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Abstract

Fine-grained knowledge is crucial for vision-
language models to obtain a better understand-
ing of the real world. While there has been
work trying to acquire this kind of knowledge in
the space of vision and language, it has mostly
focused on aligning the image patches with the
tokens on the language side. However, image
patches do not have any meaning to the human
eye, and individual tokens do not necessarily
carry groundable information in the image. It
is groups of tokens which describe different
aspects of the scene. In this work, we pro-
pose a model which groups the caption tokens
as part of its architecture in order to capture
a fine-grained representation of the language.
We expect our representations to be at the level
of objects present in the image, and therefore
align our representations with the output of an
image encoder trained to discover objects. We
show that by learning to group the tokens, the
vision-language model has a better fine-grained
understanding of vision and language. In addi-
tion, the token groups that our model discovers
are highly similar to groundable phrases in text,
both qualitatively and quantitatively.

1 Introduction

Vision-language models have been shown to be
less effective at capturing fine-grained informa-
tion about the images described by the captions
(Bugliarello et al., 2023; Kamath et al., 2023; Yuk-
sekgonul et al., 2022). This information is crucial
for the models to obtain a better understanding of
the real world. While there has been work try-
ing to acquire this kind of knowledge in the space
of vision and language, it has mostly focused on
aligning the image patches with the tokens on the
language side (Yao et al., 2022; Wang et al., 2022;
Zeng et al., 2022a; Mukhoti et al., 2023). However,
image patches do not have any meaning to the hu-
man eye, and individual tokens often do not carry
information groundable in the image. Minimally,

it is groups of image patches which represent ob-
jects and the group of tokens in the text that refer
to those objects. For this reason, there has been an
active line of research in vision investigating the
unsupervised discovery of objects by learning to
assign image patches to their representative object
slots (Locatello et al., 2020; Sajjadi et al., 2022;
Wu et al., 2024). Recently, Xu et al. (2022) inte-
grated an object discovery module into their vision-
language model to learn the object entities. They
showed that representing the image at the level of
its constituent objects improves the performance
of their model in downstream tasks. In this pa-
per, we investigate the unsupervised discovery of
groundable phrases on the language side to get bet-
ter correspondence with objects on the vision side.
We hypothesise that finding these meaningful units
in language representations will improve the fine-
grained understanding of image-caption semantic
relationships. As far as we are aware, we are the
first to investigate this possibility.

We base our model on the recent model of vi-
sual object discovery using image caption pairs pro-
posed by Xu et al. (2022). We freeze the image side
of the model, and introduce analogous deep learn-
ing mechanisms to discover objects' on the lan-
guage side. We investigate two types of losses, one
which promotes the correspondence between repre-
sentations of the language side and representations
on the vision side, and one which promotes the
ability to reconstruct the text from the language rep-
resentations. We find that training with both these
losses leads to better fine-grained understanding
of the image-text relationship, and discovers units
which are highly similar to groundable phrases in
text, both qualitatively and quantitatively. Further
analysis finds that optimising the image-text corre-
spondence alone does not lead to the discovery of

'We use the terms objects, entities, groups and units inter-
changeably.



meaningful units on the language side, and while
this model does learn a good fine-grained under-
standing of the image-text relationship, it does not
represent the semantics of objects as well as the
model which does represent groundable phrases.
We also find that optimising the reconstruction loss
alone does lead to the discovery of meaningful units
on the language side, but they have a slightly worse
similarity to groundable phrases than the model
which includes grounding information, and do not
capture image-text relationships.
Our contributions are as follows,

* We develop a novel model to discover mean-
ingful units from the image captions in the
vision language setup (Section 2.1).

* We improve the fine-grained vision and lan-
guage understanding of our model compared
to a single-vector representation of text, under
two different benchmarks (Section 4.2).

* We show that the segments that our model
discovers are meaningful both qualitatively,
and in terms of accordance with groundable
phrases (Section 4.3).

2 Method

To facilitate learning the fine-grained semantics
of image-text relationships, we propose a model
for learning text representations whose granularity
matches the granularity of objects in the image,
meaning that it is neither as course-grained as hav-
ing a single vector for embedding the entire text?
nor as fine-grained as having a different vector for
every token. Given a dataset of image-caption pairs,
D = {(4;,T3)}i=1,.. N, we want to learn a repre-
sentation of each caption in the form of groups of
tokens which are aligned with the semantic space
of objects in its image. To do so, we freeze the
image encoder which has been trained to output
the objects in the image and only train the text en-
coder and the projection heads. In particular, if
the input representation of language is at the level
of subwords, we aim to find a higher level rep-
resentation of them which would approximately
represent groundable phrases. More specifically,
let T; = [ti1, ..., tin), where t;; is a subword of
T; and M is the total number of subwords in T;.
We would like to group the subword tokens #;;s

This is the common way of representing text in dual-

stream vision-language models like CLIP (Radford et al.,
2021).

into non-overlapping groups T; = {g%, ..., g%}
where K' < M. This would lead to a more compact
abstract representation of 7.

2.1 Model

We illustrate an overview of our model in Figure 1
and describe each of its components in the follow-
ing sections.

2.1.1 Text Encoder: Text Group Transformer

We design our text encoder to learn semantic units
of language. The key idea is to have shared learn-
able group vectors which can bind to different to-
kens of input (Xu et al., 2022). At each stage
the groups carry the information from the previ-
ous layer to the next layer. To initiate the bind-
ing, the groups are appended to the input tokens
they need to bind, and they all interact via several
Transformer encoder layers to allow the groups and
tokens to exchange information. Then, by perform-
ing a top-down attention mechanism shown as the
Grouping block, the groups bind to different parts
of the input.

More specifically, we first embed the input to-
kens and add learned positional encodings to them.
Then, we append the learnable group vectors,
[le;]kzl...K , to these embedded inputs, [t;;];=1..:,
and pass the resulting vectors through some Trans-
former encoder layers, allowing them to interact
with each other. We denote the encoded tokens and
groups as fij and g;.. Then the grouping happens
in a grouping block. In this block, the groups act
as the queries and the encoded inputs as keys and
values through a top-down attention mechanism.
As with standard attention, the raw attention scores
are computed as

raw __ Q(gzjl;)KT(tAU) (1)
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where d is the dimension of the model and @) and
K are linear query and key projections. In order to
have discrete assignments of inputs to the groups,
GroupViT actually performs a hard assignment
over A™¥ by utilizing Gumble softmax (Jang et al.,
2017; Maddison et al., 2017). Namely,

A" = Gumble Softmax(A™"). )

In top-down attention, instead of normalizing over
the keys in the softmax function, the A’ weights
are first normalized over the queries, which are
the groups. This will make the groups compete
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Figure 1: Overview of the model. We freeze the image encoder and only train the text encoder, decoder and the
linear projection heads. The image passes through Transformer layers followed by the grouping blocks. The output
of the image encoder is a set of groups which are approximately representing the objects. The caption also passes
through the same set of blocks and the output of the text encoder is a set of groups representing units in language.
The two modalities interact via a contrastive loss. There is also a reconstruction loss where the decoder decodes the

text groups into the original input.

for representing different inputs (Locatello et al.,
2020) and has been shown to be the most important
component in discovering objects (Wu et al., 2023).
After the normalization, the hard assignment hap-
pens and the gradient is backpropagated with the
straight through trick (Van Den Oord et al., 2017),
that is:

sg(A") + A

3)
where sg is the stop gradient operator. Finally, the
group vectors get updated as

A = one-hot(argmax s (A’)) —

Ap;j

5 Ak] tij))

Tox = i + W ( Z )

where V' and W are the linear projections for values
and outputs respectively.

After the grouping block, the updated group vec-
tors serve as inputs to subsequent Transformer en-
coder layers. Finally, these refined groups represent
the fine-grained semantics of the text in our model.

2.1.2 Image Encoder

We use the image encoder of Xu et al. (2022),
which follows the same architecture as the text
encoder, but with two stacked levels of transformer
encoder layers and grouping blocks. As its input,

the images are first divided into patches and then
linearly projected. The encoder then extracts the
set of image groups denoted as {g/,}. Due to the
computational cost, we freeze the image encoder
and assume that the image groups are representing
objects in the image.

2.2 Training Objectives

Our model is trained with two different losses, i.e.,
a contrastive loss and a reconstruction loss, which
we will explain in the following. The two losses are
combined with a hyperparameter A which controls
the ratio between the two terms.

)

Ltotal = Lcontrastive + )\Lrecontruction

2.2.1 Contrastive Loss

The image and text modalities interact via a con-
trastive loss. First, the final groups for each modal-
ity are mapped into a common space with a Linear
projector (®7), i.e., z = o7 (gL ;;)- Then, we aver-
age pool over them to obtam the global features for
each modality (z“iT ). We compute the InfoNCE loss
(Oord et al., 2018) for every modality separately.
Given a batch size of B and a similarity function
(sim), the infoNCE loss for the image to text is
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and respectively for the text to image is
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The final contrastive loss is calculated by averaging
the two losses,

1
Lcontrastive = E(LI—T + LT—I)‘ (8)

As for the similarity function sim(a,b), we consider
the cosine similarity between the vectors.

2.2.2 Reconstruction Loss

In order to encourage the model to group the tokens
into meaningful units, we incorporate a reconstruc-
tion loss from a text decoder. This loss encourages
the model to assign tokens to different groups in
order to spread information about the text across
multiple vectors, and thus make better use of the
available vectors.

We employ a simple shallow Transformer de-
coder to reconstruct the original input conditioned
on the text groups. The shallow decoder has to
rely on the information in the groups for decoding.
Thus, it enforces the encoder to better encode the
information into the groups (Bowman et al., 2015).

The output of this layer is

T; = TransformerDecoder(T;|{g% . .. g5 }).
)

The probabilities from these predictions are then
used to define the reconstruction loss:

B
Lreconstruction = Z CE(Tza Tl|{gzj;’ s

=1

L 9ik)})
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where CE is the cross entropy between the output
probabilities of the decoder and the original input
given the discovered groups.

3 Related Work

Our work is related to different tasks in vision and
language, which we will explain in this section.

Object discovery. Here the task is to discover the
objects in an image or video without any supervi-
sion. Slot-based object discovery (Locatello et al.,
2020) has become popular due to the simplicity of
the method (Singh et al., 2022; Sajjadi et al., 2022;
Singh et al., 2023a; Seitzer et al., 2023; Singh et al.,
2023b; Wu et al., 2023, 2024). We have a novel
adaptation of this method in discovering units simi-
lar to phrases in language with visually grounded
semantics.

Weakly supervised visual grounding. Visual
grounding refers to the tasks where a phrase or ex-
pression is grounded in the image. In the weakly
supervised setup, the only information used is the
pairing of the image with its caption. In weakly
supervised phrase grounding, the phrases are pre-
determined and no discovery happens on the lan-
guage side (Datta et al., 2019; Gupta et al., 2020;
Wang et al., 2020; Chen et al., 2022). In referring
expression comprehension and referring image seg-
mentation, the model must identify a specific part
of the image described in a single expression. Kim
et al. (2023) addressed the task of referring image
segmentation by employing a slot-based object dis-
covery module and merging relevant slots by cross
attending over them with the textual query to build
the final segmentation.

Vision language models with vision and lan-
guage alignments. While many large-scale vi-
sion language models have been developed, it has
been shown that they fall short in understanding
fine-grained details in the image. This is especially
more pronounced in the dual-stream Vision Lan-
guage Models (VLMs), where the modalities inter-
act only via a single-vector representation. There-
fore, there has been efforts to align language and
vision at the level of patches and tokens (Yao et al.,
2022; Wang et al., 2022; Mukhoti et al., 2023).
Zeng et al. (2022b) use additional supervision from
the phrase grounding annotations to help the model
learn the alignments. (Bica et al., 2024) aligns to-
kens and patch embeddings at different levels of
granularity simultaneously. (Li et al., 2022) learns
the semantic alignment from the perspective of
game-theoretic interactions.

Object detection. The objective of this task is to
detect the object boundaries in an image. Our work
is related to query-based object detection, such as
the approach in (Carion et al., 2020; Kamath et al.,
2021), where, at decoding time, learnable object



queries attend to the input features and encode an
object. Liu et al. (2023) extend this approach by
proposing a dual query model, demonstrating that
simultaneously learning phrases and their corre-
sponding objects improves the module’s ground-
able understanding. The main difference between
our model and this line of work lies in the weakly
supervised nature of our approach.

Zero-shot open-vocabulary semantic segmenta-
tion. Semantic segmentation is a well-established
task in computer vision. Recently, with the rise of
VLMs, these models have demonstrated promising
zero-shot capabilities in the semantic segmentation
task as well. (Xu et al., 2022) propose a hierar-
chical grouping architecture that learns to group
image regions without pixel-level annotations, rely-
ing solely on paired image and text data. Patel et al.
(2023) expanded on image-text alignment, suggest-
ing to not only align an image to the corresponding
text but also to the text from visually similar sam-
ples. Additionally, Mukhoti et al. (2023) propose
aligning patch tokens from a vision encoder with
the <cls> token from a text encoder to enhance the
model’s performance.

Unit discovery in language. Lately, discovering
language units as part of the model architecture
has been explored. These models operate on top
of characters, where the units are usually at the
level of subwords or words. The purpose is to
optimize model efficency (Dai et al., 2020; Nawrot
et al., 2022, 2023; Sun et al., 2023) or to skip the
tokenization step of preprocessing and develop an
end-to-end model (Clark et al., 2022; Tay et al.,
2022; Cao, 2023; Behjati and Henderson, 2023;
Behjati et al., 2023). Our research aligns with these
developments by also focusing on language unit
discovery. However, it differs in that these units are
semantically grounded to vision.

4 Experiments

In this section, empirically evaluate our proposed
model. We will first evaluate the quality of the
discovered segments quantitatively by their accor-
dance with the groundable phrases in Section 4.4,
and probe the fine-grained vision-language under-
standing of our proposed text encoder under two
benchmarks in Section 4.2. Then, we show the
effectiveness of our model in finding meaning-
ful units by visualizing the attention maps in Sec-
tion 4.3. We also analyse the contributions of dif-

ferent aspects of our model with a series of ablation
studies in Section 4.5.

4.1 Experimental Setup

Datasets: We trained our models on the training
split of GCC3M dataset which consists of around
3 million image-caption pairs collected from the
web (Sharma et al., 2018). The average caption
length in this dataset is 10.5 tokens. We will ex-
plain the datasets we used for evaluation in their
corresponding sections.

Parameters: We first resize the images to
224 %224 and then divide them into patches of size
16x16. The image encoder has 12 Transformer
encoder layers with the hidden dimension of 384
and two grouping blocks at the 6th and 9th layers.
The number of groups in the first block is 64 and 8
in the second block. We load the weights from the
GroupViT released checkpoint® (Xu et al., 2022)
and keep it frozen during training.

For the text encoder, we have 6 Transformer en-
coder layers followed by a grouping block* and
then another 3 Transformer encoder layers. Each
self-attention layer has 4 heads. We experiment
with K = 1,2,4, 8,16 as the number of groups.
We report the performance and results of the model
trained with 4 groups as it has the best performance,
and study the effect of having different numbers
of groups in our ablations. The text decoder has
only 1 Transformer decoder layer consisting of one
self-attention and one cross attention layer, each
with 1 attention head. We tie the weights between
the token embeddings in the encoder and the de-
coder. Both the encoder and the decoder have a
model dimension of 128. The linear projection
heads map each modality’s feature vector to 256
dimension. We fix the 7 to 0.07 in our contrastive
losses and A equals to 1. We use Byte Pair En-
codings (Sennrich et al., 2016) as our tokenizer
with a vocabulary size of around 50k tokens and
the maximum number of tokens is set to M = 77
following previous work (Radford et al., 2021; Xu
et al., 2022). We train our models with a batch-size
of 4096 for 25 epochs and use the GradeCache li-
brary (Luyu Gao, 2021) to obtain this batch size on
a single RTX3090 GPU>. We trained our models

3We take the checkpoint trained on GCC3M (Sharma et al.,
2018), GCC12M (Changpinyo et al., 2021) and YFCC14M
(Thomee et al., 2016) datasets.

*Our prilimenary experiments with two blocks did not lead
to reasonable results.

51t takes around GPU 48 hours for every model to train.



Model subj verb object overall
random 50 50 50 50
groupvit 81.6 77.3 91.7 81.0
transformer 80.5 69.5 89.0 75.3
ours (4 groups) 80.3 70.1 90.4 76.0

Table 1: The zero-shot pairwise ranking accuracy of
different models under SVO probes.

with AdamW optimizer (Loshchilov and Hutter,
2019) with a learning rate of 0.0016 with linear
warmup for 2 epochs and cosine annealing decay.

Baselines: 'We compared our model against a text
encoder with 9 Transformer layers, where the final
text representation is taken from the <eos> token.
This is the architecture used in GroupViT and other
dual-stream vision-language models (Radford et al.,
2021) and has approximately the same number of
parameters as our proposed model. We train this
model under the same training setup as our own
model.

In addition, we report the results of the trained
GroupViT model with its own text encoder and 2
layer projection heads. Note that this model has
many more parameters and has been trained on 10x
more data.

4.2 Fine-grained Vision-Language
Understanding Probes

We evaluate the fine-grained vision and language
understanding of our model by employing differ-
ent benchmarks which are specifically designed for
this purpose. We will explain each of these bench-
marks and the zero-shot performance of our models
in the following sections. In each case, the zero-
shot classifier ranks the image-text pairs by their

similarity scores sim(27, 27), which is the cosine

j I
between the pooled embeddings on the image and
text sides. We refer to the score obtained from this

zero-shot classifier as pair-wise ranking accuracy.

4.2.1 SVO Probes

Hendricks and Nematzadeh (2021) designed a
benchmark where they pair every sentence with
two images, one positive and one negative. The
negative images are selected in a controlled fashion
where only either subject, verb or the object of the
image is different from the original one. The test
split of this dataset contains around 30k examples.

Model accuracy
random 50
groupvit 82.5
transformer 80.91
ours (4 groups) 81.68

Table 2: The zero-shot performance of different models
under the FOIL-COCO benchmark.

Table 1 shows the results of the zero-shot perfor-
mance of different models under this benchmark.
We observe that our model has a better overall
performance compared to the Transformer base-
line, which verifies our hypothesis that represent-
ing the language in a fine-grained and meaningful
manner helps the fine-grained vision and language
understanding of the model. The Transformer’s
single-vector representation succeeds in capturing
information about subjects, but our multi-vector
representation does a much better job of represent-
ing objects, and to a lesser extent verbs. Both of
these models are well above the random baseline.
The results for GroupViT’s Transformer model are
not comparable because it is trained on much more
data, but we see that the resulting increase is much
higher on verbs than on the the groundable phrases
(subjects and objects) that our model is designed to
represent as separate vectors.

4.2.2 FOIL-COCO

Shekhar et al. (2017) propose FOIL-COCO dataset
where for every image there is a correct caption
and a "foil" one. The foil caption is different from
the original caption by altering one of the nouns in
the original caption into a foil one. We evaluate the
zero-shot performance of our model with pairwise
ranking accuracy in Table 2 on the test split of this
benchmark which has around 99k examples. We
observe that our model demonstrates a remarkably
good performance, outperforming the transformer
model. This indicates that the noun understanding
of our model has improved by learning fine-grained
representations. Additionally, despite being trained
on substantially less data than the GroupViT text
encoder, our model performs nearly as well.

4.3 Attention Visualization

In order to understand what each group is represent-
ing, we visualize the soft attention weights of the
groups over the input subwords in Figure 2. Inter-
estingly, we can observe that contiguous segments



<505> on the box: person as fictional character with her character's new
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Figure 2: Soft attention of the groups over the input
tokens. It shows that contiguous segments have emerged
which capture phrase-like units.

have emerged, without imposing any contiguity
constraints in the groupings. We believe that this is
due to the fact that usually in language the contigu-
ous tokens capture highly correlated information
and that’s why our model is grouping them together
as part of its compression. Moreover, we can see
that the emerging segments are meaningful in that
they capture phrase-like units. We quantitatively
evaluate the phrase discovery performance of our
model in the following section (Section 4.4). In
our examination of a sample of attention maps, we
observe that a given group tends to bind to sim-
ilar positions in the text, but that the boundaries
between groups vary.

4.4 Zero-shot Segmentation Evaluation

In order to evaluate the emerging segments in the
attention maps quantitatively, we propose a met-
ric similar to Intersection-over-Union (IoU) in the
visual object detection literature which we call
"tloU". We first compute the soft attention weights
of the groups over the input tokens. Then, by tak-
ing the argmax over the inputs, we have an assign-
ment matrix of every input to a group. Given a
gold segmentation, we can compute the IoU for
each discovered group of tokens and each gold seg-
ment. For the computation of IoU, the intersection
is equal to the number of overlapping tokens. For
the union, we do not count the tokens which were
not annotated in the dataset, as the annotators did
not have the constraint to include all the tokens in
their annotation. This gives us a matrix where by

Model tloU P R F1
random 42.15 61.51 60.03 54.54
k-means 5277 61.82 64.87 59.55
spectral-clustering 38.88 49.81 52.82 45.52
mean shift 50.38 99.64 51.73 65.13
ours (4 groups) 7642 87.25 85.83 83.72

Table 3: Phrase segmentation performance of different
models under different evaluation metrics.

applying the Hungarian matching algorithm (Kuhn,
1955) maximizing this metric, we can obtain a 1-1
mapping between the discovered groupings and the
gold segments. By having the mappings, we can
compute precision, recall and F1 as well as IoU for
each paired group and gold segment. In reporting
the results, we first average every metric for the text
input and then report the average over all examples.

For the gold segmentation, we use the annota-
tions in Flickr30k Entities (Plummer et al., 2015)
where groundable phrases are human-annotated.
We report the results on the validation set of this
dataset which has around 5000 examples. The num-
ber of annotated phrases in this dataset is on aver-
age 3.5.

In Table 3, we report the results of our evaluation.
We compare our model against multiple baselines,
including an untrained, randomly initialized model.
We also report the performance of applying differ-
ent clustering methods over the encoded features
of our transformer baseline. In particular, we ap-
ply k-means, spectral clustering (Shi and Malik,
2000) and mean shift (Comaniciu and Meer, 2002)
with 4 clusters. We observe that our model sur-
passes all the baselines by a large margin in all
the metrics. Specifically, the high tloU indicates
that our model is indeed very good at discovering
groundable phrases in the captions.

4.5 Ablation Study

In this section, we study the effect of different de-
sign choices on the performance of our models
both in terms of groundable phrase discovery and
fine-grained vision and language understanding.

4.5.1 Training Losses

In Table 4 we see the different effects of the two
types of loss on our multi-vector model. Without
the contrastive loss, the model has no training on
the image-text relationship, so it is not surprising
that the image-text semantic evaluations are very



SVO

model tloU subject verb object overall FOIL-COCO Noun Understanding
ours 7642 80.3 70.1 904 76.0 81.68 84.12

w/o contrastive loss 76.18 514 49.7 50.8 50.2 42.59 48.26

w/o reconstruction loss 40.80  78.2 72.6 89.1 76.9 78.66 81.98

Table 4: The performance of our model compared to the ablated ones on multiple datasets. Noun understanding
refers to the average of performance on noun phrases (i.e. subjects, objects and FOIL-COCO).
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Figure 3: Soft attention of the groups over the input
tokens for a model trained without the reconstruction
loss. It shows a uniform attention map and lack of
segmentation.

low. More surprisingly, although it still segments in
a meaningful way, without contrastive loss, the seg-
mentation corresponds slightly less well to ground-
able phrases. This suggests that semantic ground-
ing in images actually helps the model discover
meaningful units of text.

Interestingly, without the reconstruction loss, the
model fails to segment in a meaningful way. We
can see this both in the tloU score and in the uni-
form attention pattern shown in Figure 3. This lack
of segmentation in turn affects the fine-grained un-
derstanding of the image-text relationship. The
holistic representations indicated by Figure 3 are
relatively good at representing verbs, because verb
understanding combines information across mul-
tiple objects. But if we only consider the noun
phrases (i.e. subjects, objects categories from SVO
probes and FOIL-COCO), averaged in the last col-
umn, then segmenting the representation according
to semantic objects, as indicated in Figure 2, results
in much better understanding of the image-text re-
lationship.

#of groups tloU SVO  Foil
1 43.55 7499 80.23
2 53.12  75.30 80.01
4 7642 76.0 81.68
8 63.93 74.8 80.56
16 52.54 724 7943

Table 5: The performance of our model trained with
different number of groups.

4.5.2 Number of Groups

In Table 5, we report the performance of our model
trained with different numbers of groups. We can
see that the model trained with 4 groups achieves
the best results in all our evaluations. This implies
that having too many or too few groups hurts the
performance of our model.

5 Conclusions

In this work, we developed a novel model for dis-
covering meaningful units that are semantically
aligned to the objects in the image. We freezed an
image encoder which outputs groups that approxi-
mately represent objects and employ an analogous
architecture on the text side to discover units that
are at the level of phrases. While many dual-stream
VLMs represent text as a single vector, we hypoth-
esise that learning to represent language at a finer
granularity will improve their fine-grained vision
and language understanding.

We verified our hypothesis by employing two
specifically designed probing benchmarks, namely,
SVO probes and FOIL COCO. In addition, we
showed that the segments that appear in the atten-
tion maps of groups attending to tokens are mean-
ingful both qualitatively and quantitavely, in term
of overlapping with groundable phrases. Moreover,
we ablated the effect of our losses on learning these
units and concluded that both are necessary for
having meaningful and semantically aligned units.



Limitations

We have performed our experiments on the datasets
and benchmarks in English. However, we do not
make any language dependent assumptions in de-
veloping our model. Therefore, we believe that our
method is generalizable across other languages as
long as enough data for training is available.

We were not able to perform our experiments at
scale due to the computational limitations. We ex-
pect that training the image and text encoder simul-
taneously from scratch would lead to better align-
ment between the two modalities, which should in
turn improve our results.
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A Artifacts statements

The datasets used do not have personally identify-
ing information or offensive content. We provide
the list of datasets used and the corresponding li-
censes in Table 7, which are all consistent with our
academic use.

B Descriptive Statistics

Our results are from single runs for all the models
trained.

C Packages

We provide a list of packages used in our code in
Table 6.

D Al Assistants

We utilized Al assistants for minor text editing and
code completion tasks during the development of
the model.

Package version
Python 3.7
PyTorch 1.8
webdataset 0.1.103
mmsegmentation 0.18.0
timm 0.4.12
nltk 3.8.1

ftfy 6.1.1
regex 2023.6.3

Table 6: The packages used in our code development
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Dataset License

GCC3M Google license (link)

SVO-Probes  Creative Commons Attribution 4.0 International Public License (CC BY 4.0)
FOIL-COCO Creative Commons Attribution 4.0 License

Flikr Creative Commons Attribution O: Public Domain

Table 7: Datasets and their licenses.
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