
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Hypervector Design for Efficient Hyperdimensional Computing
on Edge Devices

ABSTRACT
Hyperdimensional computing (HDC) has emerged as a new light-
weight learning algorithm with smaller computation and energy
requirements compared to conventional techniques. In HDC, data
points are represented by high dimensional vectors (hypervectors),
which are mapped to high dimensional space (hyperspace). Typi-
cally, a large hypervector dimension (≥ 1000) is required to achieve
accuracies comparable to conventional alternatives. However, un-
necessarily large hypervectors increase hardware and energy costs,
which can undermine their benefits. This paper presents a technique
to minimize the hypervector dimension while maintaining the ac-
curacy and improving the robustness of the classifier. To this end,
we formulate hypervector design as a multi-objective optimization
problem for the first time in the literature. The proposed approach
decreases the hypervector dimension by more than 128× while
maintaining or increasing the accuracy achieved by conventional
HDC. Experiments on a commercial hardware platform show that
the proposed approach achieves more than two orders of magnitude
reduction in model size, inference time, and energy consumption.
We also demonstrate the trade-off between accuracy and robustness
to noise and provide Pareto front solutions as a design parameter
in our hypervector design.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Hard-
ware→ Power and energy.

KEYWORDS
Hyperdimensional computing, low-power learning algorithm, opti-
mization

1 INTRODUCTION
The number of Internet of Things (IoT) devices and the data gener-
ated by them increase every year [1, 2]. Wearable IoT, which utilizes
edge devices and applications for remote health monitoring [3], has
been a rapidly growing subfield of IoT in recent years [4]. These
devices fuse data from multiple sensors, such as inertial measure-
ment units (IMU) and biopotential amplifiers, to achieve accurate
real-time tracking. For example, assistive devices for Parkinson’s
Disease patients need to provide precisely timed audio cues to cope
with gait disturbances [5]. Despite the intensity of sensor data,
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these devices must operate at a tight energy budget (∼𝜇W) due
to limited battery capacity [6]. Offloading the data to the cloud
is not an attractive solution since it increases the communication
energy [7] and raises privacy concerns [8]. Likewise, deep neural
networks and other sophisticated algorithms are not viable due to
the limited computation and energy capacity of wearable edge devices.
Therefore, there is a strong need for computationally light learning
algorithms that can provide high accuracy, real-time inference, and
robustness to noisy sensor data.

Brain-inspired hyperdimensional computing [9] provides com-
petitive accuracy to state-of-the-art machine learning (ML) algo-
rithms with significantly lower computational requirements for
various applications, such as human activity recognition, language
processing, image recognition, and speech recognition [10]. It mod-
els the human short-term memory [9, 11] using high dimensional
representations of the data points, which is motivated by the large
size of neuronal interactions in the brain to associate a sensory
input with the human memory. The main difference between HDC
and conventional learning approaches is the primary data type. HDC
maps data points (raw samples or extracted input features) in the
input space to random high-dimensional vectors, called sample hy-
pervectors. Then, the sample hypervectors that belong to the same
class are combined linearly to obtain ensemble class hypervectors,
called class encoders. During inference, the input data is used to
generate a query hypervector (𝑄) in the same way as the sample hy-
pervectors. The classifier simply finds the closest class hypervector
to 𝑄 , generally using cosine similarity or the Hamming distance.

Thanks to the simplicity of binary operations, as discussed in
Section 3, HDC lends itself to efficient hardware implementation. A
recent study [12] shows that custom hardware implementations can
provide high energy efficiency and inference speed while reducing
the design complexity. However, HDC requires a large dimension
(e.g. 𝐷 ≥ 1000) to achieve a high inference accuracy [13] due to the
random mapping process. A sufficiently large dimension is needed
to ensure, with high probability, that the sample hypervectors are
orthogonal to each other [10, 12]. A larger dimension implies higher
energy consumption, longer inference time, and more hardware
resources [13]. Consequently, redundant computations can under-
mine the benefits of using HDC over other learning algorithms.
Therefore, there is a critical need to optimize the design of hypervec-
tors such that the performance of HDC is maintained with smaller
dimensions.

This paper presents a novel optimization algorithm for repre-
senting the input data points in the hyperspace, instead of relying on
random mapping. We conceptualize the mapping of the data points
in the hyperspace by geometric notions. Using this insight and a
novel non-uniform quantization approach, we refine the distribu-
tion of randomly generated sample hypervectors in the hyperspace
to achieve increased robustness to noise in smaller dimensions
and similar accuracy levels to that of conventional HDC. To the
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best of our knowledge, this is the first technique that formulates
hypervector design as a multi-objective optimization problem to
achieve higher accuracy and robustness using smaller dimensions
(i.e., lower energy and computational resources). The proposed
approach is evaluated using four representative health-oriented
applications since health monitoring is an emerging and attrac-
tive field in wearable IoT literature: Parkinson’s Disease diagnosis,
electroencephalography (EEG) classification, human activity recog-
nition, and fetal state diagnosis.

The major contributions of the proposed approach are as follows:
• It boosts the effectiveness of HDC by enabling more than two
orders of magnitude model compression while maintaining simi-
lar performance to conventional HDC. Furthermore, hardware
measurements show over 600× higher energy efficiency.

• It introduces novel geometric concepts and illustrations to better
understand the effect of HDC mapping from the input features
to the hyperspace.

• By optimizing the trade-off between accuracy and robustness to
noise, it achieves 2× higher robustness while maintaining the
same accuracy, or 1%–18% higher accuracy without sacrificing
the robustness.
In the rest, Section 2 reviews the related work, while Section 3

overviews HDC. Section 4 presents the proposed hypervector de-
sign optimization. Section 5 presents the evaluation of the proposed
approach and provides results on four applications. Finally, Section
6 concludes the paper.

2 RELATEDWORK
HDC utilizes high dimensional vectors to map the input features to
high dimensional space. It achieves competitive results compared to
other state-of-the-art ML approaches [10]. However, HDC requires
large dimensions (𝐷 ≥ 1000) to achieve high inference accuracy due
to the random mapping process. In turn, large dimensions increase
on-chip storage, computation, and energy requirements, which are
limited in wearable edge devices. Hence, there is a critical need to
optimize the mapping process in HDC to achieve similar or higher
accuracy and robustness with smaller dimensions.

One idea to remedy high dimensional data is using dimensional-
ity reduction techniques, which are linear/nonlinear transforma-
tions that map the high-dimensional data to a lower-dimensional
space. Recently, nonlinear dimensionality reduction techniques or
manifold learning algorithms, such as ISOMAP, local linear embed-
ding (LLE), and Laplacian eigenmaps, have become widely used for
dimensionality reduction [14]. These algorithms mainly focus on
preserving the geometric information of the high-dimensional data in
the low dimensional space in contrast to another widely used linear
technique, principal component analysis (PCA), which may distort
the local proximities by mapping the data points that are distant
in the original space to nearby positions in the lower dimensional
space [15]. However, the main drawback of the manifold learning
methods is learning the low-dimensional representations of the
high-dimensional input data samples implicitly. Explicit mapping
from the input data manifold to the output embedding cannot be ob-
tained after the training process [14, 16] without compromising the
memory and computational limitations of a wearable edge device.
For instance, the ARM Cortex-M series is a widely used family of

low-power processors for wearable edge devices [17]. This family
offers an on-chip SRAM of a few KB and nonvolatile flash memory
with a size of up to 2 MB [18]. Considering a large amount of train-
ing data and the dimensionality in HDC (𝐷 ≥ 1000), the memory
footprint of these low-power processors is not sufficient to obtain
an explicit mapping. Therefore, an optimized representation of the
data in smaller dimensions is necessary for these devices.

A recent work investigated the impact of dimensionality on the
classification accuracy and energy efficiency of HDC [13]. The au-
thors show that energy consumption and inference time decreases
with smaller dimensions. However, smaller dimensions yield lower
accuracy values. Hersche et al. propose a mapping technique based
on the training of random projection to produce distinct hypervec-
tors as part of learned projections [19]. The learned projections
are more effective in terms of accuracy at lower dimensions. How-
ever, this mapping does not preserve the level dependency between
level hypervectors in HDC, which is critical for robust classifica-
tion, as elaborated in Section 4.1. Another study reduces the high
dimensionality of the class encoders by dividing it into multiple
smaller dimensional segments and adding them up to form a lower-
dimensional class encoder [20]. However, during inference, the
query hypervector is formed using high dimensional level hyper-
vectors that need to be stored in memory and thus undermine the
potential energy savings.

In contrast to prior work, this paper focuses on optimizing hy-
pervector design at the initial stage of HDC training. We formulate
the hypervector design as a multi-objective optimization problem
for the first time in literature. Moreover, none of the prior studies
discuss the robustness to the noise of the HDCmodel. The proposed
approach produces an efficient and robust representation of the
data points in the hyperspace while preserving similarity between
level hypervectors. It also is the first work that enables a trade-off
between robustness and accuracy by providing a Pareto front set
of hypervector design.

3 BACKGROUND ON HDC
3.1 HDC Training
Training in HDC consists of three steps: 1○ Quantization and map-
ping , 2○ Construction of sample hypervectors and 3○ Classifier
encoding, as illustrated in Figure 1. We refer to this architecture as
the baseline HDC implementation in the rest of the paper.
1○ Quantization and mapping: The first step of HDC is to quan-
tize the input space and represent it using D-dimensional level
hypervectors. This is achieved in two steps: (i) quantization in low
dimension, and (ii) mapping to high dimension.
Quantization in low dimension: Let 𝐹 = {𝑓1, 𝑓2, ..., 𝑓𝑁 } denote
the 𝑁 -dimensional input feature, where 𝑓𝑛 ∈ R corresponds to the
𝑛𝑡ℎ feature. Suppose that there are 𝑆 training samples. Each training
sample 𝑥𝑠 for 𝑠 ∈ {1, ..., 𝑆} is an𝑁 -tuple 𝑥𝑠 = {𝑥1𝑠 , 𝑥2𝑠 , ..., 𝑥𝑁𝑠 }, where
𝑥𝑛𝑠 ∈ R is the value of feature 𝑓𝑛 in this sample for 𝑛 ∈ {1, ..., 𝑁 }.

Using the training set, we find the minimum (𝑓 min
𝑛 ) and the

maximum (𝑓 max
𝑛 ) values of each feature. Let Q = {1, ..., 𝑀} be

the set of quantization levels. The baseline HDC quantizes each
feature space into𝑀 uniform levels using a quantization function
𝑞 : R→ Q such that𝑞(𝑥𝑛𝑠 ) returns the quantization level for feature
𝑓𝑛 in input sample 𝑥𝑠 .
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Table 1: Notation table. *HV: Hypervector

Symb. Description Symb. Description Symb. Description Symb. Description

𝑁 # of features 𝑞 (.) Quantizer function 𝑥𝑠 Training sample 𝑠
𝐿𝑚𝑛

𝐷-dim level HV* for
mth level of 𝑓𝑛𝐹 𝑁 -dim input space 𝑆 # of training samples 𝑋𝑠 𝐷-dim sample HV* for 𝑥𝑠

𝑓𝑛 nth dimension of 𝐹 𝐷 Hyperspace dimension 𝑄 𝐷-dim query HV*
𝑏

# of flipped bits between
𝐿𝑚𝑛 and 𝐿𝑚+1

𝑛𝑀 # of quantization levels 𝑔 (.) Nonlinear bit-flip function 𝐾 # of different classes
𝑦𝑠 Class label for 𝑥𝑠 𝐸𝑘 Encoder for kth class Q Set of quantization intervals

Mapping to the high dimension: The minimum level of each
feature 𝑓 min

𝑛 is assigned a random bipolar 𝐷-dimensional hypervec-
tor 𝐿1𝑛 , where 𝐿 ∈ {−1, 1}𝐷 , and typically 𝐷 ≥ 1000. The rest of the
level hypervectors 𝐿2𝑛 to 𝐿𝑀𝑛 are calculated by randomly flipping
𝑏 = 𝐷/2(𝑀−1) bits to generate each consecutive hypervector start-
ing from 𝐿1𝑛 . This operation is denoted by 𝐿𝑚+1

𝑛 = 𝑔(𝐿𝑚𝑛 , 𝑏) ∀𝑚 ∈ Q,
where 𝑔(𝑢, 𝑣) : {(𝑢, 𝑣) | 𝑢 ∈ {−1, 1}𝐷 , 𝑣 ∈ N} → {−1, 1}𝐷 is a non-
linear function that flips 𝑣 (scalar) indices of𝑢 (vector). This process
tracks the flipped bits and ensures that they do not flip again in
subsequent levels. At the end, it produces 𝑁 × 𝑀 different level
hypervectors 𝐿𝑚𝑛 ∀ 𝑛,𝑚 that represent the quantized features in the
hyperspace. This process also ensures that hypervectors 𝐿1𝑛 and 𝐿𝑀𝑛
orthogonal for each feature 𝑓𝑛 [10]. The notation is summarized in
Table 1.
2○ Construction of sample hypervectors (𝑋𝑠 ): The next step is
constructing the sample hypervectors using the input samples 𝑥𝑠
and level hypervectors found in step 1○. We first determine the
quantization levels 𝑞(𝑥𝑛𝑠 ) that contain the value for each feature of
the current sample 𝑥𝑠 . Then, we fetch the level hypervectors 𝐿𝑞 (𝑥

𝑛
𝑠 )

𝑛

that correspond to these quantization levels and add them up:

𝑋𝑠 =

𝑁∑
𝑛=1

𝐿
𝑞 (𝑥𝑛𝑠 )
𝑛 ∀ 𝑠 ∈ {1, 2, ..., 𝑆},where 𝑋𝑠 ∈ Z𝐷 (1)

Toy example: For a better understanding of steps 1○ and 2○, we
present a simple representative example. Consider a 2-D problem
with 𝑓1 ∈ [0, 1] and 𝑓2 ∈ [−10, 0] with 𝑀 = 10 quantization lev-
els and 𝐷 = 1000. The quantization intervals between 𝑓 min

1 = 0
and 𝑓 max

1 = 1 are [0, 0.1), [0.1, 0.2), ..., [0.9, 1]. Similarly, the quan-
tization intervals for 𝑓2 are [−10,−9), [−9,−8), ..., [−1, 0]. The in-
tervals [0, 0.1) and [−10,−9) are assigned random bipolar 1000-
dimensional hypervectors 𝐿11 and 𝐿

1
2 . To find the rest of the level

hypervectors 𝐿21 to 𝐿
10
1 and 𝐿22 to 𝐿

10
2 , we first calculate the number

of bits to flip at each consecutive level as 𝑏 = 𝐷/2(𝑀 − 1) = 55.

Then, 𝐿21 is found by 𝐿21 = 𝑔(𝐿11, 55) and the rest of 𝐿𝑚1 and 𝐿𝑚2 are
calculated through the same procedure. As a result, we obtain 20
different level hypervectors that represent the quantized 𝑓1 and 𝑓2
in the hyperspace.

After finding the level hypervectors, input samples𝑥𝑠 aremapped
to their corresponding hypervectors 𝑋𝑠 . For example, consider an
arbitrary sample 𝑥3 = {0.17,−1.2}. We first find the quantization
levels 0.17 and −1.2 fall into. These levels are given by 𝑞(𝑥13 ) = 2
and 𝑞(𝑥23 ) = 8. Then, we find 𝑋3 = 𝐿21 + 𝐿

8
2 using Equation 1. This

procedure is repeated for all 𝑥𝑠 in the training set.
3○ Classifier encoding: Suppose that there are 𝐾 classes with

labels 1, 2, ..., 𝐾 . The label of sample hypervector 𝑋𝑠 is given by
𝑦𝑠 ∈ {1, ..., 𝐾} for all samples 𝑠 ∈ {1, ..., 𝑆}. The class hypervector
𝐸𝑘 ∈ Z𝐷 that represents class 𝑘 is found by adding all the sample
hypervectors with label 𝑘 :

𝐸𝑘 =

𝑆∑
𝑠=1

𝑋𝑠 [𝑦𝑠 = 𝑘] (2)

where [.] operation represents the Iverson Bracket that is equivalent
to the indicator function [21].

3.2 HDC Inference
During inference, the query samples with unknown class labels are
first mapped to the hyperspace using the procedure defined in steps
1○ and 2○. The resulting hypervectors are called query hypervectors
𝑄 . Then, the cosine similarity between the query hypervector and
each class encoder 𝐸𝑘 given in Equation 2 is calculated. Finally, the
class 𝑘 with the highest similarity is decided as the class label of
the query data point as follows:

argmax
𝑘∈{1,...,𝐾 }

𝑄 · 𝐸𝑘

∥𝑄 ∥ ∥𝐸𝑘 ∥
(3)

𝑥𝑠 = [𝑥𝑠
1, 𝑥𝑠

2, … , 𝑥𝑠
𝑛 , … , 𝑥𝑠

𝑁]

𝑞𝑞𝑞 𝑞

+

𝐿1
𝑞(𝑥𝑠1) 𝐿2

𝑞(𝑥𝑠2)
𝐿𝑛
𝑞(𝑥𝑠

𝑛 ) 𝐿𝑁
𝑞(𝑥𝑠

𝑁 )

𝑋𝑠 ∈ ℤ
𝐷

� Constructing Sample HVs � Classifier Encoding

𝑦𝑠 = 1 𝑦𝑠 = 2 𝑦𝑠 = 𝐾

⊆ 𝑋𝑠 ⊆ 𝑋𝑠 ⊆ 𝑋𝑠

+ + +

𝐸1 𝐸2 𝐸𝐾

𝐸𝑘 ∈ ℤ
𝐷

𝑓 𝑛
𝑚
𝑖𝑛

𝑓 𝑛
𝑚
𝑎
𝑥

M
 le

ve
ls

𝐿𝑛
1 :

𝑔(𝐿𝑛
1 ,𝑏)𝐿𝑛

2 :

𝐿𝑛
𝑚 :

𝐿𝑛
𝑀 :

-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1

-1 1 1 -1 1 -1 1 1 -1 1 1 1 1 1 -1 1

-1 1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1

D dimensional level HV
� Quantization and Mapping

random

𝐿𝑛
3 : -1 1 1 -1 1 1 1 1 1 1 1 1 1 1 -1 1 𝑔(𝐿𝑛

2 ,𝑏)

𝑔(𝐿𝑛
𝑚−1,𝑏)

𝑔(𝐿𝑛
𝑀−1,𝑏)

𝑓𝑛

Figure 1: Overview of baseline HDC. 𝐷 = 16 and𝑀 = 8 are chosen for illustration purposes. Bit values are chosen arbitrarily.
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Figure 2: Evaluation of the proposed approach on a motivational example. a) Initial problem structure. b) Baseline HDC (𝐷 =

8192) classification result. c) HDC classification result obtained by separating significant levels for both features (𝐷 = 64). d)
Number of bits to flip for each feature and level.

4 OPTIMIZED HYPERVECTOR DESIGN
4.1 Motivation
Distance in the hyperspace: Two samples from different classes
may be close to each other, in the low dimensional input space,
based on the extracted features or raw data. This proximity eventu-
ally decreases the accuracy and robustness of the classifier. Using a
geometrical interpretation, we can consider the sample hypervec-
tors, i.e., themapping to the high dimensional domain, as data points
in the hyperspace. Using this insight, the optimized hypervector
design should achieve two objectives: 1) Spread sample hypervectors
from different classes as far as possible, 2) Cluster sample hypervectors
of the same class close to each other.
Dependency between feature levels: One can assign orthogo-
nal hypervectors to each level hypervector during quantization
to spread them far apart [22]. This approach can provide high
classification efficiency if all levels are represented in the training
data. However, if the training data has gaps, e.g., certain levels are
underrepresented, then the classifier can make random choices.
Hence, the hypervector optimization technique must maintain the
dependency between the level hypervectors 𝐿𝑚𝑛 for each feature
𝑛 ∈ {1, 2, ..., 𝑁 }. We provide a mathematical illustration with a
simple example in Appendix to not distort the flow of the paper.

4.2 Illustration using a Motivational Example
This section presents a motivational example to illustrate the signif-
icance of the proposed hypervector optimization. In this example,
the data points are divided into four classes (C1, C2, C3 and C4) and
represented by two features 𝐹 = {𝑓1, 𝑓2}, as shown in Figure 2(a).

For the baseline HDC implementation, we choose 𝐷 = 8192
and 𝑀 = 20 and follow the procedure explained in Section 3 to
represent the data points in the hyperspace. All data points are
included in the training and test set for illustration purposes. The
baseline HDC misclassifies a significant number of data points
concentrated around the class boundaries, as shown in Figure 2(b).
The specification in Figure 2(a) shows that the levels 6, 11, and
16 are critical for the first feature (𝑥−axis), while level 6 and 16
are critical for the second feature (𝑦−axis). However, the baseline
HDC ignores this fact and quantizes the levels uniformly, leading
to misclassified points at the boundaries.

In contrast to uniform quantization levels, the proposed approach
emphasizes the distinctive levels in the training data. For example,
Figure 2(d) shows that the number of bits flipped by the proposed

approach between consecutive levels. The lower plot clearly shows
that it allocates a significantly higher number of bits for levels 6
and 16, which precisely matches with our earlier observation. In
general, the proposed approach flips a different number of bits at
each consecutive level as opposed to the uniform 𝑏 = 𝐷/2(𝑀 − 1)
bits used by the baseline HDC. As a result, it achieves 100% classifi-
cation accuracy by judiciously separating the quantization levels
of both dimensions, as illustrated in Figure 2(c). More remarkably,
the proposed approach achieves a higher level of accuracy than
the baseline HDC by using only 𝐷 = 64 dimensions, as opposed
to 8192. This result indicates that the number of dimensions can
be compressed significantly while increasing the accuracy through
optimized hypervector design.

We also demonstrate a geometrical illustration on the same ex-
ample using 2-D t-distributed stochastic neighbor embedding (t-
SNE) [23] representation of the sample hypervectors. t-SNE is a
nonlinear dimensionality reduction algorithm that works especially
well in visualizing high-dimensional data points. Figure 3(a) shows
that the baseline HDC performs poorly in the separation of hyper-
vectors for different classes despite the large number of dimensions
(𝐷 = 8192). In contrast, Figure 3(b) shows that the optimized sam-
ple hypervectors are separated well from each other according to
their classes while using a much smaller 𝐷 = 64. The t-SNE and
accuracy results illustrate the importance of the objectives set for
the hypervector optimization presented in the next section.

4.3 Optimization Problem Formulation
This section formulates the level hypervector design as an opti-
mization problem where the number of bits to flip between each
consecutive level hypervector are the optimization parameters. In
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Figure 3: t-SNE illustration of sample hypervectors in 2-D
for the motivational example.
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contrast to baseline HDC which uses a uniform number of levels as
𝑏 = 𝐷/2(𝑀 −1), we use a variable number of bits 𝑏𝑚𝑛 ∀𝑛 ∈ {1, ..., 𝑁 }
and𝑚 ∈ {1, ..., 𝑀}. The optimization parameters are defined as a
matrix 𝐵𝑁×𝑀 , which includes all 𝑏𝑚𝑛 values for 𝑁 features and𝑀
levels. Suppose that there are 𝐾 classes in the dataset, and 𝑇𝑃𝑘 and
𝐹𝑁𝑘 represent the true positives and false negatives for class 𝑘 , re-
spectively. We construct the following multi-objective optimization
problem with two objectives: (i) maximize the training accuracy
and (ii) minimize the similarity between class encoders:

max
𝐵
𝑁×𝑀

𝑤𝐴𝑐𝑐 =
1
𝐾

𝐾∑
𝑘=1

𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘
(4)

min
𝐵
𝑁×𝑀

𝑎𝑣𝑔𝑆𝑖𝑚 =

(
𝐾∏
𝑘=1

𝐾∏
𝑘′=1

𝐸𝑘 · 𝐸𝑘′

∥𝐸𝑘 ∥ ∥𝐸𝑘′ ∥

) 1
𝐾

for 𝑘 ≠ 𝑘 ′ (5)

subject to
𝑀∑
𝑚=1

𝑏𝑚𝑛 ≤ 𝐷

2 where 𝑛 ∈ {1, ...𝑁 } (6)

where Equation 6 ensures that the total number of bits flipped
between 𝐿1𝑛 and 𝐿𝑀𝑛 does not exceed 𝐷/2. This condition is criti-
cal to satisfy the orthogonality condition between distant values
in the input space, as explained in Section 3.1. The proposed for-
mulation uses the weighted accuracy (𝑤𝐴𝑐𝑐) instead of the total
accuracy since the total accuracy calculation suffers from imbal-
anced datasets. Equation 5 formulates the geometric mean of cosine
similarity between each class encoder pairs. It provides a lumped
similarity metric between class encoders. The effect of outliers
(e.g. one class encoder is significantly different from the others) is
greatly dampened in the geometric mean. The distance between
different class encoders (i.e., 1 − 𝑎𝑣𝑔𝑆𝑖𝑚) is used as a measure of
robustness and maximized by Equation 5.

4.4 Optimization Problem Solution
The objective functions in the proposed formulation (Equations 4
and 5) are nonlinear functions that can be evaluated only at inte-
gral points. Furthermore, there are integer constraints since the
optimization parameters are the number of bits flipped between
each consecutive level hypervector. Hence, we need to solve a non-
convex optimization problem with integer constraints, i.e., an NP-
hard problem. One can employ gradient-based approaches to solve
this problem by relaxing the integer constraints (e.g., using continu-
ous variables and rounding them to the nearest integer to evaluate
the objective functions). However, gradient-based approaches get
stuck at a local minimum near the starting point. This obstruction
occurs since the objective functions typically have manyminimums,
and rounding is used during evaluation. To overcome this limita-
tion, we employed gradient approaches using multiple starting
points. Nevertheless, the solutions are still not far from the original
starting points, which are not close to the optimal solution. Hence,
we conclude that gradient-based approaches are not suitable for
our problem. We employ a genetic algorithm (GA), an evolutionary
heuristic search approach, to find a solution close to the global
minimum. Our aim is not only to obtain the best solution that gives
the highest accuracy but also to optimize the trade-off between the
accuracy and the robustness of the model. Since GA maintains a
population of possible solutions at every generation and is a highly

explorative algorithm, it is preferred in this work, considering the
objective functions have many local minima.

Algorithm 1 describes the search approach to find the optimum
hypervector design. The input to the algorithm is 𝑃 randomly gen-
erated 𝐵

𝑁×𝑀 matrices ,where 𝑃 is the population size in GA. This
input corresponds to the first generation in GA. First, the algo-
rithm updates the level hypervectors based on the 𝑏𝑚𝑛 ∀ 𝑛,𝑚 for
each population. Then, the sample hypervectors and class encoders
are updated using the new level hypervectors. Next, the objective
functions are evaluated based on the updated hypervectors. Next,
GA selects a new set of populations used in the next generation
according to the values of the objectives. After a predefined number
of generations, we obtain the Pareto front 𝐵𝑁×𝑀 set as an output
of the algorithm. Our proposed approach utilizes the gamultiobj
function of MATLAB (The MathWorks, Inc., Natick, MA, USA). For
our evaluations, we use a population size of 𝑃 = 1000 and allow the
search to run for at least 200 generations with a fixed seed.

Algorithm 1: Optimized hypervector design with GA
Input: Randomly generated 𝐵

𝑁×𝑀 matrices for each
population
Output: Pareto front 𝐵

𝑁×𝑀 set
𝐺 = number of generations in GA
P = set of all populations
L = set of all level hypervectors
X = set of sample hypervectors
𝐸 = set of class encoders
for i = 1: |𝐺 | do

for j = 1: |P | do
𝐵
𝑁×𝑀

→ L, L → X, X → 𝐸

Compute𝑤𝐴𝑐𝑐 and 𝑎𝑣𝑔𝑆𝑖𝑚
Compute feasibility of the current solution

Obtain new P for the next generation
Obtain Pareto front 𝐵𝑁×𝑀 set

5 EXPERIMENTS
5.1 Benchmark Applications
We perform our evaluations on four publicly available represen-
tative wearable health applications: Parkinson’s Disease digital
biomarker DREAMChallenge [24], EEG error-related potentials [25],
human activity recognition [26], and cardiotocography [27].
• Parkinson’s Disease digital biomarker DREAM challenge
dataset (PD Challenge) provides the mPower dataset, which
includes 35410 walking tasks with expert labels (positive or neg-
ative diagnosis). For each task, the winning team extracted 57
features that can be used by standard supervised learning al-
gorithms, such as SVM, for accurate classification [24]. These
features and the training/test data provided by this challenge are
used to evaluate the proposed approach.

• EEGerror-related potentials (ERPs) dataset is collected from
six subjects to study ERPs. User studies consist of two sessions,
which are divided into ten blocks. Each block is further divided
into 64-2000 ms long trials. During each trial, EEG is recorded
from 64 electrodes with a sampling rate of 512 Hz. The first and
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second sessions are used for training and testing, respectively.
Since the dataset provides raw EEG data, we follow the proce-
dure outlined in [28] for the baseline HDC implementation. The
reported accuracy is the average of all six subjects.

• Human activity recognition (HAR) dataset provides strech
sensor and accelerometer readings of 22 subjects while they
are performing eight activities: jump, lie down, sit, stand, walk,
stairs up, stairs down, transition. It provides 120 comprehensive
features extracted from the raw data. We choose a subset of
33 features using sequential feature selection [29]. The data is
divided randomly into 80% training and 20% test set.

• Cardiotocography (CTG) dataset provides 21 features from
2126 fetal cardiotocograms, which are extracted to diagnose the
fetal state. The fetal state is divided into three classes: normal,
suspect, and pathological. We randomly chose 80% of the data as
the training set and 20% as the test set.
All the training and test sets used in this work will be released

to the public for the reproducibility of our results.

5.2 Accuracy – Robustness Evaluation
This section evaluates the proposed approach using the weighted
accuracy (𝑤𝐴𝑐𝑐) and similarity (𝑎𝑣𝑔𝑆𝑖𝑚) metrics defined in Section
4.3. We first apply the baseline HDC using dimension 𝐷 = 8192,
which is shown to be sufficiently large by prior work [13, 20]. Then,
the proposed approach is used to minimize the number of dimen-
sions while maintaining the baseline HDC accuracy. For example,
baseline HDC achieves 84% weighted accuracy with 𝐷 = 8192 di-
mensions for the PD Challenge dataset. Our approach reduces the
number of dimensions to 𝐷 = 32 (i.e., by 256×) while achieving 86%
weighted accuracy, as shown in Figure 4. Similarly, the proposed
approach reduces the dimension significantly for other datasets
while maintaining or slightly improving the weighted accuracy.
Specifically, it decreases the dimension size by 128×, 128×, and
256× for EEG ERP, HAR, and CTG datasets, respectively. Another
commonly used metric in multi-class problems is the total accuracy,
which is the number of correct classifications divided by the total
number of samples. Figure 4(c) shows that the proposed approach
also successfully maintains the total accuracy.

We also apply a light-weight ML algorithm, linear SVM, to all
datasets as a comparison point. HDC achieves competitive accu-
racy with SVM both for weighted and total accuracy, as shown
in Figure 4. Morever, the proposed optimization approach yields

higher weighted accuracy compared to other methods for imbal-
anced datasets with raw input data. We also note that linear SVM
requires additional pre-processing steps on top of the necessary
filtering operations, especially for biosignals acquired using many
channels/electrodes. For example, canonical correlation analysis
is applied to multi-channel EEG data to select the channels with
a high signal-to-noise ratio such that the accuracy increases [30].
In contrast, HDC does not require such computationally intensive
pre-processing steps.
Accuracy vs. robustness trade-off: A unique strength of our ap-
proach is optimizing the trade-off between accuracy and robustness,
which is not explored by prior work. Robustness is measured by the
dissimilarity between class encoders defined as 1−𝑎𝑣𝑔𝑆𝑖𝑚 in terms
of the average similarity metric introduced in Section 4.3. It is a
measure of how distant the clusters for different classes are in the
hyperspace. Figure 5 shows the Pareto front solutions in terms of
the weighted accuracy (𝑥−axis) and dissimilarity (𝑦−axis). For all
applications, the Pareto front solutions yield a more robust choice
of hypervectors than the baseline HDC. For example, the weighted
accuracy and robustness of the baseline HDC are (68%, 0.017) with
𝐷 = 8192 dimensions for the EEG ERP dataset, as shown with ∗ in
Figure 5(b). The proposed approach increases both weighted accu-
racy and robustness to (86%, 0.035) using only 𝐷 = 64 dimensions,
as shown by the arrow. It can also trade the accuracy off to improve
the robustness to as high as 0.08 while still achieving higher accu-
racy than the baseline HDC. Weighted accuracy and robustness for
the Pareto front solutions range from (86%, 0.035) to (78%, 0.08).
Similarly, the proposed approach improves weighted accuracy and
robustness for other datasets. It improves the weighted accuracy
by 3%, 1%, and 6% while also increasing the robustness by 3×, 2×,
and 2× for PD Challenge, HAR, and CTG datasets, respectively. At
the same time, it can achieve 2×, 2.5×, and 6× higher robustness
while maintaining the accuracy of the baseline HDC. In summary,
our approach provides a set of hypervector designs to choose from
that can be used to achieve a specific objective based on the nature
of the application.

5.3 Evaluation on Hardware
We evaluate the proposed approach by running the inference for all
applications on the Odroid XU3 platform. This platform is equipped
with Exynos 5422 chip, which has four little (A7) cores, four big
(A15) cores, a GPU, and other basic components. Built-in sensors
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Figure 4: a) Compression ratio obtained using proposed hypervector design optimization. b) Weighted Accuracy Comparison.
c) Total Accuracy Comparison.
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report the power consumption of the big core cluster, little core
cluster, GPU and memory separately. We implement both the base-
line HDC implementation and the HDC implementation using the
level hypervectors obtained by the proposed hypervector design
approach using the C programming language. The applications run
on a single little core with the lowest frequency setting (200 MHz)
since this setup is the closest configuration to a computationally
limited edge device. We note that the model size is independent of
this choice, while the relative savings in inference time is compara-
ble to those obtained with other configurations. We plan to evaluate
the proposed technique on low-power embedded processors and
custom hardware accelerators as part of our future work.

Table 2 compares the baseline HDC implementation and the
proposed approach in terms of the model size, power consumption,
and inference time per sample for all applications. For example,
for PD Challenge dataset, baseline HDC has a model size of 30 MB
using hypervector dimension as 𝐷 = 8192. The proposed approach
reduces the number of dimensions to 𝐷 = 32 (i.e., by 256× as
shown in Figure 4(a)) and thus, reduces the model size to 120.9 kB
(i.e., by 248×). This reduction in model size, which is independent
of the hardware, leads to 1.66× reduction in power consumption
and 956× reduction in inference time. Since the cores inside the
hardware platform are general-purpose cores, we cannot observe
a significant decrease in power consumption. The reason behind
that is that the core is highly utilized with the lowest frequency
setting. However, we can deduce that overall computation and the
communication inside the hardware are decreased which yields in
a huge boost in inference time. Similarly, the proposed approach
reduces the model size by 248×, 126×, 126×, power consumption
by 1.79×, 1.68×, 1.58×, and inference time by 742×, 512×, 388× for
CTG, HAR, and EEG ERP datasets, respectively. Overall, it achieves
more than 600× energy efficiency while reducing the model size
from thousands of kB to below or around 100 kB. By evaluating
the proposed approach on a commercial hardware, we observe that
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Figure 5: The Pareto front solutions in terms of𝑤𝐴𝑐𝑐 and 1−
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one’s data.

Table 2: Inference evaluation on Odroid XU3. The numbers
in parenthesis shows the reduction we obtain using the pro-
posed approach. *PD: PD Challenge, *HDC: Baseline HDC

Model Size (kB) Power Cons. (mW) Inf. Time (ms)
HDC* Proposed HDC* Proposed HDC* Proposed

PD* 30020 120.9 (248×) 108 65 (1.66×) 239 0.25 (956×)
CTG 11208 45.1 (248×) 109 61 (1.79×) 89 0.12 (742×)
HAR 17828 141.4 (126×) 109 65 (1.68×) 133 0.26 (512×)
EEG ERP 2229 17.6 (126×) 98 62 (1.58×) 155 0.40 (388×)

it can boost the effectiveness of HDC by enabling more than two
orders of magnitude reduction in model compression. Hence, we
conclude that hypervector design optimization is vital to enable
light-weight and accurate HDC on edge devices with stringent
energy and computational power constraints.

6 CONCLUSION
IoT applications require light-weight learning algorithms to achieve
high inference speed and accuracy within the computational power
and energy constraints of edge devices. HDC is a computationally
efficient learning algorithm due to its simple operations on high di-
mensional vectors. This paper presented an optimized hypervector
design approach to achieve higher accuracy and robustness using
a significantly smaller model size. It formulates the hypervector
design as a multi-objective optimization problem and presents an ef-
ficient algorithm for the first time in literature. Evaluations on four
representative health applications show that the proposed approach
boosts HDC’s effectiveness by achieving more than two orders of
magnitude reduction in model size, inference time, and energy con-
sumption while maintaining or increasing baseline HDC accuracy.
It also optimizes the trade-off between accuracy and robustness of
the model and achieves over 2× higher robustness.
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APPENDIX
In Appendix, we provide the mathematical illustration of a simple
binary classification example to show the significance of the level
dependency.

Let us assume, there are 10 samples 𝑥𝑠 evenly distributed in the
feature space 𝐹 = {𝑓1} where 𝑓1 ∈ [0, 10] as shown in Figure A.1(a).
These classes are separated from 𝑓1 = 5, such that the class labels
𝑦𝑠 are as follows:

𝑦𝑠 =

{
1 if 𝑓1 ≤ 5
2 otherwise

(A.1)

In this problem, 𝑓𝑚𝑖𝑛1 = 0 and 𝑓𝑚𝑎𝑥1 = 10. We select the first 9
samples for HDC training, and leave the last sample as a query point.
We choose quantization level as𝑀 = 10 such that the quantization
intervals from 𝑓 11 to 𝑓 101 are [0, 1), [1, 2), ..., [9, 10].

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Query point?a)

b)

c)

Wrong

Correct

Figure A.1: Simple binary classification example. a) Initial
problem structure. b) Classification using orthogonal hyper-
vectors. c) Classification using hypervectors with level de-
pendency

Classification using orthogonal hypervectors as level hyper-
vectors:We assign random𝐷-dimensional bipolar hypervectors 𝐿11
to 𝐿101 to these intervals. In high dimensions, random hypervectors
are nearly orthogonal to each other [10]. Given 𝑥𝑠 , corresponding
sample hypervector becomes 𝑋𝑠 = 𝐿

𝑞 (𝑥1𝑠 )
1 where 𝑞(𝑥1𝑠 ) is the quan-

tization level that contains value for the feature 𝑓1 of the current
sample 𝑥𝑠 . Then, we generate class encoders 𝐸1 and 𝐸2 as:

𝐸1 =
5∑
𝑠=1

𝑋𝑠 =

5∑
𝑠=1

𝐿
𝑞 (𝑥1𝑠 )
1 and 𝐸2 =

9∑
𝑠=6

𝑋𝑠 =

9∑
𝑠=6

𝐿
𝑞 (𝑥1𝑠 )
1 (A.2)

Given a query point𝑄 with value 10, corresponding query hypervec-
tor becomes 𝑄 = 𝐿

𝑞 (𝑥110)
1 . Classification is performed by calculating

the cosine similarity between 𝑄 and 𝐸1, 𝐸2. Since the generated
level hypervectors are orthogonal to each other, the dot product
operation in the cosine similarity calculation yields a value close
to 0, and thus, the decision becomes random and may give wrong
results as shown in Figure A.1(b):

𝐸2 ·𝑄 = 𝐸1 ·𝑄 ≈ 0 (A.3)
9∑
𝑠=6

𝐿
𝑞 (𝑥1𝑠 )
1 · 𝐿

𝑞 (𝑥110)
1 ≈

5∑
𝑠=1

𝐿
𝑞 (𝑥1𝑠 )
1 · 𝐿

𝑞 (𝑥110)
1 ≈ 0 (A.4)

Classification using hypervectors with level dependency as
level hypervectors:A random𝐷-dimensional bipolar hypervector
𝐿11 is assigned to the interval [0, 1). Unlike the previous approach,
we follow the baseline HDC implementation explained in Section
3 to obtain the rest of the level hypervectors. Thus, the level de-
pendency between level hypervectors for 𝑓1 is preserved. Then, we
generate sample hypervectors and calculate the class encoders as in
Equation A.2. Finally, classification is performed by calculating the
cosine similarity between query hypervector and class encoders.
Since the query hypervector is more similar to the sample hypervec-
tors that is used to generate 𝐸2 due to preserved level dependency,
the classification is correct and the class label of the query point is
predicted as 2 as shown in Figure A.1(c):

𝐸2 ·𝑄 =

9∑
𝑠=6

𝐿
𝑞 (𝑥1𝑠 )
1 · 𝐿

𝑞 (𝑥110)
1 > 𝐸1 ·𝑄 =

5∑
𝑠=1

𝐿
𝑞 (𝑥1𝑠 )
1 · 𝐿

𝑞 (𝑥110)
1 (A.5)
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