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Abstract

Hyperspectral image super-resolution (HISR)
aims to fuse a low-resolution hyperspectral im-
age (LR-HSI) with a high-resolution multispec-
tral image (HR-MSI) to obtain a high-resolution
hyperspectral image (HR-HSI). Due to some ex-
isting HISR methods ignoring the significant fea-
ture difference between LR-HSI and HR-MSI,
the reconstructed HR-HSI typically exhibits spec-
tral distortion and blurring of spatial texture. To
solve this issue, we propose a multi-scale feature
transfer network (MFTN) for HISR. Firstly, three
multi-scale feature extractors are constructed to
extract features of different scales from the in-
put images. Then, a multi-scale feature transfer
module (MFTM) consisting of three improved
feature matching Transformers (IMatchFormers)
is designed to learn the detail features of different
scales from HR-MSI by establishing the cross-
model feature correlation between LR-HSI and
degraded HR-MSI. Finally, a multiscale dynamic
aggregation module (MDAM) containing three
spectral aware aggregation modules (SAAMs)
is constructed to reconstruct the final HR-HSI
by gradually aggregating features of different
scales. Extensive experimental results on three
commonly used datasets demonstrate that the pro-
posed model achieves better performance com-
pared to state- of-the-art (SOTA) methods.

1. INTRODUCTION

Hyperspectral remote sensing can obtain hyperspectral im-
ages (HSIs) with continuous and narrow spectral resolution

'School of Software, Tiangong University, Tianjin, China
2School of Computer Science and Technology, Tiangong Univer-
sity, Tianjin, China 3School of Control Science and Engineering,
Tiangong University, Tianjin, China. Correspondence to: Yong
Yang <greatyangy @126.com>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

due to its ability to simultaneously capture two-dimensional
spatial information and three-dimensional spectral infor-
mation of the targets. Because HSIs contain rich spatial
and spectral information, they have become a primary data
source in many critical domains such as mineral exploration
(Sabins, 1999) and plant detection (Lowe et al., 2017). How-
ever, due to the inherent physical limitations of single sen-
sors, they cannot provide high-resolution data in both spec-
tral and spatial (Dian et al., 2021), resulting in the inability
to meet the requirements of precise applications. Conse-
quently, an increasing number of remote sensing satellites
are now equipped with multiple spectral imaging instru-
ments to overcome these constraints by simultaneously ob-
taining multimodal remote sensing images, such as multi-
spectral images (MSIs) and HSIs. Compared with HSIs,
MSIs have higher spatial resolution but lower spectral res-
olution, which can also affect the accuracy of subsequent
tasks. To obtain HSIs with both high spatial and spectral
resolutions, some researchers have proposed the hyperspec-
tral image super-resolution (HISR) methods (Thomas et al.,
2008; Aiazzi et al., 2011; Vivone et al., 2015), also known
as the pansharpening methods, which fuse a low-spatial-
resolution HSI (LR-HSI) with a high-spectral-resolution
multispectral image (HR-MSI) in the same scene to obtain
a HSI with high spatial and spectral resolution (HR-HSI).
HISR methods can significantly improve the interpretability
of remote sensing information, which helps to improve the
performance of subsequent applications, such as land cover
analysis (Solomon & Agnes, 2023).

Early HISR methods (Akgun et al., 2005; Wang et al., 2017;
Irmak et al., 2018; Huang et al., 2014) mostly utilized single
LR-HSI to reconstruct the corresponding HR-HSI. How-
ever, due to the limited spatial information provided by
a single LR-HSI, such methods cannot reconstruct more
spatial information, resulting in edge blurring and spectral
distortion issues in the reconstructed HR-HSI. Therefore,
considering the imaging characteristics of different satellite
sensors, some researchers have studied multi-frame HISR
reconstruction methods (Gillespie et al., 1987; Laben &
Brower, 2000), which use MSIs or PAN images with the
same scene as reference images to reconstruct HR-HSIs. At
present, multi-frame HISR methods are mainly divided into
two categories: traditional methods and deep learning-based
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methods. Traditional methods are easy to implement and
have physical interpretability. For example, Akhtar et al.
(2014) proposed a sparse representation-based approach for
HISR, which performs sparse encoding on images with high
spatial but low spectral resolution, and uses the encoding
together with the scene spectrum to estimate HR-HSIs. Al-
parone et al. (2007) discussed the fusion results of two
different sensor data in detail at the 2006 Denver Interna-
tional Symposium on Geoscience and Remote Sensing, and
confirmed the advantages of multisolution analysis (MRA)
and detail injection methods. These traditional methods
typically rely on manually defined prior knowledge or regu-
larization terms (Ma et al., 2021), whose accuracy directly
affects the performance of reconstructed images. Therefore,
these methods typically suffer from spatial and spectral dis-
tortions in HR-HSI images, but compared to single frame
HISR methods, they can reconstruct HR-HSIs with richer
details.

In recent years, to reduce human intervention in feature
extraction and prior knowledge definition, deep learning has
been successfully applied in HISR tasks. Initially, convo-
lutional neural networks (CNNs) were the primary choice
for implementing HISR. Dian et al. (2018) presented a deep
HSI sharpening method, which realizes the fusion of an LR-
HSI with an HR-MSI by directly learning the image priors
via deep CNN-based residual learning. Liu et al. (2020)
proposed an MSI pansharpening method by combining a
shallow-deep convolutional network (SDCN) and a spectral
discrimination-based detail injection (SDDI) model. Lee
et al. (2021) proposed a shift-invariant pansharpening with
moving object alignment (SIPSA-Net), which is the first
approach in PAN sharpening tasks to consider the large
misalignment of moving object regions. Hu et al. (2022c)
proposed a simple and efficient CNN to fuse LR-HSIs and
HR-MSIs, which can better preserve both spatial and spec-
tral information. Due to the limitation of the receptive field
of convolutional kernels, these methods mainly learn lo-
cal features in convolutional operations, often leading to
spatial and spectral information distortion in the reconstruc-
tion results. Later, due to the successful application of the
Transformer architecture (Vaswani et al., 2017) in visual
tasks, researchers have attempted to improve the perfor-
mance of HISR by establishing a relationship between two
modal features. Hu et al. (2022b) designed a Transformer-
based architecture that can globally explore the internal
relationships within features. Chen et al. (2023) proposed a
spectral—spatial transformer (SST) by exploring the spectral
and spatial long-range dependence to show the potentiality
of transformers for HSI and MSI fusion. Although these
methods focus on learning long-distance features, they do
not fully consider the modal differences between the two
image features. In addition, most methods directly learn
the mapping relationship between an LR-HSI and its cor-

responding HR-HSI in LR space or HR space, leading to
inaccurate spatial feature reconstruction due to the lack of
establishing matching relationships between intermediate
scale features.

To address the above issues, we propose a multi-scale fea-
ture transfer network (MFTN) based on the improved fea-
ture matching Transformer (IMatchFormer) for HISR. First,
a multi-scale feature extraction module (MFEM) is con-
structed to extract features of different scales from the input
LR-HSI and HR-MSI. Then, a multi-scale feature transfer
module (MFTM) composed of three IMatchFormers is de-
signed to transfer features of different scales from HR-MSI
to LR-HSI by establishing matching relationships between
two modal features at different scales. Finally, the obtained
transfer features of different scales are fed into the con-
structed multi-scale dynamic aggregation module (MDAM)
to achieve progressive integration of features and output the
reconstructed HR-HSI. The contributions of this paper are
as follows:

* An MFTN consisting of three modules, namely MFEM,
MFTM, and MDAM, is proposed for HISR, aiming to
reconstruct a HR-HSI with high spectral and spatial
resolution by transferring the detail features from an
HR-MSI to an LR-HSI.

e In MFTM, three IMatchFormers are designed to learn
the transfer detail features from HR-MSI by establish-
ing the cross-modal feature correlations between the
LR-HSI and degraded HR-MSI.

* In MDAM, three spectral aware aggregation modules
(SAAMs) are constructed to gradually integrate the
transfer features and shallow features of LR-HSI to
obtain the reconstructed HR-HSI. One spectral aware
module (SAM) in each SAAM is designed to directly
utilize LR-HSI features to correct the reconstructed
features at different scales, so as to suppress spectral
distortion in the reconstructed results.

* Numerous experiments have been conducted on differ-
ent datasets to verify the performance of the proposed
model. Compared with some SOTA methods, the pro-
posed model achieves better results both subjectively
and objectively.

2. Proposed Method

Although LR-HSI captures rich spectral features, the narrow
range of each imaging band results in insufficient spatial
information in each channel. In HISR task, reconstructing
rich spatial features proves challenging with just a single
LR-HSI. Therefore, we propose an MFTN based on IMatch-
Former, which utilizes a HR-MSI as a reference image to
achieve SR reconstruction of LR-HSI. MFTN shown in
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Figure 1. The overall structure of MFTN.

Figure 1 consists of three modules: MFEM, MFTM, and
MDAM.

In MFEM, one multi-scale feature extractor is constructed
to extract multi-scale features from the input images, which
are used to achieve the transfer of spatial features from HR-
MSIs to LR-HSIs. However, due to the fact that HR-MSIs
and HR-HSIs come from different sensors, these two types
of features do not fully match in both spatial and spectral
dimensions. To make LR-HSI and HR-MSI have consis-
tent spatial domains, 4 x downsampling and 4 x upsampling
operations are performed on HR-MSI sequentially to ob-
tain the degraded HR-MSI, namely HR-MSI| 1, and 4x
upsampling operation is performed on LR-HSI to obtain
the upsampled LR-HSI. To extract multi-scale features of
HR-MSI, HR-MSI| 1, and LR-HSI, MFEM uses three multi-
scale feature extractors, each containing three convolutional
layers. Taking the multi-scale feature extraction of HR-MSI
as an example, one multi-scale feature extractor in MFEM
can be represented as follows:

= ConL(Igp) = Congx3(Consxs(Igar)) (1)
= ConL(MP(V*)) )
= ConL(MP(V?)) 3)

where Iy represents the input HR-MST, and ConL(-) rep-
resents the convolutional layers with two 3 x3 convolutional
operations C'onsx3(+), and M P(-) represents the maximum
pooling layer with a window size of 2x2 and a step size
of 2. V4, V2 and V! represent features at three scales, re-
spectively. Similarly, using the HR-MSI| 1 as input of the
feature extractor can obtain the corresponding multi-scale
features K4, K2 and K, and using LR-HSI as input can
obtain the multi-scale features Q4, Q2 and Q*.

In MFTM, different scale features from MFEM are sent to
three IMatchFormers, which are designed to obtain transfer
features at different scales by learning feature correlations

between HR-MSI| 1 and LR-HSI. The operation of MFTM
can be represented as:

Ty = IMPFi(K' VY, QY )
Ty = IMFyy (K2, V?,Q?) 5
Ts = IMFy (K4, V*, QY (6)

where IMFyy(-), IMF54(-), and IMF,(-) represent
three IMatchFormers that receive features of different scales,
and T3, Ts, and T3 represent the obtained transfer features
of three scales.

In MDAM, three SAAMs are constructed to gradually
achieve the fusion of features at different scale, and multi-
scale fused features are concatenated and mapped into the
final SR-HSI Igp through a 3x3 convolutional layer. The
operation of MDAM can be represented as:

Fy = SAAM (F,, T) ©)
Fy, = SAAM(Fy,Ty) @
F3 = SAAM(Fy, Ts) ©)
Isgr = Consys(Concat(Up(Fy), Up(Fy), F5))  (10)

where SAAM (-) represent the operation of SAAM for inte-
grating features at different scales. Fy represents the shallow
features extracted from LR-HSI through three convolutional
layers, and F, F and F’5 represent the feature maps output
by three SAAMs. Concat(-) represents the concatenation
operation. Up(-) represents the upsampling operation.

Below, we provide a detailed introduction to the construc-
tion of other components in the network, such as IMatch-
Former and SAAM.
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Figure 2. Architecture of IMatchFormer.

2.1. IMatchFormer

To focus on the long-distance features of images and learn
the correlation between different modal features, we con-
struct an IMatchFormer based on the transformer structure,
which transfers the detail features from HR-MSI to LR-
HSI by establishing the correlation between LR-HSI and
HR-MSI| 1 features. To achieve precise matching of two
modal features, the multi-head attention mechanism is used
in IMatchFormer. Compared with the the single-head atten-
tion mechanism, the multi-head attention mechanism can
provide multiple different representation subspaces for atten-
tion through different linear transformations. Therefore, the
multi-head attention mechanism is more suitable for match-
ing multi-channel information in HISR tasks. The structure
of IMatchFormer is shown in Figure 2, which takes features
of the same scale Q°, K° and V* (s=4, 2, 1) from MFEM
as input to learn the transfer features at each scale. The op-
eration of each IMatchFormer is described as follows. First,
the feature maps Q°, K* and V* generate multiple feature
vectors (heads) through a linear projection layer Linear(-),
which are defined as follows:

q; = Linear(Reshape(Q*))
kj = Linear(Reshape(K*)) (11)

vj = Linear(Reshape(V*))
where Reshape(-) represents the operation of changing the
matrix dimension.

Then, to learn the transferred detail features from HR-MSI,
it is necessary to establish the feature cross-correlation be-
tween HR-MSI|1 and LR-HSI. Therefore, the feature cross-
correlation matrices C‘; between multiple heads of (Q° and
K are calculated and used to perform the feature transfer
operation, that is, Cj is used to weight the multiple heads of
V7? to obtain the transfer features. The specific operations

are defined as follows:

5 S(kS)T
Cs = softmax(%\(/c%j) (12)
t; = MatMul(Cs, vj) (13)

where dj;, represents the matrix dimensions of qJS» and k2,
which can address the vanishing gradients that occur when
performing the softmax operation, thereby facilitating effec-
tive backpropagation during the training process. T denotes
the transpose operation of the matrix, and M atMul(-) de-
notes the multiplication operation of two matrices. t7 repre-
sents the learned transfer features.

Finally, these transfer featuers ¢7 are concatenated and
transformed back into the high-dimensional feature space
through a reshaping operation, which is defined as follows:

T; = Reshape(Concat(t;)) (14)

where T; is the transfer feature maps in high-dimensional
space output by the ¢ —th IMatchFormer, which contains the
detail feature representations from different subspaces. The
proposed IMatchFormer allows the model to jointly focus on
information at different positions in different representation
subspaces, and enables the model to selectively focus on
highly correlated spectral and texture information within LR-
HSI and HR-MSI. The transfer features obtained from three
IMatchFormer are fed into MDAM to gradually achieve the
fusion of features at different scales.

2.2. Multi-Scale Dynamic Aggregation Module

To fully integrate multiple scale transfer features, a MDAM
containing three SAAMs is constructed, as shown in Figure
1 to gradually fuse spectral and spatial features at different
scales. To improve the spectral fidelity of reconstructed fea-
tures, the feature maps FO from LR-HSI are transferred to
three SAAMs to supplement spectral features. Meanwhile,
to meet the requirements of spatial resolution, the feature
maps Fj need to be upsampled when they are used as in-
put for the last two SAAMs. Here, each SAAM generates
fused features at one scale by integrating features from an
IMatchformer, fusion features from the previous SAAM,
and shallow features from LR-HSI. Note that the input fea-
tures in the first SAAM do not include the features of the
previous SAAM. The construction of SAAM is described
as follows.

2.2.1. SPECTRAL AWARE AGGREGATION MODULE

As shown in Figure 3, SAAM consists of a series of convo-
lutional layers, deformable convolution (DCN) layers (Dai
et al., 2017), LeakyRelu, spectral aware modulation (SAM),
and residual blocks (RBs). First, the features F;_ (i=2,3)
from the previous SAAM and the corresponding scale fea-
tures T; from an IMatchformer are concatenated, and passed
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Figure 3. Architecture of SAAM.

through a 3x3 convolution layer and a group of DCN layers
to achieve feature integration and extraction and output the
feature maps E—. Here, due to the insufficient use of struc-
tured information in the feature space caused by fixed grid
kernels in ordinary convolutions, we adopt DCNs, which
can expand the receptive fields with adaptive shapes to more
accurately correct the misalignment of features. The above
operations can be formulated as:

F; = DCNs(Congys(Concat(Ty, F;_1))) (15)

where DC' N s represents 4 deformable convolution layers.

Then, the shallow features Fy from LR-HSI and the ex-
tracted features F; are sent into a SAM to compensate for
the spectral information. Finally, to reduce feature loss, the
previously input features are reused for feature supplemen-
tation, and convolutional layers and residual blocks are used
for feature integration and dimensionality reduction. The
operation process is as follows:

F = Concat(SAM(Fi,FO)»Fifl) (16)
L, = COTLA(RBS(COTLSXB(FZ')) + Fio1 + Fifl) a7

where SAM represents the operation of SAM, RBs repre-
sent the residual blocks, and C'onA(-) denotes the feature
adjustment layer consisting of one 33 convolutional layer
and a LeakyRelu.

2.2.2. SPECTRAL AWARE MODULE

To ensure the fidelity of spectral and spatial features, a SAM
is designed, as shown in Figure 3, to utilize shallow features
from LR-HSI for correction and supplementation of recon-
structed features. The implementation process of SAM is
described below. The input features Fp and E are first con-
catenated and integrated through a convolutional layer and
a LeakyRelu function. Then, two branches are constructed
to learn modulation coefficients and supplementary features,
respectively. The modulation coefficients are used to weight
the input features F; to obtain calibration features. Sup-
plementary features are added to the calibration features

for feature supplementation. The operation of SAM can be
defined as follows:

Maaq = fi(Conszxs(Concat(Fy, F;))) (18)
Mt = sigmoid(fo(Consxs(Concat(Fy, E)))) (19)
Fsay = F; © Myt + Maaa (20)

where f; and f, are non-linear mapping functions con-
structed by two 3x3 convolutional layers, where the first
convolutional layer are followed by an LeakyReLU acti-
vation. M,,,,; and M,4, are the modulation coefficients
learned by SAM. Different channels of the modulation co-
efficients have different responses for the same object in
the features, and these channels are collectively utilized as
scaling factors to modulate the output of DC'N's.

In summary, MDAM achieves SR reconstruction of differ-
ent scale features from coarse to fine by fusing spectral and
spatial features in multiple scale spaces. And it can im-
prove some key issues in HISR tasks, such as spatial detail
misalignment caused by narrow spectral coverage in MSI
and imprecision in multi-source remote sensing image reg-
istration, and provide rich detail features for reconstructing
HR-HSIL

2.3. Joint Loss Function

To better guide network training, a joint loss function is
defined as follows:

Eoverall = )\recﬁrec + Ape7"£pev" + /\t—per‘ct—per (21)

where Ly.cc, Lper, and Ly pe, represent the reconstruction
loss, perceptual loss, and transfer perception loss, respec-
tively. Arec, Aper, and A\;_pe, denote the tradeoff parameters
of loss terms, which are empirically set to 1.0, 0.1, and 0.05
based on experience.

Reconstruction loss L. is defined as L1 loss, which mea-
sures the pixel distances between the SR result and corre-
sponding HR image (i.e., ground truth, GT). This loss term
can reduce false details generated by deep networks by cal-
culating the difference between two images pixel by pixel
and can be formulated as:

1

ﬁrec = m ||IHR - ISR||1 (22)

where I represents GT images, I g is the generated SR-
HSI, and C, H, and W represent the channel number, width,
and height of HR-HSI, respectively.

Perceptual loss £, is used to minimize the distance be-
tween high-level features of two images, which emphasizes
the perceptual quality of the image and is more in line with
the human eye’s perception of image quality. The underly-
ing idea of perceptual loss is to enhance the similarity in
feature space between the prediction image and the target
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image. The R, G, and B bands in the two images are selected
to calculate the perceptual loss:

1 v rgb v rgb
Loer = ey i Ur) = fi gg(fs%)HQ (23)
where f;"99(-) denotes the i-th layer’s feature maps obtained

by VGG-19. I;f’}g and [ g%’ are the RGB images synthesized
from the R, G, and B bands in GT images and generated
SR-HSI, respectively.

Transfer perception loss is designed to constrain the similar-
ity between the features of SR-HSI and the transfer features
T, from IMatchFormers, and it can be formulated as:

1
Z YR (| fMEEM (Isp) — Ty,

s=1,2,4

(24)
where T, denotes the transfer feature maps at the s — th
spatial scale, fMFEM ([¢p) is the feature maps of the s—th
spatial scale of SR-HSI obtained by the extractor in MFEM.

Lt—per =

3. Experiments

In this section, to validate the effectiveness of the proposed
MFTN, a large number of experiments are conducted on
three publicly available benchmark hyperspectral datasets,
including Pavia Center (Plaza et al., 2009), Botswana (Ungar
et al., 2003), and Chikusei (Yokoya & Iwasaki, 2016). And
the proposed MFTN is compared with eight SOTA methods,
including two traditional methods, namely PCA (Chavez
& Kwarteng, 1989) and GFPCA (Liao et al., 2014), and
six deep learning-based methods, namely DARN (Zheng
et al., 2020), HSRNet (Hu et al., 2022a), HyperPNN (He
etal., 2019), SSFCNN (Han et al., 2018), SSRNet (Zhang
et al., 2021), HyperDSNet (Zhuo et al., 2022), and Hyper-
Refiner (Zhou et al., 2023). To objectively evaluate the
performance of all comparison methods, six widely used
reference metrics are adopted, including Spectral Cross Cor-
relation (SCC), Spectral Angle Mapping (SAM), Erreur
Relative Globale Adimensionnelle Desynthese (ERGAS),
Universal Image Quality Index (UIQI), Structure Similar-
ity Index Measure (SSIM), and Peak Signal-to-Noise Ratio
(PSNR).

For network training, the datasets are processed following
Wald’s protocol (Wald, 2000). For fair comparisons, all deep
learning-based methods are retrained using Python 3.9 with
Pytorch 1.13 on the Linux operating system. The computing
equipment contains the 64-GB CPU memory and NVIDIA
GPU GeForce GTX 3090. The MFTN is trained for 10000
epochs using the Adam optimizer with an initial learning
rate of 1 x 10~%, which is decayed by a factor of 1 x 1075
after 8000 epochs.

3.1. Experiment Results

Figures 4, 5, and 6 respectively show the reconstructed
results obtained by comparison deep learning-based meth-
ods on the Pavia center, Botswana, and Chikusei datasets,
and the 60th, 30th, 10th spectral bands in the reconstructed
results are selected as the RGB bands. To observe the differ-
ences between the reconstruction results more clearly, the
mean absolute error (MAE) maps between the reconstruc-
tion results and GTs are calculated and displayed, and the
local areas are selected for magnification and displayed be-
low the corresponding results. From these figures, it can be
observed that our results are visually closest to GTs, and the
corresponding MAE maps contain the least residual infor-
mation compared to the results of other deep learning-based
methods. Therefore, this also indicates that the proposed
MFTN is superior to other deep learning-based methods,
and the obtained results have better spatial and spectral
fidelity.

Table 1 shows the average objective indicators of the re-
construction results obtained by all comparison methods on
three datasets. The best results are highlighted in bold, while
the second-best results are highlighted in underline. From
the table, it can be seen that the indicator values obtained
by traditional methods are much lower than those obtained
by deep learning-based methods. The proposed method
achieved the highest indicator values on the Pavia Center
and Chikusei datasets, while on the Botswana dataset, the
UIQI value ranks second, and all other indicator values are
also the highest. In terms of runtime, although our method
is not the least time-consuming, it is within an acceptable
range and has lower runtime than HyperRefiner on all three
datasets. Therefore, the proposed method has better perfor-
mance compared to the comparision methods.

3.2. Ablation Studies

In this section, we conduct several ablation experiments on
the Pavia Center dataset to demonstrate the effectiveness of
IMatchFormer and SAAM in the proposed MFTN.

3.2.1. EFFECT OF IMATCHFORMER

In MFTN, three IMatchFormers are adopted to learn the
transfer features at three scales from the features of HR-
MSI. The experimental results of using IMatchFormers on
three scale features are presented in Table 2. 1x represents
the minimum scale, 2x represents the intermediate scale,
which is twice the minimum scale, and 4 x represents the
maximum scale, which is four times the minimum scale
and consistent with the scale of HR-MSI. In addition, 1x,
2%, and 4 x also refer to using only one IMatchFormer cor-
responding to one scale features in MFTM, respectively,
and features of other scales are directly transmitted to the
corresponding SAAM. 1x2x4x indicates using IMatch-
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DARN HSRNet  HyperPNN  SSFCNN SSRNet  HyperDSNet HyperRefiner Ours GT

Figure 4. Comparison of visualization results obtained by deep learning-based methods on Pavia Center dataset.

DARN HSRNet  HyperPNN  SSFCNN SSRNet  HyperDSNet HyperRefiner Ours GT
Figure 5. Comparison of visualization results obtained by deep learning-based methods on Botswana dataset.

DARN HSRNet  HyperPNN  SSFCNN SSRNet  HyperDSNet HyperRefiner Ours GT

Figure 6. Comparison of visualization results obtained by deep learning-based methods on Chikusei dataset.

Former on all three scale features. From the table, it can be =~ while the indicator values obtained by using the IMatch-
seen that the indicator values obtained by the model using Former on all three scale features are the highest. Therefore,
IMatchFormer only at the minimum scale are the lowest, this also demonstrates that the constructed IMatchFormer is
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Table 1. The average quantitative results on the Pavia Center, Botswana, and Chikusei datasets

Dataset Methods SCC(T) SAM() ERGAS() UIQI(T) SSIM(T) PSNR(T) Test Time(Ms)
PCA 0.780 8.01 8.86 0.457 0.458 26.01 —
GFPCA 0.825 8.16 8.62 0.550 0.592 21.18 —
DARN 0.980 5.13 2.58 0.960 0.951 37.61 2.153
HSRNet 0.983 4.49 4.30 0.957 0.953 37.78 52.099
HyperPNN 0.967 5.99 3.82 0.935 0.917 36.70 6.473
Pavia Center SSFCNN 0.982 433 2.74 0.966 0.962 38.50 16.339
SSRNet 0.958 5.43 3.90 0.946 0.930 37.48 11.255
HyperDSNet 0.982 5.15 4.67 0.951 0.944 36.45 3.824
HyperRefiner 0.984 4.23 2.44 0.967 0.965 39.61 10.178
Ours 0.985 4.20 2.32 0.969 0.965 40.98 5.704
PCA 0.943 2.38 1.98 0.792 0.793 40.03 —
GFPCA 0.901 2.66 2.75 0.531 0.498 37.83 —
DARN 0.992 1.57 2.92 0.920 0.968 38.04 1.675
HSRNet 0.995 1.26 2.35 0.954 0.975 38.84 7.011
HyperPNN 0.981 2.05 2.39 0.932 0.956 38.06 1.786
Botswana SSFCNN 0.994 1.86 8.00 0.868 0.913 37.76 2.101
SSRNet 0.993 2.02 2.80 0.764 0.819 38.96 1.634
HyperDSNet 0.985 1.70 2.15 0.940 0.957 38.90 1.862
HyperRefiner  0.994 1.30 1.96 0.945 0.976 39.79 9.135
Ours 0.995 1.24 1.83 0.949 0.978 41.97 4.127
PCA 0.887 6.99 7.71 0.466 0.598 30.98 —
GFPCA 0.883 4.76 7.00 0.619 0.689 30.96 —
DARN 0.965 1.88 4.06 0.944 0.943 38.39 4.086
HSRNet 0.974 2.08 3.60 0.950 0.953 36.95 13.569
HyperPNN 0.953 2.04 5.64 0.926 0.927 41.57 6.041
Chikusei SSFCNN 0.959 1.91 4.56 0.940 0.936 35.74 3.893
* SSRNet 0.935 2.20 4.44 0.928 0.920 36.11 3.219
HyperDSNet 0.977 242 3.87 0.943 0.959 37.76 4.109
HyperRefiner  0.977 1.69 3.22 0.954 0.957 41.43 12.275
Ours 0.978 1.57 2.88 0.963 0.965 42.00 12.220

Table 2. Ablation study on utilizing IMatchFormer at multiple
scales.

IMatchFormer SCCT SAM| ERGAS| UIQI{ SSIM{ PSNR{

None 0.866 6.41 1047  0.829 0.752 24.82
1x 0.869 6.42 993 0.835 0.759 2536
2% 0976 4.79 3.69 0955 0944 34.81
4x 0.983 4.30 237 0968 0.964 40.52

Ix2x4x 0985 4.20 232 0969 0.965 40.98

Table 4. Ablation study on the SAAM and SAM.

Method SCCT SAM| ERGAS| UIQIT SSIMT PSNR?

w/o SAAM 0.982 4.26 248 0967 0962 40.63
w/o SAM 0.983 4.23 247 0969 0.964 40.65
MFNet 0985 4.20 232 0969 0.965 40.98

Table 3. Ablation study on the number of heads (N) in multi-head
attention mechanism.
N SCCT SAM| ERGAS| UIQIT SSIM?T PSNRT

N=1 0.982 4.57 2.71 0.966 0.959 38.49

N=2 0.980 443 2.52 0.966 0.960 39.58

N=4 0.982 4.37 2.48 0.967 0.962 40.16

N=8 0.985 4.20 2.32 0.969 0.965 40.98

N=16 0.983 4.39 2.46 0.968 0.962 39.95
effective.

In addition, IMatchFormer adopts a multi-head attention
mechanism, in which the number of heads needs to be deter-
mined. Table 3 shows the objective results of IMatchFormer
containing different numbers of headers in the model. N
represents the number of headers, which increases exponen-
tially from 1 to 16. From the table, when N=8, the proposed
model achieves the highest objective results. Therefore, the
number of heads in the multi-head attention mechanism in
IMatchFormer is set to 8.

3.2.2. EFFECT OF SAAM AND SAM

To verify the effectiveness of the SAAM, we remove it
from the network and replace it with a sum operation and 4
residual blocks. In addition, we also conduct the ablation
experiment on the SAM in SAAM. The objective indica-
tor results obtained by MFTN without SAAM or SAM in
SAAM are presented in Table 4, respectively. The results
show that the proposed MFTN with SAAM and with SAM
achieves better performance compared with the other two
modified structures. This also indicates that SAAM and
SAM can better integrate the shallow features of LR-HSI
and the transfer features at three scales.

4. Conclusion

In this paper, we propose an MFTN based on IMatchFormer
for HISR task. First, HR-MSI, HR-MSI |1 and LR-HSI
are sent to an MFEM to extract multi-scale features. Then,
the features of each scale are fed into an IMatchFormer,
which is constructed to learn transfer features from HR-
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MSI by establishing correlations between HR-MSI|1 and
LR-HSI features. Finally, the learned transfer features at
three scales are sent together with the shallow features of
LR-HSI to an MDAM containing three SAAMs, gradually
achieving feature integration to obtain the reconstructed
HR-HSI. Numerous experiments are conducted on three
widely used HSI datasets, and the results demonstrate that
the proposed MFTN is superior to some SOTA methods in
both quantitative and qualitative evaluations.
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