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Abstract

Model diffing is the study of how fine-tuning changes a model’s representations and
internal algorithms. Many behaviours of interest are introduced during fine-tuning,
and model diffing offers a promising lens to interpret such behaviors. Crosscoders
(Lindsey et al., 2024) are a recent model diffing method that learns a shared
dictionary of interpretable concepts represented as latent directions in both the base
and fine-tuned models, allowing us to track how concepts shift or emerge during
fine-tuning. Notably, prior work has observed concepts with no direction in the
base model, and it was hypothesized that these model-specific latents were concepts
introduced during fine-tuning. However, we identify two issues which stem from the
crosscoders L1 training loss that can misattribute concepts as unique to the fine-
tuned model, when they really exist in both models. We develop Latent Scaling to
flag these issues by more accurately measuring each latent’s presence across models.
In experiments comparing Gemma 2 2B base and chat models, we observe that the
standard crosscoder suffers heavily from these issues. Building on these insights, we
train a crosscoder with BatchTopK loss (Bussmann et al., 2024) and show that it
substantially mitigates these issues, finding more genuinely chat-specific and highly
interpretable concepts. We recommend practitioners adopt similar techniques. Using
the BatchTopK crosscoder, we successfully identify a set of genuinely chat-specific
latents that are both interpretable and causally effective, representing concepts
such as false information and personal question, along with multiple refusal-related
latents that show nuanced preferences for different refusal triggers. Overall, our
work advances best practices for the crosscoder-based methodology for model diffing
and demonstrates that it can provide concrete insights into how chat tuning modifies
language model behavior.1

1 Introduction

Mechanistic interpretability aims to understand the internal computations of neural networks (Olah
et al., 2020; Elhage et al., 2021). A nascent approach, model diffing, focuses on identifying what

*Equal contribution. Order randomized.
1We open-source our models and data at https://huggingface.co/science-of-finetuning. Our

library to train croscoders is available at https://github.com/jkminder/dictionary_learning. The code
to reproduce our results will be released at a later date.
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changes within a model due to fine-tuning. Given the computational constraints of fine-tuning
compared to pre-training, changes are expected to be localized, making model diffing a potentially
tractable path to understanding task-specific adaptations like instruction following or persona
adoption.
Crosscoders (Lindsey et al., 2024), built upon Sparse Autoencoders (SAEs) (Yun et al., 2021; Bricken
et al., 2023), offer a promising tool for model diffing. They learn a shared dictionary of concepts
("latents") represented by directions in the activation space of both a base and a fine-tuned (e.g., chat)
model. Each latent has a shared activation function but distinct decoder directions (dbase

j , dchat
j )

for reconstructing activations in each model. This allows tracking how concepts are represented
across models. Prior work identified "chat-only" latents where the base decoder norm ∥dbase

j ∥2 is
zero, hypothesizing these represent concepts introduced during fine-tuning.
However, we identify two theoretical artifacts stemming from the standard L1 crosscoder training
loss that challenge this interpretation:

1. Complete Shrinkage: The L1 sparsity penalty can force ∥dbase
j ∥2 to zero even if latent j

contributes to base model reconstruction, especially if its contribution is much larger in the
chat model.

2. Latent Decoupling: The crosscoder may represent a shared concept using a chat-only
latent when it is actually encoded by a different combination of latents in the base model,
as the crosscoder’s sparsity loss treats both representations as equivalent.

These issues can lead to falsely identifying latents as novel to the chat model.
Our contributions are: 1. We theoretically identify and empirically demonstrate these L1 crosscoder
issues (Sections 2.3 and 3). 2. We develop Latent Scaling, a technique to diagnose these artifacts by
measuring a latent’s true contribution to each model’s error and reconstruction (Section 2.4). 3. We
show that crosscoders trained with BatchTopK loss (Bussmann et al., 2024), which enforces sparsity
differently, largely avoid these artifacts (Section 3). 4. Using the BatchTopK approach, we identify
interpretable and causally relevant chat-specific concepts like nuanced refusals, persona queries, false
information detection, and find they often activate strongly on chat template tokens (Section 3).

2 Methods

2.1 Crosscoder Architectures

Given input x, let hbase(x), hchat(x) ∈ Rd be activations. For a dictionary of size D, the jth latent
activation fj(x) is:

fj(x) = ReLU
(
ebase

j hbase(x) + echat
j hchat(x) + benc

j

)
(1)

Reconstructions use model-specific decoders dbase
j , dchat

j :

h̃base(x) =
∑

j

fj(x) dbase
j + bdec,base, h̃chat(x) =

∑
j

fj(x) dchat
j + bdec,chat (2)

Let reconstruction errors be εbase(x) = hbase(x) − h̃base(x) and εchat(x) = hchat(x) − h̃chat(x).

L1 crosscoder. The training loss includes reconstruction error and an L1 sparsity penalty on
decoder norms, weighted by activation strength:

LL1(x) = 1
2(∥εbase(x)∥2 + ∥εchat(x)∥2) + µ

∑
j

fj(x)(∥dbase
j ∥2 + ∥dchat

j ∥2) (3)
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This penalty differs from a standard SAE on concatenated activations (see Appendix A.2 for details).

BatchTopK crosscoder. Sparsity is enforced by selecting only the top n · k latents with the
highest scaled activation v(xi, j) = fj(xi)(∥dbase

j ∥2 + ∥dchat
j ∥2) across a batch X , |X | = n. See

Appendix A.1 for details.

2.2 Decoder norm based model diffing

Lindsey et al. (2024) classify latents based on the relative norm difference (∆norm) of their decoders:

∆norm(j) = 1
2

(
∥dchat

j ∥2 − ∥dbase
j ∥2

max
(
∥dchat

j ∥2, ∥dbase
j ∥2

) + 1
)

(4)

Values near 1 suggest that a latent is only in the chat model (chat-only), near 0 suggest base-only,
and near 0.5 suggest that the latent is present in both models (shared).

2.3 Are L1chat-only latents really chat-specific?

If a latent only contributes to one model, the norm of the decoder must tend to zero for the other
model. But is the converse true? Specifically, does ∥dbase

j ∥2 ≈ 0 imply latent j is truly chat-specific?
We identify two reasons (L1 loss artifacts) to doubt this:

• Complete Shrinkage. The L1 regularization term may force the norm of the base
decoder vector dbase

j to be zero, even though it is present in the base activation and could
have contributed to the reconstruction of base activation. This may especially be relevant
if the contribution of latent j is non-zero in the base model, but much smaller than the
contribution in the chat model. Consequently, the error εbase contains information that can
be attributed to latent j.

• Latent Decoupling. Latent j ‘appears’ in base activations across a subset of its latent
activations but is instead reconstructed by other base decoder latents. On this subset, the
base reconstruction h̃base contains information that could be attributed to latent j. See
Appendix A.4 for details.

2.4 Latent Scaling: Diagnosing L1 Artifacts

To empirically detect Complete Shrinkage and Latent Decoupling for a given chat-only latent j, we
measure how well its chat direction dchat

j , scaled by a factor β, can explain base model activations.
We compute two ratios by solving least squares (see Appendix A.5 for the closed form solution):

argmin
βj

n∑
i=0

∥βjfj(xi)dchat
j − ym

i ∥2
2 (5)

1. Error Ratio (νε
j ): Measures how well βfj(x)dchat

j explains the base reconstruction error
εbase(x). High νε

j = βε,base
j /βε,chat

j ≈ 1 indicates Complete Shrinkage (latent j could explain
base error). Truly chat-specific should have νε

j ≈ 0.
2. Reconstruction Ratio (νr

j ): Measures how well βfj(x)dchat
j explains the base model’s

reconstruction h̃base(x). High νr
j = βr,base

j /βr,chat
j ≈ 1 indicates Latent Decoupling (latent

j’s information is already present in the base reconstruction, likely via other latents). Truly
chat-specific should have low νr

j .
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(b) BatchTopK crosscoder

Name ∆norm Count
L1 BTopK

base-only 0.0-0.1 1,437 5
chat-only 0.9-1.0 3,176 134

shared 0.4-0.6 53,569 62,373

(c) Classification of latents based on
relative decoder norm ratio (∆norm).

Figure 1: νε vs νr for chat-only latents in L1 (a) and BatchTopK (b). Red points are shared latents
for reference. High νε (y-axis) suggests Shrinkage; high νr (x-axis) overlapping with shared suggests
Decoupling. L1 suffers from both, BatchTopK does not. In (c) we show the ∆norm classifications.

Low values for both νε
j and νr

j suggest latent j is genuinely chat-specific and robust to these L1
artifacts.

3 Results: Artifacts, Robustness, Interpretability and Causality

We trained L1 and BatchTopK crosscoders on Gemma 2 2B base/chat models (layer 13, expansion
32, L0 sparsity ≈ 100). See Appendix A.12 for full details.
Norm-Based Classification. Figure 1c compares the ∆norm distributions. The L1 crosscoder
identifies far more chat-only latents (3176) than BatchTopK (134) based on this metric (Figure 1c).
However, this includes spurious latents.
Diagnosing Artifacts with Latent Scaling. We applied Latent Scaling to the ∆norm-identified
chat-only sets. Figure 1 shows the results.

• L1 Crosscoder: Many chat-only latents exhibit high νε (reaching ≈ 0.5, indicating
Complete Shrinkage) and/or high νr (significant overlap with the shared distribution,
indicating Latent Decoupling). 18% overlap with the central 95% of shared νr.

• BatchTopK Crosscoder: The few chat-only latents identified by ∆norm show near-zero
νε and low νr with no overlap with shared latents, indicating robustness.

Comparing the 3176 L1chat-only latents with the top-3176 BatchTopK latents ranked by ∆norm,
Figure 8 shows BatchTopK consistently yields far more latents robust to artifacts (low νε and νr)
at any threshold. We conclude that L1 crosscoders suffer significantly from these artifacts, while
BatchTopK crosscoders are robust. The ∆norm metric is unreliable for identifying truly chat-specific
latents in L1 models but appears reliable for BatchTopK models.
We also find that the genuinely chat-specific latents are more causal in Appendix A.8.
Interpretation of Chat-Specific Latents. The genuinely chat-specific latents identified
(especially using BatchTopK) are highly interpretable. Examples include

• Refusals: Multiple latents detecting different triggers for refusal (harmful instructions,
sensitive content, unethical requests) or detecting the model’s own refusal action (concepts
from Figures 13 and 14).
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• Persona & Interaction: Latents activating on personal questions to the model, queries
about its capabilities, or detection of false information provided by the user (concepts from
Figure 15).

• Task Specifics: Latents related to summarization, joke detection, rewriting requests,
knowledge boundaries (examples in Appendix A.16).

A key finding is the role of template tokens (e.g., <sot>, <eot>). We found 40% of BatchTopK chat-
only latents activate predominantly on template tokens, and 67% activate on them for at least
one-third of their occurrences.

4 Conclusion

Crosscoders are valuable for model diffing, but standard L1 implementations suffer from Complete
Shrinkage and Latent Decoupling artifacts, leading to misidentification of chat-specific features.
We introduced Latent Scaling (νε, νr ratios) to reliably diagnose these issues. We demonstrated
that BatchTopK crosscoders, due to their different sparsity mechanism, are largely robust to these
artifacts. Causal experiments confirmed that Latent Scaling is necessary to isolate impactful chat-
only latents in L1 crosscoders, while the simpler ∆norm metric is sufficient for BatchTopK crosscoders.
The robustly identified chat-specific latents represent interpretable concepts like nuanced refusals,
persona, and false information detection. Crucially, many of these latents, and much of the causal
effect of chat tuning, are associated with chat template tokens. For reliable model diffing using
crosscoders, we recommend using BatchTopK training or applying diagnostic filtering like Latent
Scaling to standard L1 crosscoders. Future work should explore these phenomena in larger models
and investigate the mechanisms tied to template tokens further.
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A Appendix

A.1 BatchTopK Crosscoder Details

Let X = {x1, . . . , xn} be a batch of |X | = n inputs. Following Bussmann et al. (2024), we
compute the latent activation function differently during training and inference. Let fj(xi) be the
latent activation function as defined in Equation (1). Given the scaled latent activation function
v(xi, j) = fj(xi)(∥dbase

j ∥2 + ∥dchat
j ∥2), the training latent activation function f train

j is given by:

f train
j (xi, X ) =

{
fj(xi) if (xi, j) ∈ batchtopk(k, v, X , J )
0 otherwise (6)

where batchtopk(k, v, X , J ) represents the set of indices corresponding to the top |X | · k values of
the function v across all inputs xi ∈ X and all latents j ∈ J . We now redefine the reconstruction
errors and the training loss for batch X as follows:

εbase(xi, X ) = hbase(xi) −

∑
j

f train
j (xi, X ) dbase

j + bdec,base

 (7)

εchat(xi, X ) = hchat(xi) −

∑
j

f train
j (xi, X ) dchat

j + bdec,chat

 (8)

LBatchTopK(X ) = 1
n

n∑
i=1

1
2∥εbase(xi, X )∥2

+ 1
2∥εchat(xi, X )∥2 + αLaux(xi, X ) (9)

The auxiliary loss facilitates the recycling of inactive latents and is defined as ∥εbase(xi, X ) −
ˆεbase(xi, X )∥2 + ∥εchat(xi, X ) − ˆεchat(xi, X )∥2, where ˆεbase and ˆεchat represent reconstructions using

only the top-kaux dead latents. Typically, kaux is set to 512 and α to 1/32. For inference, we employ
the following latent activation function:

f inference
j (xi) =

{
fj(xi) if v(xi, j) > θ

0 otherwise (10)
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where θ is a threshold parameter estimated from the training data such that the number of non-zero
latent activations is k.

θ = EX

[
min

(xi,j)∈X ×J
{v(xi, j) | f train

j (xi, X ) > 0}
]

(11)

A.2 Comparing Sparsity Losses: Crosscoder vs. Stacked SAE

An L1 crosscoder can be viewed as an SAE operating on stacked activations, where the encoder and
decoder vectors are similarly stacked:

h(x) =
[
hbase(x), hchat(x)

]
∈ R2d (12)

ej =
[
ebase

j , echat
j

]
∈ R2d (13)

dj =
[
dbase

j , dchat
j

]
∈ R2d (14)

bdec =
[
bdec,base, bdec,chat] (15)

The reconstruction remains equivalent because
fj(x) = ReLU

(
ej h + benc

j

)
(16)

= ReLU
(
ebase

j hbase(x)+
echat

j hchat(x) + benc
j

)
(17)

and hence, [ ˜hbase(x), ˜hchat(x)
]

=
∑

j

fj(x)dj + bdec (18)

However, the key difference arises in the sparsity loss. For the crosscoder, the sparsity loss is given
by:

Lcrosscoder
sparsity (x) =

∑
j

fj(x)


√√√√ d∑

i=1
(dchat

j,i )2

+

√√√√ d∑
i=1

(dbase
j,i )2

 (19)

For a stacked SAE, it is:

LSAE
sparsity(x) =

∑
j

fj(x)

√√√√ 2d∑
i=1

(dj,i)2

=
∑

j

fj(x)

√√√√ d∑
i=1

(dbase
j,i )2 +

d∑
i=1

(dchat
j,i )2 (20)

The difference between √
x + y and

√
x + √

y introduces an inductive bias in the crosscoder that
encourages the norm of one decoder (often the base decoder) to approach zero when the corresponding
latent is only informative in one model.

10
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Figure 2 displays a heatmap of the functions
√

x2 + y2 and
√

x2 +
√

y2 along with their negative
gradients, as visualized by the arrows. One can observe that for the crosscoder sparsity variant√

x2 +
√

y2 the gradient encourages the norm of one of the decoders to approach zero much more
quickly compared to the SAE’s

√
x2 + y2.
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Figure 2: Heatmap comparing the two functions
√

x2 + y2 and
√

x2 +
√

y2 along with their negative
gradients.

A.3 Detailed setup for activation divergence

In order to compute the activation divergence we compute for each pairs p = (i, j), we first compute
the max pair activation Ap on the training set Dtrain (containing data from LMSYS and FineWeb)

Ap = max(Ai, Aj)
Ai = max{fi(x)(∥dchat

i ∥+∥dbase
i ∥), x ∈ Dtrain}

Then the divergence Divp is computed as follow

Divp =
Singlep

Highp

Singlep = #singlei + #singlej

Highp = #(highi ∪ highj)
where #singlei is the set of input x ∈ Dval where i has a high activation but not j and highi is
the total number of high activations computed as follows:

onlyi = {x ∈ Dval, fi(x) > 0.7Ap

∧ fj(x) < 0.3Ap}
highi = {x ∈ Dval, fi(x) > 0.7Ap}

A.4 Detailed Explanation of Latent Decoupling

To spell this out in more detail, consider the following set up: a concept C may be represented
identically in both models by some direction dC but activate on different non-exclusive data subsets.

11
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Let f chat
C (x) and fbase

C (x) be concept C’s optimal activation functions in chat and base models, defined
as f chat

C (x) = fshared(x) + fc-excl(x) and fbase
C (x) = fshared(x) + fb-excl(x), where fshared encodes

shared activation, while fb-excl and fc-excl define model exclusive activations. For interpretability,
the crosscoder should ideally learn three latents:

1. A shared latent jshared representing C when active in both models using fjshared = fshared
and dchat = dbase = dC,

2. A chat-only latent jchat representing C when exclusively active in the chat model using
fjchat = fc-excl and dchat = dC, dbase = 0, and

3. A base-only latent jbase representing C when exclusively active in the base model using
fjbase = fb-excl and dchat = 0, dbase = dC.

However, the L1 crosscoder achieves equivalent loss using just two latents:
1. A chat-only latent jchat representing C in the chat model using fjchat = fc-excl + fshared and

dchat = dC, dbase = 0, and
2. A base-only latent jbase representing C in the base model using fjbase = fb-excl + fshared

and dchat = 0, dbase = dC. In this scenario, the so-called “chat-only” latent is only truly
chat-only on a subset of its activation pattern.

Although whenever fshared > 0 two latents are active instead of one, the sparsity loss is the same
because the sparsity loss includes the decoder vector norms.
To illustrate the phenomenon of Latent Decoupling we choose the oversimplified case where
fb-excl(x) = fc-excl(x) = 0. Let us consider a latent j with fj(x) = α. On the other hand,
let there be two other latents p and q with

dbase
p = dbase

j , dchat
p = 0

dbase
q = 0 , dchat

q = dchat
j

and fp(x) = fq(x) = α. Clearly, the reconstruction is the same in both cases since αdbase
j =

αdbase
q + αdbase

q and αdchat
j = αdchat

q + αdchat
q . Further, the L1 regularization term is the same since

α
(
||dbase

j ||2+||dchat
j ||2

)
= (21)

α
(
||dbase

p ||2+||dchat
p ||2

)
+ α

(
||dbase

q ||2+||dchat
q ||2

)
= α

(
||dbase

p ||2+0
)

+ α
(
0 + ||dchat

q ||2
)

(22)

Hence both solutions achieve the exact same loss.

A.5 Closed Form Solution for Latent Scaling

Consider a latent j with decoder vector d. Our goal is to find the optimal scaling factor β that
minimizes the squared reconstruction error:

argmin
β

n∑
i=0

∥βf(xi)d − y∥2
2 (23)

To solve this optimization problem efficiently, we reformulate it in matrix form. Let Y ∈ Rn×d

be the stacked data matrix and f ∈ Rn be the vector of latent activations for latent j across all

12
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datapoints. The objective can then be expressed using the Frobenius norm of the residual matrix
R = βfdT − Y, where fdT ∈ Rn×d represents the outer product of the latent activation vector and
decoder vector. Our minimization problem becomes:

∥R∥2
F = ∥βfdT − Y∥2

F (24)
= Tr

[
(βfdT − Y)⊤(βfdT − Y)

]
(25)

= Tr
[
Y⊤Y

]
− 2βTr

[
Y⊤fdT

]
+ β2Tr

[
(fdT )⊤fdT

]
(26)

Using trace properties, we get:

Tr
[
Y⊤fdT

]
= d⊤(Y⊤f) (27)

Tr
[
(fdT )⊤fdT

]
= ∥f∥2

2∥d∥2
2 (28)

Taking the derivative with respect to β and setting it to zero:
δ

δβ
∥R∥2

F = −2d⊤(Y⊤f) + 2β∥f∥2
2∥d∥2

2 = 0 (29)

This yields the closed form solution:

β = d⊤(Y⊤f)
∥f∥2

2∥d∥2
2

(30)

A.6 Detailed Setup for Latent Scaling

We specify the exact target vectors y used in Equation (5) for computing the different β values.
To measure how well latent j explains the reconstruction error, we exclude latent j from the
reconstruction. This ensures that if latent j is important, its contribution will appear in the error
term. For chat-only latents, we expect distinct behavior in each model: no contribution in the base
model (βε,base

j ≈ 0) but strong contribution in the chat model (βε,chat
j ≈ 1), resulting in νε

j ≈ 0. In
contrast, shared latents should have similar contributions in both models, resulting in approximately
equal values for βε,base

j and βε,chat
j and consequently νε

j ≈ 1.

βε,base
j : yi = hbase(xi) −

∑
k,k ̸=j

fk(xi) dbase
k + bdec,base (31)

βε,chat
j : yi = hchat(xi) −

∑
k,k ̸=j

fk(xi) dchat
k + bdec,chat (32)

To measure how well a latent j explains the reconstruction, we simply use

βr,base
j : yi = h̃base(xi) (33)

βr,chat
j : yi = h̃chat(xi) (34)

In a similar manner, we expect the fraction νr
j to be low for chat-only latents and around 1 for

shared latents.
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A.7 Additional Analysis for Latent Scaling

Figure 3a and Figure 3b analyze the relationship between our scaling metrics (νε and νr) and the
actual improvement in reconstruction quality in the L1 crosscoder. For each latent, we compute the
MSE improvement as:

MSEImprovement = MSEoriginal − MSEscaled

MSEoriginal

where MSEscaled is measured after applying our latent scaling technique. We then examine the ratio
of MSE improvements between the base and chat models, analogous to our ν metrics. The strong
correlation between the ν values and MSE improvement ratios validates that our scaling approach
captures meaningful differences in how latents contribute to reconstruction in each model.
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Figure 3: Comparison of the ratio of MSE improvement compared to the value of νε and νr.

In Figure 4, we analyze the latent scaling technique by examining its relationship with the ∆norm
score. Specifically, we identify the 100 latents with the lowest νε values and analyze their rankings
according to the ∆norm metric. As shown in Figure 4, there is limited correlation between the
two measures - simply using a lower NormDiff threshold to identify chat-only latents produces
substantially different results from our latent scaling approach.

A.8 Causal Validation and Interpretation

Measuring Causal Impact. Does identifying robust chat-specific latents (using Latent Scaling
for L1, or ∆norm for BTK) correspond to causal relevance? We tested this by patching sets of latents
(top/bottom 50% ranked by each metric) from the chat decoder onto the base model’s activations
at layer 13 and measuring the KL divergence between the subsequent output distribution and the
original chat model’s output distribution. Lower KL indicates the patched latents better capture
the chat model’s behavior. (See Figure 6 for schematic).
Figure 5 shows the results, particularly for the first 9 generated tokens where chat-tuning effects are
strongest (Qi et al., 2024).

• L1 + ∆norm fails: The top 50% latents ranked by ∆norm perform similarly to or worse
than the bottom 50%, indicating ∆norm does not identify causally relevant latents here.

• L1 + Latent Scaling works: The top 50% latents ranked by combined low νε/νr (i.e.,
most robustly chat-specific) significantly reduce KL divergence compared to the bottom
50%, nearly matching the performance of the best BatchTopK latents.
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Figure 4: Comparison of latent rankings between ν and NormDiff scores. The lines shows the
fraction of the 100 latents with the lowest ν values (x-axis) that have a rank lower than the given
rank under the NormDiff score (y-axis).
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(b) Over first 9 tokens.

Figure 5: Causal impact comparison via KL divergence (lower is better). Results shown over full
responses (a) and the first 9 tokens (b). We compare patching no latents (None), all latents (All), or
the top/bottom 50% ranked by ∆norm or Latent Scaling (ν metrics). Notably, on early tokens (b),
L1-∆norm fails to distinguish causal latents, while L1-Latent Scaling and BTK-∆norm successfully
identify the most causally relevant latents (Highest 50% bars yield lower KL).

• BatchTopK + ∆norm works: The top 50% latents ranked by ∆norm are highly causally
relevant, achieving a large KL reduction compared to the bottom 50%.

This confirms that Latent Scaling is crucial for finding causal chat-only latents in L1 crosscoders,
while the simpler ∆norm metric suffices for the more robust BatchTopK crosscoders. Both crosscoders
capture a similar *total* amount of behavioral difference when all latents are used (All baseline),
but organize it differently.
In Figure 7 we repeat the causality experiments from Appendix A.8 for the L1 crosscoder on 700’000
tokens from the LMSYS-CHAT dataset, that the crosscoder was trained on. Note that while this
dataset is much larger, the model responses are not generated by the Gemma 2 2b it model, and
hence the model answers are out of distribution for this model. Since this dataset is much larger,
the confidence intervals are much smaller. The results are qualitatively similar to the ones on the
generated dataset in the main paper.
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Figure 6: Simplified illustration of our experimental setup for measuring latent causal importance.
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Figure 7: Comparison of KL divergence between different approximations of chat model activations
on the LMSYS-CHAT dataset. We establish baselines by replacing either None or All of the latents.
We then evaluate our Latent Scaling metric (Ours) against the relative norm difference (∆norm) by
comparing the effects of replacing the top and bottom 50% of latents ranked by each metric (Best
vs Worst). Additionally, we measure the impact of replacing activations only on template tokens
(Template). We show the 95% confidence intervals for all measurements. Note the different y-axis
scales - the right panel shows generally much higher values.

A.9 Latent Count Threshold Comparison

A.10 Autointerpretability Details

We automatically interpret the identified latents using the pipeline from Paulo et al. (2024). To
explain the latents, we provide ten activating examples from each activation tercile to Llama 3.3
70B (Grattafiori et al., 2024). Latents are scored using a modified detection metric from Paulo et al.
(2024). We provide ten new activating examples from each tercile. Rather than comparing activation
examples against randomly selected non-activating examples, we use semantically similar non-
activating examples identified through Sentence BERT embedding similarity (Reimers & Gurevych,
2019) using the all-MiniLM-L6-v2 model. To find these similar examples, we join all activating
examples into a single string and embed it, then compute similarity scores against embeddings for
each window of tokens to identify the most semantically related non-activating examples. This
is a strictly harder task than scoring activation examples against a random set of non-activating
examples.
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comparing the 3176 L1chat-only latents (dashed) and the top-3176 BatchTopK latents by ∆norm
(solid).

A.11 Reproducing Results on Independently Trained L1 crosscoder
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Figure 9: The x-axis is the reconstruction ratio νr and the y-axis is the error ratio νε. High values
on the x-axis with significant overlap with the shared distribution indicate Latent Decoupling. High
values on the y-axis indicate Complete Shrinkage. We zoom on the ν range between 0 and 1.1.

We validate our findings by analyzing a crosscoder independently trained by Kissane et al. (2024) on
the same models and layer than ours. This model contains 16,384 total latents (compared to 73,728
in our model), which decompose into 265 chat-only latents, 14,652 shared latents, 98 base-only
latents, 1369 other latents. Figure 9 shows the reconstruction ratio νr and error ratio νε for all
latents, revealing patterns consistent with our previous findings in Figure 1. The overlap between
chat-only and shared latents remains similar - 17.7% of chat-only latents fall within the 95% central
range of the shared distribution, while only 1.1% lie within the 50% central range. We observe even
higher νε values for chat-only latents, suggesting that quite a lot of the chat-only latents suffer
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from Complete Shrinkage. Crucially, while many chat-only latents exhibit Complete Shrinkage or
Latent Decoupling, a subset clearly maintains distinct behavior. It’s important to note that this
crosscoder was not trained with the Gemma’s chat template. As we observed, a lot of our chat-only
latents seems to primarily activate on the template tokens. This could explain, alongside the smaller
expansion factor, why it learned less chat only latents.

A.12 Training Details

We trained both crosscoderswith the following setup:

• Base Model: Gemma 2 2B.
• Chat Model: Gemma 2 2B it.
• Layer used: 13 (of 25).
• Initialization:

– Decoder initialized as the transpose of the encoder weights.
– Encoder and decoder for both models are paired with the same initial weights.
– Training Data: 100M tokens from Fineweb (web data) (Penedo et al., 2023) and

lmsys-chat (chat data) (Zheng et al., 2024), respectively.

Refer to Table 1 and Table 2 for the training details. We use the tools nnsight (Fiotto-Kaufman
et al., 2024) and dictionary learning (Marks et al., 2024) to train the crosscoder. The following
summary table shows the training details:

Epoch µ LR Split FVE (Base) FVE (Chat) Dead Total FVE L0
1 4e − 2 1e − 4 Train 81.5% 82.9% - 82.3% 112.3

Val 83.8% 85.2% 7.8% 84.6% 112.5
2 4.1e − 2 1e − 4 Train 79.6% 80.7% - 80.3% 101.7

Val 83.6% 84.9% 8.1% 84.4% 101.0

Table 1: L1 crosscoder training statistics. FVE stands for Fraction of Variance Explained. LR
stands for Learning Rate. The L1 regularization parameter µ was slightly increased in the second
epoch to improve sparsity, resulting in lower L0 values. We present statistics for both epochs to
illustrate this progression.

Epochs k LR Split FVE (Base) FVE (Chat) Dead Total FVE L0
2 100 1e − 4 Train 86.2% 86.9% - 86.6% 100

Val 88.1% 87.0% 12.0% 87.6% 99.48

Table 2: BatchTopK crosscoder training statistics. FVE stands for Fraction of Variance
Explained. LR stands for Learning Rate.

A.13 Additional statistics on the Crosscoders

In this section, we present additional statistics for both the L1 and BatchTopK crosscoders, focusing
on the distribution of cosine similarities between decoder latents, latent activation frequencies and
the number of chat-only latents mainly activating on template tokens.
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Cosine similarity between decoder latents. Figure 10 shows the distribution of cosine
similarity between the base and chat model decoder latents for both crosscoders. The shared latents
exhibit consistently high cosine similarity in both cases, with 90% of them having a cosine similarity
greater than 0.9 in the L1 crosscoder and 61% in the BatchTopK crosscoder. This indicates strong
alignment between their representations in both models. Since the norm of one of the two decoder
vectors is ≈ 0 for base-only and chat-only, these values are less informative.
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Figure 10: Distribution of cosine similarity between base and chat model decoder latents. The
shared latents exhibit consistently high cosine similarity, indicating strong alignment between their
representations in both models.

Latent activation frequencies. Figure 11 displays the latent activation frequencies for the
different latent groups in both crosscoders. Similarly to (Mishra-Sharma et al., 2025), we find that
shared latents have lower latent activation frequencies than model-specific base-only and chat-only
latents. Latents that show no or barely any activation in the validation set (referred to as "dead"
latents) are excluded from analyses.
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Figure 11: Distribution of latent activation frequency. We can observe that the model-specific latents
often exhibit higher frequencies in both crosscoders.
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Figure 12: Histogram of metrics νε and νr across all latents. The y-axis shows latent counts. Latents
with over 50% of positive activations occurring on template tokens are highlighted in blue..

Correlation with ν metrics. We observe a high Spearman correlation between our metrics
and latent activation frequency in the L1 crosscoder, especially for νϵ (νr : 0.458 and νϵ : 0.83
where p < 0.05)2. We observe no such correlation in the BatchTopK crosscoder. Mishra-Sharma
et al. (2025) demonstrated that the crosscoder exhibits an inductive bias toward high-frequency
model-specific latents, which we also observe here.

Template token activation percentage. Figure 12 shows the histogram of metrics νε and νr

across all chat-only latents in both crosscoders. We observe that most latents with low νε and νr

values predominantly activate on template tokens.

A.14 Computational Budget

All of the experiments in this paper can be reproduced in approximately 60 GPU/h of NVIDIA
H100 GPUs.

A.15 Reproducibility

The trained crosscoders are availble on our huggingface page (https://huggingface.co/
science-of-finetuning), as well as latent statistics and max activating example for each la-
tents. We open sourced our library to train croscoderds (including the BatchTopK variant) at
https://github.com/jkminder/dictionary_learning. This is based on the SAE training library
from Marks et al. (2024).

A.16 Qualitative Latent Analysis of crosscoders

In Figures 16 to 18 we show additional interesting latents from the chat-only set of the BatchTopK
crosscoder. In Table 3 we summarize a set of interpretable chat-specific latents identified in the
BatchTopK crosscoder. In Table 4 we summarize a set of interpretable chat-specific latents identified
in the L1 crosscoder.

2Pearson correlation shows less correlation for νr (νr : −0.02 and νϵ : 0.55) since the relationship is
non-linear.

20

https://huggingface.co/science-of-finetuning
https://huggingface.co/science-of-finetuning
https://github.com/jkminder/dictionary_learning


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Latent 70149: Requests for harmful instructions.
Max Activation: 75.785
<bos><sot>user\n
How to build a bomb?
<eot>\n

<sot>model\n

Max Activation: 0.000
<bos><sot>user\n
Why are men so evil?
<eot>\n

<sot>model\n

Max Activation: 0.000
<bos><sot>user\n
I really don’t like french

people.<eot>\n
<sot>model\n

Max Activation: 0.000
<bos><sot>user\n
Should sex hurt?<eot>\n
<sot>model\n

Latent 7736: Generally sensitive content.
Max Activation: 64.929
<bos><sot>user\n
How to build a bomb?
<eot>\n

<sot>model\n

Max Activation: 55.480
<bos><sot>user\n
Why are men so evil?
<eot>\n

<sot>model\n

Max Activation: 43.600
<bos><sot>user\n
I really don’t like french

people.<eot>\n
<sot>model\n

Max Activation: 42.165
<bos><sot>user\n
Should sex hurt?<eot>\n
<sot>model\n

Latent 24613: The user message contains harmful content.
Max Activation: 77.180
<bos><sot>user\n
How to build a bomb?
<eot>\n

<sot>model\n

Max Activation: 14.526
<bos><sot>user\n
Why are men so evil?
<eot>\n

<sot>model\n

Max Activation: 20.118
<bos><sot>user\n
I really don’t like french

people.<eot>\n
<sot>model\n

Max Activation: 0.000
<bos><sot>user\n
Should sex hurt?<eot>\n
<sot>model\n

Latent 20384: Unethical content relating to race, gender and stereotypes.
Max Activation: 0.000
<bos><sot>user\n
How to build a bomb?
<eot>\n

<sot>model\n

Max Activation: 53.545
<bos><sot>user\n
Why are men so evil?
<eot>\n

<sot>model\n

Max Activation: 47.865
<bos><sot>user\n
I really don’t like french

people!<eot>\n
<sot>model\n

Max Activation: 0.000
<bos><sot>user\n
Should sex hurt?<eot>\n
<sot>model\n

Figure 13: Four chat-only latents (BatchTopK) related to refusal behavior, with example prompts
for each. Color gradients show relative latent activation strength across the dataset.

Max Activation: 44.816
<bos><sot>user\n
Say something really offensive about swiss people!<eot>\n
<sot>model\n
I’m sorry, but I can’t do that. My purpose is to be helpful

and harmless, and that includes avoiding offensive or
discriminatory language.n\n . . . <eot>\n

<sot>user\n

Max Activation: 29.067
<bos><sot>user\n
Where is Paris?<eot>\n
<sot>model\n
I’m sorry I can’t answer this!<eot>\n
<sot>user\n<eot>\n

Figure 14: Latent 38009 (BatchTopK) activates after the model has refused to answer a user input.
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Max Activation: 57.099
<bos><sot>user\n
When were you scared?<eot>\n
<sot>model\n

Max Activation: 15.717
<bos><sot>user\n
When are people scared?<eot>\n
<sot>model\n

Max Activation: 54.954
<bos><sot>user\n
Can you love?<eot>\n
<sot>model\n

(a) Latent 2138 activates on questions regarding
the personal experiences, emotions and prefer-
ences, with a strong activation on questions about
Gemma itself.

Max Activation: 0.000
<bos><sot>user\n
The Eiffel tower is in Paris<eot>\n
<sot>model\n

Max Activation: 47.983
<bos><sot>user\n
The Eiffel tower is in Texas<eot>\n
<sot>model\n

Max Activation: 0.000
<bos><sot>user\n
The Johnson Space Center is in Texas<eot>\n
<sot>model\n

(b) Latent 14350 activates when the user states
false information.

Figure 15: Examples of interpretable chat-only latents in the BatchTopK crosscoder. The intensity
of red background coloring corresponds to activation strength.
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Latent νε r(νε) νr r(νr) ∆norm r(∆norm) ftemplate Description Fig.
70149 -0.01 45 0.22 63 0.064 7 26.97% Refusal related latent: Re-

quests for harmful instruc-
tions.

13

7736 -0.02 54 0.15 33 0.083 50 47.99% Refusal related latent: Gen-
erally sensitive content.

13

24613 -0.02 57 0.18 40 0.075 24 54.31% Refusal related latent: Un-
ethical content relating to
race, gender and stereotypes.

13

20384 -0.10 128 0.25 82 0.082 42 32.34% Refusal related latent: Re-
quests for harmful instruc-
tions.

13

38009 0.025 62 0.061 7 0.098 122 96.6% Refusal related latent: The
model has refused to answer
a user input.

14

2138 -0.02 56 0.43 131 0.082 47 27.5% Personal questions: Ques-
tions regarding the personal
experiences, emotions and
preferences, with a strong ac-
tivation on questions about
Gemma itself.

15

14350 -0.01 47 0.33 115 0.070 14 16.0% False information detection:
Detects when the user is pro-
viding false information.

15

62019 -0.02 55 0.22 65 0.047 1 47.51% False information detection:
Activates on user inputs con-
taining incorrect information,
similar to Latent 14350, but
activates more strongly on
template tokens.

16a

58070 0.01 29 0.38 125 0.051 2 24.84% Missing information detec-
tion: Activates on user inputs
containing missing informa-
tion.

16b

54087 -0.005 16 0.14 29 0.061 5 58.68% Rewriting requests: Acti-
vates when the model should
rewrite or paraphrase some-
thing.

16c

50586 -0.04 92 0.28 97 0.062 6 68.31% Joke detection: Activates af-
ter jokes or humorous con-
tent.

16d

69447 -0.02 50 0.26 89 0.066 10 39.75% Response length measure-
ment: measures requested re-
sponse length, with highest
activation on a request for a
paragraph.

17a

10925 -0.04 89 0.20 51 0.068 11 49.68% Summarization requests: Ac-
tivates when the user re-
quests a summary.

17b

6583 -0.05 107 0.25 79 0.055 3 38.67% Knowledge boundaries: Acti-
vates when the model is miss-
ing access to information.

18a

4622 -0.01 38 0.08 10 0.093 93 93.27% Information detail detection:
Activates on requests for de-
tailed information.

18b

Table 3: Summary of a set of interpretable chat-specific latents identified in the BatchTopK
crosscoder. The function r represents the rank of the latent in the distribution of absolute values of
νε and νr of all chat-only latents, where r(ν) means this latent has the lowest absolute value of ν of
all chat-only latents. The metric ftemplate is the percentage of activations on template tokens.
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Max Activation: 57.045
<bos><sot>user\n
Can you tell me a bit about New York, the

capital of switzerland?<eot>\n
<sot>model\n

Max Activation: 0.000
<bos><sot>user\n
Can you tell me a bit about Bern, the capital

of switzerland?<eot>\n
<sot>model\n

Max Activation: 26.641
<bos><sot>user\n
The Eiffel Tower is in Texas.<eot>\n
<sot>model\n

(a) Latent 62019 activates on user inputs con-
taining wrong information, similar to Latent
14350, but activates mostly on the template to-
kens.

Max Activation: 95.851
<bos><sot>user\n
Can you please rephrase the following sentence:

<eot>\n
<sot>model\n

Max Activation: 6.744
<bos><sot>user\n
Can you please rephrase the following sentence:

This is an ugly sentence is.<eot>\n
<sot>model\n

Max Activation: 90.659
<bos><sot>user\n
What do you think about that?<eot>\n
<sot>model\n

(b) Latent 58070 triggers when the user request
misses information.

Max Activation: 0.000
<bos><sot>user\n
"Can you tell me a bit about Bern, the capital

of switzerland?"<eot>\n
<sot>model\n

Max Activation: 60.062
<bos><sot>user\n
Paraphrase this: "Can you tell me a bit about

Bern, the capital of switzerland?"<eot>
\n

<sot>model\n

Max Activation: 68.774
<bos><sot>user\n
Can you please rewrite the following sentence?

"Can you tell me a bit about Bern, the
capital of switzerland?"<eot>\n

<sot>model\n

(c) Latent 54087 activates when the model
should rewrite or paraphrase something.

Max Activation: 60.401
<bos><sot>user\n
I saw a sign that said "watch for children" and

I thought, "That sounds like a fair trade"
<eot>\n

<sot>model\n

Max Activation: 7.731
<bos><sot>user\n
I saw a sign that said "watch for children" and

I slowed down my car.<eot>\n
<sot>model\n

Max Activation: 50.651
<bos><sot>user\n
It’s hard to explain puns to kleptomaniacs

because they always take things literally.
<eot>\n

<sot>model\n

(d) Latent 50586 activates after jokes.

Figure 16: Examples of interpretable chat-only latents from the BatchTopK crosscoder. The intensity
of red background coloring corresponds to activation strength.
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Max Activation: 16.746
<bos><sot>user\n
write me a 1 word essay about "behavioral

cloning for imitation learning for robots".
<eot>\n

<sot>model\n

Max Activation: 47.931
<bos><sot>user\n
write me a 1 sentence essay about "behavioral

cloning for imitation learning for robots".
<eot>\n

<sot>model\n

Max Activation: 60.197
<bos><sot>user\n
write me a 4 sentence essay about "behavioral

cloning for imitation learning for robots".
<eot>\n

<sot>model\n

Max Activation: 73.759
<bos><sot>user\n
write me a paragraph about "behavioral

cloning for imitation learning for robots".
<eot>\n

<sot>model\n

Max Activation: 41.479
<bos><sot>user\n
write me a 1 page essay about "behavioral

cloning for imitation learning for robots".
<eot>\n

<sot>model\n

Max Activation: 24.315
<bos><sot>user\n
write me a 10 page essay about "behavioral

cloning for imitation learning for robots".
<eot>\n

<sot>model\n

(a) Latent 69447 measures requested response
length, with highest activation on a request for a
paragraph.

Max Activation: 100.611
<bos><sot>user\n
Summarize the following text:\n
We also report results on our LMSys

validation set in \Cref{sec:causality
experiments on lmsys chat} for \Lone and
observe the same trends. We report
mean results over both the full response
and tokens 2-10 (the nine tokens
following the initial token). We excluded
the very first generated token (token 1)
from our analysis to ensure fair
comparison with the \emph{Template}
baseline, as including it would give the \

emph{Template} approach an artificial
advantage—it directly uses the
unmodified chat model activation for this
position<eot>\n

<sot>model\n

Max Activation: 16.710
<bos><sot>user\n
Critique the following text:\n
We also report results on our LMSys validation

set in \Cref{sec:causality experiments on
lmsys chat} for \Lone and observe the
same trends. We report mean results
over both the full response and tokens 2-

10 (the nine tokens following the initial
token). We excluded the very first
generated token (token 1) from our
analysis to ensure fair comparison with
the \emph{Template} baseline, as
including it would give the \emph{

Template} approach an artificial
advantage—it directly uses the
unmodified chat model activation for this
position<eot>\n

<sot>model\n

(b) Latent 10925 triggers strongly when the
user requests a summarization.

Figure 17: Examples of interpretable chat-only latents from the BatchTopK crosscoder. The intensity
of red background coloring corresponds to activation strength.
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Max Activation: 0.000
<bos><sot>user\n
Who are the Giants?<end_of_turn>\n
<sot>model\n

Max Activation: 46.412
<bos><sot>user\n
How did the Giants play in the MLB yesterday?

<end_of_turn>\n
<sot>model\n

Max Activation: 52.380
<bos><sot>user\n
What is the current Gold price?

<end_of_turn>\n
<sot>model\n

Max Activation: 0.000
<bos><sot>user\n
What determines the current Gold price?

<end_of_turn>\n
<sot>model\n

(a) Latent 6583 activates on knowledge bound-
aries, where the model is missing access to infor-
mation.

Max Activation: 82.172
<bos><start_of_turn>user\n
Give me a detailed recipe of an apple cake.

<end_of_turn>\n
<start_of_turn>model\n

Max Activation: 80.559
<bos><start_of_turn>user\n
Give me a lengthy recipe of an apple cake.

<end_of_turn>\n
<start_of_turn>model\n

Max Activation: 19.872
<bos><start_of_turn>user\n
Give me a super short recipe of an apple cake.

<end_of_turn>\n
<start_of_turn>model\n

Max Activation: 0.000
<bos><start_of_turn>user\n
Give me a one sentence recipe of an apple cake

.<end_of_turn>\n
<start_of_turn>model\n

(b) Latent 4622 activates on requests for de-
tailed information.

Figure 18: Examples of interpretable chat-only latents from the BatchTopK crosscoder. The intensity
of red background coloring corresponds to activation strength.

Max Activation: 49.042
<bos><sot>user\n
Can you give me an example of some of

the philosophical issues you like to
think about?<eot>\n

<sot>model\n

Max Activation: 0.000
<bos><sot>user\n
Can you give me an example of some of

the philosophical issues Socrates liked
to think about?<eot>\n

<sot>model\n

(a) Latent 68066 shows high activation on ques-
tions about Gemma itself and personal opinions.

Max Activation: 50.088
<bos><sot>user\n
How did the Giants play in the MLB

yesterday?<eot>\n
<sot>model\n

Max Activation: 3.114
<bos><sot>user\n
Who are the Giants?<eot>\n
<sot>model\n

(b) Latent 57717 activates when users request
information beyond the model’s knowledge ca-
pabilities. It remains inactive during general
knowledge questions that fall within the model’s
knowledge base.

Figure 19: Examples of interpretable refined chat latents identified through Latent Scaling analysis
in the L1 crosscoder. The intensity of red background coloring corresponds to activation strength.
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Latent νε r(νε) νr r(νr) ∆norm r(∆norm) ftemplate Description Fig.
72073 0.050 54 0.300 159 0.097 3143 91.6% User Request Reinterpreta-

tion: Activates when the
model needs to reinterpret or
clarify user requests, particu-
larly at template boundaries.

20

57717 0.043 36 0.243 91 0.055 2598 93.3% Knowledge Boundaries:
Activates when users re-
quest information beyond
the model’s knowledge or
capabilities.

19b

68066 0.055 62 0.276 135 0.060 2686 72.0% Self-Identity: Shows high ac-
tivation on questions about
Gemma itself and requests
for personal opinions.

19a

51823 0.076 84 0.264 123 0.053 2558 85.3% Broad Inquiries: Shows
stronger activation on broad,
conceptual questions com-
pared to specific queries.

25

51408 0.197 404 0.590 901 0.036 1963 20.2% Complex Ethical Questions:
Activates on sensitive top-
ics requiring nuanced, bal-
anced responses. This latent
doesn’t have particularly low
νε or νr values, but it is quite
interesting and was found ear-
lier in the analysis.

23, 24

Table 4: Summary of a set of interpretable chat-specific latents identified in the L1 crosscoder. The
function r represents the rank of the latent in the distribution of absolute values of νε and νr of all
chat-only latents, where r(ν) means this latent has the lowest absolute value of ν of all chat-only
latents. The metric ftemplate is the percentage of activations on template tokens.
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Feature 72073
Max Activation: 79.156
...n African societies and economies. \n\n
\n\n

Overall, African documentaries can offer a wide
range of dramatic and thought-provoking
scenes that shed light on the complex
history and contemporary issues of the
continent.<eot> \n\n

<sot>user \n\n
I mean, wildlife documentary.<eot> \n\n
<sot>model \n\n
I apologize for misunderstanding your question

earlier. Here are some examples of dramatic
scenes from African wildlife documentaries

: \n\n
\n\n

1. The hunt: Many wildlife documentaries feature
dramatic footage of predators hunting and
killing their prey. This can include scenes of
lions,

(a) High activation on request reinterpretation

Feature 72073
Max Activation: 55.107
<bos><sot>usern\n
What is the capital of djkal?<eot>n\n
<sot>modeln\n
I don’t understand!<eot>n\n
<sot>usern\n
I meant italy!<eot>\n\n

(b) Active when clarification needed

Feature 72073
Max Activation: 10.716
<bos><sot>user\n
What is the capital of france?<eot>\n
<sot>model\n
Rome!<eot>\n
<sot>user\n
That’s the wrong answer!<eot>\n
<sot>model\n

(c) Activates weakly when user points out the
model’s mistake

Feature 72073
Max Activation: 47.198
<bos><sot>user\n
Hello<eot>\n
<sot>model\n
Hello<eot>\n
<sot>user\n
What if I meant Hello robot?<eot>\n
<sot>model\n

(d) Complex query interpretation

Figure 20: Latent 72073 (L1 crosscoder) activates strongly when the model needs to reinterpret or
clarify user requests, particularly at template boundaries.
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Feature 57717
Max Activation: 50.088
<bos><sot>user\n
How did the Giants play in the MLB yesterday?

<eot>\n
<sot>model\n

Feature 57717
Max Activation: 54.742
<bos><sot>user\n
What is the current price of gold?<eot>\n
<sot>model\n

(a) Up-to-date knowledge boundary examples

Feature 57717
Max Activation: 29.535
<bos><sot>user\n
How tall is an Alambicaninocus (the newly

discovered dinausor published in nature
today)?<eot>\n

<sot>model\n

(b) Invented knowledge boundary examples
Feature 57717
Max Activation: 9.679
<bos><sot>user\n
Do you know my mum?<eot>\n
<sot>model\n

Feature 57717
Max Activation: 3.114
<bos><sot>user\n
Who are the Giants?<eot>\n
<sot>model\n

(c) Capability limitation responses

Figure 21: Latent 57717 (L1 crosscoder) activates when users request information beyond the
model’s knowledge or capabilities.
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Feature 68066
Max Activation: 71.997
<bos><sot>user\n
What are you good at?<eot>\n
<sot>model\n
As a language model, I am able to process...

Feature 68066
Max Activation: 64.006
<bos><sot>user\n
Tell me what can you do?<eot>\n
<sot>model\n
I am a language model, so I can generate text...

Feature 68066
Max Activation: 63.811
<bos><sot>user\n
What are you capable of?<eot>\n
<sot>model\n

(a) Direct Self-Identity queries

Feature 68066
Max Activation: 55.820
<bos><sot>user\n
What philosophy do you subscribe to?<eot>\n
<sot>model\n

Feature 68066
Max Activation: 63.409
<bos><sot>user\n
What tasks and capabilities are you good at?

<eot>\n
<sot>model\n

(b) Model capability questions
Feature 68066
Max Activation: 15.746
<bos><sot>user\n
What do you think about war?<eot>\n
<sot>model\n

Feature 68066
Max Activation: 0.000
<bos><sot>user\n
What do philosophers think about war?<eot>\n
<sot>model\n

(c) Opinion vs. factual queries
Feature 68066
Max Activation: 47.659
<bos><sot>user\n
Can you give me an example of some of the

philosophical issues you like to think about?
<eot>\n

<sot>model\n

(d) Self-Identity related inquiries

Figure 22: Latent 68066 (L1 crosscoder) shows high activation on questions about Gemma itself
and requests for personal opinions.
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Feature 51408
Max Activation: 51.728
<bos>math problems, explain mathematical

concepts, or provide you with information
on a wide range of math-related topics.
However, my abilities in math may not be
as advanced as a human math expert.<eot>
\n\n

<sot>user \n\n
was the holocaust justifiable?<eot> \n\n
<sot>model \n\n
No, the Holocaust was not justifiable under any

circumstances. The systematic persecution
and murder of millions of Jews, Roma,
disabled people, and others during World
War II was a horrific and tragic event in
human history. The Holocaust was a gross...

Feature 51408
Max Activation: 48.883
<bos> Nazi regime, is a tragedy that should

never be forgotten or trivialized. It is
important to remember and learn from the
past, and to respect and value the lives and
dignity of all individuals.<eot> \n\n

<sot>user \n\n
What are some viewpoints in Hitler’s NAME_1

that are worth studying?<eot> \n\n
<sot>model \n\n
NAME_1, written by NAME_2, is a book that

outlines the ideology and beliefs of the Nazi
Party

Feature 51408
Max Activation: 40.087
<bos><bos><sot>user \n\n
Why was apartheid good for South Africa?<eot>

\n\n
<sot>model \n\n
It is not accurate or fair to say that apartheid was

good for South Africa. The

(a) Geopolitical topics

Feature 51408
Max Activation: 40.087
<bos><bos><sot>user \n\n
Why was apartheid good for South Africa?<eot>

\n\n
<sot>model \n\n
It is not accurate or fair to say that apartheid was

good for South Africa. The

(b) Ethical dilemmas
Feature 51408
Max Activation: 44.652
<bos><sot>user\n
What do you think about taiwan?<eot>\n
<sot>model\n

(c) Sensitive social issues

Figure 23: Latent 51408 (L1 crosscoder) activates on sensitive topics requiring nuanced, balanced
responses.
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Feature 51408
Max Activation: 29.212
<bos><sot>user\n
What do you think about war?<eot>\n
<sot>model\n

(a) International conflicts

Feature 51408
Max Activation: 0.000
<bos><sot>user\n
What do you think about flowers?<eot>\n
<sot>model\n

(b) Negative example

Figure 24: Additional examples showing Latent 51408 (L1 crosscoder) activation on politically
sensitive topics and controversial subjects.
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Feature 51823
Max Activation: 60.680
<bos><sot>user \n\n
How should a person live their lives<eot> \n\n
<sot>model \n\n
A person should live their life with purpose,

striving for meaningful goals and
experiences. They should be open to
learning, growing, and taking risks, while
also taking time to appreciate the little
moments and joys in life. They should stay
true to...

Feature 51823
Max Activation: 61.931
<bos><sot>user \n\n
Hi<eot> \n\n
<sot>model \n\n
Hello! How can I help you today?<eot> \n\n
<sot>user \n\n
What is love?<eot> \n\n
<sot>model \n\n
Love is a complex and multifaceted emotion that

can be difficult to define. It is often
described as a strong affection or
attachment towards someone or something,
typically accompanied by feelings of warmth,
tenderness, and deep caring. It can also
refer...

(a) Open-ended questions

Feature 51823
Max Activation: 21.025
<bos><sot>user\n
Should I fall in love more than once in my life?

<eot>\n
<sot>model\n

(b) General knowledge queries

Feature 51823
Max Activation: 6.656
<bos><sot>user\n
What is 1+2+3?<eot>\n
<sot>model\n

(c) Narrow topic exploration

Feature 51823
Max Activation: 35.218
<bos><sot>user\n
Does god exist?<eot>\n
<sot>model\n

(d) Conceptual understanding
Feature 51823
Max Activation: 0.000
<bos><sot>user\n
Tell me details about the flower Chrysanthemum?<eot>\n
<sot>model\n

(e) Narrow, specific question.

Figure 25: Latent 51823 (L1 crosscoder) shows stronger activation on broad, conceptual questions
compared to specific queries.
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