unavoidable that with small
probability the sampled-PRV can be very wrong. However, it is straightforward to bound the
probability of producing a sampled-PRV that is particularly wrong. And so we can produce a PRV-
accountant with an associated error rate, and a probability δ′ of producing an accountant that has
larger error, for arbitrarily small δ′ (as a function of the number of samples used to generate the
sampled-PRV).

Theorem 6. Given a series of PRVs Yi, and the associated sampled-PRVs Y ′
i,n,L,h generated for

each RV sampling n times and producing a PMF to sample from. Using the sampled PRVs with the
ComposePRV algorithm returns the privacy curve of the composed mechanisms, with probability
1− δ′, for δ′ = 2e−2nh2

probability, and the following error bounds:

δỸ (ϵ+ a+ ϵerror)− δerror − η ≤ δY (ϵ) ≤ δỸ (ϵ− a− ϵerror) + δerror + η (9)

for

h =
ϵerror√

k
2 log

12
δerror

(10)

, and L ≥ 2 + ϵerror sufficiently large such that

k∑
i=1

δMi
(L− 2) ≤ δerror

8
and δM(L− 2− ϵerror) ≤

δerror

4
(11)

for a := h
√
2klog 2

η + σ̄√
n
k, where σ̄ is the maximum standard deviation of PRV Yi for all i.

And our runtime is O(bLh log L
h + nb) where b is the number of distinct algorithms amongst

M1, . . . ,Mk.

Proof. Outline: The outline of our proof is that we will establish a coupling between a random
variable and the sampled random variable. Then extend a lemma from (Gopi et al., 2021) in order to
produce a coupling between a composed sampled random variable, and the random variable. Then we
will use the triangle inequality in order to bound the max ϵ and δ difference between the composed
δ(ϵ) and the δ̃ generated from ComposePRV on a sampled CDF.

Coupling between PRV and Sampled PRV. First, we observe that (Dvoretzky et al., 1956) and
(Massart, 1990) provide a tight bound for the error produced by a sampled CDF, represented as such:

Pr[supx∈R|Fn(x)− F (x)| > ϵ] ≤ 2e−2nϵ2 (12)

As such, (Massart, 1990) provides a coupling between Z and Z ′
n, and with probability 1 − δ′,

|Z ′
n,L,h − Z| ≤0 ϵ; this is notably different than |Z ′

n,L,h − Z| ≤δ′ ϵ. The difference here is that
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the probability is over samples drawn to generate the PMF PZ,n,L,h, rather than samples of Z ′
n,L,h.

Specifically, with probability equal to δ′ = 2e−2nϵ2sample , we see that |Z − Z ′
n| ≤0 ϵsample. Here we

choose ϵsample ≤ h
2 from discretization.

Further, we observe that it is possible to define both a coupling between Z and RV Z ′
n,L,h, as well as

between E[Z] and RV E[Z ′
n,L,h]. We observe that computing a sample mean is unbiased, and that

the sample mean distribution Z ′ has an expected value of E[Z] and a variance equal to σ2

n , where σ
is the variance of Z. Therefore, we are able to bound the probability that |E[Z ′]− E[Z]| ≥ a with
chehyshev’s inequality. Pr[|E[Z ′] − E[Z]| ≥ c · σ] ≤ 1

c2 . We don’t necessarily know the σ of the
true PRV, but we can upper bound it σ̄, and thus still say that Pr[|E[Z ′]− E[Z]| ≥ c · σ] ≤ 1

c2

We also observe that if RV Y and Ỹ are coupled like |Y − Ỹ ≤0 h, then their expected values are
also coupled |E[Y ]− Ỹ| ≤0 h by linearity of expectations.

Coupling the composed mechanisms: We now seek to couple the composed sampled PRV to the
composed PRV. We derive a small spin on lemma 5.3 from (Gopi et al., 2021), by enabling the means
of the mechanisms to not be equivalent, as follows:

Lemma 7. Suppose Y1, Y2, . . . , Yk and Ỹ1, Ỹ2, . . . , Ỹk are two collections of independent random
variables such that |Yi − Ỹi| ≤0 h and |E[Yi]− E[Ỹi]| ≤0 ζ for all i,

|
k∑
i

Yi −
k∑
i

Y ′
i | ≤η h

√
2k log

2

η
+ kζ (13)

Proof. Let Xi = Yi− Ỹi where (Yi, Ỹi) are coupled such that Yi− Ỹi ≤ h w.p. 1. Then Xi ∈ [−h, h]
w.p. 1. Since we bound the error in the expected values, we know that

∑n
i Xi ≤ n · α. Note that

X1, X2, . . . Xk are independent of each other.

As a refresher, Hoeffding’s inequality is

Pr[

n∑
i

Xi − E[

n∑
i

Xi] ≥ t] ≤ exp
( 2t2∑k

i (bi − ai)2

)
(14)

where ai ≤ Xi ≤ bi.

Let Sn =
∑n

i Xi Hoeffding’s inequality states that Pr[|Sn − E[Sn]| ≥ t] ≤ 2 exp
(
− 2t2∑n

i (bi−ai)2

)
.

We know that the expectation of
∑n

i Y
′
i is near the expectation of

∑n
i Yi, so we can add the

probability of the distance from the expectation to the right-hand side of the inequality. By application
to the Hoeffding’s inequality, we can see that

Pr[|
k∑
i

Xi| ≥ t+ (ζn)] ≤ 2 exp
(
− 2t2

k(2h)2
)
= η (15)

Let t := h

√
2klog

2

η
(16)

|
k∑
i

Yi −
k∑
i

Y ′
i | ≤η h

√
2klog

2

η
+ kζ (17)

Connecting the Composed PRV to a Privacy Curve

We recall Theorem 5.5 from (Gopi et al., 2021), which states

Theorem 8. Let ϵerror, δerror > 0 be some fixed error terms. LetM1,M2, . . . ,Mk be DP algorithms
with privacy curves δM⟩(ϵ). Let Yi be the PRV corresponding toMi such that δMi(ϵ) = δYi(ϵ)
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for ϵ ≥ 0. LetM be the (adaptive) composition ofM1,M2, . . . ,Mk and let δM(ϵ) be its privacy
curve. Set L ≥ 2 + ϵerror sufficiently large such that

k∑
i=1

δMi(L− 2) ≤ δerror

8
and δM(L− 2− ϵerror) ≤

δerror

4
(18)

Let Ỹ be the approximation of Y =
∑k

i=1 Yi produced by ComposePRV algorithm with mesh size

h =
ϵerror√

k
2 log

12
δerror

(19)

Then

δỸ (ϵ+ ϵerror)− δerror ≤ δY (ϵ) = δM(ϵ) ≤ δỸ (ϵ− ϵerror) + δerror (20)

Furthermore, our algorithm takes O(bLh log L
h ) time where b is the number of distinct algorithms

amongstM1, . . . ,Mk

Now, we wish to connect the composed PRV to the composed sampled PRV. We recall that by Lemma
5.2 from (Gopi et al., 2021), which states that

Lemma 9. If Y and Ỹ are two random variables such that |Y − Ỹ | ≤η h then, for every ϵ ∈ R.

δỸ (ϵ+ h)− η ≤ δY (ϵ) ≤ δỸ (ϵ− h) + η (21)

Putting it all together:
We sample n times, and derive PRV Y ′

i,n,L,h from Yi, which gives us Z ′
n,L,h, such that probability

equal to δ′ = 2e−2nϵ2sample , we see that |Z − Z ′
n,L,h| ≤0 ϵsample. Which we are able to plug into

Lemma 7 in order to bound the max error in the PRV.

Given that the two composed mechanisms
∑

Yi and
∑

Y ′
i are coupled |

∑n
i Yi −

∑n
i Y

′
i | ≤η

h
√

2klog 2
η +

1
c2 . Let a := h

√
2klog 2

η +
1
c2 . By Lemma 9, δỸ (ϵ+a)−η ≤ δY (ϵ) ≤ δỸ (ϵ−a)+η.

Applying the triangle inequality, to include the error from sampling and from discretization, we see
that δỸ (ϵ+ a+ ϵerror)− δerror − η ≤ δY (ϵ) ≤ δỸ (ϵ− a− ϵerror) + δerror + η.

In conclusion, sampling n times, to generate RV Y ′
i,n,L,h provides a 1 − δ′, for δ′ = 2e−2nh2

probability of producing an accountant that has error bounds: δỸ (ϵ + a + ϵerror) − δerror − η ≤
δY (ϵ) ≤ δỸ (ϵ− a− ϵerror) + δerror + η, and a := h

√
2klog 2

η + σ̄√
n
k

The runtime is simple to compute, as composePRV takes O(bLh log L
h ) time where b is the number of

distinct algorithms amongstM1, . . . ,Mk (see Theorem 8), and our only addition is the sampling,
which takes n ∗ b sampling operations. So, our run time is O(bLh log L

h + nb)

B.4 MECHANISMS WITH EQUIVALENT PRIVACY GUARANTEES

For any privacy accountant it is generally possible to run the accounting algorithm to compute the
hyperparemeters required to achieve a particular degree of privacy. We introduce the following,
simple but effective algorithm for using the PRV accountant as part of a binary search over possible
values of σ in order to compute the minimal σ value that satisfied (ϵ, δ)-DP for a given β.

Let PRV (β, σmin, δ) be a function that runs the PRV accountant for the (β, σ)-GG mechanism, and
returns the ϵ value associated, such that (β, σ)-GG satisfies (ϵ, δ)-DP.
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Algorithm 4 Binary-search σ-solver
1: Input: β ≥ 1, ϵ > 0, δ > 0, tolerance > 0
2: Output: σ, such that (β, σ)-GG satisfies (ϵ, δ)-DP
3: σmin = σmax = 1
4: while PRV (β, σmin, δ) > ϵ do
5: σmin = σmin/2.
6: end while
7: while PRV (β, σmax, δ) < ϵ do
8: σmax = σmax ∗ 2.
9: end while

10: while PRV (β, σmax, δ)− ϵ > tolerance do
11: σmid = σmax+σmin

2
12: if PRV (β, σmid, δ) > ϵ then
13: σmin = σmid

14: else σmax = σmid

15: end if
16:
17: end while
18: return σmax

For most of our empirical sections we wish to compare how the choice of β changes the accuracy,
independent of privacy guarantees. So, a variation on this binary search solver is used to compute
which mechanisms to compare in the empirical results presented in the paper for both the private
argmax and private DP-SGD sections.

B.5 OUTLIERS FOR EQUIVALENTLY PRIVATE MECHANISMS

Using the PRV privacy accountant, we are able to solve for σ as function of (ϵ, δ, β), such that
GGβ,σ(f,D) satisfies (ϵ, δ)-DP (described in Appendix B.4). At the present this is not possible with
other privacy accountants, and it is certainly not possible for arbitrary private mechanism.

Combining this empirical privacy accountant with the known CDF of the GG distribution (Dytso
et al., 2018), we can compute the weight of the tail, as a function of (β, ϵ, δ, d), where d specifies
what we defines as a tail (the cutoff point for what constitutes an outlier). Appendix B.5 clearly shows
that there are regimes where the tails of Laplace and Gaussian are heavier (outliers are more likely)
than other equivalently private mechanisms (for β /∈ {1, 2}.

1.0 1.5 2.0 2.5 3.0 3.5
10 1

2 × 10 1

3 × 10 1

4 × 10 1

W
ei

gh
t i

n 
th

e 
ta

il

GG mechanism  - (0.5, 1e-5)-DP

1.0 1.5 2.0 2.5 3.0 3.5
10 5

10 4

10 3

10 2

10 1

Sampled GG mechanism (q=0.01) 
composed 500 times - (1.5, 1e-5)-DP

tail = 1
tail = 2
tail = 4

 vs Weight of Tail

Figure 5: Likelihood of outliers for the GG mechanism and sampled GG mechanism. Here, q is the Poisson
sampling probability used in the Sampled Generalized Gaussian Mechanism.

This observation provides a potential direction for how to evaluate and search for alternative DP
mechanisms; we observe that minimizing outliers is one of the main considerations cited by both the
US Census (Abowd et al., 2022) and researchers behind PATE (Papernot et al., 2018) when deciding
to use the Gaussian mechanism instead of the Laplace mechanism. However, more work needs to be
done in this area, as in general, an algorithm designer’s goal is not to minimize outliers, but rather to
minimize some loss function (e.g. maximize accuracy).
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C OMITTED PROOFS

C.1 RÉNYI DIVERGENCE OF THE GENERALIZED GAUSSIAN IS BOUNDED

Lemma 10. ∀α > 1,∀β ≥ 1,∀σ > 0,∀µ > 0, the Renyi Divergence
Dα(GG(β, σ, 0)||GG(β, σ, µ)) is bounded.

Proof.

Dα(P ||Q) =
1

α− 1
logEx∼Q [(P (x)/Q(x))α]

thus Dα(GG(β, σ, 0)||GG(β, σ, µ)) =
1

α− 1
log

∫ ∞

−∞
k · exp(−α

σ
|x|β) · exp(− (1− α)

σ
|x− µ|β)dx

As such, the goal is to bound
∫∞
−∞ exp

(
− α

σ ||x− µ||β − 1−α
σ ||x− µ||β

)
dx

The shape of the proof is as follows:

1. We show that the there is a fixed region [a, b] over which the sign of the exponent is positive,
and outside of which it is negative.

2. We therefore are able to bound the integral of the exponential over the region [a, b], as
(b− a) ·max, where max is the maximum value of the integral (which is finite, because it
is concave down.)

3. We then show that for the regions outside of [a, b], the exponential decays faster than a
Laplace distribution, which has a bounded integral, therefore, the region outside of [a, b]
also has a bounded integral.

The power of the exponential is −α
σ

(
|x|β − α−1

α |x− µ|β
)
, which we denote by R(β,σ)(x) for ease

of reference. We observe that its roots are the solution to
( |x|
|x−µ|

)β
= (α−1)

α

1/β
.

There are only two roots to function, which we refer to as (a, b).

( |x|
|x− µ|

)
=

(α− 1)

α

1/β

( x2

(x− µ)2
)1/2

=
(α− 1)

α

1/β

x2 =
(α− 1)

α

2/β

(x− µ)2

0 =
(α− 1)

α

2/β

(x− µ)2 − x2

We note that the roots a, b do not depend on σ. For more intuition, we plot |x|
|x−µ| below in Figure 6.
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Figure 6: A plot of |x|
|x−µ| for µ = 1.

The curve R(β,σ)(x) is bounded in the region [a, b], because it is a polynomial. Thus, over this region,
it must attain some maximum value denoted m. This means that the integral

∫ b

a
exp[R(β,σ)(x)]dx is

bounded by some value (b− a) ·m.

Next, we show that the curve R(β,σ)(x) is always negative in the region (−∞, a) ∪ (b,∞). The
remainder of our proof goes as follows,

1. First we show that there is an p such that x > p, the sign of the exponent is negative.

2. Then we show that there is a negative value n such that for x < n the sign of the exponent
is negative.

3. Taking the two previous points, combined with the fact that there are only two roots (at a
and b), then the sign of the exponent is negative over the region (−∞, a) ∪ (b,∞).

Let fµ(x) :=
|x|

|x−µ| . First, we observe that if fµ(x) > α−1
α the sign of the exponent is negative.

There exists p such that for all x > p the sign of the exponent is negative.

First, we observe that |x|
|x−µ| = 1 if and only if µ = 0, and that α−1

α < 1, for all α > 1, thus
α−1
α

1/β
< 1. With this, we next observe that for x > µ

2 , |x|
|x−µ| > 1. This implies |x|

|x−µ| >
α−1
α

1/β .
Thus, there exists somve value p such that for all x > p the sign of the exponent is negative.

There exists n such that for all x < n the sign of the exponent is negative.
for x < 0, fµ(x) =

|x|
|µ−x| =

−x
µ−x .

d

dx

−x
µ− x

=− 1 ∗ ( 1

µ− x
+

x

(µ− x)2
)

=
(
1− x

µ− x

) 1

µ− x

We evaluate this derivative for x < 0, and find that 1
µ−x is always positive, whereas

(
1− x

µ−x

)
is

always negative . Thus, the derivative over the region x < 0 is always negative.

This means that given that f(a) = α−1
α

1/β , then for all x < a, f(a) > α−1
α

1/β . Thus, as x goes to
negative infinity, the sign of the exponent is negative.

We have so far shown that for x ∈ (−∞, a)∪(b,∞), the power of the exponent is always negative. We
observe that exp[R(β,σ)(x)] decays at least as fast as the inverse exponential function c ·exp(−|x|/d),
for some value of (c, d), because β ≥ 1.
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Given that the infinite integral of the inverse exponential function is bounded (by c · d), we can see
that there exist values (c, d), such that the values of exp[R(x)] are pointwise dominated by over the
region (−∞, a)∪ (b,∞). Therefore, we have shown that the integral over this region is also bounded.

Thus, we have shown that this integral is bounded, and therefore the Rényi divergence for the (β, σ)
distribution is also bounded.

C.2 GENERALIZED GAUSSIAN IS DIFFERENTIALLY PRIVATE

In order to prove Theorem 3.1, we first show that for all µ ≥ 0 (corresponding to the difference in the
value of f on neighboring databases) and all α > 1, the α-Rényi divergence between Nβ(0, σ) and
Nβ(µ, σ) is bounded by some finite r; this step is shown formally in Appendix C.1. Bounded Rényi
divergence means that the GGβ,σ(f,D) mechanism satisfies (α, r)-RDP, and by the RDP-to-DP
conversion of Mironov (2017), it also satisfies (r + log 1/δ

α−1 , δ)-DP for any δ ∈ (0, 1).

Theorem (Restatement of Theorem 3.1). For any dataset D ⊂ Rn×d, and any function f :
Rn×d → R, with sensitivity ∆f ≥ 0, then ∀β ≥ 1,∀σ > 0, the GGβ,σ(f,D) is differentially
private.

Proof. By Appendix C.1 we know that the Rényi divergence of the associated GG distribution is
bounded for GG(β, σ, 0)||GG(β, σ,∆f). By the definition of Rényi Differential Privacy (Mironov,
2017), restated in Definition 6, we know that a randomized mechanism that for any adjacent D,D′

such that it holds that the Rényi Divergence with order α is less than ϵ satisfies (α, ϵ) RDP. Thus we
know that the GG mechanism satisfies RDP, and subsequently satisfies DP, as for any RDP bound
there is a (ϵ, δ)-DP guarantee (stated and proved in Mironov (2017)).

C.3 ANALYTIC PRV FOR A SINGLE DIMENSION GENERALIZED GAUSSIAN MECHANISM

Since, we already know the CDF of the GGD, which is 1
2 + sign(x− µ) · 1

2Γ(1/β) · γ
(
1/β, |x−µ|β

α

)
(Dytso et al., 2018). Then we observe that for β > 1 the function g(x) = |x|β−|x−µ|β is invertible.
For β > 1, g(x) is a monotonic function which a well-defined 1st derivative, and so can be easily
computed to arbitrary precision using binary search.

Thus we can compute the CDF with arbitrary precision, as such FY (y) = Pr[|Z − µ|β − |Z|β ≤
y] = Pr[g(Z) ≤ y] = Pr[Z ≤ g−1(y)] = FZ(g

−1(y)). Since both g−1 and FZ are known, the
PRV is also known.

In short, in order to use the PRV accountant, one must compute the CDF of the two PRVs X and Y ,
the CDF of the Y PRV is FZ(g

−1(y)), where Z ∼ GGM(0, c) and g(x) = |x|β − |x− µ|β , and X
PRV is FZ(h

−1(y)), where h(x) = −g(x).

C.4 PRIVACY LOSS RANDOM VARIABLES FOR GENERALIZED GAUSSIAN MECHANISM

In order to compute the PRV for GGβ,σ(f,D) we consider the privacy loss random variables for two
distributions shifted by µ = ∆f , corresponding to the outputs of the mechanism on two neighboring
datasets: P ∼ Nβ(0, σ) and Q ∼ Nβ(µ, σ).
Proposition 1. Let Z ∼ Nβ(0, σ), and let µ = ∆f . Then the PRVs for GGβ,σ(f,D) are X =(
1
σ

)β(|Z|β − |Z − µ|β
)

and Y =
(
1
σ

)β(|Z − µ|β − |Z|β
)
.

Proof.

Y ∼ log(
(Q(t)

P (t)

)
= log

( exp(−tβ)
−|t− µ|β

)
= |t− µ|β − |t|β , where t ∼ Q = Nβ(0, 1)

= |Z − µ|β − |Z|β , where Z ∼ Nβ(0, 1)

A similar calculation shows that X = |Z|β − |Z − µ|β where Z ∼ GG(β, 1).
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C.5 GGNMAX IS PRIVATE

Theorem (Restatement of Theorem 2). If the (β, σ)-Generalized Gaussian Mechanism is (ϵ, δ)-DP
for a fixed ϵ > 0 and δ ≥ 0, then (β, σ)-Generalized Gaussian Private Argmax is also (ϵ, δ)-DP.

The proof of Theorem 2 follows closely to the proof of privacy of the ReportNoisyMax algorithm with
Laplace noise, as presented in Dwork & Roth (2014). The proof is included here for completeness.

Proof. Let Z ∼ Nβ(0, σ) be the noise sampled in the GGβ,σ(f,D) mechanism, where the ∆f is
equivalent for the Mechanism’s f and the Argmax(in most regimes ∆f = 1 for histograms).

Fix D = D′ ∪ {a}. Let c, respectively c′ denote the vector of counts when the database is D,
respectively D′. We use two properties:

1. Monotonicity of counts. For all j ∈ [m], cj ≥ c′j

2. Lipschitz property. For all j ∈ [m], 1 + c′j ≥ cj

Fix any i ∈ [m]. We will bound from above and below ratio of the probabilities that i is selected with
D and with D′. Fix r−i, a draw from [Nβ,σ]

m−1 used for all the noisy counts except the ith count.
We use the notation Pr[i|ζ] to mean the probability that the output of the GGNmax algorithm is i
conditioned on ζ.

We first argue that Pr[i|D, r−i] ≤ eϵ Pr[i|D′, r−i] + δ. Define

x∗ = min
xi

: ci + xi > cj + xj∀j ̸= i

Note that, having fixed x−i, i is will be the output (the GGNmax noisy count) when the database is
D if and only if xi ≥ x∗. We have, for all 1 ≤ j ̸= i ≤ m:

ci + x∗ > cj + xj

⇒ (1 + c′j) + x∗ ≥ ci + x∗ > cj + xj ≥ x′
j + rj

⇒ c′i + (x∗ + 1) > c′j + xj

Thus, if xi ≥ x∗ + 1, then i will be the output (the GGNmax noisy count) on database D with
randomness (ri, x−i). Thus, if ri ≥ x∗ + 1, then the ith count will be the maximum when the
database is D′ and the noise vector is (xi, x−i). So, we now wish to compare (and bound) the
probability of Pr[xi ≥ 1 + x∗] to the probability Pr[xi ≥ x∗].7

As a premise, we know that GGβ,σ(f,D) is (ϵ, δ)-DP, which states that Pr[i|D] ≤ eϵ Pr[i|D′] + δ
for all neighboring (D,D′). Leading us to the following:

Pr[Z ≥ x∗] ≤ Pr[Z ≥ x∗ +∆f ] + δ

⇒Pr[i|D,x−i] = Pr[xi ≥ x∗] ≤ eϵ Pr[xi ≥ x∗ +∆f ] + δ ≤ eϵ Pr[i|D′, x−i] + δ

We now argue that Pr[i|D′] ≤ eϵ Pr[i|D] + δ, which goes in a similar fashion. Having fixed x−i, i
will be the output (GGNmax noisy count) when the database is D′ if and only if xi ≥ x∗. Define,
again,

x∗ = min
xi

: c′i + xi > c′j + xj∀j ̸= i

Note that, having fixed x−i, i is will be the output (the GGNmax noisy count) when the database is
D′ if and only if xi ≥ x∗. We have, for all 1 ≤ j ̸= i ≤ m:

c′i + x∗ > c′j + xj

⇒ 1 + c′i + x∗ > 1 + c′j + xjc

⇒ c′i + (1 + x∗) > (1 + c′j) + xj

⇒ c′i + (1 + x∗) ≥ c′i + (x∗ + 1) > (1 + c′j) + xj ≥ cj + xj

7This is the critical part that diverges from the Report Noisy Max proof
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Thus, if xi ≥ x∗ + 1, then i will be the output (the GGNmax noisy count) on database D with
randomness (xi, x−i). Once again we a similar equation:

Pr[Z ≥ x∗] ≤ Pr[Z ≥ x∗ +∆f ] + δ

⇒Pr[i|D′, x−i] = Pr[xi ≥ x∗] ≤ eϵ Pr[xi ≥ x∗ +∆f ] + δ ≤ eϵ Pr[i|D,x−i] + δ

And so, we have proven the second direction necessary for DP: Pr[i|D′] ≤ eϵ Pr[i|D] + δ, prov-
ing that the GGNmax mechanism satisfies the same guarantee as the 1-dimensional GGβ,σ(f,D)
mechanism with equivalent sensitivity.

C.6 GENERALIZED GAUSSIAN MECHANISM PRIVACY PROOF

In Appendix C.2 we show that the GG mechanism is private, but only provide a very loose bound,
because we show that this is computatable using an adaptation to the PRV accountant. We rely on the
PRV accountant because by using sampled PRVs we are able to extend the PRV accountant to arbitrary
privacy mechanisms with minimal overhead, and because it has been shown to provide empirically
tighter guarantees than the RDP accountant. While not directly useful for our applications, we are
still able to directly provide an (ϵ, δ)-DP guarantee for the GG mechanism, though with coefficients
that provide minimal interpretability.
Theorem 11. For ∀ϵ > 0, δ ∈ [0, 1], β ≥ 1, for all functions g0(β, c) : R2 → R, for all c > 0 such
that

1

c
· exp[−c · −r

s− 1

β

] ≤ δ · (1− s

r
)1−β ,

for r =
g0· ϵc

1/β

(g
β/(β−1)
0 +1)(β−1)/β

; s = 1

(g
β/(β−1)
0 +1)(β−1)/β

, the mechanism GG(β, c) is (ϵ, δ)-DP.

Proof. Given an algorithm M and two neighboring datasets D,D′, let f(y) be defined as

f(y) = log
Pr[M(D) = y]

Pr[M(D′) = y]

for every possible output in the universe of outcomes y ∈ Ω. The privacy loss random variable
(PLRV) is defined as Z := f(M(D)). We know that if Pr[Z > ϵ] ≤ δ then M is (ϵ, δ)-DP Canonne
et al. (2020).

For a given β, we compute the domain over which the PLRV exceeds eϵ, and then compute the
probability of sampling from that domain.

exp[−c|x|β ]
exp[−c|x− µ|β ]

≥ eϵ

exp[−c(|x|β − |x− µ|β)] ≥ eϵ

|x− µ|β − |x|β ≥ ϵ

c
In order to evaluate the monotonicity of the above function we take the derivative:

t(x) = |x− µ|β − |x|β = (x+ µ)2
β/2

− (x2)β/2;

t′(x) = −βx|x|(−2+β) + β(x− µ)|x− µ|(−2+β).

We observe that for all β ≥ 1, µ > 0, t′(x) < 0, and so t(x) is monotonically decreasing.8

Given the above inequality and the constraint β ≥ 1, we know that the inequality can only be satisfied
over the region x ∈ (−∞, µ

2 ). However, we are interested in a tighter bound x ∈ (−∞, z), for
z ≤ µ/2.

First, we restate our inequality:

|x− µ|β − |x|β ≥ ϵ

c

|x− µ| ≥ ((
ϵ

c

1/β
)β + |x|β)1/β

8It is worth noting that that t(x)’s second derivative flips signs at β = 2, and provides a potential insight into
why the Gaussian mechanism is interesting.
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Lemma 12 (Holder’s Inequality). Let (S,Σ, µ) be a measure space and let p, q ∈ [1,∞] with
1/p+ 1/q = 1. Then for all measurable real- or complex-valued functions f and g on S,

||fg||1 ≤ ||f ||p||g||q.

We choose f⃗ and g⃗ to be the real-valued function of length 2, such that f⃗ =< c1/β , |x| >, and
g⃗ =< g0, 1 >, where g0 is not yet specified.

We choose p, q such that p = β, q = β
β−1 .

By Hölder’s inequality,

(g0 ·
ϵ

c

1/β
+ 1 · |x|) ≤

(
(c1/β)β + |x|β

)1/β

· (gq0 + 1)1/q.(
(
ϵ

c

1/β
)β + |x|β

)1/β

≥
(g0 · ϵc

1/β + |x|)
(gq0 + 1)1/q

So

|x− µ| ≥ ((
ϵ

c

1/β
)β + |x|β)1/β ≥

(g0 · ϵc
1/β + |x|)

(gq0 + 1)1/q

for algebraic ease, let r :=
g0· ϵc

1/β

(gq
0+1)1/q

, and s := 1
(gq

0+1)1/q
. We now have

|x− µ| ≥ r + s|x|.
Our goal is to solve for a tight bound for z, where x ∈ (−∞, z). Given µ > 0, r > 0, and 0 < s < 1,
we observe that

x ≤ r

s− 1
.

This leads us to x ∈ (−∞, r
s−1 ). We note that this holds for all g0, and if we wanted to, we may

choose g0 to provide the tightest bounds on x.

In pure DP we show that ∀y ∈ Y Pr(M(x) = y). In order to prove approximate-DP, it is enough to
prove that if we draw y fromM(x) then with probability (1− δ) we will have Pr(M(x) = y) ≤
eϵ Pr(M(x′) = y).

Now, we bound the probability of drawing y outside of the support of {y|Pr(M(x) = y) ≤
eϵ Pr(M(x′) = y)}
Using the above inequality, we solve for the region that does not satisfy (ϵ, 0)-DP. Note: if no value
of x satisfies this inequality, then this actually satsifies (ϵ, 0)-DP (Pure DP).

Given the region A := (a,∞) such that f(x) ≥ eϵ for x ∈ A. We compute the probability of
x ∼ GG(β, c) ∈ A. This is equivalent to the integral of the PDF over the region A. If we are able to
upper bound the weight with δ, then we have shown (ϵ, δ)-DP

∫ ∞

a

exp[−c|x|β ]dx ≤
∫ ∞

a

(
x

a
)β−1 · β · exp[−c|x|β ]dx (22)

= (
1

a
)β−1

(1
c
exp[−c · xβ ]

)∣∣∣∞
a

(23)

= (
1

a
)β−1 · 1

c
· exp[−c · aβ ] (24)

If ( 1a )
β−1 · 1c · exp[−c · a

β ] ≤ δ, then M satisfies (ϵ, δ)-DP.

We now combining the two parts of the proof in order to derive an analytic bound.

let r :=
g0 · ϵc

1/β

(g
β

β−1

0 + 1)
β−1
β

let s :=
1

(g
β

β−1

0 + 1)
β−1
β
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We observe that the Generalized Gaussian is symmetric around the origin, so we use Equation (22)
a = − r

s−1 . For ∀ϵ > 0, δ ∈ [0, 1], β ≥ 1, for all functions g0(β, c) : R2 → R, for all c > 0 that
satisfy the following inequality, are (ϵ, δ)-DP.

(
1− s

r
)β−1 · 1

c
· exp[−c · −r

s− 1

β

] ≤ δ

1

c
· exp[−c · −r

s− 1

β

] ≤ δ · (1− s

r
)1−β

D FURTHER TREATMENT OF PRIVATE ARGMAX AND PATE

D.1 GGNMAX ALGORITHM

Below we present the GGNMax Mechanism is algorithmic form.

Algorithm 5 Generalized Gaussian Private Argmax, GGNMax(β, σ, {f},∆, D)

1: Input noise parameters β ≥ 1, σ > 0, functions f1, . . . , fN : D → R each of sensitivity ∆,
database D ∈ D

2: for i = 1 to N do
3: Compute fi(D)
4: Sample Yi ∼ Nβ(0, σ∆)
5: end for
6: Output argmaxi∈[N ]{fi(D) + Yi}

D.2 DESCRIPTION OF PATE

PATE (Private Aggregation of Teacher Ensembles) is an algorithm to train a private machine learning
model. In the first step, the private dataset is partitioned into T datasets, such that a single user’s
data is only in single partition. A “teacher” model is trained for each partition. Then, the teacher
models are collected to privately vote on how to label an unlabeled, public dataset, usually through
an algorithm based off of the Report-Noisy-Max algorithm. A “student” model is trained on the
privately labeled dataset. We present a high-level description of the algorithm in Figure 7.

...

Teacher Training
Student Training

Student dataset

model 1

model 2

model T

Aggegate 
Teacher 
Lables

Private 
Labels

Student 
Model

...

Train

Dataset 
T

Train model T

Dataset 
2

Train model 2

Dataset 
1

Train model 1

Dataset

Figure 7: Diagram of PATE implementation laid out in (Papernot et al., 2017)
In the main body of the paper we primarily explore the idea of how the choice of β affects the label
accuracy of PATE; in order to explore this more fully, we propose a new measure for accuracy for
the private Argmax problem, which is better suited to the goals of private ML — measuring the
probability of returning the true Argmax, rather than returning an outcome with score similar to the
true Argmax. For this utility measure, we empirically find that β = 2 (Gaussian) is near-optimal. We
then explore this in a theoretical setting for the specific case of Laplace and Gaussian mechanism.
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D.3 SIMULATIONS FOR ENSEMBLE-BASED PRIVATE VOTE AGGREGATION

While PATE is one of the primary motivations for the GGNMax mechanism, taking a private Argmax
is a very general problem and is particularly important for algorithms which attempt to reconcile
beliefs (or votes) across many parties. Classical work in differential privacy on private Argmax
considers that for a vector of values, the utility of the mechanism is a function of the probability
that the mechanism returns any index that has a value associated with, close to the maximum value.
However, in a task like classification in ML, there is only a single label that is the “correct” label, and
thus we argue that for a task like classification in ML, a mechanism should be evaluated on how often
it returns the label that would have been assigned without noise.

Building upon this intuition, we define the Hardmax Utility of an Argmax mechanismM on functions
{fi} over a distribution P of databases as:

Hardmax-UtilityP(M, {fi}) := Pr
D∼P

[M(D, {fi}) = argmaxi(fi(D))].

With this utility measure in mind, we wish to measure the impact of β on the utility of GG Private
Argmax algorithm. Given a vector of function values {fi(D)}, noise addition can only change the
Argmax if the noise added is larger than the existing gap between the highest function value and all
other values. We refer to the difference between the largest and second largest value in {fi(D)}, as
the runner-up-gap.

Our intuition about the effect of β is that potential gains in utility would come from how varying
β will vary the weight of the distributions in the tails, for equivalently private mechanisms (which
we explore lightly in Appendix B.5). In order to study this effect, we construct a set of random
histograms that have different running-up-gap; by varying the runner-up-gap, we vary how much the
outcome is sensitive to outliers in the noise.

In designing our simulated histograms, we observe that it is not clear how to assign ground truth
to simulated histograms. However, we also observe that in many ensemble learning based settings,
it is reasonable to assume that the majority of the voters are correct. As such, for our simulated
histograms, we assign a ground truth label where the argmax of the histogram is the correct label; in
other words, we are restricted to the regime where the correct label is what the majority voted for
non-privately.

For our simulations, we construct the 500 histograms of votes for each class as follows: for vote count
V = 1000, maximum value v = 100, and runner-up-gaps r ∈ [.001, 0.2] we fix the largest number of
votes for class 0 at x0 = v, the second-largest number of votes for class 1 at x1 = v(1− r), and then
filling in the histogram by repeatedly drawing N − 2 random integers from the range [1, v(1− r)]
until

∑
i∈[N ](x⃗i) = V . We then instantiate GGNmax on each database (histogram) with counting

queries fi that output the number of votes for each class i.

For a given (ϵ, δ)-DP guarantee and for a range of values βi ∈ [1, 4], we compute σi, such that
(βi, σi)-Generalized Gaussian Private Argmax satisfies (ϵ, δ)-DP (see Appendix B.4 for algorithmic
details of this process). For each pair (βi, σi), we compute the Hardmax Utility of each mechanism by
computing the likelihood of returning the true argmax, after using the (βi, σi)-Generalized Gaussian
Private Argmax, averaged across 50 trials.
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Figure 8: Hardmax Utility for 2-class histogram. Left: Hardmax Utility as a function of runner-up-gap, for
mechanisms satisfying (1,10−5)-DP. Right: Area-Under-the-Curve (AUC) of the curves on the left for different
values of ϵ, where a higher AUC means a better overall accuracy. The AUC is computed over a runner-up-gap %
from 0 to 10, such that all β-GGNmaxes achieve nearly greater than 99.5% accuracy, and then AUC is rescaled
such that 1.0 is the maximum.
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In Figure 8, we observe that the relative differences across different choices of β do not change very
much across runner-up-gaps, and the optimal β value is typically independent of the runner-up-gap.

We observe that empirically, values of β close to β = 2 have better Hardmax-Utility than ones further
away, regardless of (ϵ, δ)-DP guarantees. However, we do note that while β = 2 is near-optimal,
β values slightly smaller than 2 appear to give even better performance. A key takeaway is that
Gaussian does outperform Laplace, however, there is room for further improvements over Gaussian
by fine-tuning the β parameter.

This suggests, empirically, is that for regimes where younpinformal have a set of voters, where there
is reason to believe that the majority is generally correct, GGNMax mechanisms with β values close
to β = 2 (Gaussian mechanism) may provide the best privacy-accuracy trade-off.

To test our simulation results more generally, we investigate the multi-class regime as well, and find
the same results. In Figure 9 we present the same experiments from the previous section Section 4.2
recreated with 25 classes, rather than 2 classes.
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Figure 9: Hardmax Utility for 25-class histogram. Left: Hardmax Utility as a function of runner-up-gap, for
mechanisms with equivalent (2,10−5)-DP. Right: Area-Under-the-Curve (AUC) of the curves on the left for
different values of ϵ, where a higher AUC means a better overall accuracy. AUC is rescaled such that 1.0 is the
maximum to normalize across different sizes of domain. We observe that as β grows, the more jagged the AUC
is, this is because as β grows the value of ϵ becomes more sensitive as a function of σ (see Figure 2 for intuition
as to why). This observation, coupled with the fact that we compute our Argmaxexperiments for evenly spaced
choices of σ (and β) means that more argmax accuracy curves will be grouped together as β grows.

We supplement these empirical simulations with a theoretical analysis for the same setting in
Appendix D.4, we provide a theoretical analysis of the optimal choice between the Laplace and
Gaussian Mechanisms when using a RDP accountant. However, the RDP accountant is known to be
suboptimal relative to the PRV accountant used in our experiments.

D.4 OPTIMAL MECHANISM FOR THE PRIVATE ARGMAX WITH AN RDP ACCOUNTANT

Given oracle access to ∆ := x0 − x1, the Hardmax-Utility is Pr[(x0 + n0) > (x1 + n1)] =
Pr[(n0−n1) > ∆]. This is analytically derivable, as the probability of the sum of two independently
drawn random variables is

Pr[(x0 + n0) > (x1 + n1)] = Pr[(n0 − n1) > ∆]

The PDF of Pr[(n0 − n1) =

∫ ∞

−∞
fX(x)fX(∆− x)dx

= k2
∫ ∞

−∞
exp(− 1

σ
(||x||β + ||∆− x||β))dx.

Where k is the normalization coefficient for the GG(β, σ).

This is possible to compute analytically for the Laplace and for Gaussian. For Gaussian, the sum of 2
IID Gaussians, with the same σ and µ = 0, is N (0, 2 · σ2). This means that the Hardmax Utilty for
the Gaussian mechanism is CDF (N (0, 2σ2) evaluated at ∆.

For Laplace, equation 2.3.23 from (Kotz et al., 2001) states that the sum of Laplace random variables
with equal λ values (centered at µ = 0) is fX1+X2

(x) = 1
4λ(1 + λ|x|) · e−λ|x|. This means that the

Hardmax Utilty for the Laplace mechanism is 1− 1
4e

λ·x(λx+ 2), evaluated at x = ∆.

The RDP of the Laplace mechanism is 1
α−1 log[

α
2α−1exp(

α−1
λ ) + α−1

2α−1 exp(
−α
λ ]. And the RDP of

the Gaussian mechanism is α
2σ2 . This means that for the same (α, ϵ)-RDP guarantee, it is possible to
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direclty compute the λ and σ that let the Gaussian and Laplace mechanism satisfy that RDP guarantee.
Given an analytic derivation for the hardmax utility of the mechanism, we can derive when one
mechanism is better than another.

This solution gets us to the surprising conclusion that when using the RDP accountant, there are
regimes when Laplace is better than Gaussian, regimes when Gaussian is better than Laplace, and
regimes where it is data-dependent (depends on the value of ∆).
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Figure 10: Hardmax Utility for Laplace and Gaussian mechanisms that satisfy as fixed RDP guarantee.

We also do not view the findings under RDP as the result of being a fragile result, but rather as a
peculiarity of RDP. The choice of α in RDP can be seen as a parameter for how strongly the tails
of a PDF are penalized, where a larger choice of α incurs a larger privacy cost for weight further
from the origin. By manipulating the choice of α, we can manipulate the relative privacy cost of
Laplace Mechanism versus a Gaussian mechanism. As such, it is not surprising that it is possible
to choose an (α, ϵ)-pair which favors equivalently-private Gaussian mechanisms, one which favors
equivalently-private Laplace mechanisms, or one where they are very similar.

Lastly, in interpretting these findings about RDP, we see no evidence that these RDP findings extend
to the PRV accountant, which has been empirically outperforms the RDP accountant and is used
as the State-Of-The-Art for privacy accounting. And we do not see these results as a feature of
the mechanisms, but rather a peculiarity of a suboptimal accountant with a suboptimal selection of
parameters.

E ADDITIONAL β-DP-SGD RESULTS AND IMPLEMENTATION DETAILS

E.1 β-DP-SGD ALGORITHM

We now present the β-DP-SGD algorithm in full form.
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Algorithm 6 β-Generalized Gaussian Differentially Private SGD, β-DP-SGD(β, σ,D, l, η, L,C, T )

1: Input: noise parameters β ≥ 1, σ > 0, database D = {x1, . . . , xN} of points in Rd, loss
function l(θ, xi), learning rate η, average group size L, clip norm C, and training epoch length
T .

2: Initialize θ0 ∈ Rd randomly
3: for t = 1 to T do
4: Construct Lt ⊆ D such that each xi ∈ D is included with probability q = L/|D| (Poisson

sampling)
5: for each i ∈ Lt do
6: Compute Gt(xi) = ∇θt l(θt, xi)

7: Ḡt(xi)← Gt(xi)/max
(
1,

∥Gt(xi)∥β

C

)
8: end for
9: Sample Y1, . . . , Yd ∼i.i.d. Nβ(0, σ · C)

10: G̃t ← 1
L

(∑
i Ḡt(xi) + Y⃗

)
11: θt+1 ← θt − ηG̃t

12: end for
13: Output: θT

E.2 HYPERPARAMETERS USED IN TRAINING

Hyperparameters We run our β-DP-SGD algorithm for a maximum of 100 epochs for each parameter
setting and sweep over the following parameters: β (12 evenly spaced values of β ∈ [1, 4]), noise
multiplier (6 evenly spaced values of σ ∈ [0.5, 3.0]), average batch size L ∈ {128, 256}, learning
rate η ∈ {0.5, 1.0}, and clipping norm C ∈ {0.05, 0.1, 0.25, 0.5}, for δ = 10−6. Each experiment is
run 3 times, which we found sufficient given standard deviations that generally fell below 0.3%.

Datasets: We train on CIFAR-10 (Krizhevsky, 2009) and Street View House Numbers (SVHN)
(Netzer et al., 2011), two common computer vision datasets, which respectively contain 60,000 and
99,289 small, color images split across ten classes; the Adult dataset (Becker & Kohavi, 1996), a
tabular dataset with a binary classification task; and the IMDB dataset (Maas et al., 2011), a collection
of movie reviews meant for binary sentiment classification.

Models: For the vision classification tasks (CIFAR-10 and SVHN), we use the models described
in in Tramèr & Boneh (2020), which previously achieved SOTA results for the ϵ ≤∼ 2.5 regime.
Specifically, we train Convolutional Neural Networks (CNNs) described in the original work, and
“handcrafted CNNs”, which train a CNN on pretrained image features produced by scattering networks
(Oyallon & Mallat, 2015). For the the Adult Dataset we train a 2-layer Fully Connected Network
(FCN), with 32 neurons in the hidden layer. For the IMDB dataset, we train a Long-Short Term
Memory (LSTM) network with 1,081,002 parameters, in order to demonstrate the method on a
relatively medium-sized model from scratch.

While the core effect seen in the paper is that there is a very weak relationship with the final test
accuracy, it is important to observe that for any one set of hyperparemeters, one particular β may
perform much better than others.

E.3 THE ROLE OF INDIVIDUAL HYPERPARAMETERS IN β-DP-SGD

Below we investigate the role of individual hyperparameters on the the final test accuracy. In general,
we observe that while some hyperparameters may have some effect, the general relationship with β
is unperturbed. Specifically, for many of these experiments the optimal choice of β regularly is not
β = 2 (Gaussian), however, it does not tend to deviate far for β = 2. As in the original training, we
emphasize that for some situations plots do not have values for specific choices of β, this is because
the training curves start at a value of ϵ greater than the ϵ value we are plotting results for (larger values
of β tend to consume more privacy per-step, for the same σ). All of these plots are for δ = 10−6.
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E.3.1 LEARNING RATE

55

60

65

70

75

Te
st

 A
cc

ur
ac

y 
(%

)

LSTM on IMDB

= 0.5
= 1.0

= 2.0
= 3.0

= 4.0
Max accuracy 75

80

85

90 ScatterNet on SVHN

= 0.5
= 1.0

= 2.0
= 3.0

= 4.0
Max accuracy

1.0 1.5 2.0 2.5 3.0 3.5 4.0
40

50

60

70

Te
st

 A
cc

ur
ac

y 
(%

)

ScatterNet on CIFAR-10

= 0.5
= 1.0

= 2.0
= 3.0

= 4.0
Max accuracy

1.0 1.5 2.0 2.5 3.0 3.5 4.0
80

82

84

86

88
Adult FCN on Adult

= 0.5
= 1.0

= 2.0
= 3.0

= 4.0
Max accuracy

Learning rate fixed to 0.5

Figure 11: β-DP-SGD results with fixed learning rate (0.5)
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Figure 12: β-DP-SGD results with fixed learning rate (1.)

E.3.2 CLIPPING NORM
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Figure 13: β-DP-SGD results with fixed clipping norm (0.05)
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Figure 14: β-DP-SGD results with fixed clipping norm (0.1)
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Figure 15: β-DP-SGD results with fixed clipping norm (0.25)

E.3.3 BATCH SIZE
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Figure 16: β-DP-SGD results with fixed batch size (128)
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Figure 17: β-DP-SGD results with fixed batch size (256)

E.3.4 NOISE MULTIPLIER
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Figure 18: β-DP-SGD results with fixed σ = 1.5 (noise multiplier)
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Figure 19: β-DP-SGD results with fixed σ = 2.0 (noise multiplier)
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Figure 20: β-DP-SGD results with fixed σ = 2.5 (noise multiplier)
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Figure 21: β-DP-SGD results with fixed σ = 3.0 (noise multiplier)

E.4 SAMPLING FROM THE GENERALIZED GAUSSIAN DISTRIBUTION

Unlike the Gaussian and Laplace distributions, sampling from the Generalized Gaussian mechanism
is not natively supported by built-in libraries like Python’s ‘math’ library, or the commonly used
numpy library. Another commonly used library for statistical computing, SciPy, does have the
‘scipy.stats.gennorm’ function; however, we found that it regularly takes too long for intensive
computations like stochastic gradient descent in practical settings, which involves sampling from
high-dimensional gradients thousands of times. Further, the Scipy function is only able to be sampled
on a CPU, which makes it ill-suited for DP-SGD, which is regularly performed on a GPU.

We implement a method for sampling from the Generalized Gaussian mechanism included in our code
here: https://anonymous.4open.science/r/GG_for_ml_neurips_code-BD48/
README.md.

In our experiments, we can sample from the Generalized Gaussian only ∼ 1.3x slower than sampling
from a Gaussian directly. It is possible to conduct similar sampling using the method of inverse
probability transforms, since the Generalized Gaussian has a known CDF.

F REPRODUCIBILITY

F.1 COMPUTING RESOURCES

For our DP-SGD experiments, the execution of our techniques does not result in a significant increase
in processing time compared to the conventional application of DP-SGD. The only addition to the
computation duration comes from increased amounts of hyperparameter searching. All experiments
and data analysis are reproducible in the codebase provided https://anonymous.4open.
science/r/GG_for_ml_neurips_code-BD48/README.md.The DP-SGD results in this
paper were completed in under 500 hours of GPU time, which was split across 16 machines that were
mounted on Nvidia T4 and RTX6000 machines GPUs. All data analysis was conducted on a 8 core
machine with 16 GB RAM machine.
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