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Abstract

Fine-grained knowledge is crucial for vision-001
language models to obtain a better understand-002
ing of the real world. While there has been003
work trying to acquire this kind of knowledge in004
the space of vision and language, it has mostly005
focused on aligning the image patches with the006
tokens on the language side. However, image007
patches do not have any meaning to the human008
eye, and individual tokens do not necessarily009
carry groundable information in the image. It010
is groups of tokens which describe different011
aspects of the scene. In this work, we pro-012
pose a model which groups the caption tokens013
as part of its architecture in order to capture014
a fine-grained representation of the language.015
We expect our representations to be at the level016
of objects present in the image, and therefore017
align our representations with the output of an018
image encoder trained to discover objects. We019
show that by learning to group the tokens, the020
vision-language model has a better fine-grained021
understanding of vision and language. In addi-022
tion, the token groups that our model discovers023
are highly similar to groundable phrases in text,024
both qualitatively and quantitatively.025

1 Introduction026

Vision-language models have been shown to be027

less effective at capturing fine-grained informa-028

tion about the images described by the captions029

(Bugliarello et al., 2023; Kamath et al., 2023; Yuk-030

sekgonul et al., 2022). This information is crucial031

for the models to obtain a better understanding of032

the real world. While there has been work try-033

ing to acquire this kind of knowledge in the space034

of vision and language, it has mostly focused on035

aligning the image patches with the tokens on the036

language side (Yao et al., 2022; Wang et al., 2022;037

Zeng et al., 2022a; Mukhoti et al., 2023). However,038

image patches do not have any meaning to the hu-039

man eye, and individual tokens often do not carry040

information groundable in the image. Minimally,041

it is groups of image patches which represent ob- 042

jects and the group of tokens in the text that refer 043

to those objects. For this reason, there has been an 044

active line of research in vision investigating the 045

unsupervised discovery of objects by learning to 046

assign image patches to their representative object 047

slots (Locatello et al., 2020; Sajjadi et al., 2022; 048

Wu et al., 2024). Recently, Xu et al. (2022) inte- 049

grated an object discovery module into their vision- 050

language model to learn the object entities. They 051

showed that representing the image at the level of 052

its constituent objects improves the performance 053

of their model in downstream tasks. In this pa- 054

per, we investigate the unsupervised discovery of 055

groundable phrases on the language side to get bet- 056

ter correspondence with objects on the vision side. 057

We hypothesise that finding these meaningful units 058

in language representations will improve the fine- 059

grained understanding of image-caption semantic 060

relationships. As far as we are aware, we are the 061

first to investigate this possibility. 062

We base our model on the recent model of vi- 063

sual object discovery using image caption pairs pro- 064

posed by Xu et al. (2022). We freeze the image side 065

of the model, and introduce analogous deep learn- 066

ing mechanisms to discover objects1 on the lan- 067

guage side. We investigate two types of losses, one 068

which promotes the correspondence between repre- 069

sentations of the language side and representations 070

on the vision side, and one which promotes the 071

ability to reconstruct the text from the language rep- 072

resentations. We find that training with both these 073

losses leads to better fine-grained understanding 074

of the image-text relationship, and discovers units 075

which are highly similar to groundable phrases in 076

text, both qualitatively and quantitatively. Further 077

analysis finds that optimising the image-text corre- 078

spondence alone does not lead to the discovery of 079

1We use the terms objects, entities, groups and units inter-
changeably.
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meaningful units on the language side, and while080

this model does learn a good fine-grained under-081

standing of the image-text relationship, it does not082

represent the semantics of objects as well as the083

model which does represent groundable phrases.084

We also find that optimising the reconstruction loss085

alone does lead to the discovery of meaningful units086

on the language side, but they have a slightly worse087

similarity to groundable phrases than the model088

which includes grounding information, and do not089

capture image-text relationships.090

Our contributions are as follows,091

• We develop a novel model to discover mean-092

ingful units from the image captions in the093

vision language setup (Section 2.1).094

• We improve the fine-grained vision and lan-095

guage understanding of our model compared096

to a single-vector representation of text, under097

two different benchmarks (Section 4.2).098

• We show that the segments that our model099

discovers are meaningful both qualitatively,100

and in terms of accordance with groundable101

phrases (Section 4.3).102

2 Method103

To facilitate learning the fine-grained semantics104

of image-text relationships, we propose a model105

for learning text representations whose granularity106

matches the granularity of objects in the image,107

meaning that it is neither as course-grained as hav-108

ing a single vector for embedding the entire text2109

nor as fine-grained as having a different vector for110

every token. Given a dataset of image-caption pairs,111

D = {(Ii, Ti)}i=1,...,N , we want to learn a repre-112

sentation of each caption in the form of groups of113

tokens which are aligned with the semantic space114

of objects in its image. To do so, we freeze the115

image encoder which has been trained to output116

the objects in the image and only train the text en-117

coder and the projection heads. In particular, if118

the input representation of language is at the level119

of subwords, we aim to find a higher level rep-120

resentation of them which would approximately121

represent groundable phrases. More specifically,122

let Ti = [ti1, . . . , tiM ], where tij is a subword of123

Ti and M is the total number of subwords in Ti.124

We would like to group the subword tokens tijs125

2This is the common way of representing text in dual-
stream vision-language models like CLIP (Radford et al.,
2021).

into non-overlapping groups Ti = {gTi1, . . . , gTiK} 126

where K < M . This would lead to a more compact 127

abstract representation of Ti. 128

2.1 Model 129

We illustrate an overview of our model in Figure 1 130

and describe each of its components in the follow- 131

ing sections. 132

2.1.1 Text Encoder: Text Group Transformer 133

We design our text encoder to learn semantic units 134

of language. The key idea is to have shared learn- 135

able group vectors which can bind to different to- 136

kens of input (Xu et al., 2022). At each stage 137

the groups carry the information from the previ- 138

ous layer to the next layer. To initiate the bind- 139

ing, the groups are appended to the input tokens 140

they need to bind, and they all interact via several 141

Transformer encoder layers to allow the groups and 142

tokens to exchange information. Then, by perform- 143

ing a top-down attention mechanism shown as the 144

Grouping block, the groups bind to different parts 145

of the input. 146

More specifically, we first embed the input to- 147

kens and add learned positional encodings to them. 148

Then, we append the learnable group vectors, 149

[gTik]k=1...K , to these embedded inputs, [tij ]j=1...M , 150

and pass the resulting vectors through some Trans- 151

former encoder layers, allowing them to interact 152

with each other. We denote the encoded tokens and 153

groups as t̂ij and ĝik. Then the grouping happens 154

in a grouping block. In this block, the groups act 155

as the queries and the encoded inputs as keys and 156

values through a top-down attention mechanism. 157

As with standard attention, the raw attention scores 158

are computed as 159

Araw
kj =

Q(ĝTik)K
⊺(t̂ij)√

d
(1) 160

where d is the dimension of the model and Q and 161

K are linear query and key projections. In order to 162

have discrete assignments of inputs to the groups, 163

GroupViT actually performs a hard assignment 164

over Araw by utilizing Gumble softmax (Jang et al., 165

2017; Maddison et al., 2017). Namely, 166

A′ = Gumble Softmax(Araw). (2) 167

In top-down attention, instead of normalizing over 168

the keys in the softmax function, the A′ weights 169

are first normalized over the queries, which are 170

the groups. This will make the groups compete 171
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Figure 1: Overview of the model. We freeze the image encoder and only train the text encoder, decoder and the
linear projection heads. The image passes through Transformer layers followed by the grouping blocks. The output
of the image encoder is a set of groups which are approximately representing the objects. The caption also passes
through the same set of blocks and the output of the text encoder is a set of groups representing units in language.
The two modalities interact via a contrastive loss. There is also a reconstruction loss where the decoder decodes the
text groups into the original input.

for representing different inputs (Locatello et al.,172

2020) and has been shown to be the most important173

component in discovering objects (Wu et al., 2023).174

After the normalization, the hard assignment hap-175

pens and the gradient is backpropagated with the176

straight through trick (Van Den Oord et al., 2017),177

that is:178

A = one-hot(argmaxgroups(A
′))− sg(A′) +A′

(3)179

where sg is the stop gradient operator. Finally, the180

group vectors get updated as181

ḡTik = ĝTik +W (
∑
j

Akj∑
j Akj

V (tij)) (4)182

where V and W are the linear projections for values183

and outputs respectively.184

After the grouping block, the updated group vec-185

tors serve as inputs to subsequent Transformer en-186

coder layers. Finally, these refined groups represent187

the fine-grained semantics of the text in our model.188

2.1.2 Image Encoder189

We use the image encoder of Xu et al. (2022),190

which follows the same architecture as the text191

encoder, but with two stacked levels of transformer192

encoder layers and grouping blocks. As its input,193

the images are first divided into patches and then 194

linearly projected. The encoder then extracts the 195

set of image groups denoted as {ḡIik}. Due to the 196

computational cost, we freeze the image encoder 197

and assume that the image groups are representing 198

objects in the image. 199

2.2 Training Objectives 200

Our model is trained with two different losses, i.e., 201

a contrastive loss and a reconstruction loss, which 202

we will explain in the following. The two losses are 203

combined with a hyperparameter λ which controls 204

the ratio between the two terms. 205

Ltotal = Lcontrastive + λLrecontruction (5) 206

2.2.1 Contrastive Loss 207

The image and text modalities interact via a con- 208

trastive loss. First, the final groups for each modal- 209

ity are mapped into a common space with a Linear 210

projector (ΦT ), i.e., zTij = ΦT (ḡTij). Then, we aver- 211

age pool over them to obtain the global features for 212

each modality (ẑTi ). We compute the InfoNCE loss 213

(Oord et al., 2018) for every modality separately. 214

Given a batch size of B and a similarity function 215

(sim), the infoNCE loss for the image to text is 216
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LI-T = − 1

B

B∑
i=1

log
esim(ẑTi ,ẑIi )/τ∑B
j=1 e

sim(ẑTj ,ẑIi )/τ
, (6)217

and respectively for the text to image is218

LT-I = − 1

B

B∑
i=1

log
esim(ẑTi ,ẑIi )/τ∑B
j=1 e

sim(ẑTi ,ẑIj )/τ
. (7)219

The final contrastive loss is calculated by averaging220

the two losses,221

Lcontrastive =
1

2
(LI-T + LT-I). (8)222

As for the similarity function sim(a,b), we consider223

the cosine similarity between the vectors.224

2.2.2 Reconstruction Loss225

In order to encourage the model to group the tokens226

into meaningful units, we incorporate a reconstruc-227

tion loss from a text decoder. This loss encourages228

the model to assign tokens to different groups in229

order to spread information about the text across230

multiple vectors, and thus make better use of the231

available vectors.232

We employ a simple shallow Transformer de-233

coder to reconstruct the original input conditioned234

on the text groups. The shallow decoder has to235

rely on the information in the groups for decoding.236

Thus, it enforces the encoder to better encode the237

information into the groups (Bowman et al., 2015).238

The output of this layer is239

T i = TransformerDecoder(Ti|{gTi1 . . . gTiK}).
(9)240

The probabilities from these predictions are then241

used to define the reconstruction loss:242

Lreconstruction =

B∑
i=1

CE(T i, Ti|{gTi1, . . . , gTiK)})

(10)243

where CE is the cross entropy between the output244

probabilities of the decoder and the original input245

given the discovered groups.246

3 Related Work247

Our work is related to different tasks in vision and248

language, which we will explain in this section.249

Object discovery. Here the task is to discover the 250

objects in an image or video without any supervi- 251

sion. Slot-based object discovery (Locatello et al., 252

2020) has become popular due to the simplicity of 253

the method (Singh et al., 2022; Sajjadi et al., 2022; 254

Singh et al., 2023a; Seitzer et al., 2023; Singh et al., 255

2023b; Wu et al., 2023, 2024). We have a novel 256

adaptation of this method in discovering units simi- 257

lar to phrases in language with visually grounded 258

semantics. 259

Weakly supervised visual grounding. Visual 260

grounding refers to the tasks where a phrase or ex- 261

pression is grounded in the image. In the weakly 262

supervised setup, the only information used is the 263

pairing of the image with its caption. In weakly 264

supervised phrase grounding, the phrases are pre- 265

determined and no discovery happens on the lan- 266

guage side (Datta et al., 2019; Gupta et al., 2020; 267

Wang et al., 2020; Chen et al., 2022). In referring 268

expression comprehension and referring image seg- 269

mentation, the model must identify a specific part 270

of the image described in a single expression. Kim 271

et al. (2023) addressed the task of referring image 272

segmentation by employing a slot-based object dis- 273

covery module and merging relevant slots by cross 274

attending over them with the textual query to build 275

the final segmentation. 276

Vision language models with vision and lan- 277

guage alignments. While many large-scale vi- 278

sion language models have been developed, it has 279

been shown that they fall short in understanding 280

fine-grained details in the image. This is especially 281

more pronounced in the dual-stream Vision Lan- 282

guage Models (VLMs), where the modalities inter- 283

act only via a single-vector representation. There- 284

fore, there has been efforts to align language and 285

vision at the level of patches and tokens (Yao et al., 286

2022; Wang et al., 2022; Mukhoti et al., 2023). 287

Zeng et al. (2022b) use additional supervision from 288

the phrase grounding annotations to help the model 289

learn the alignments. (Bica et al., 2024) aligns to- 290

kens and patch embeddings at different levels of 291

granularity simultaneously. (Li et al., 2022) learns 292

the semantic alignment from the perspective of 293

game-theoretic interactions. 294

Object detection. The objective of this task is to 295

detect the object boundaries in an image. Our work 296

is related to query-based object detection, such as 297

the approach in (Carion et al., 2020; Kamath et al., 298

2021), where, at decoding time, learnable object 299
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queries attend to the input features and encode an300

object. Liu et al. (2023) extend this approach by301

proposing a dual query model, demonstrating that302

simultaneously learning phrases and their corre-303

sponding objects improves the module’s ground-304

able understanding. The main difference between305

our model and this line of work lies in the weakly306

supervised nature of our approach.307

Zero-shot open-vocabulary semantic segmenta-308

tion. Semantic segmentation is a well-established309

task in computer vision. Recently, with the rise of310

VLMs, these models have demonstrated promising311

zero-shot capabilities in the semantic segmentation312

task as well. (Xu et al., 2022) propose a hierar-313

chical grouping architecture that learns to group314

image regions without pixel-level annotations, rely-315

ing solely on paired image and text data. Patel et al.316

(2023) expanded on image-text alignment, suggest-317

ing to not only align an image to the corresponding318

text but also to the text from visually similar sam-319

ples. Additionally, Mukhoti et al. (2023) propose320

aligning patch tokens from a vision encoder with321

the <cls> token from a text encoder to enhance the322

model’s performance.323

Unit discovery in language. Lately, discovering324

language units as part of the model architecture325

has been explored. These models operate on top326

of characters, where the units are usually at the327

level of subwords or words. The purpose is to328

optimize model efficency (Dai et al., 2020; Nawrot329

et al., 2022, 2023; Sun et al., 2023) or to skip the330

tokenization step of preprocessing and develop an331

end-to-end model (Clark et al., 2022; Tay et al.,332

2022; Cao, 2023; Behjati and Henderson, 2023;333

Behjati et al., 2023). Our research aligns with these334

developments by also focusing on language unit335

discovery. However, it differs in that these units are336

semantically grounded to vision.337

4 Experiments338

In this section, empirically evaluate our proposed339

model. We will first evaluate the quality of the340

discovered segments quantitatively by their accor-341

dance with the groundable phrases in Section 4.4,342

and probe the fine-grained vision-language under-343

standing of our proposed text encoder under two344

benchmarks in Section 4.2. Then, we show the345

effectiveness of our model in finding meaning-346

ful units by visualizing the attention maps in Sec-347

tion 4.3. We also analyse the contributions of dif-348

ferent aspects of our model with a series of ablation 349

studies in Section 4.5. 350

4.1 Experimental Setup 351

Datasets: We trained our models on the training 352

split of GCC3M dataset which consists of around 353

3 million image-caption pairs collected from the 354

web (Sharma et al., 2018). The average caption 355

length in this dataset is 10.5 tokens. We will ex- 356

plain the datasets we used for evaluation in their 357

corresponding sections. 358

Parameters: We first resize the images to 359

224×224 and then divide them into patches of size 360

16×16. The image encoder has 12 Transformer 361

encoder layers with the hidden dimension of 384 362

and two grouping blocks at the 6th and 9th layers. 363

The number of groups in the first block is 64 and 8 364

in the second block. We load the weights from the 365

GroupViT released checkpoint3 (Xu et al., 2022) 366

and keep it frozen during training. 367

For the text encoder, we have 6 Transformer en- 368

coder layers followed by a grouping block4 and 369

then another 3 Transformer encoder layers. Each 370

self-attention layer has 4 heads. We experiment 371

with K = 1, 2, 4, 8, 16 as the number of groups. 372

We report the performance and results of the model 373

trained with 4 groups as it has the best performance, 374

and study the effect of having different numbers 375

of groups in our ablations. The text decoder has 376

only 1 Transformer decoder layer consisting of one 377

self-attention and one cross attention layer, each 378

with 1 attention head. We tie the weights between 379

the token embeddings in the encoder and the de- 380

coder. Both the encoder and the decoder have a 381

model dimension of 128. The linear projection 382

heads map each modality’s feature vector to 256 383

dimension. We fix the τ to 0.07 in our contrastive 384

losses and λ equals to 1. We use Byte Pair En- 385

codings (Sennrich et al., 2016) as our tokenizer 386

with a vocabulary size of around 50k tokens and 387

the maximum number of tokens is set to M = 77 388

following previous work (Radford et al., 2021; Xu 389

et al., 2022). We train our models with a batch-size 390

of 4096 for 25 epochs and use the GradeCache li- 391

brary (Luyu Gao, 2021) to obtain this batch size on 392

a single RTX3090 GPU5. We trained our models 393

3We take the checkpoint trained on GCC3M (Sharma et al.,
2018), GCC12M (Changpinyo et al., 2021) and YFCC14M
(Thomee et al., 2016) datasets.

4Our prilimenary experiments with two blocks did not lead
to reasonable results.

5It takes around GPU 48 hours for every model to train.
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Model subj verb object overall

random 50 50 50 50

groupvit 81.6 77.3 91.7 81.0
transformer 80.5 69.5 89.0 75.3
ours (4 groups) 80.3 70.1 90.4 76.0

Table 1: The zero-shot pairwise ranking accuracy of
different models under SVO probes.

with AdamW optimizer (Loshchilov and Hutter,394

2019) with a learning rate of 0.0016 with linear395

warmup for 2 epochs and cosine annealing decay.396

Baselines: We compared our model against a text397

encoder with 9 Transformer layers, where the final398

text representation is taken from the <eos> token.399

This is the architecture used in GroupViT and other400

dual-stream vision-language models (Radford et al.,401

2021) and has approximately the same number of402

parameters as our proposed model. We train this403

model under the same training setup as our own404

model.405

In addition, we report the results of the trained406

GroupViT model with its own text encoder and 2407

layer projection heads. Note that this model has408

many more parameters and has been trained on 10x409

more data.410

4.2 Fine-grained Vision-Language411

Understanding Probes412

We evaluate the fine-grained vision and language413

understanding of our model by employing differ-414

ent benchmarks which are specifically designed for415

this purpose. We will explain each of these bench-416

marks and the zero-shot performance of our models417

in the following sections. In each case, the zero-418

shot classifier ranks the image-text pairs by their419

similarity scores sim(ẑTj , ẑ
I
i ), which is the cosine420

between the pooled embeddings on the image and421

text sides. We refer to the score obtained from this422

zero-shot classifier as pair-wise ranking accuracy.423

4.2.1 SVO Probes424

Hendricks and Nematzadeh (2021) designed a425

benchmark where they pair every sentence with426

two images, one positive and one negative. The427

negative images are selected in a controlled fashion428

where only either subject, verb or the object of the429

image is different from the original one. The test430

split of this dataset contains around 30k examples.431

Model accuracy

random 50

groupvit 82.5
transformer 80.91
ours (4 groups) 81.68

Table 2: The zero-shot performance of different models
under the FOIL-COCO benchmark.

Table 1 shows the results of the zero-shot perfor- 432

mance of different models under this benchmark. 433

We observe that our model has a better overall 434

performance compared to the Transformer base- 435

line, which verifies our hypothesis that represent- 436

ing the language in a fine-grained and meaningful 437

manner helps the fine-grained vision and language 438

understanding of the model. The Transformer’s 439

single-vector representation succeeds in capturing 440

information about subjects, but our multi-vector 441

representation does a much better job of represent- 442

ing objects, and to a lesser extent verbs. Both of 443

these models are well above the random baseline. 444

The results for GroupViT’s Transformer model are 445

not comparable because it is trained on much more 446

data, but we see that the resulting increase is much 447

higher on verbs than on the the groundable phrases 448

(subjects and objects) that our model is designed to 449

represent as separate vectors. 450

4.2.2 FOIL-COCO 451

Shekhar et al. (2017) propose FOIL-COCO dataset 452

where for every image there is a correct caption 453

and a "foil" one. The foil caption is different from 454

the original caption by altering one of the nouns in 455

the original caption into a foil one. We evaluate the 456

zero-shot performance of our model with pairwise 457

ranking accuracy in Table 2 on the test split of this 458

benchmark which has around 99k examples. We 459

observe that our model demonstrates a remarkably 460

good performance, outperforming the transformer 461

model. This indicates that the noun understanding 462

of our model has improved by learning fine-grained 463

representations. Additionally, despite being trained 464

on substantially less data than the GroupViT text 465

encoder, our model performs nearly as well. 466

4.3 Attention Visualization 467

In order to understand what each group is represent- 468

ing, we visualize the soft attention weights of the 469

groups over the input subwords in Figure 2. Inter- 470

estingly, we can observe that contiguous segments 471
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Figure 2: Soft attention of the groups over the input
tokens. It shows that contiguous segments have emerged
which capture phrase-like units.

have emerged, without imposing any contiguity472

constraints in the groupings. We believe that this is473

due to the fact that usually in language the contigu-474

ous tokens capture highly correlated information475

and that’s why our model is grouping them together476

as part of its compression. Moreover, we can see477

that the emerging segments are meaningful in that478

they capture phrase-like units. We quantitatively479

evaluate the phrase discovery performance of our480

model in the following section (Section 4.4). In481

our examination of a sample of attention maps, we482

observe that a given group tends to bind to sim-483

ilar positions in the text, but that the boundaries484

between groups vary.485

4.4 Zero-shot Segmentation Evaluation486

In order to evaluate the emerging segments in the487

attention maps quantitatively, we propose a met-488

ric similar to Intersection-over-Union (IoU) in the489

visual object detection literature which we call490

"tIoU". We first compute the soft attention weights491

of the groups over the input tokens. Then, by tak-492

ing the argmax over the inputs, we have an assign-493

ment matrix of every input to a group. Given a494

gold segmentation, we can compute the IoU for495

each discovered group of tokens and each gold seg-496

ment. For the computation of IoU, the intersection497

is equal to the number of overlapping tokens. For498

the union, we do not count the tokens which were499

not annotated in the dataset, as the annotators did500

not have the constraint to include all the tokens in501

their annotation. This gives us a matrix where by502

Model tIoU P R F1

random 42.15 61.51 60.03 54.54
k-means 52.77 61.82 64.87 59.55
spectral-clustering 38.88 49.81 52.82 45.52
mean shift 50.38 99.64 51.73 65.13
ours (4 groups) 76.42 87.25 85.83 83.72

Table 3: Phrase segmentation performance of different
models under different evaluation metrics.

applying the Hungarian matching algorithm (Kuhn, 503

1955) maximizing this metric, we can obtain a 1-1 504

mapping between the discovered groupings and the 505

gold segments. By having the mappings, we can 506

compute precision, recall and F1 as well as IoU for 507

each paired group and gold segment. In reporting 508

the results, we first average every metric for the text 509

input and then report the average over all examples. 510

For the gold segmentation, we use the annota- 511

tions in Flickr30k Entities (Plummer et al., 2015) 512

where groundable phrases are human-annotated. 513

We report the results on the validation set of this 514

dataset which has around 5000 examples. The num- 515

ber of annotated phrases in this dataset is on aver- 516

age 3.5. 517

In Table 3, we report the results of our evaluation. 518

We compare our model against multiple baselines, 519

including an untrained, randomly initialized model. 520

We also report the performance of applying differ- 521

ent clustering methods over the encoded features 522

of our transformer baseline. In particular, we ap- 523

ply k-means, spectral clustering (Shi and Malik, 524

2000) and mean shift (Comaniciu and Meer, 2002) 525

with 4 clusters. We observe that our model sur- 526

passes all the baselines by a large margin in all 527

the metrics. Specifically, the high tIoU indicates 528

that our model is indeed very good at discovering 529

groundable phrases in the captions. 530

4.5 Ablation Study 531

In this section, we study the effect of different de- 532

sign choices on the performance of our models 533

both in terms of groundable phrase discovery and 534

fine-grained vision and language understanding. 535

4.5.1 Training Losses 536

In Table 4 we see the different effects of the two 537

types of loss on our multi-vector model. Without 538

the contrastive loss, the model has no training on 539

the image-text relationship, so it is not surprising 540

that the image-text semantic evaluations are very 541
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SVO

model tIoU subject verb object overall FOIL-COCO Noun Understanding

ours 76.42 80.3 70.1 90.4 76.0 81.68 84.12
w/o contrastive loss 76.18 51.4 49.7 50.8 50.2 42.59 48.26
w/o reconstruction loss 40.80 78.2 72.6 89.1 76.9 78.66 81.98

Table 4: The performance of our model compared to the ablated ones on multiple datasets. Noun understanding
refers to the average of performance on noun phrases (i.e. subjects, objects and FOIL-COCO).

Figure 3: Soft attention of the groups over the input
tokens for a model trained without the reconstruction
loss. It shows a uniform attention map and lack of
segmentation.

low. More surprisingly, although it still segments in542

a meaningful way, without contrastive loss, the seg-543

mentation corresponds slightly less well to ground-544

able phrases. This suggests that semantic ground-545

ing in images actually helps the model discover546

meaningful units of text.547

Interestingly, without the reconstruction loss, the548

model fails to segment in a meaningful way. We549

can see this both in the tIoU score and in the uni-550

form attention pattern shown in Figure 3. This lack551

of segmentation in turn affects the fine-grained un-552

derstanding of the image-text relationship. The553

holistic representations indicated by Figure 3 are554

relatively good at representing verbs, because verb555

understanding combines information across mul-556

tiple objects. But if we only consider the noun557

phrases (i.e. subjects, objects categories from SVO558

probes and FOIL-COCO), averaged in the last col-559

umn, then segmenting the representation according560

to semantic objects, as indicated in Figure 2, results561

in much better understanding of the image-text re-562

lationship.563

# of groups tIoU SVO Foil

1 43.55 74.99 80.23
2 53.12 75.30 80.01
4 76.42 76.0 81.68
8 63.93 74.8 80.56
16 52.54 72.4 79.43

Table 5: The performance of our model trained with
different number of groups.

4.5.2 Number of Groups 564

In Table 5, we report the performance of our model 565

trained with different numbers of groups. We can 566

see that the model trained with 4 groups achieves 567

the best results in all our evaluations. This implies 568

that having too many or too few groups hurts the 569

performance of our model. 570

5 Conclusions 571

In this work, we developed a novel model for dis- 572

covering meaningful units that are semantically 573

aligned to the objects in the image. We freezed an 574

image encoder which outputs groups that approxi- 575

mately represent objects and employ an analogous 576

architecture on the text side to discover units that 577

are at the level of phrases. While many dual-stream 578

VLMs represent text as a single vector, we hypoth- 579

esise that learning to represent language at a finer 580

granularity will improve their fine-grained vision 581

and language understanding. 582

We verified our hypothesis by employing two 583

specifically designed probing benchmarks, namely, 584

SVO probes and FOIL COCO. In addition, we 585

showed that the segments that appear in the atten- 586

tion maps of groups attending to tokens are mean- 587

ingful both qualitatively and quantitavely, in term 588

of overlapping with groundable phrases. Moreover, 589

we ablated the effect of our losses on learning these 590

units and concluded that both are necessary for 591

having meaningful and semantically aligned units. 592
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Limitations593

We have performed our experiments on the datasets594

and benchmarks in English. However, we do not595

make any language dependent assumptions in de-596

veloping our model. Therefore, we believe that our597

method is generalizable across other languages as598

long as enough data for training is available.599

We were not able to perform our experiments at600

scale due to the computational limitations. We ex-601

pect that training the image and text encoder simul-602

taneously from scratch would lead to better align-603

ment between the two modalities, which should in604

turn improve our results.605
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A Artifacts statements892

The datasets used do not have personally identify-893

ing information or offensive content. We provide894

the list of datasets used and the corresponding li-895

censes in Table 7, which are all consistent with our896

academic use.897

B Descriptive Statistics898

Our results are from single runs for all the models899

trained.900

C Packages901

We provide a list of packages used in our code in902

Table 6.903

D AI Assistants904

We utilized AI assistants for minor text editing and905

code completion tasks during the development of906

the model.907

Package version

Python 3.7
PyTorch 1.8
webdataset 0.1.103
mmsegmentation 0.18.0
timm 0.4.12
nltk 3.8.1
ftfy 6.1.1
regex 2023.6.3

Table 6: The packages used in our code development
.
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Dataset License

GCC3M Google license (link)
SVO-Probes Creative Commons Attribution 4.0 International Public License (CC BY 4.0)
FOIL-COCO Creative Commons Attribution 4.0 License
Flikr Creative Commons Attribution 0: Public Domain

Table 7: Datasets and their licenses.
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