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Abstract
Neuroscience and artificial intelligence (AI) both grapple
with the challenge of interpreting high-dimensional neu-
ral data. Comparative analysis of such data is essential
to uncover shared mechanisms and differences between
these complex systems. Despite the widespread use of
representational comparisons and the ever-growing land-
scape of comparison methods, a critical question re-
mains: which metrics are most suitable for these com-
parisons? Prior work often evaluates metrics by their
ability to differentiate models with varying origins (e.g.,
different architectures), but an alternative—and arguably
more informative—approach is to assess how well these
metrics distinguish models with distinct behaviors. This
is crucial as representational comparisons are frequently
interpreted as indicators of functional similarity in Neu-
roAI. To investigate this, we examine the degree of align-
ment between various representational similarity mea-
sures and behavioral outcomes in a suite of different
downstream data distributions and tasks. We com-
pared eight commonly used metrics in the visual do-
main, including alignment-based, CCA-based, inner prod-
uct kernel-based, and nearest-neighbor-based methods,
using group statistics and a comprehensive set of behav-
ioral metrics. We found that metrics like the Procrustes
distance and linear Centered Kernel Alignment (CKA),
which emphasize alignment in the overall shape or geom-
etry of representations, excelled in differentiating trained
from untrained models and aligning with behavioral mea-
sures, whereas metrics such as linear predictivity, com-
monly used in neuroscience, demonstrated only moder-
ate alignment with behavior. These findings highlight that
some widely used representational similarity metrics may
not directly map onto functional behaviors or computa-
tional goals, underscoring the importance of selecting
metrics that emphasize behaviorally meaningful compar-
isons in NeuroAI research.
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Introduction
Both neuroscience and artificial intelligence (AI) confront the
challenge of high-dimensional neural data, whether from neu-
robiological firing rates, voxel responses, or hidden layer
activations in artificial networks. Comparing such high-
dimensional neural data is critical for both fields, as it facili-
tates understanding of complex systems by revealing their un-
derlying similarities and differences.

In neuroscience, one of the main goals is to uncover how
neural activity drives behavior and to understand neural com-
putations at an algorithmic level. Comparisons across species
and between brain and model representations, particularly
those of deep neural networks, have been instrumental in ad-
vancing this understanding (Yamins et al. (2014); Eickenberg
et al. (2017); Güçlü & Van Gerven (2015); Cichy et al. (2016);
Khaligh-Razavi & Kriegeskorte (2014); Schrimpf et al. (2018,
2020); Storrs et al. (2021); Kriegeskorte et al. (2008)). A
growing interest lies in systematically altering model param-
eters—such as architecture, learning objectives, and train-
ing data—and comparing the resulting internal representa-
tions with neural data (Yamins & DiCarlo (2016); Doerig et al.
(2023); Schrimpf et al. (2018, 2020)).

Similarly, in AI, researchers are increasingly focused on
reverse-engineering neural networks by tweaking architectural
components, training objectives, and data inputs to examine
how these modifications impact the resulting representations.
However, studying neural networks in isolation can be limit-
ing, as interactions between the learning algorithms and struc-
tured data shape these systems in ways we do not yet fully
understand. Comparative analysis of model representations
offers a powerful tool to probe these networks more deeply.
This endeavor is rooted in the universality hypothesis that sim-
ilar phenomena can arise across different networks. Indeed,
a large number of studies have provided empirical evidence
licensing these universal theories (Huh et al. (2024); Kornblith
et al. (2019); Bansal et al. (2021); Li et al. (2015); Roeder et
al. (2021); Lenc & Vedaldi (2015)) but the extent to which di-
verse neural networks converge to similar representations is
not well understood.

Given the growing interest in comparative analyses across
neuroscience and AI, a key question arises: what are the best
tools for conducting such analyses? Over the past decade, a
wide variety of approaches have emerged for quantifying the
representational similarity across artificial and biological neu-
ral representations (Sucholutsky et al. (2023); Klabunde et al.
(2023); Williams et al. (2021)). Most of these approaches can
be classified as belonging to one of four categories: repre-
sentational similarity-based measures, alignment-based mea-
sures, nearest-neighbor based measures, and canonical cor-
relation analysis-based measures (Klabunde et al. (2023)).
With the wide range of available approaches for representa-
tional comparisons, researchers are tasked with selecting a
suitable metric. The choice of a specific metric implicitly prior-
itizes certain properties of the system, as different approaches
emphasize distinct invariances and are sensitive to varying as-



Figure 1: Framework for evaluating representational similarity metrics based on their functional correspondence. We conduct
pairwise comparisons of the representational similarities and behavioral outputs of 19 vision models, utilizing 9 widely-used rep-
resentational similarity measures and 10 behavioral metrics across 20 distinct behavioral datasets. (Top Left) Label-Preserving
OOD Datasets (In-Task Distribution Shifts): Maintain ImageNet labels but alter input distributions. (Bottom Left) Task-Shifting
Datasets (Out-of-Task Distribution Shifts): Introduce new tasks and labels, modifying both input distributions and task structures.

pects of the representations. This complexity ties into broader
issues in the concept and assessment of similarity, which, as
emphasized in psychology, is highly context-dependent (Tver-
sky (1977)).

What, then, are the key desiderata for network compari-
son metrics? Networks may exhibit similarities in some di-
mensions and differences in others, but the critical question is
whether these differences are functionally relevant or merely
reflect differences in origin or construction. This considera-
tion leads to a central criterion for effective metrics: behavioral
differences should correspond to differences in internal repre-
sentational similarity (Cao (2022)). However, identifying which
measures reliably capture behaviorally meaningful differences
remains an open question.

This question of whether a similarity metric captures func-
tionally meaningful differences is particularly consequential
in NeuroAI, where model–brain comparisons are frequently
used to infer the computational objectives operative in the
brain. For example, Yamins & DiCarlo (2016) demonstrate that
“goal-driven deep learning models optimized for challenging
object classification tasks produce neural response patterns
that quantitatively match those observed in mid-level cortical
areas,” using this alignment to generate functional hypotheses
about sensory processing. In the language domain, Schrimpf
et al. (2021) found that models performing best on next-word
prediction also excel in explaining human neural data, lead-
ing them to conclude that language-selective cortical regions
are functionally tuned for predictive processing in service of
meaning extraction. Complementing these findings, Richards
et al. (2019) argue for a broader “deep learning framework
for neuroscience” that prioritizes objective functions, learn-
ing rules, and architectures, emphasizing that systematically
comparing model representations with brain data is key to un-
covering the computational goals of neural circuits. In each

of these cases, the core assumption is that if a model’s rep-
resentation aligns with brain data under a particular metric,
then the model’s functional objective—such as accurate cate-
gorization or predictive processing—mirrors that of the neural
circuit in question. Yet the confidence we can place in these
conclusions hinges critically on whether the chosen similarity
measure truly isolates behaviorally relevant structure, under-
scoring the importance of identifying metrics that reliably cap-
ture functionally meaningful representational differences. Our
study aims to address the above challenge. Here, we make
the following key contributions:

• We conduct an extensive analysis of common represen-
tational comparison measures (including alignment-based,
representational similarity matrix-based, CCA-based, and
nearest-neighbor-based methods) and show that these
measures differ in their capacity to distinguish between
models. While some measures excel at distinguishing be-
tween models from different architectural families, others
are better at separating trained from untrained models.

• To assess which of these distinctions reflects differences
in model behaviors, we perform complementary behavioral
comparisons using a comprehensive set of behavioral met-
rics (both hard and soft prediction-based). We find that be-
havioral metrics are generally more consistent with each
other than representational similarity measures.

• Finally, we cross-compare representational and behavioral
similarity measures, revealing that linear CKA and Pro-
crustes distance align most closely with behavioral evalu-
ations, whereas metrics like linear predictivity, widely used
in neuroscience, show only modest alignment. This find-
ing offers important guidance for the selection of metric in
neuroAI, where the functional relevance of representational
comparisons is paramount.



Related Work Although few studies directly compare rep-
resentational similarity measures based on their discrimina-
tive power, most efforts focus on identifying metrics that dis-
tinguish between models by their construction. These ef-
forts typically involve assessing measures based on their abil-
ity to align corresponding layers across models with varying
seeds (Kornblith et al., 2019) or identical architectures with
different initializations (Han et al., 2023; Rahamim & Belinkov,
2024) or their ability to reliably separate neural responses
from distinct brain areas while grouping those from the same
area (Thobani et al., 2024). Closest to our work are Ding et al.
(2021) and Cloos et al. (2024). The latter optimize synthetic
datasets to match brain activity under different metrics, show-
ing that even when task-relevant variables are not encoded,
metrics like linear predictivity and CKA can still produce high
scores. The former evaluate the sensitivity of CCA, CKA, and
Procrustes to perturbations that preserve or disrupt functional
behavior (e.g., seed variation, principal component deletion)
in BERT (NLP) and ResNet (CIFAR-10). However, these stud-
ies examine a limited set of similarity measures and primarily
assess functional similarity based on task performance alone,
without evaluating the finer-grained alignment of predictions
across models.

Metrics for Representational Comparisons

Notations and Definitions Let S be a set of M fixed input
stimuli. Define the kernel functions f : S → RNX and g : S →
RNY , where NX and NY are the output unit sizes of the first and
second systems. Here, f (si) and g(si) map each stimulus
si ∈ S to vectors in RNX and RNY .

Let X ∈RM×NX and Y ∈RM×NY be the representation ma-
trices. For each input stimulus si, denote the ith row of X as
φi = f (si) and of Y as ψi = g(si), each being the activation in
response to the ith stimulus.

Representational Similarity Analysis (RSA) (Kriegesko-
rte et al., 2008) A method that quantifies the distance between
M×M Representational Dissimilarity Matrices (RDMs) of two
models in response to a common set of M stimuli.

RSA(X ,Y ) = τ(JM −XT X ,JM −Y TY )

with JM denoting the M ×M all-ones matrix, the representa-
tional dissimilarity matrices (RDMs) for X and Y are JM −XT X
and JM −Y TY , respectively. XT X and Y TY in RM×M repre-
sent the self-correlations of X and Y , with each matrix entry
i, j quantifying the correlation between activations for the ith

and jth stimuli. The Kendall rank correlation coefficient τ(·)
quantifies the similarity between these RDMs.

Canonical Correlation Analysis (CCA) (Hotelling, 1992)
A popular linear invariant similarity measure quantifying the
multivariate similarity between two sets of representations X
and Y under a shared set of M stimuli by identifying the bases
in the unit space of matrix X and Y such that when the two
matrices are projected on to these bases, their correlation is
maximized.

Here, the ith canonical correlation coefficient ρi (associated
with the ith optimized canonical weights wi

x ∈ RNX and wi
y ∈

RNY ) is being calculated by:

ρi = max
wi

x,wi
y

corr(Xwi
x,Y wi

y)

subject to ∀ j < i, Xwi
x ⊥ Xw j

x and Y wi
y ⊥ Y w j

y,

with the transformed matrices Xwi
x and Y wi

y being called
canonical variables. To obtain a measure of similarity be-
tween neural network representations, the mean CCA corre-
lation coefficient ρ̄ over the first N′ components is reported,
with N′ = min(NX ,NY ). Here,

ρ̄ =
∑

N′
i=1 ρi

N′ =

∥∥QT
Y QX

∥∥
∗

N′ ,

where ∥ · ∥∗ denotes the nuclear norm. Here, QX =
X(XT X)−1/2 and QY = Y (Y TY )−1/2 represent any orthonor-
mal bases for the columns of X and Y .

Linear Centered Kernel Alignment (CKA) (Kornblith et al.,
2019; Gretton et al., 2005) A representation-level comparison
that measures how (in) dependent the two models’ RDMs are
under a shared set of M stimuli. This measure possesses a
weaker invariance assumption than CCA, being invariant only
to orthogonal transformations, rather than all classes of in-
vertible linear transformations, which implies the preservation
of scalar products and Euclidean distances between pairs of
stimuli.

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)

Here, K and L are kernel matrices with entries Ki j = κ(φi,φ j)
and Li j = κ(ψi,ψ j), where φ and ψ are vectorized features
from the two models. In the linear case, κ is the inner prod-
uct, so K = XX⊤ and L = YY⊤. HSIC evaluates the cross-
covariance of the models’ internal embedding spaces, focus-
ing on the similarity of stimulus pairs.

Mutual k-nearest neighbors (Huh et al., 2024) A local-
biased representation-level measure that quantifies the simi-
larity between the representations of two models by assessing
the average overlap of their nearest neighbor sets for corre-
sponding features.

MNN(φi,ψi) =
1
k
|S(φi)∩S(ψi)|

where φi = f (si) and ψi = g(si) are features derived from
model representations f and g given the shared stimulus si.
S(φi) and S(ψi) are the set of indices of the k-nearest neigh-
bors of φi and ψi in their respective feature spaces and | · | is
the size of the intersection.

Linear predictivity An asymmetric measure of alignment
between the representations of two systems, obtained using
ridge regression. The numerical score is calculated by sum-
ming Pearson’s correlations between each pair of predicted



and actual activations in the held-out set. For reporting, we
symmetrize by averaging correlation scores from both fitting
directions.

Procrustes distance (Ding et al., 2021; Williams et al.,
2021) A rotational-invariant shape alignment distance be-
tween X and Y ’s representations after removing the compo-
nents of uniform scaling and translation and applying an op-
timized mapping, where the mappings from one representa-
tion matrix to another is constrained to rotations and reflection.
Here, the Procrustes distance is given by:

d(X ,Y ) = min
T∈O(n)

∥φ(X)−φ(Y )T∥F

where φ(·) denotes centering the matrix (subtracting the
column-wise mean so the data is centered at the origin) and
scaling it to unit Frobenius norm. i.e. ∥φ(X)∥F = 1. O(n)
denotes the orthogonal group.

The similarity scores reported are obtained by 1−d(X ,Y ),
such that the comparison with a representation itself yields a
score of 1, and lower distance yields a higher score.

Semi-matching score (Li et al., 2015; Khosla et al., 2024)
An asymmetric correlation-based measure obtained using the
average correlation after matching every neuron in X to its
most similar partner in Y . The scores reported are the average
from both fitting directions.

ssemi(X ,Y ) =
1

Nx

Nx

∑
i=1

max
j∈{1,...,Ny}

x⊤i y j

Soft-matching distance (Khosla & Williams, 2024) A gen-
eralization of permutation distance (Williams et al., 2021) to
representations with different number of neurons. It measures
alignment by relaxing the set of permutations to “soft permuta-
tions”. Specifically, consider a nonnegative matrix P ∈RNx×Ny

whose rows each sum to 1/Nx and whose columns each sum
to 1/Ny. The set of all such matrices defines a transportation
polytope (De Loera & Kim, 2013), denoted as T(Nx,Ny). Op-
timizing over this set of rectangular matrices results in a “soft
matching” or “soft permutation” of neuron labels in the sense
that every row and column of P may have more than one non-
zero element.

dT(X ,Y ) =
√

min
P∈T(NX ,NY )

∑
i, j

Pi j∥xi − y j∥2

Downstream Behavioral Measures
For classification tasks, we incorporate various downstream
measurements at different levels of granularity to assess be-
havioral consistency across systems. For a given pair of neu-
ral networks, their activations are extracted over a shared set
of stimuli. A linear readout based on a fully connected layer
is trained over a training set of activations, where the result-
ing behavioral classification decisions determined by the lin-
ear readouts on a held-out testing set are exploited in the fol-
lowing ways as a comparison between the neural networks:

Raw Softmax alignments measure the consistency of
class-level activation strengths by comparing softmax output
vectors from two models. Similarity is computed as the Pear-
son correlation between these vectors across the test set.

Classification Confusion Matrix alignments measure the
consistency of discrete inter-class (mis) classification pat-
terns. A similarity score is obtained by comparing the two
models’ confusion matrices in the following ways:

Pearson Correlation Coefficient between the flattened
confusion matrices given by two models, each being a vec-
tor of dimension C2 over C classes.

Jensen-Shannon (JS) Distance (Lin, 1991) introduced as
a behavioral alignment measure by Tuli et al. (2021) is func-
tionally similar to a symmetrized and smoother version of the
Kullback-Leibler (KL) divergence. For class-wise JS distance,
let p̂ = ⟨p1, p2, . . . , pC⟩ and q̂ = ⟨q1,q2, . . . ,qC⟩ be error prob-
ability vectors over C classes, with

pi =
ei

∑
C
i=1 ei

,∀i ∈ {1,2, ...,C}

where ei represents error counts per class. The JS divergence
is defined as:

JSD(p,q) =

√
D(p||m)+D(q||m)

2
,

with D(p||m) =
C

∑
i=1

pi log
(

pi

mi

)
and mi =

pi +qi

2

A finer inter-class dissimilarity measure derived from the
complete misclassification patterns shown in the non-diagonal
elements of the confusion matrix results in two C ∗ (C − 1)
dimensional flattened vectors p̂ and q̂, where each component
is proportional to the counts of misclassifications from class i
to class j, is calculated as

ei j

∑
C
i=1 ∑

C
j=1, j ̸=i ei j

, ∀i, j ∈ {1,2, . . . ,C}

The resulting distances from both methods range from [0,
1], where we simply report a similarity measure given by
1− JSD(p,q).

Classification Binary Correctness Alignments empha-
size consistency in per-stimulus prediction correctness. Er-
ror patterns for each model are encoded as binary vectors,
where each entry corresponds to the correctness of a stim-
ulus’s prediction. To compare the alignment between these
binary vectors, we incorporate the following measures:

Pearson Correlation Coefficient measures the linear cor-
relation between the binary vectors of prediction correctness
from two models, reflecting systematic agreement or dis-
agreement in their prediction patterns over M shared testing
stimuli.

Cohen’s κ Score evaluates the agreement between two
classifiers beyond chance. It is defined as:

κxy =
cobs,xy − cexp,xy

1− cexp,xy



Figure 2: Model-by-model similarity matrices from different measures on the Cue Conflict task. Left: The Procrustes mea-
sure clearly distinguishes between trained and untrained models. Middle: Linear Predictivity reveals no noticeable separation
between trained and untrained models or across different architectures. Right: Soft-matching more effectively differentiates
between architectural families (CNN vs. transformers) compared to other representational metrics.

with cexp,xy = pi p j +(1− pi)(1− p j)

where cobs,xy =
# of agreements

M , cexp,xy is the expected probabil-
ity of agreement based on the accuracies px and py of two
independent classifiers, and cobs,xy is the observed probability
of agreement, offering a nuanced assessment of consistency
across classifications.

Jaccard Similarity Coefficient quantifies the agreement
between two binary classifiers’ predictions, defined as:

J(x,y) =
∑

n
i=1 xiyi

∑
n
i=1(xi + yi − xiyi)

where xi and yi are binary indicators of the correctness (1) or
incorrectness (0) for each ith prediction of two models. The
numerator measures the intersection, or count of samples
both models predict correctly, while the denominator mea-
sures the union, accounting for samples correctly predicted
by either model.

Hamming Distance measures the number of prediction
discrepancies across a set of stimuli, defined as:

d(x,y) = |{i : xi ̸= yi, i = 1, . . . ,n}| .

This metric counts the instances where the predictions from
the two models differ.

Agreement Score quantifies the normalized difference be-
tween agreement and disagreement counts in the prediction
correctness by two models:

s(x,y) =
(n11 +n00)− (n10 +n01)

n11 +n00 +n10 +n01

where i, j ∈ {0,1} and ni j represents the number of predic-
tions where model x predicts i (correct/ incorrect) and model
y predicts j, across shared stimuli.

Downstream Behavioral Datasets

We analyze model behavior across a range of downstream
tasks, spanning 20 behavioral datasets that include both in-
distribution and various out-of-distribution (OOD) images and
tasks (see Appendix):

Label-Preserving OOD Datasets retain ImageNet labels
but alter input distributions to test robustness (e.g., Stylized
ImageNet, ImageNet silhouettes).

Task-Shifting Datasets introduce new tasks and labels, re-
quiring broader generalization (e.g., CelebA faces (Liu et al.,
2015), Oxford 102 Flower (Nilsback & Zisserman, 2008)).

Selection of Neural Network Architectures and
Layers

We evaluated a diverse set of deep learning models pre-
trained on ImageNet-1k for 1000-class classification (Deng
et al., 2009), including both convolutional networks (CNNs)
and transformer-based models trained under supervised and
self-supervised regimes. Architectures included AlexNet
(Krizhevsky et al., 2012), ResNet (He et al., 2015), VGG16
(Simonyan & Zisserman, 2015), Inception (Szegedy et al.,
2014), ResNeXt (Xie et al., 2017), MoCo (He et al., 2020),
ResNet Robust (Engstrom et al., 2019), ViT-b16, ViT-ResNet,
and Swin Transformer (Liu et al., 2021). Our analysis pri-
marily targeted penultimate-layer representations, which are
semantically aligned across models. For transformer models,
we additionally examined final GELU activations. Randomized
versions of AlexNet, ResNet, ViT, and Swin were included to
assess untrained architectural behavior. See Appendix for
details on our rationale for layer selection.



Figure 3: Discriminative ability (d’ scores) of (top) representational and (bottom) behavioral similarity measures in distinguishing
between trained vs. untrained models (left) and architectures (right). Each dot represents the average d′ score for a given
dataset and metric, the dashed line indicates the overall mean d′ across all metrics.

Results

Different Representational Similarity Measures have
Distinct Capacities for Model Separation

To characterize how different representational similarity mea-
sures discriminate models, we first visualize the model-by-
model similarity matrices for each measure. We observed that
while some measures like the soft-matching distance were ef-
fective at differentiating architectural families (Fig. 2, right),
others like the Procrustes distance were more sensitive to
the effects of training (Fig. 2, left), clearly separating trained
from untrained models. Other measures, like linear predic-
tivity, which allow greater flexibility in aligning the two repre-
sentations, showed limited ability in distinguishing between
models trained with different architectures or trained from un-
trained models (see Appendix for additional similarity matri-
ces). To quantify these distinctions, we computed d′ scores
(Appendix) to assess each measure’s ability to differentiate
two categories of models: (a) those from different architectural
families, and (b) those with varying levels of training (trained
vs. untrained). Significant differences in d′ scores emerged
across measures (Fig. 3). For instance, Procrustes achieved
d′ scores with a mean of 3.73 when separating trained from
untrained models across all datasets, while commonly used
measures like CCA and linear predictivity produced much
lower scores with means of 0.57 and 0.55, respectively. Sim-
ilarly, some measures were better at discriminating architec-

tural differences, with the soft-matching distance demonstrat-
ing the highest discriminability (mean of d′ scores = 1.61).
Previous studies have also demonstrated that different mea-
sures vary in their effectiveness at establishing layer-wise cor-
respondence across networks with the same architecture (Ko-
rnblith et al., 2019; Thobani et al., 2024). Considering these
differences in how measures distinguish between models, a
key question emerges: Which distinctions should we priori-
tize?

Behavioral Metrics Primarily Reflect Learning
Differences Over Architectural Variations
To address the question of which separation should be prior-
itized, we return to our central premise: measures that em-
phasize functional distinctions should be favored. Therefore,
we next evaluated how different behavioral measures (as pre-
viously described) distinguish between models. Our results
show that behavioral metrics effectively and consistently sep-
arate trained from untrained networks, with even the weakest
metric (Confusion Matrix (JSD)) achieving a mean d′ of 1.68.
However, most behavioral measures struggle to differentiate
between architectural families (e.g., CNNs vs. Transformers),
with the best-performing metric (Confusion Matrix (Inter-class
JSD)) achieving an average d′ of 0.61 across all behavioral
datasets (see Appendix for all similarity matrices). This sug-
gests that differences in these architectural motifs have mini-
mal impact on model behavior (see Appendix for further dis-



Figure 4: Consistency Between Similarity Metrics. (A) and (C) show the average correlation matrix and corresponding 2D
multidimensional scaling (MDS) plot for behavioral similarity metrics, with distances defined as 1 minus the correlation. (B) and
(D) present the same for representational similarity metrics.

cussions).

Behavioral Metrics Show Greater Consistency Than
Neural Representational Similarity Measures

We next examined the consistency across different represen-
tational similarity measures and across different behavioral
measures by computing correlations between the model-by-
model similarity matrices generated by each measure. As
shown in Fig. 4 (Top), we find that behavioral metrics (mean
r: 0.85± 0.01) are more correlated on average than repre-
sentational metrics (mean r: 0.58± 0.02), with a significant
difference (z =−8.18, p = 2×10−16 < 0.0001).

To further understand the relationships between different
representational similarity measures, we analyzed the MDS
plot (Fig. 4 (Bottom)). This visualization revealed distinct clus-
ters of measures based on their theoretical properties. Mea-
sures that rely on inner product kernels (stimulus-by-stimulus
dissimilarities) tend to group together, indicating they cap-
ture similar aspects of representational structure. On the
other hand, measures that use explicit, direct mappings be-
tween individual neurons—such as Linear Predictivity and
Semi-Matching—form a separate cluster. Notably, Procrustes
Distance and CCA also involve alignment, similar to Linear
Predictivity and Semi-Matching; however, this alignment is
achieved collectively across all units or neurons rather than
through independently determined mappings for each neuron.
Procrustes aligns the entire configuration of points, while CCA
projects the two representations onto common subspaces to
maximize correlation, further distinguishing them from other
representational similarity approaches.

How behavioral metrics distinguish models is crucial, as

most comparative analyses of representations in neuro-
science and AI revolve around understanding computations
and how they relate to behavior; behaviorally grounded com-
parisons of model representations are key to this endeavor.
We find that behavioral metrics distinguish between models
consistently across different datasets, reinforcing the robust-
ness of the model relationships they uncover. The consis-
tency of the behavioral metrics—across datasets and with
each other—fulfills another scientific desideratum of replicabil-
ity. Therefore, the model relationships identified by behavioral
metrics are not only important but also reliable. It becomes
crucial, then, to determine which representational similarity
measures align with these robust behavioral relationships be-
tween models.

Which representational similarity measures show
the strongest correspondence with behavioral
measures?

Given that we want to prioritize the model relationships un-
covered by behavioral metrics, we move on to investigate
which—if any—representational similarity metrics reveal the
same underlying relationships between models. For each
dataset, we computed the correlation between the model-
by-model representational similarity matrix and the behav-
ioral similarity matrix averaged across all behavioral metrics
(Fig. 5). Three metrics stood out in their alignment with behav-
ioral metrics-RSA (mean r: 0.53), Linear CKA (mean r: 0.66),
and Procrustes (mean r: 0.70). These same metrics also most
strongly distinguished trained from untrained models (Fig. 1,
top), each emphasizing global geometry or shape. In contrast,
common alternatives such as linear predictivity (r = 0.30) and



Figure 5: Granular Comparison of Representational Similarity Measures with Behavioral Measures. (A) Average correla-
tion between representational and behavioral metrics across datasets. (B) Distribution of correlation scores for each representa-
tional similarity measure with behavioral measures. Each point represents the averaged score for a dataset across all behavioral
measures, with the dashed vertical line indicates the overall mean correlation across all metrics.

CCA (r = 0.22) aligned more weakly with behavior. Given the
opacity of internal representations, selecting representational
similarity metrics can be challenging; these findings offer cru-
cial guidance for metrics that support behaviorally grounded
comparisons.

Discussion
In this study, we compared 8 neural representational similar-
ity metrics and 9 behavioral measures across 20 datasets.
Based on the premise that behavioral differences should be
reflected in the representational structure of neural networks,
we examined how well each metric aligns with behavior. Met-
rics such as RSA, CKA, and Procrustes distance—which pre-
serve the overall geometry of neural representations—tend to
align closely with behavioral measures. In contrast, methods
like linear predictivity, which align dimensions without preserv-
ing global geometry, show weaker alignment. This likely stems
from linear predictivity’s ability to map complex, distributed
structures to simpler, compressed ones while still maintain-
ing prediction accuracy. For example, trained networks can
predict untrained network activations with high symmetrized
scores. This overly flexible nature has also been noted in
recent work (Khosla et al., 2024; Schaeffer et al., 2024).
Nonetheless, linear predictivity remains valuable in applica-
tions such as BCIs, neural population control (Bashivan et al.,
2018), and in-silico hypothesis generation (Jain et al., 2024).

While behavioral measures are generally consistent with
one another, representational similarity metrics vary widely,
underscoring the need for a deeper understanding of how
these metrics discriminate between models in practice. Our
analysis sets a new standard for representational similarity
measures in neuroscience and AI, using downstream behav-
ioral robustness as a guide for selecting the most suitable
metric. This framework is especially crucial in model-brain
comparisons, where representational analyses are frequently

applied to assess if artificial neural networks and biological
systems are serving comparable functional roles in terms of
perceptual and cognitive processes.

Our framework for selecting representational similarity met-
rics, while robust, rests on certain assumptions. It presumes a
particular mechanism by which behavior is read out from inter-
nal representations. Different readout strategies—especially
biologically inspired ones like sparse decoding—could yield
different results, particularly if some models encode behav-
iorally relevant information in sparser or more localized ways.
In such cases, the unit-level representational structure be-
comes crucial.

Moreover, our evaluation focused on coarse model distinc-
tions (e.g., trained vs. untrained, CNNs vs. transformers) and
did not fully explore finer-grained variations such as subtle ar-
chitectural tweaks or differences in initialization. Extending the
framework to these subtler perturbations remains an impor-
tant direction for future work. Further, our use of d

′
to quan-

tify model separability (which assumes Gaussian distributions)
and Pearson correlations for behavioral vectors (which as-
sume linearity) constitutes a statistical limitation; future work
should explore alternatives such as Spearman rank correla-
tions and other robust effect size measures.

Our desideratum involves selecting metrics which correlate
with behavioral metrics to ensure that representational similar-
ity metrics do not falsely indicate high internal similarity when
behavioral differences are large. However, this does not im-
ply that all representational similarity metrics should replicate
behavioral metrics exactly. Overparameterized networks can
achieve similar input–output mappings through distinct inter-
nal implementations, so a departure from a strict one-to-one
correspondence between representations and behavior does
not in itself detract from a metric’s validity.
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Downstream Behavioral Datasets

Label-Preserving OOD Datasets (In-Task Distribution
Shifts) Datasets are directly drawn from Geirhos et al.
(2019); Wang et al. (2019); Geirhos et al. (2021), sharing the
coarser 16 labels from ImageNet. These consist of a subset of
the ImageNet1k validation set sampled from the following cat-
egories: Airplane, Bear, Bicycle, Bird, Boat, Bottle, Car, Cat,
Chair, Clock, Dog, Elephant, Keyboard, Knife, Oven, Truck.
These datasets maintain the original classification task but in-
troduce distribution shifts in the input data.

• Colour: Served as a baseline in-distribution dataset, with
half of the images randomly converted to greyscale and the
rest kept in original color. Includes a total of 1280 images
(80 images per label).

• Stylized ImageNet (SIN): Textures from one class are
applied to shapes from another while maintaining object
shapes. Shape labels are used as ”true labels” for con-
fusion matrix and correctness analyses. Includes a total of
800 images

• Sketch: Contains cartoon-styled sketches of objects from
each class, totaling 800 images.

• Edges: Created from the original dataset using the Canny
edge extractor for edge-based representations. Includes a
total of 160 images

• Silhouette: Black objects on a white background, gener-
ated from the original dataset. Includes a total of 160 im-
ages

• Cue Conflict: Images with texture conflicting with shape
category, generated using iterative style transfer (Gatys et
al., 2016) between Texture dataset images (style) and Orig-
inal dataset images (content). Includes a total of 1280 im-
ages.

• Contrast: Variants of images adjusted for contrast levels.
Includes a total of 1280 images.

• High-Pass/Low-Pass: Images filtered to emphasize either
high-frequency or low-frequency components using Gaus-
sian filters. Includes a total of 1280 images per dataset.

• Phase-Scrambling: Images had phase noise added to fre-
quencies, creating different levels of distortion from 0 to 180
degrees. Includes a total of 1120 images.

• Power-Equalisation: Images were processed to equalize
the power spectra across the dataset by setting all ampli-
tude spectra to their mean value. Includes a total of 1120
images.

• False-Colour: Images had colors inverted to their oppo-
nent colors while keeping luminance constant using the
DKL color space. Includes a total of 1120 images.

https://arxiv.org/abs/1611.05431


• Rotation: Images are rotated by 0, 90, 180, or 270 degrees
to test rotational invariant robustness. Includes a total of
1120 images.

• Eidolon I, II, III: Images distorted using the Eidolon tool-
box, varying coherence and reach parameters to manipu-
late local and global image structures. Each filtering inten-
sity level contains 1280 images.

• Uniform Noise: White uniform noise added to images with
a varying range to assess robustness; pixel values exceed-
ing bounds were clipped. Includes a total of 1280 images.

Task-Shifting Datasets (Out-of-Task Distribution Shifts)
These datasets introduce new tasks and labels, requiring
models to generalize beyond the original ImageNet classifi-
cation task. Each dataset consists of five trials, with non-
overlapping subsets of classes selected per trial.

• Texture (Cimpoi et al., 2014): A texture classification
dataset with 47 classes. For each trial, 9 classes are se-
lected, each containing 120 images, resulting in 1080 im-
ages per trial (864 for training, 216 for testing). This dataset
evaluates the model’s capacity to classify texture patterns
independent of object identity.

• Flower (Nilsback & Zisserman, 2008): A fine-grained clas-
sification dataset containing 102 flower species, each with
a minimum of 40 images. For each trial, 20 classes are se-
lected, yielding 800 images per trial (640 for training, 160
for testing). This dataset assesses model generalization to
fine-grained natural categories.

• Face (CelebA) (Liu et al., 2015): A face identity classifica-
tion dataset designed to test model generalization in fine-
grained recognition tasks. For each trial, 50 identities are
selected, each with 30 images, totaling 1500 images per
trial. This dataset is of particular interest in cognitive sci-
ence, given the specialized nature of face processing.

Inter vs Intra Group Statistic Measures using d′

Scores

To quantify a comparative metric’s ability to reflect the ex-
pected proximity between similarly trained models, compared
to their dissimilarity with the untrained models, involves spec-
ulating the group statistics from the resulting similarity matrix.
We employ the d′ score defined as:

d′ =
µ(A)−µ(B)√

σ2
A+σ2

B
2

where A represents the set of similarity scores from intra-
group comparisons, specifically the similarity scores between
every pair of trained models. B represents the set of simi-
larity scores from inter-group comparisons, specifically the
similarity scores between each pair of trained and untrained

models. Equivalent to the set of entries located at the inter-
section of trained model rows and untrained model columns in
the model-by-model similarity matrix of the metrics.

A similarity metric with d′ ≥ 0 of greater magnitude indi-
cates a greater ability to separate trained models from un-
trained ones. A metric with d′ = 0 or d′ < 0 indicates that there
were no discernible difference in average similarity scores
computed in ”trained model pairs” and ”trained vs. untrained
model pairs”, or that trained vs. untrained models exhibit even
higher similarity than that among trained models.

Similarly, when examining architectural differences, A rep-
resents intra-group comparisons within Convolutional models,
while B captures inter-group comparisons between Convolu-
tional models and Transformers.

Dataset Consistency

To assess consistency across behavioral datasets, we used
an M × M correlation matrix, where M is the number of
datasets. Each entry i, j represents the correlation between
datasets i and j, derived from their downstream similarity ma-
trices. Averaging these scores across all behavioral mea-
sures revealed high correlations, indicating consistent unifor-
mity across most datasets.

Representation Similarity Matrices

We include the Model-by-Model Similarity Matrix given by
the 8 distinct representation measures. The scores pro-
vided are averaged across 17 datasets. For mutual k-NN,
different neighborhood sizes (k) are included. Note that the
”1−Procrustes” score can range from (−∞,1], whereas all
other metrics yield scores within the range [0,1].



Behavioral Similarity Matrices

Similarly, we include the Model-by-Model Similarity Matrix
given by the 9 distinct behavioral measures. The scores
are averaged across 17 datasets. For the measures ”1 −
Hamming Distance” and ”Agreement Scores”, the alignment
value can all range from (−∞,1], whereas all other measures
yield scores within the range [0,1].

Behavioral Alignment Across Architectures

Raw Accuracy Differences Are Present but Not Central

Behavioral Metrics Prioritize Error Structure The primary
goal of our behavioral evaluation is to assess similarity in er-
ror patterns — that is, whether models with comparable ca-
pabilities make similar mistakes. While transformer-based
models consistently outperform CNNs in raw accuracy across
both task-shift and label-preserving OOD tasks (t = −6.41,
p = 3.8× 10−6), raw accuracy alone does not capture how
models behave. It reflects overall success rates but overlooks
differences in the structure of errors. Our metrics are robust
to variations in raw performance and are particularly effective
for comparing models across a broad performance range. We
also ensured that the datasets used exhibit sufficient variabil-
ity in model accuracies, avoiding confounds due to ceiling or
floor effects.

Convergent Behavior Despite Architectural Differences
Recent work Huang et al. (2024) suggests that, despite dif-
fering inductive biases, CNNs and ViTs often converge to-
ward similar functional solutions during training. Consistent
with this, we find that models with distinct architectures can
nonetheless exhibit comparable patterns of generalization and
error when trained on the same task. This convergence helps
explain why architectural differences may have limited im-
pact on behavioral error structure once task competence is
achieved.

Layer Selection and Controlled Feature Extraction

While focusing only on penultimate layers in constructing
model-by-model representational similarity matrices may ap-
pear limiting, this decision was grounded in both practical and
theoretical considerations. Penultimate layers provide stable,
semantically aligned representations that directly influence
output behavior, making them a consistent and interpretable
basis for comparison across diverse architectures.

(1) Penultimate Layers Reflect Behaviorally-Relevant Rep-
resentations. Penultimate layers directly influence model out-
puts and thus provide behaviorally meaningful signals. Un-
like earlier layers, which capture low-level features, these final
representations are more interpretable and better aligned with
task-level decisions.

(2) Intermediate Layers Are Harder to Align Across Ar-
chitectures. Comparing intermediate layers across CNNs
and Transformers is challenging due to architectural differ-
ences. CNNs produce spatial maps, while ViTs output token
sequences, often with a [CLS] token. In penultimate layers,

Table 1: Average correlation across datasets
Normalized Layer Index

0.6 0.7 0.8
RSA 0.83 0.80 0.87
CCA 0.89 0.89 0.91
Linear CKA 0.80 0.79 0.78
Procrustes 0.84 0.84 0.85
Linear Predictivity 0.84 0.79 0.85
Semi-matching 0.89 0.88 0.91
Soft-matching 0.88 0.88 0.89
Mutual k-NN (10) 0.90 0.89 0.87
Mutual k-NN (20) 0.87 0.87 0.85
Mutual k-NN (50) 0.86 0.85 0.82
Mutual k-NN (100) 0.86 0.85 0.83
Mutual k-NN (200) 0.89 0.86 0.87
Layer Mean 0.86±0.009 0.85±0.01 0.86±0.01
Baseline Mean 0.74±0.02 0.72±0.02 0.74±0.02

these differences are easier to normalize (e.g., [CLS] or aver-
age pooling for ViTs, global pooling for CNNs). Intermediate
layers, however, require arbitrary choices about which token
or spatial location to use, making alignment noisier.

(3) Hierarchical Correspondence Across Layers. To ad-
dress concerns that penultimate layers may overemphasize
training-related effects, we extended our analysis to include
intermediate representations sampled via normalized depth
indexing. Layers at normalized indices 0.6, 0.7, and 0.8
were selected to capture increasingly abstract but pre-output
stages. For each model, we filtered for core representational
modules (e.g., Conv2d, Linear, attn.proj, mlp.fc2) and
selected the nearest valid layer to each index.

To control feature dimensionality, we applied a consistent
feature extraction method: for CNNs, we used the center spa-
tial location across all channels; for ViTs, we used the cen-
ter token (excluding the [CLS] token when present). This ap-
proach avoids global pooling and keeps the features spatially
specific, which is important for metrics like soft-matching.

Results Across all Label-Preserving OOD Datasets and mul-
tiple intermediate depths, we observed strong correlations be-
tween the representational similarity matrices of intermediate
layers and those of the penultimate layer (mean r = 0.86±
0.003), compared to a baseline correlation computed between
different metrics at the same depth (r = 0.73± 0.006). This
suggests a degree of hierarchical consistency within models
— that is, model-to-model representational similarity remains
relatively stable across a range of layer choices (see Table 1).

Controlling Feature Dimensionality in Soft-Matching
Analyses

A potential concern is that soft-matching’s sensitivity to ar-
chitectural differences may stem from variation in feature di-
mensionality, as transformers often have larger or more vari-
able penultimate-layer sizes (Table 2). To control for this,
we re-evaluated soft-matching by randomly subsampling 768
units—the smallest shared dimensionality—across all mod-
els. Sampling was repeated over five trials and results av-



eraged. Even with equalized dimensions, soft-matching con-
sistently distinguished CNNs from transformers on the Task-
Shifting Datasets. The controlled and original similarity ma-
trices remained highly correlated (r = 0.997), suggesting that
the observed separation reflects genuine representational dif-
ferences rather than dimensionality artifacts.

Table 2: Penultimate layer feature dimensionality across all
evaluated models

Model / Layer Feature Size
AlexNet 4096
ResNet 2048
VGG16 4096
Inception 2048
ResNeXt 2048
MoCo 2048
ResNet Robust 2048
ViT-ResNet 768
ViT-ResNet GELU 3072
ViT Final 768
ViT GELU Final 3072
Swin 1024
Swin GELU 4096
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