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ABSTRACT

Deep neural networks (DNNs) are susceptible to backdoor attacks due to their
black-box nature and lack of interpretability. Backdoor attacks intend to manip-
ulate the model’s prediction when hidden backdoors are activated by predefined
triggers. Although considerable progress has been made in backdoor detection
and removal at the model deployment stage, an effective defense against backdoor
attacks during the training time is still under-explored. In this paper, we propose
a novel training-time backdoor defense method called Learning from Distinction
(LfD), allowing training a backdoor-free model on the backdoor-poisoned data.
LfD uses a low-capacity model as a teacher to guide the learning of a backdoor-
free student model via a dynamic weighting strategy. Extensive experiments on
CIFAR-10, GTSRB and ImageNet-subset datasets show that LfD significantly re-
duces attack success rates by 0.52%, 11.31% and 1.42%, respectively, with mini-
mal impact on clean accuracy (less than 1%, 3% and 1%).

1 INTRODUCTION

Deep neural networks (DNNs) have achieved unprecedented success due to their remarkable per-
formance in many applications, such as image classification(Russakovsky et al., 2015), object
detection(Zou et al., 2023), and traffic accident detection(Ijjina et al., 2019; Jiansheng et al.,
2014). Its superiority relies on model training on large datasets using intensive computational re-
sources(Rosenfeld et al., 2019). In this process, if the data is obtained from third-party data sources
or the model is trained on a third-party platform, the attacker is able to add predefined triggers to
the data samples(Gu et al., 2017; Nguyen & Tran, 2020; Barni et al., 2019) or directly modify the
model’s parameters to implant a backdoor into the model(Dumford & Scheirer, 2020; Rakin et al.,
2020; Chen et al., 2021). In addition, using pre-trained models or outsourced Machine Learning as
a Service (MLaaS) provide attackers the opportunity to backdoor the model, though they may offer
substantial performance improvements at a low cost. As a result, the attacked models perform nor-
mally on clean data, whereas misclassifying specific data to the target class when predefined triggers
are activated, which poses a severe security threat to DNN applications(Gu et al., 2017; Tran et al.,
2018).

To alleviate this threat, existing defense methods can be categorized into two aspects: backdoor de-
tection methods(Tran et al., 2018; Goldblum et al., 2022; Gao et al., 2019) and backdoor removal
methods(Kolouri et al., 2020; Wang et al., 2020; Chen et al., 2019b). Backdoor detection methods
aim to identify whether a given model contains a backdoor trigger or whether a given dataset con-
tains poisoned data. Backdoor removal methods are designed to remove backdoors during or after
the model training process while preserving the model performance. Although the after-training
removal methods have shown promising defense results, their effectiveness relies on the availability
of clean data, rendering them unsuitable for scenarios where clean data is not accessible(Liu et al.,
2018; Wu & Wang, 2021). Training-time removal methods aim to detect potential poisoned data
during the training of the model and prevent the model from learning from these poisoned data so
as to obtain a backdoor-free model(Levine & Feizi, 2021; Jia et al., 2021; Li et al., 2021). Such
methods implemented during training often involve utilizing additional datasets to identify poisoned
data(Tran et al., 2018; Hayase et al., 2021a) or training multiple models ensemble(Goldblum et al.,
2022; Levine & Feizi, 2021; Jia et al., 2021), often suffering from significant computational costs.
Recently, Li et al. proposed a two-stage unlearning technique (ABL) that allows for training a clean
model on a poisoned dataset(Li et al., 2021). However, this method presents challenges in terms of
inaccurate data isolation and reduced accuracy of purified model. Currently, effective defense meth-

1



Under review as a conference paper at ICLR 2024

ods against backdoor attacks during the training phase remain a crucial problem and need further
exploration.

To fulfill the requirement of effectively mitigating backdoors during training, this study proposes a
novel training-time defense method named Learning from Distinction (LfD), which allows training a
backdoor-free model on backdoor-poisoned data. Specifically, LfD has two stages. In the first stage,
it fine-tunes a low-capacity model on the backdoor-poisoned dataset for a few epochs and then uti-
lizes this model as a teacher model to supervise the training of a backdoor-free student model. In the
second stage, a dynamic weighting strategy is adopted during training to flexibly select the poisoned
data from the poisoned datasets. We theoretically analyze the reason why low-capacity models
can act as the teacher to help with backdoor defenses. Empirical results across various datasets
and model architectures demonstrate that our proposed LfD method achieves superior performance
compared to existing state-of-the-art defenses.

In summary, our contributions are as follows:

• We present the impact of model capacity on the distinction of the loss value between back-
doored and clean data during training. Utilizing a lower capacity model makes the dis-
tinction of the loss value between backdoored and clean data more prominent, which can
contribute to identifying the poisoned data.

• We propose a novel training-time backdoor defense method called Learning from Distinc-
tion (LfD), which allows training a clean student model on a backdoored dataset with the
help of a low-capacity teacher model.

• We conduct extensive experiments on CIFAR-10, GTSRB and ImageNet-subset datasets
to validate the effectiveness of LfD against 9 well-known backdoor attacks. The results
show that LfD outperforms existing state-of-the-art defenses and significantly reduces at-
tack success rate with minor impact on clean accuracy.

2 RELATED WORK

2.1 BACKDOOR ATTACKS

Existing backdoor attacks can be classified into two main categories: (1) Dirty-label attacks insert
trigger patterns into data and change their labels to a specific target label, associating the trigger
with the target label. Gu et al. first introduced backdoor attacks in deep learning(Gu et al., 2017).
Subsequently, several studies focused on making poisoned data indistinguishable from clean data
to evade human inspection, some of them replace triggers with subtle perturbations(Turner et al.,
2019; Zhong et al., 2020; Li et al., 2020a; Moosavi-Dezfooli et al., 2017), and others disperse the
trigger to a much larger area of the image(Liu et al., 2020; Barni et al., 2019). However, in the above
attacks, the source labels of the poisoned data are still different from the target label, making them
detectable by examining the image-label relationship. (2) Clean-label attacks only modify the data
whose source labels are the same as the target label. Hence, they do not need to change the data’s
label, making them more covert compared to dirty-label attacks. Several studies focus on modifying
data and adding easy-to-learn trigger patterns on them to perform clean-label attacks(Turner et al.,
2019; Barni et al., 2019). Nevertheless, compared to dirty-label attacks, clean-label attacks often
suffer from lower attack success rate(Li et al., 2022; Zhao et al., 2020b).

2.2 BACKDOOR DEFENSES

Recently, numerous defense methods have been proposed to mitigate the threat of backdoor attacks.
Existing defense methods can be broadly categorized into two categories based on when they take
effect: (1) The defense methods adopted during the model deployment phase aim to detect whether
the input data (Tran et al., 2018; Gao et al., 2019; Chen et al., 2019a; Xu et al., 2021; Hayase
et al., 2021b; Tang et al., 2021) or the model (Wang et al., 2019; Chen et al., 2019b; Kolouri et al.,
2020; Shen et al., 2021) has been backdoor-poisoned and to remove the existing backdoor in the
backdoor-poisoned model (Zhao et al., 2020a; Li et al., 2020b; Wu & Wang, 2021). The anomaly
input detection methods employ the concept of outlier detection to filter out backdoor-poisoned data
(Du et al., 2019; Gao et al., 2019; Subedar et al., 2019; Jin et al., 2020; Javaheripi et al., 2020),
while the backdoored model detection methods utilize meta-classifiers (Kolouri et al., 2020; Huang
et al., 2019; Xu et al., 2021) or analyze the model’s internal structure (Liu et al., 2019; Zheng et al.,
2021) to identify the presence of backdoors. Unlike detection methods, removal methods’ purpose
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is to eliminate the impact of backdoor attacks. Some removal methods reconstruct the trigger and
employ fine-tuning to repair the model(Wang et al., 2019; Chen et al., 2022; Dong et al., 2021;
Guan et al., 2022; Tao et al., 2022). Apart from those trigger-reconstruct defenses, other approaches
have been widely applied in removal backdoors, e.g., pruning(Wu & Wang, 2021; Liu et al., 2018;
Zheng et al., 2022) and model distillation(Li et al., 2020b). (2) Training-time backdoor defense
methods intend to train backdoor-free models on backdoor-poisoned datasets. Some approaches
achieve this by extracting features of clean data from additional datasets to identify the poisoned
data in the training dataset(Tran et al., 2018; Hayase et al., 2021a). Other approaches, on the other
hand, focus on training multiple model ensembles and applying voting mechanisms to mitigate the
impact of poisoned data(Goldblum et al., 2022; Levine & Feizi, 2021; Jia et al., 2021). Recently,
Anti-backdoor learning (ABL) isolates a portion of poisoned data and unlearns these data in the last
few epochs of training to eliminate the backdoor(Li et al., 2021). However, unlearning can lead to
the loss of semantic features and a decrease in the accuracy of the model. Our proposed defense
method LfD belongs to the training-time backdoor defense method.

3 BACKGROUND AND PRELIMINARY ANALYSIS

In this section, we first present the utilization of gradient ascent training for backdoor defense.
Subsequently, we delineate our observations regarding distinct learning behaviors between the losses
of poisoned and clean data . Finally, we propose a method to amplify this distinction.

3.1 BACKDOOR DEFENSE WITH GRADIENT ASCENT

In the backdoor attack scenario, the goal of the adversary is to inject triggers into the model by
solving an optimization problem as follows:

L(θt) = E(x,y)∼Dpoisoned
(ℓ(fθt(x), y)) + E(x,y)∼Dclean

(ℓ(fθt(x), y)), (1)

where t represents the number of training epochs, Dclean and Dpoison represent the set of clean
data and poisoned data, respectively, Dclean ∪Dpoison = Dtrain, and ℓ(·) denotes the loss function
which computes the distance between the predicted label fθ(x) and the ground truth label y. Then,
the minimum value of the loss is calculated by using the gradient descent optimization method,
thereby improving model’s classification accuracy. This equation indicates that the entire learning
task is decomposed into two sub-tasks: one is to minimize fθ on clean data, and the other is to
minimize fθ on poisoned data. Therefore, the trained backdoored model exhibits high classification
accuracy on clean data and high attack success rate on poisoned data.

To mitigate the impact of backdoor attacks on the model, the gradient ascent training method can be
employed to alleviate the influence of poisoned data (Li et al., 2021). The process is as follows:

L(θt) = E(x,y)∼Dclean
(ℓ(fθt(x), y))− E(x,y)∼Dpoisoned

(ℓ(fθt(x), y)), (2)

As shown in the above equation, maximizing the loss of poisoned data can effectively amplify the
distance between model predictions and their labels, i.e., target labels. This prevents the model
from classifying poisoned data as the target label, thus reducing the model’s attack success rate.
Therefore, if we can devise a method for precisely identifying poisoned data within the dataset, we
can integrate it with the gradient ascent training approach to mitigate the impact of backdoor attacks
on the model.

3.2 DISTINCT BEHAVIORS IN LEARNING BETWEEN CLEAN AND POISONED DATA.
Previous studies have identified poisoned data within datasets through the analysis of data loss. This
is owing to the nature of backdoor attacks, which require the establishment of explicit associations
between triggers and target labels to ensure that poisoned data is classified into the target label
rather than its ground truth label. Consequently, poisoned data is found to be more easily learnable
than clean data, resulting in lower losses(Li et al., 2021). To demonstrate this inference, we apply
three classic backdoor attacks, named BadNets(Gu et al., 2017), Dynamic(Nguyen & Tran, 2020),
and SIG(Barni et al., 2019) to construct three poisoned datasets with an injection rate of 10% on
CIFAR-10 training data. Subsequently, we train the ResNet-18 model(He et al., 2016) on these
poisoned datasets following the same configurations in Section 5. As shown in Figure 1a, 1b, 1c, for
all three types of backdoor attacks, the average loss of clean data is higher than that of poisoned data,
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and this trend is more significant in the early stages of training. The above observations suggest that
the loss of poisoned data is usually lower than that of clean data, especially in the early stage.

However, this method of identifying poisoned data has its shortcomings. Despite the significant
difference in average losses between poisoned and clean data, there is still a possibility of poisoned
data having losses similar to that of clean data. In Figure 2, we plot the number of poisoned data
with losses greater than the average loss of clean data at the early training stage on the ResNet-
18 model, and it is evident that such poisoned data exist in three poisoned datasets. Since some
powerful backdoor attacks can succeed with just a tiny number of poisoned data(Li et al., 2021), it is
necessary to employ a strategy that amplifies the distinction in the losses of these two types of data
in order to accurately identify the poisoned data in the dataset.

(a) BadNets on ResNet-18 (b) Blend on ResNet-18 (c) Dynamic on ResNet-18

(d) BadNets on ResNet-S (e) Blend on ResNet-S (f) Dynamic on ResNet-S

Figure 1: The upper and bottom rows respectively present the average training losses on ResNet-
18 (He et al., 2016) and ResNet-S for clean and poisoned data. The poisoned data is generated
through three different backdoor attacks, including BadNets (Gu et al., 2017), Blend (Nguyen &
Tran, 2020), and Dynamic (Barni et al., 2019). The experiments were conducted on the CIFAR-10
dataset(Krizhevsky, 2009) with a poisoning rate of 10%.

3.3 IMPACT OF MODEL CAPACITY ON DATA LOSS

The capacity of a neural network model signifies the complexity of features it can learn. A model’s
capacity can be measured through its intricacy, such as the quantity of neurons of the model. Based
on prior research, the generalization error of neural networks can be approximately formalized to
a function of the model and dataset size (Rosenfeld et al., 2019). Given a fixed dataset size, the
following equation holds:

ϵ̂(m) = ϵ0

∥∥∥∥ bm−β + c∞
bm−β + c∞ − iη

∥∥∥∥ , (3)

where ϵ̂ denotes the classification error on the test dataset, m denotes the number of parameters in
the model, β(β ≥ 0) control the global rate at which error decreases with the sizes of the model,
i =

√
−1, and c∞(c∞ > 0) is the asymptotic lower value attainable. Here the simple pole at η

controls the transition point from the initial random-guess level ϵ0 as (m) increase.

The above equation showed that the classification error increases as the number of model param-
eters decreases. This implies that the model’s capability to accurately classify data decreases with
a reduction in its capacity. Moreover, since the loss of data measures the classificatuon accurcy
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Figure 3: Pipeline of our LfD. It consists of two main stages. (1) Fine-tuning a low-capacity fθteacher

on the backdoor-poisoned Dtrain for a few epochs. (2) Weighting each data in Dtrain according to
its loss on fθteacher

, and then training fθstudent
on the weighted Dtrain.

of the model, the data’s losses on the model usually rise with a reduction in model capacity. Si-
multaneously, according to Section 3.2, poisoned data is more easily-learnable compared to clean
data. Therefore, we claim that reducing the model’s capacity could render it less adept at learning
clean data while retaining its capability to learn poisoned data. This would effectively amplify the
disparity in loss between the two types of data. To substantiate this point, we construct a ResNet-
based model with fewer parameters than ResNet-18, referred to as ResNet-S, described in detail in
Appendix A.3, as a comparative model to ResNet-18 in order to observe how the difference in the
average loss of clean and poisoned data during model training varies with the model capacity.

As depicted in Figure 1, across various backdoor attack scenarios, the average loss of clean data
on ResNet-S is notably higher than that on ResNet-18. However, the average loss of poisoned
data exhibits no significant disparity between these two models. The above findings validate our
proposition that, despite the difficulty of ResNet-S in learning clean data due to its low capacity,
it still has the ability to learn poisoned data, which leads to a more pronounced distinction in the
average loss between the two types of data on ResNet-S.

Figure 2: The number of poisoned data
with losses higher than the average loss
of clean data on ResNet-18 and ResNet-
S at the fifth epoch.

Following the above results, we test the number of poi-
soned data with losses greater than the average loss of
clean data on ResNet-18 and ResNet-S. We conducted
experiments on ResNet-18 and ResNet-S to evaluate the
quantity of poisoned data with losses greater than the av-
erage loss of clean data. As depicted in Figure 2, the num-
ber of such data instances on ResNet-S is notably reduced
compared to ResNet-18, thereby further confirming the
conclusions drawn in the preceding discussion.

Furthermore, we constructed low-capacity models on sev-
eral other architectural frameworks (as detailed in Ap-
pendix A.3) for additional exploration. Specific results
are presented in Appendix A.4.

4 PROPOSED METHOD: LEARNING FROM DISTINCTION

Based on the observations and analyses in Section 3, we propose a Learning from Distinction (LfD)
approach which involves training a clean model on the poisoned data set Dtrain within the con-
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text of a supervised training process. As illustrated in Figure 3, we decompose the entire training
process into two stages: fine-tuning a teacher model fθteacher

capable of discerning the differences
between poisoned and clean data, and using fθteacher

to dynamically discriminate poisoned data
within Dtrain to supervise the training of the clean model fθstudent

.

Stage 1: Fine-tuning a fθteacher
capable of distinguishing between clean and poisoned data sets.

First and foremost, we require a fθteacher
capable of distinguishing between clean and poisoned data

within Dtrain. Drawing insights from the observations described in Section 3, it becomes evident
that models with low capacity face challenges in classifying clean data. Nevertheless, these models
still exhibit an intrinsic aptitude for adeptly classifying poisoned data, especially during the initial
phases of training. This phenomenon engenders a noticeable discrepancy in losses between these
two data categories. Consequently, we embark on creating a low-capacity model by reducing the
number of neurons within the model, followed by subjecting it to a few epochs of fine-tuning solely
on Dtrain. This maneuver ensures a pronounced dissimilarity between poisoned and clean data
on this model. Subsequently, this model assumes a pivotal role in the context of Learning from
Distinction (LfD), functioning as the cornerstone of fθteacher

.

Stage 2: Utilizing fθteacher
for the dynamic discrimination of poisoned data to supervise the

training process of a backdoor-free model fθstudent
.

Subsequently, we identify potential poisoned data within Dtrain based on their losses on fθteacher
,

followed by gradient ascent training on these identified data to train a clean fθstudent
on Dtrain. This

stage aims to mitigate the impact of poisoned data in the training process of fθstudent
. To identify

the poisoned data within Dtrain, we initially adaptively establish a threshold based on the losses of
data in Dtrain on fθteacher

:

γ = DT (((fθteacher
(x1), y1) · · · (fθteacher

(xn), yn)), index),

s. t. index = n× α,
(4)

where n represents the number of data in Dtrain, and α is a hyperparameter, the DT() function first
calculates the losses of all data points in Dtrain with respect to fteacher, then sorts the losses in
ascending order, and selects the loss at the index-th position as the threshold. We perform gradient
ascent training on the data in Dtrain with losses below this threshold. Specifically, as shown in
Equation 1, when updating fθstudent

, we subtract the losses of these data points to decrease the
probability of fθstudent

classifying them into their labels. Though we cannot guarantee that the
loss of every poisoned data in Dtrain is below the threshold, training a substantial portion of the
poisoned data with gradient ascent can still mitigate the impact of these unrecognized poisoned
data. Therefore, the loss function employed for updating fθstudent

is presented as follows:

L(θstudent) = E(x,y)∼Dnon−candidate
(ℓ(fθteacher

(x), y))− E(x,y)∼Dcandidate
(ℓ(fθteacher

(x), y)),

s. t.(x, y) ∈
{
Dnon−candidate, ℓ(fθteacher

(x), y) > γ)

Dcandidate, ℓ(fθteacher
(x), y) ≤ γ),

(5)

However, the gradient ascent training method may have an impact on the accuracy of fθstudent
on

clean data as we presented in Section 5.2. We posit that this phenomenon arises due to the some
clean data instances have losses below the threshold, and performing gradient ascent training on
these data reduces the classification accuracy of fθstudent

. Therefore, we introduce a weighting
method that dynamically assigns weights to data to determine their significance during training,
thereby mitigating the impact of gradient ascent training on the accuracy of fθstudent

. The weight
for each data in Dtrain is computed as follows:

L(θstudent) = E(x,y)∼Dtrain
(w(x,y) · ℓ(fθteacher

(x), y))),

s. t. w(x,y) =


ℓ(fθteacher

(x),y)

maxn
i=1(ℓ(fθteacher

(xi),yi))
, ℓ(fθteacher

(x), y) > γ)
β·(ℓ(fθteacher

(x),y)−γ)

maxn
i=1(ℓ(fθteacher

(xi),yi))
, ℓ(fθteacher

(x), y) ≤ γ),

(6)
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where the weight of data (x, y) is denoted as w(x,y) in the equation, the hyperparameter β determines
the importance of gradient ascent training relative to gradient descent training. Different from equa-
tion 5, equation 6 calculates L(θt) by considering the weight of each data point based on its loss
on fθteacher

. Compared to the solely unweighted gradient ascent training, even when some clean
data possess losses below the threshold and are assigned negative weights, their relatively lower
losses compared to most poisoned data result in lower absolute values of their negative weights.
Consequently, the impact on the clean accuracy of fθstudent

on clean data is limited.

5 EXPERIMENT

We evaluated our LfD defense method against seven dirty-label backdoor attacks and two clean-
label backdoor attacks on CIFAR-10(Krizhevsky, 2009), GTSRB(Stallkamp et al., 2012), and an
ImageNet subset(Deng et al., 2009). Specifically, dirty-label attacks include BadNets with white
square pattern (referred to as BN-W)(Gu et al., 2017), BadNets with grid square pattern (referred to
as BN-G)(Gu et al., 2017), Trojan attack with square pattern (referred to as TJ-SQ)(Liu et al., 2017),
Trojan attack with watermark pattern (referred to as TJ-WM)(Liu et al., 2017), l2-Invisible attack
(referred to as L2)(Li et al., 2020a), Dynamic attack (Nguyen & Tran, 2020), Blend attack (Chen
et al., 2017), and clean-label attacks include Sinusoidal signal attack (referred to as SIG) (Barni et al.,
2019) and Clean-Label attack (referred to as CL) (Turner et al., 2018). Detailed configurations of
each backdoor attack are provided in Appendix A.1.

On the CIFAR-10 and ImageNet-subset dataset, we set α = 0.15 and β = 1e− 3, while on the GT-
SRB dataset, we set α = 0.2 and β = 3e − 3. We employed ResNet-S as fθteacher

across all three
datasets and utilized ResNet-18 as fθstudent

on CIFAR-10 and GTSRB, while on the ImageNet-
subset, we employed ResNet-34 as fθstudent

. During the fine-tuning of fθteacher
, no data augmen-

tation is applied. For the training of fθstudent
, we employ random cropping and random horizontal

flipping as data augmentation. We compare LfD with three state-of-the-art defense methods: Fine-
pruning (FP)(Liu et al., 2018), Activation-Cluster (AC)(Chen et al., 2019a), and Anti-Backdoor
Learning (ABL)(Li et al., 2021). For FP, AC, and ABL, we follow the configurations specified in
their original papers, including the use of available clean data for fine-tuning/repair/training settings.
Further defense details can be found in the appendix A.2.

Metrics We employ two metrics to evaluate the effectiveness of LfD. The first one is Clean Accuracy
(CA), which measures the accuracy of fθstudent

in classifying clean test data. The second metric is
Attack Success Rate (ASR), which quantifies the probability of fθstudent

classifying poisoned test
data as the target label.

5.1 EFFECTIVENESS OF OUR LFD DEFENSE

Table 1 presents the LfD results on the CIFAR-10, GTSRB, and ImageNet-subset datasets. Evi-
dently, our LfD demonstrates optimal performance in reducing ASR while maintaining a high CA
in most backdoor attacks. Compared to the best-performing defense method ABL, our LfD reduces
the average ASR by 7.68% (0.52% vs. 8.20%), 7.86% (11.31% vs. 19.17%), and 36.10% (1.42%
vs. 37.52%) on CIFAR-10, GTSRB, and the ImageNet-subset datasets, respectively. This advantage
becomes more pronounced compared to other defense methods.

We note that our LfD is not always the best when considering each attack individually. For instance,
ABL exhibits the best defense against TJ-WM and Dynamic attacks on GTSRB. We suspect that
this is due to the similarity between the triggers used in these two attacks and the feature of normal
images. We suspect this is because even clean data may contain patterns similar to the trigger,
making the detection of poisoned data more challenging (Zhao et al., 2021). If LfD fails to identify
the majority of poisoned data, its defense effectiveness will be weakened. This limitation represents
one of the shortcomings of our LfD approach and requires further improvement in future work.

Maintaining CA and reducing ASR are equally important, as significant degradation of CA suggests
difficulties in correctly classifying clean data, rendering the method impractical. By examining the
results in Table 1, we can observe that our LfD achieves higher CA than other defense methods
in most scenarios. Specifically, our LfD outperforms ABL in terms of average CA on CIFAR-10,
GTSRB, and ImageNet-subset by 5.56% (92.09% vs. 86.53%), 4.79% (93.42% vs. 88.63%), and
4.91% (90.97% vs. 86.06%), respectively. This demonstrates the practicality of our LfD defense for
industrial applications where performance and security are equally important.
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Table 1: Defense effectiveness of various defense methods on different backdoor attack methods. In
the table, “No Defense” means no attack is applied, and “None” means no defense is applied.

Dataset Attack
Type

No Defense Fine-prune AC ABL LfD
CA ASR CA ASR CA ASR CA ASR CA ASR

CIFAR-10

BN-G 91.51% 100% 85.22%99.98% 91.17% 100% 91.49% 0.51% 92.62% 0.18%
BN-W 91.89%99.95%82.67%98.71% 91.29% 92.57% 89.98% 3.26% 92.01% 0.45%
Blend 92.01%99.98%83.12%85.62% 91.44% 99.85% 77.57% 44.18% 92.43% 3.38%
TJ-SQ 92.95% 100% 83.90%66.87% 94.24% 99.96% 92.09% 0.36% 92.17% 0.27%

TJ-WM 92.89% 100% 85.42%61.02% 92.38% 99.32% 90.18% 0.04% 91.76% 0.02%
Dynamic92.70%99.95%90.49%87.18% 83.32% 100% 90.71% 7.94% 91.14% 0.55%

CL 92.73%94.92%84.09%54.95% 92.17% 0.56% 83.42% 0.70% 92.42% 0.64%
SIG 93.15%92.16%84.76%76.32% 65.77% 87.37% 89.48% 6.12% 92.41% 0.40%
L2 92.98%99.96%81.53%80.57% 90.48% 97.91% 73.92% 10.71% 91.88% 0.11%

None 92.64% 0% 88.56% 0% 92.45% 0% 73.27% 0% 91.68% 0%

GTSRB

BN-G 96.13% 100% 88.53%99.57% 96.41% 100% 86.44% 4.02% 95.22% 0.02%
Blend 95.42% 100% 85.90%99.50% 96.28% 80.84% 82.09% 11.36% 92.31% 3.86%
TJ-SQ 95.42%99.95%84.21%93.54% 96.28% 99.91%96.25%16.06% 93.84% 25.70%

Dynamic96.35%99.92%88.38%99.84% 95.96% 99.96%96.67% 5.57% 88.39% 2.76%
CL 95.88%43.85%89.71%59.26% 87.06% 83.45% 81.82% 26.29% 95.62% 0.02%
SIG 95.85%67.87%90.66%78.07% 79.60% 95.79% 88.54% 4.63% 95.17% 4.45%

None 96.90% 0% 90.14% 0% 90.46% 0% 83.95% 0% 93.53% 0%

ImageNet
subset

BN-G 88.76% 100% 82.13%43.07% 89.09% 99.83% 89.55% 3.57% 91.19% 0.31%
BN-W 89.13%88.71%83.49%48.15% 87.66% 79.01% 85.73% 31.29% 89.09% 3.01%
Blend 91.54%99.69%84.79%98.77% 90.80% 17.59% 84.44% 79.16% 89.83% 2.17%

CL 92.41%79.76%82.30%59.72% 87.94% 80.59% 83.06% 36.05% 90.07% 0.17%
None 91.96% 0% 86.36% 0% 87.41% 0% 87.52% 0% 94.69% 0%

5.2 ABLATION STUDIES

To gain a deeper understanding of LfD, we conducted a series of ablation experiments to elucidate
the impact of hyperparameters, capacity of fteacher, gradient ascent training, and dynamic discrim-
ination method on LfD.

(a) Effect of fθteacher (b) Effect of α (c) Effect of β

Figure 4: The influence of the capacity of fθteacher
, along with the hyperparameters α and β, on the

CA and ASR of fθstudent
.

Effect of Hyperparameter α The variable α controls the amount of data used in gradient ascent
training. We present the performance of fθstudent

under four different settings in Figure 4b, where
α takes values of 1, 10, 15, and 50, respectively. The results demonstrate that a higher α leads to a
better defense against backdoor attacks in LfD, as more poisoned data are isolated during training.
However, we observed that increasing α also leads to a loss in CA, as more clean data in the gradient
ascent training process can affect the model’s performance.

Effect of Hyperparameter β The variable β controls the importance of gradient ascent training
relative to gradient descent training. We present the performance of fθstudent

under four different
settings in Figure 4b, where β takes values of 0, 1e-4, 1e-3, and 1e-2. The results demonstrate that a

8



Under review as a conference paper at ICLR 2024

higher β leads to a lower ASR as the intensity of gradient ascent training on poisoned data increases.
However, we note that a high β may also result in a loss of CA, as gradient ascent training on some
clean data is also intensified.

Effect of fθteacher
’s capacity The capacity of fθteacher

influences the complexity of features it is
capable of learning. We present in Figure 4a the CA and ASR of fθstudent

when utilizing four
distinct models as fθteacher

. The models employed are all derived from ResNet architecture,they are
ResNet-S1(RN-S1)<ResNet-S(RN-S)<ResNet-S2(RN-S2)<ResNet-18(RN-18), and their detailed
structures are provided in Appendix A.3. The results indicate that when the capacity of fθteacher

is high, its capacity to learn complex features is enhanced. This results in a significant number of
clean data instances having losses similar to those of poisoned data, subsequently prompting LfD
to engage in gradient ascent training on a large number of clean data. Consequently, the CA of
fθstudent

diminishes. Conversely, when fθteacher
has a excessively low capacity, its aptitude to learn

features becomes exceedingly feeble, rendering it challenging to learn clean data and the majority of
poisoned data. This results in the majority of clean and poisoned data have high losses. As a result,
many poisoned data is either assigned positive weights or weights close to zero. Hence, the CA and
ASR of fθstudent

remain largely unaffected.

Gradient ascent training and dynamic discrimination method To aid in understanding the impact
of gradient ascent training and dynamic discrimination methods in LfD, we present in Figure 5 the
CA and ASR of fθstudent

trained on three Dtrain poisoned by BN-G, Blend and SIG separately, un-
der three different scenarios with α set to 0.15: (a) training without gradient ascent, (b) training with
gradient ascent while not utilizing dynamic discrimination strategy, and (c) training with gradient
ascent while utilizing dynamic discrimination strategy for data weighting. Evidently, applying the
gradient ascent training method can effectively reduce the ASR of fθstudent

, however, training with
gradient ascent on isolated data indiscriminately can also lead to a decrease in CA. Compared to the
solely unweighted gradient ascent training, utilizing dynamic discrimination strategy can lead to an
enhancement in CA. This indicates that the gradient ascent training method can effectively suppress
the insertion of backdoors, while the dynamic discrimination method can reduce the damage to the
CA of fθstudent

.

(a) CA of fθstudent (b) ASR of fθstudent

Figure 5: CA and ASR of fθstudent
trained on three Dtrain poisoned by BN-G, Blend and SIG

separately under: (a) training without gradient ascent, (b) training with gradient ascent cf. Eq. 5
(GA), and (c) training with weighted gradient ascent cf. Eq. 6 (WGA).

6 CONCLUSION

In this work, we show the impact of model capacity on the distinction of the loss value between
backdoored and clean data during training can be utilized to identify the poisoned data from a poi-
soned dataset. Based on this observation, we proposed a training-time backdoor defense method
called Learning from Distinction (LfD), which employs a low-capacity teacher model to guide the
training process of the student model by dynamically weighting the training data and thereby obtain-
ing a clean student model. With extensive experiments, LfD demonstrated excellent performance in
the robust training of neural networks against 9 state-of-the-art backdoor attacks.

9
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A IMPLEMENTATION DETAILS OF BACKDOOR ATTACKS AND DEFENSE

In this section, we describe the experimental setup used in applying various backdoor attack and
backdoor defense methods.

A.1 ATTACK DETAILS

We utilized the Adam optimizer with an initial learning rate of 0.001, zero weight decay, and Ran-
dom Crop (padding = 4) with Random Horizontal Flip for data augmentation when training models
on the poisoned trainsets. The CosineAnnealing learning rate decay scheduler was applied for 80
training epochs. The target class for all backdoor attacks on CIFAR-10 and GTSRB datasets was
uniformly designated as ’1’, whereas on the ImageNet-subset dataset, the target class for all back-
door attacks was consistently set to ’0’. To ensure the success rate of CL and Signal attacks on the
GTSRB dataset, we increased the injection rate to 9.5% instead of 8%. The specifics of the backdoor
triggers are summarized in Table 2.

Table 2: Training setup for six backdoor attacks.

Attacks Trigger Type Trigger Patten Inject Ratio
BN Fixed Grid 10%

Blend Fixed Random Pixel 10%
TJ Fixed Reversed Watermark 10%

Dynamic Varied Mask Generator 10%
L2 Fixed Regularized Gaussian Noise 10%
CL Fixed Grid and PGD Noise 8%(other datasets) 9.5%(GTSRB)
SIG Fixed Sinusoidal Signal 8%(CIFAR-10) 9.5%(GTSRB)

A.2 DEFENSE DETAILS

For the ABL defense, we first trained the fθteacher
model for 20 epochs with a learning rate of

0.1 on CIFAR-10, ImageNet-subset and 0.01 on GTSRB, before reaching the turning epoch. Once
we identified 1% of potential backdoor examples, we continued training the fθstudent

model for an
additional 60 epochs on the entire training dataset, which helped to recover the model’s classification
accuracy. During the final 20 epochs, we trained the fθstudent

model using the LGGA loss with the
1% isolated backdoor examples and a learning rate of 0.0001. As for the Fine-pruning (FP) defense,
we pruned the last convolutional layer of the fθstudent

model until its CA became similar to that of
the other defense baselines.

We utilized the activation clustering defense method from Trojan-zoo’s open-source code. Firstly,
we trained fθteacher

for 80 epochs without data augmentation on the ResNet-18 architecture with
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the poisoned trainset. Then, we extracted the activation values of all data in layer 4 of the training
dataset and applied the K-means clustering algorithm to cluster them into two clusters. Finally, we
trained a new model from scratch using the cluster with more data. All defense methods were trained
with Random Crop (padding = 4) and Random Horizontal Flip.

A.3 MODEL ARCHITECTURE

We employed various models in our experiments. In this section, we describe the architectures of
all the small-size models we used.

We based our modifications on the ResNet architecture, altering the number of neurons and blocks
to create ResNet-S, ResNet-S1, and ResNet-S2. For ResNet-S, ResNet-S1, and ResNet-S2, the first
four layers consist of only one block each. In ResNet-S, these blocks contain 2, 2, 2, and 4 neurons
respectively. For ResNet-S1, each block in the first four layers contains 1 neuron. In the case of
ResNet-S2, the number of neurons in the blocks of the first four layers are 64, 128, 256, and 512
respectively.

For the VGG network, we modified the number of neurons in each convolutional layer to obtain the
VGG-S network. Specifically, in the VGG-S network, the number of neurons in each convolutional
layer are set as 4, 8, 16, 16, 32, 32, 32, and 512, respectively.

Finally, we made modifications to the MobileNetV2 network and obtained the MobileNetV2-S net-
work. MobileNetV2-S consists of 2 bottlenecks, where bottleneck 1 contains 1 block with 3 con-
volutional layers, and the number of neurons in each layer is 4, 4, and 8 respectively. Bottleneck 2
contains 2 blocks, each with 3 convolutional layers, and the number of neurons in the two blocks’
convolutional layers are 4, 4, 8 and 8, 8, 8 respectively. In addition, there are 2 convolutional layers
outside the bottleneck, where the number of neurons is 4 and 16 respectively.

A.4 EXPLORATION ACROSS VARIOUS MODEL ARCHITECTURES

(a) LeNet (b) VGG-19 (c) MobileNetV2

(d) LeNet-S (e) VGG-S (f) MobileNetV2-S

Figure 6: The training loss of clean data and poisoned data on multiple model architectures, where
the poisoned data are generated by BadNets backdoor attack and the models are constructed based
on VGG, LeNet and MobileNet, their detiled informations are presented in appendix A.3. The
experiments were conducted on the CIFAR-10 dataset with a poisoning rate of 10%.

We constructed low-capacity models on several other model architectures (described in detail in
Appendix A.3) for additional exploration. As shown in Figure 6, the results indicate that the distinc-
tion in average loss between poisoned and clean data is consistently greater in low-capacity models
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compared to high-capacity models. This suggests that this phenomenon is prevalent across various
model architectures.
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