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ABSTRACT

Unsupervised Domain Adaptation (UDA) aims to train a model for an unlabeled
target domain by transferring knowledge from a source domain. However, stan-
dard UDA requires access to source data and models, prohibiting its practical
application in terms of privacy and security. Black-Box DA (BDA) reduces such
constraints by defining a pseudo label from a single source prediction, which
allows for self-training of the target model. Nonetheless, existing methods have
limited consideration for multi-source settings, in which multiple source domains
are available to generate pseudo labels. In this work, we introduce a novel training
framework for multi-source BDA (MSBDA), dubbed Label Space-Induced Pseudo
Label Refinement (LPR). Specifically, LPR incorporates a Pseudo label Refinery
Network (PRN) that learns the relation between each source conditioned by the
target from source predictions. The target model is adapted by self-learning using
a pseudo label generated by PRN. We provide theoretical supports for the perfor-
mance of the LPR. Experimental results on four benchmark datasets demonstrate
that MSBDA using LPR achieves highly competitive performance compared to
state-of-the-art approaches with different DA settings.

1 INTRODUCTION

Unsupervised domain adaptation (UDA) is used to transfer domain knowledge acquired from a
labeled source domain to an unlabeled target domain. The primary goal of UDA is to mitigate the
impact of distribution shifts between the source and target domains, while reducing the labeling
burden in the target domain (Saito et al., 2018; Long et al., 2015; Sun & Saenko, 2016; Long et al.,
2017). However, existing UDA methods still demand labeled source data (Ganin et al., 2016; Long
et al., 2015) or the parameters of a source model (Qiu et al., 2021; Liang et al., 2020) to train a target
model. These requirements impede the deployment of a target model in real-world applications, and
they also raise concerns about privacy and security (Dong et al., 2020; Jaradat, 2017).

Black-box DA (BDA) (Zhang et al., 2021; Liang et al., 2022; Liu et al., 2022b;a; Yang et al., 2022)
has been proposed for a target model to adapt using only the prediction of a source model in an
unlabeled target domain. No other knowledge from the source domain is utilized. Due to the limited
resources, a straightforward BDA approach would generate pseudo labels from a source model and
directly use them for adaptation. The primary concern is the qualities of pseudo labels. Liu et al.
(2022b;a) created a pseudo label through a weighted sum of source and target prediction, in which
the weight parameters changed with the confidence of a target prediction. Liang et al. (2022) tried to
reduce noise in source prediction using adaptive label smoothing.

Previous BDA methods have used a single source model, assuming that the distributions of source
and target domains would be sufficiently correlated. It is natural and necessary to consider multiple
source domains in BDA (MSBDA), because a user can select one or more source APIs. However,
the correlation of source domains is usually unknown for the target adaptation, which could be more
realistic but challenging than the BDA. There are only few MSBDA studies Liang et al. (2022). Liang
et al. calculated the average of the individual source predictions to extend their original BDA method
to an MSBDA method. However, they ignored the different importance of source models.
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Figure 1: Illustration of Multi-Source Black-box DA setting (MSBDA) and the proposed self-learning
framework to concentrate source prediction within a label space and make different label spaces close
to refine a pseudo label, based on a theoretical analysis.

In this paper, we propose a novel self-supervised pseudo-labeling framework for MSBDA to ef-
fectively train a target model. While existing BDA methods have neglected to consider various
characteristics of different sources, the proposed method focuses on exploring statistical relations
with the source domains and extracting useful information from them. According to our theoretical
analysis, a risk factor of a source prediction, which expresses how a target error of a hypothesis is
deviated from an oracle error, can determine a positive or negative impact on the efficacy of pseudo
label generation. Based on this, we propose a pseudo-label refinery network (PRN) with the division
of a label space to produce confident source predictions to facilitate positive knowledge transfer. The
optimization is conducted by focusing on the concentration of source predictions within a label space
and closeness to other label spaces as presented in Figure 1, motivated by our theoretical analysis. In
contrast, assigning an equal contribution on every prediction would be sub-optimal, because some
predictions may have negative impacts.

The main contributions of this work include as follows:

• We develop a novel MSBDA framework that leverages only the predictions of source models
to explore positive knowledge from multiple source domains. To the best of our knowledge,
this work is the first to explore positive knowledge from multiple source domains, which is
a challenging yet significant task in the field of MSBDA.

• We present a theoretical analysis to demonstrate the effectiveness of the proposed training
strategy and propose the PRN architecture, specifically designed to resolve complex relations
in source and target domains and refine a pseudo label.

• We evaluate the proposed method on four benchmark datasets and demonstrate that it
outperforms state-of-the-art methods in various domain adaptation settings.

2 RELATED WORKS

UDA. Conventional UDA aims to adapt a target model in an unlabeled target domain, by leveraging
the learned knowledge from a labeled source domain. Several studies (Long et al., 2015; Sun &
Saenko, 2016; Long et al., 2017; Yan et al., 2017; Saito et al., 2018; Lee et al., 2019) have attempted
to minimize the statistical discrepancy between source and target domains. Meanwhile, adversarial
learning-based UDA methods have been presented to align source and target domains in feature-level
(Tzeng et al., 2017; Long et al., 2018), pixel-level (Bousmalis et al., 2017; Sankaranarayanan et al.,
2018; Xu et al., 2020b), and category-level (Saito et al., 2018; Xie et al., 2018; Pan et al., 2019; Xu
et al., 2020a). These methods demand to access source data or the parameters of a source model.

Multi-source domain adaptation (MSDA). MSDA is an extension of the standard DA, when it
is unclear which source domains are best suited for a target adaptation. In (Mansour et al., 2008),
the distribution of a target domain was approximated through a mixture of those of source domains.
(Hoffman et al., 2018a; Zhao et al., 2018; Li et al., 2018) derived theoretical cross-domain bounds
to model the discrepancy among multiple source domains. (Zhao et al., 2018) proposed multiple
domain adversarial networks (MDAN) to learn invariant features to various sources. (Xu et al., 2018)
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presented a deep cocktail network (DCTN) to address category shifts. (Peng et al., 2019) developed a
dynamic method to align the moments of source and target feature distributions.

Source-free domain adaptation (SFDA). SFDA further eliminated the accessibility to raw source
data from the UDA setting and used pseudo-labeling as an enabling method (Liang et al., 2020; Qiu
et al., 2021; Ahmed et al., 2021). (Qiu et al., 2021) used confidence re-weighting and regularization
to reduce the negative transfer by noisy pseudo labels. (Ahmed et al., 2021) introduced a solution for
multi-source SFDA, by combining the source models with suitable weights. Their model achieved
comparable performance to the best choice of a single source model.

BDA. There have been several studies (Zhang et al., 2021; Liang et al., 2022; Liu et al., 2022b;a;
Yang et al., 2022) to solve the BDA problems. In Liang et al. (2022), an adaptive label smoothing and
a structural knowledge distillation have been proposed to approximate a target prediction to source
predictions. In Liu et al. (2022b;a), a level of confidence has been calculated for pseudo-labeling and
a target adaptation. Our work is substantially different from the previous studies, when bridging the
BDA and multi-source setting.

Pseudo-labeling. It has been widely used for UDA to overcome the lack of labeled data in a target
domain, when the source data or model are not directly accessible. Self-training is applied to produce
a pseudo label using a source prediction and use it to fine-tune a target model. (Liang et al., 2022)
used pseudo-labeling in a black-box setting. Since these methods assumed single-source DA, they
were not directly applicable to MSDA. Xu et al. (Xu et al., 2018) and Wang et al. (Wang et al., 2020)
used hard pseudo-labeling to learn the interaction among domains. Different from these studies, we
use a deep model to apply weighted distribution through self-attention and refining pseudo-labels.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We address an adaptation of a K-way classification model in an MSBDA setting. There are M
labeled source domains DS = {D1,D2, . . . ,DM} and one unlabeled target domain DT . Xi and Yi

refer to the set of input samples and their annotations from Di, respectively. We assume that the
source domain and target domain share the same label space, i.e., Yi = YT for all i. In contrast,
xi ∈ Xi and xT ∈ XT display different distributions. A source model fi ∈ fS = {f1, f2, . . . , fM}
has been trained using Di and used in a target domain. Then, pi = fi(xT ) ∈ P is the only means to
generate a pseudo label p̂ for the target adaptation.

The previous methods (Xu et al., 2018; Wang et al., 2020) relied on a hard decision using pi to generate
a pseudo label. The proposed method aims to reduce an upper bound of a risk, which estimates how
a target error of a hypothesis is deviated from the oracle error, to produce an appropriate pseudo
label. We explain the theoretical foundation and the proposed adaptation mechanism in the following
sections. All the proofs of theorems are provided in the supplementary material.

3.2 THEORETICAL ANALYSIS

Denote yT as the ground-truth label of a target sample, which is unknown, and h ∈ H as a
hypothesis of a target model, respectively. Given a pseudo label p̂, our goal is to find a theoretic
upper bound of a difference between a target error ϵ(h, p̂) = Ex∈Xt

[|h(x)− p̂|] and the oracle error
ϵ(h, yT ) = Ex∈Xt [|h(x)− yT |], because the minimization of the bound can serve as a risk mitigation
strategy to ensure that p̂ is reliable for adaptation. For p̂, a weighted linear combination of each source
output has been a popular choice (Hoffman et al., 2018a; Zhao et al., 2018; Li et al., 2018). Following
the assumption, we derive a general upper bound (Yang et al., 2022) for the MSBDA as in Theorem 1.

Theorem 1. (General upper bound of a risk in target prediction) Denote h as a hypothesis in H.
We then establish a theoretical upper bound on the difference between the target error and the oracle
error as

|ϵ(h, p̂)− ϵ(h, yT )| ≤
∑

i
αiϵ(pi, yT ), (1)

where a pseudo label is defined as p̂ =
∑

i αipi, αi ≥ 0,
∑

i αi = 1.
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Existing BDA methods (Liang et al., 2022; Liu et al., 2022a;b) have attempted to decrease
empirical errors e.g. through de-noising of source predictions and label smoothing, when yT is
not accessible. Instead, in this framework, we modify the general bound using tractable terms
without the ground truth to provide a practical solution. For this purpose, we first define a
representative prediction, denoted as pc, which is assumed to be the one closest to the ground truth
among the available source predictions. We then modify the theoretic upper bound, by considering pc.

Lemma 1. (Modified upper bound of a risk)

|ϵ(h, p̂)− ϵ(h, yT )| ≤ ϵ(pc, yT ) + η, (2)

where pc = argminpi∈P ϵ(pi, yT ), and η =
∑

i αiϵ(pc, pi).

In the bound derived in Lemma 1, η represents a degree of the dispersion of source predictions from
the center at pc due to the weighted error terms. η can be directly estimated with the accessible terms
of source predictions, and the minimization of η could reduce the upper bound of a risk associated
with the reliability of a pseudo label as in Eq.(2). However, there would be some noisy outliers among
source predictions to hinder the optimization. When most of pi are dispersed from pc, pc needs to
move away from yT to avoid the penalty, which leads to a sub-optimal solution.

To avoid the failure, we consider a division of a label space and decompose the bound into tractable
terms. Let us assume there exist Pc and Pd ⊂ P as two subsets of an entire label space. Pc and
Pd are defined as the spaces, in which their samples are concentrated to pc and dispersed from pc,
respectively. They are mathematically defined as follows:

Pc = {pi|ϵ(pc, pi) ≤ ξ}, Pd = P \ Pc, (3)

where ξ denotes a threshold for the label space division.

Then, we define the degree of the dispersion of each label space as below,

ηc =
∑

pi∈Pc

αiϵ(pc, pi), ηd =
∑

pi∈Pd

αiϵ(pd, pi), (4)

where pd = argminpi∈Pd
ϵ(pc, pi).

Theorem 2. (Upper bound of a risk with a label space division)

|ϵ(h, p̂)− ϵ(h, yT )| ≤ ϵ(pc, yT ) + ηc + ηd +
∑

pi∈Pd

αiϵ(pc, pd), (5)

where pd = argminpi∈Pd
ϵ(pc, pi) is the representative prediction in Pd. ηc =

∑
pi∈Pc

αiϵ(pc, pi)

and ηd =
∑

pi∈Pd
αiϵ(pd, pi) are the dispersion of Pc and Pd, respectively.

As presented in Eq.(5), the reduction of both the dispersion in Pc and Pd and the distance between
pc and pd would lower the upper bound. ϵ(pc, yT ) is an inherent error in MSBDA. In the following
sections, we will explain how to perform pseudo-labeling for a K-way classification task in a practical
MSBDA setting, based on the theoretic analysis.

3.3 LABEL SPACE DIVISION IN K-WAY CLASSIFICATION

In the K-way classification, given xT , pij refers to the j-th element of the output probability vector
from the i-th source model fi(xT ) ∈ RK among M source domains. We define a set J = {j∗(i)} of
indices j∗(i) = argmaxj pij to maximize pij over j and a set Ic = {ic|j∗(i) = c} of indices ic where
c = argmaxk

∑
i 1(j

∗
(i) = k). We define a set Pc to include picj∗c , in which ic ∈ Ic and j∗c = j∗(ic).

The representative label pc ∈ Pc is selected as max picj∗c over ic. When the cardinal number of Ic is
M , in which all the source predictions are different, we select the source prediction with the highest
probability regardless of the categories.

Pd and Id are defined as P \ Pc and I \ Ic, respectively. pd ∈ Pd is chosen as min pidj′ over id,
when j′ ∈ J \ {j∗c } is the classification result of fid(xT ).
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Figure 2: The proposed self-learning framework with a pseudo label refinement network (PRN),
including a warm-up, a label refinement, and a target adaptation phase. PRN consists of attention
(AT) and fully connected (FC) layers to consider the relevance between source and target domains
and resolve their complex statistical relations. In the adaptation, the PRN is trained to improve the
reliability of a pseudo label by encouraging the concentration within label spaces and closeness across
label spaces, based on theoretical analysis.

3.4 PSEUDO LABEL REFINERY NETWORK

The proposed method utilizes a pseudo label refinery network (PRN) with a target model to generate
high-quality pseudo labels, as shown in Figure 2. PRN is designed to learn the relations not only
between different source domains but also between source domains and a target domain. For this, it
is implemented with the stacks of refinement blocks that include an attention layer (AT) and a fully
connected layer (FC) followed by softmax (SM) layer, as presented in Figure 2. The AT is added to
capture the level of attention or relevance of one source prediction to the other predictions. The FC
generates refined predictions from the inputs.

When pi(= fi(xT )) is digested to generate the final pseudo label through the PRN, it is not limited to
be a simple linear combination of source predictions and αi. The refinement-and-adaptation process
using PRN consists of three phases, including a warp-up phase, a label-refinement phase, and a target
adaptation phase. It is highlighted that our genuine contribution in the PRN lies in both the warm-up
and label-refinement phases. Although we have made modifications to the target adaptation phase
compared to previous studies, we maintained consistent training parameters to assess the enhanced
performance achieved by our proposed method.

3.4.1 WARM-UP PHASE

The output of PRN is noisy with randomly initialized parameters in an early stage of adaptation.
Warm-up phase is used to avoid a failure due to such noisy samples and to produce initial predictions
similar to the original source predictions. Denote P and Pw as an input concatenation of source
predictions [p1 . . . pM ]

T and the outcomes of the warm-up phase [pw1 . . . pwM ]
T, i.e., Pw = PRN(P).

The PRN in the warm-up phase is trained using a loss function, defined as

Lw = Ext∈XT
Ei∈IKL(pi ∥ pwi ), (6)

where KL is the Kullback-Leiger (KL) divergence, and I is a set of categorical indices. After the
warm-up phase, pwi is averaged over i and used as an initial pseudo label to be refined later.

3.4.2 LABEL REFINEMENT PHASE

The PRN refines the input predictions using both source and target predictions in this phase. It is
necessary to exploit both predictions, because a target prediction can offer knowledge learned from a
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target model fT with an unlabeled target sample xT . In what follows, the PRN takes the original
source prediction P as a query and a value and a target prediction pT (= fT (xT )) as a key and
conducts a cross-attention operation through the AT and produces an output Pr as follows:

Pr = [pr1 . . . p
r
M ]

T
= PRN(P,PT ), (7)

where PT = [pT . . . pT ]
T ∈ RM×K . The cross-attention calculates the level of attention of one target

prediction to several source predictions in the label space and allows the PRN to be trained in an
unsupervised manner and reflect the relations between the source and target domains.

The label space Pr is divided into Pr
c and Pr

d in the label refinement phase in Figure 2. The majority
of the pseudo labels that output the same classification results are grouped to Pr

c . The other pseudo
labels are grouped to Pr

d . We then define a training objective based on the analysis in Theorem 2.

First, we define a concentration loss to reduce each dispersion within Pr
c and Pr

d (see ηc and ηd in
Eq.(5)), respectively, given as,

Lcc = ExT∈XT
Epr∈Pc

KL(prc ∥ pr), (8)

and
Lcd = ExT∈XT

Epr∈Pd
KL(prd ∥ pr), (9)

where the representative labels prc ∈ Pr
c and prd ∈ Pr

d are chosen as explained in Section 3.3.

We employ a loss function to consider the distance between the two representative labels (see the last
term in Eq.(5)), given as

Lld = ExT∈XT
KL(prc ||prd). (10)

Further, a stabilization loss Ls = Ext∈XT
Ei∈IKL(pi ∥ pri ) to produce an approximation of pi as an

initial value and avoid overfitting of the PRN to irrelevant probabilities. The PRN is trained using the
total loss Lr in the refinement phase, defined as

Lr = Lcc + λcdLcd + λldLld + λsLs. (11)

3.4.3 TARGET ADAPTATION PHASE

In this phase, a target model is trained using a generated pseudo label from the PRN. First, we compute
an average of pr to decide the final pseudo label, i.e., p̂ = 1

M

∑M
i=1 p

r
i and train a target model using

p̂ as as the ground truth through a self-learning loss, i.e., Lsl = ExT∈XT
KL(p̂ ∥ fT (xT )).

In addition, we utilize a mutual information loss to encourage the target model to maintain diversity
among its predictions across all target instances. To this end, the mutual information objective (Liang
et al., 2020; 2022), which is widely used as Lim = Lent+Ldiv = ExT∈XT

H(fT (xT ))−H(f̄T (xT )),
where H denotes a conditional entropy function, and f̄T (xT ) = ExT∈XT

fT (xT ).

Taken together, the final objective of the target model is given by Lt = λtLsl + Lim, where
λt = exp(−I/Itarget) is a hyper-parameter with the exponential decay with respect to iteration
I . Itarget is a total training iteration of target adaptation. During the target adaptation, the label
refinement phase is performed at regular intervals.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets, training parameters, and implementation details. We evaluate the performance of the
proposed method on four benchmark datasets, i.e., Office (Hoffman et al., 2018b), Office-Caltech
(Saenko et al., 2010), Office-Home (Venkateswara et al., 2017) and DomainNet (Peng et al., 2019),
that include data samples in different domains. We designate one of the domains as a target domain
and the remaining domains as source domains as described in Sec. E.1.

For fair comparisons, we follow the same experimental settings as previous works (Liang et al., 2020;
Ahmed et al., 2021; Liang et al., 2022). We describe a detailed training parameter setting such as
training epochs, learning rates, and batch sizes in Sec. E.1.
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We use two deep models with ResNet101 (He et al., 2016) and ViT-B 16 (ViT16 for simplicity)
(Dosovitskiy et al.) for source models. ResNet-101 is used as the target model. PRN is trained in
every epoch of a target model training, whereas the warm-up phase is conducted once. We have
reinitialized a learning rate at each training epoch of the refinement phase for reliable training, when
pc and pd change on the same sample. The total training epoch is 15. We measure the performance
of the proposed method three times using different random seeds {2019, 2020, 2021} via PyTorch
(Paszke et al., 2017) and report the average performances.

Performance Comparison. We compare our method with state-of-the-art MSDA methods to evaluate
its effectiveness. No Adapt. (also known as “Source Only”) denotes the test performance on target
data, when a model is trained using only the source data. Considering the MS setting, we further
compare No Adapt (SB) that is assumed to choose the most suitable source prediction for the
adaption, which is the ideal scenario but usually infeasible. In contrast, No Adapt (SW) is assumed
that a user chooses the worst source prediction. Moreover, we provide No Adapt (MS) when the
source model is trained using all the source data from available source domains.

We categorize the tested DA methods with their MS settings as MSDA, MSFDA, and MSBDA. For
MSDA, we present the adaptation results from M3SDA, M3SDA-β (Peng et al., 2019), SImpAI101
(Venkat et al., 2020), and MFSAN (Zhu et al., 2019). Both source data and models are available in
these methods. Furthermore, we compare MSFDA methods, including SHOT, SHOT++ (Liang et al.,
2021), DECISION (Ahmed et al., 2021), and CAiDA (Dong et al., 2021). For (Liang et al., 2021),
we also report the performance of SHOT-ens, which takes an average of the soft prediction as a target
prediction, to pose the method in an MS setting. DINE (Liang et al., 2022) is a single-source BDA
method and extended to MSBDA, thus used for performance comparisons. DINE used a two-step
learning procedure, including source adaptation to a target model with DINE (w/o FT) and further
fitting to a specific target domain with DINE (FT). Because the primary objective of a generic UDA
is to generalize target domains and maintain its performance even when faced with different domain
shifts, we mainly compared the performance of DINE (w/o FT) with our method.

4.2 EXPERIMENTAL RESULTS

The classification results on Office, Office-Caltech, Office-Home, and DomainNet are shown in Table
1–2. “MU”, “MS”, and “MB” refer to MSDA, MS-SFDA, and MSBDA, respectively. A right arrow
“→” refers to an adaptation task. For instance, “→ W” denotes the target adaptation from all the
other domains to a domain “W.” Because MSDA and MS-SFDA have access to model parameters,
the source and target models have the same structure, and they are tested, only when the models use
ResNet101 in common. BDA does not have such constraints, allowing for ViT16 as a source model.

In the MSBDA setting, our method achieves competitive accuracy across four datasets, and notably,
it demonstrates comparable performance to the other methods in the MSDA and MS-SFDA settings.
Our method accomplishes these results even in the absence of source data and models. The highest
accuracy achieved within the MSBDA setting is highlighted in bold. Compared to DINE, the
proposed method consistently provides superior classification performance across all datasets and
source models. This result demonstrates the efficiency of our approach in transferring positive
knowledge from source domains without the aid of source data and models.

Results on Office. We present the adaptation results on Office in Table 1. Our method outperformed
DINE (w/o FT) with a margin of 3.6% on average. Furthermore, our method achieved comparable
performances to UDA and SFDA methods. Compared to CAiDA (Dong et al., 2021), which is the
state-of-the-art MS-SFDA method, our approach achieved an increase of 0.2% with ResNet101.

Results on Office-Caltech. Office-Caltech has been known to be comparably easy for target
adaptation, when considering its accuracy in “No Adapt”. Most of the MSDA and MS-SFDA
methods achieved substantial performance improvements as compared to “No Adapt (MS)”. Our
method outperformed DINE (w/o FT) by 1.7% in ResNet101.

Results on Office-Home. Our method exhibited similar phenomenon on Office-Home. The pro-
posed method achieved the best accuracy for all the tasks in UDA and SFDA methods. LPR also
outperformed DINE (w/o FT) by the margin of 4.2% on average.

Results on DomainNet. Table 2 displayed the performance on DomainNet, which was challenging
task due to a large number of categories and their associated large discrepancies. Compared to other
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Table 1: Classification accuracy (%) on Office, Office-Caltech, and Office-Home.

Office Office-Caltech Office-Home

fS Methods Setting →A →D →W Avg. →A →C →D →W Avg. →Ar →Cl →Pr →Re Avg.
R

es
N

et
10

1

No Adapt (SB) - 64.8 98.2 94.8 86.0 95.6 90.2 100.0 95.9 95.4 69.1 50.1 79.9 76.7 68.9
No Adapt (SW) - 53.9 81.5 81.1 72.2 84.1 81.5 95.5 90.5 87.9 55.0 44.7 66.0 68.4 58.5
No Adapt (MS) - 64.5 82.3 80.7 75.8 84.9 88.7 93.0 88.5 88.8 54.9 49.9 69.6 76.7 62.8

SImpAI101 (Venkat et al., 2020) MU 99.4 97.9 71.2 89.5 100. 100. 94.6 95.6 97.5 73.4 62.4 81.0 82.7 74.8
MFSAN (Zhu et al., 2019) MU 72.7 99.5 98.5 90.2 - - - - - 72.1 62.0 80.3 81.8 74.1

SHOT (Liang et al., 2021) MS - - - - 96.2 96.2 98.5 99.8 97.7 73.0 60.4 83.9 83.3 75.2
DECISION (Ahmed et al., 2021) MS 75.4 98.4 99.6 91.1 95.9 95.9 100. 99.6 97.9 74.5 59.4 84.4 83.6 75.5
SHOT ++ (Liang et al., 2021) MS - - - - 96.2 96.5 99.4 100. 98.0 73.1 61.3 84.3 84.0 75.7
CAiDA (Dong et al., 2021) MS 75.8 99.8 98.9 91.6 96.8 97.1 100. 99.8 98.4 75.2 60.5 84.7 84.2 76.2

DINE (w/o FT) (Liang et al., 2022) MB 69.2 98.6 96.9 88.2 95.0 92.0 98.5 97.3 95.7 70.8 57.1 80.9 82.1 72.7
DINE (FT) (Liang et al., 2022) MB 76.8 99.2 98.4 91.5 95.9 95.2 98.5 98.9 97.1 74.8 64.1 85.0 84.6 77.1
LPR (Ours) MB 77.2 99.5 98.7 91.8 95.9 95.3 98.6 99.9 97.4 74.8 64.5 85.8 84.8 77.5

V
iT

16

No Adapt (SB) - 71.9 99.4 96.9 89.4 96.0 93.5 99.4 99.7 97.1 79.6 54.7 88.8 87.2 77.6
No Adapt (SW) - 70.9 84.5 84.7 80.0 88.5 84.1 94.3 92.2 89.8 74.4 50.9 83.0 85.5 73.5
No Adapt (MS) - 77.2 88.2 89.2 84.9 92.9 95.9 98.7 95.8 95.8 74.5 54.5 83.2 87.2 74.9

DINE (w/o FT) (Liang et al., 2022) MB 80.7 98.4 97.1 92.1 96.4 96.0 99.4 98.2 97.5 82.4 61.0 88.6 90.8 80.7
DINE (FT) (Liang et al., 2022) MB 82.4 99.2 98.4 93.3 96.8 97.0 99.6 98.8 98.1 83.6 67.0 90.9 91.8 83.3
LPR (Ours) MB 82.6 99.5 98.3 93.4 96.9 97.2 99.5 99.3 98.2 83.3 67.2 92.3 93.5 84.0

Table 2: Classification accuracy (%) on DomainNet.

fS Methods Setting →Clp →Inf →Pnt →Qdr →Rel →Skt Avg.

R
es

N
et

10
1

No Adapt (SB) - 52.4 20.5 48.4 13.5 58.1 43.7 39.4
No Adapt (SW)∗ - 10.6 1.2 1.9 2.7 4.4 9.2 5.0
No Adapt (MS)∗ - 47.6 13.0 38.1 13.3 51.9 33.7 32.9

M3SDA (Peng et al., 2019) MU 57.2 24.2 51.6 5.2 61.6 49.6 41.5
M3SDA-β (Peng et al., 2019) MU 58.6 26.0 52.3 6.3 62.7 49.5 42.6
SImpAI101 (Venkat et al., 2020) MU 66.4 26.5 56.6 18.9 68.0 55.5 48.6

SHOT-ens (Liang et al., 2021) MS 58.6 25.2 55.3 15.3 70.5 52.4 46.2
DECISION (Ahmed et al., 2021) MS 63.2 22.3 54.6 18.2 67.9 51.4 46.3

DINE (w/o FT) (Liang et al., 2022)∗ MB 61.4 21.5 54.7 13.4 70.9 50.3 45.4
DINE (FT) (Liang et al., 2022)∗ MB 55.6 6.3 33.6 0.2 25.7 32.1 25.6
LPR (Ours) MB 63.9 24.0 55.1 13.6 70.8 51.2 46.4

V
iT

16

No Adapt (SB)∗ - 55.2 19.9 47.0 14.9 62.1 45.2 40.7
No Adapt (SW)∗ - 4.5 0.5 0.9 4.1 1.6 6.4 3.0

DINE (w/o FT)(Liang et al., 2022)∗ MB 63.0 21.6 56.7 15.0 72.8 50.2 46.5
DINE (FT) (Liang et al., 2022)∗ MB 58.2 5.3 35.9 0.2 24.8 33.5 26.3
LPR (Ours) MB 65.2 24.2 56.9 15.8 73.1 50.6 47.6

datasets, it is hard to achieve high adaptation accuracy in every setting. Nevertheless, our method
achieved comparable performance to all the methods except SImpAI101 (Venkat et al., 2020).

DINE has significantly degraded performance by approximately 20%, when it used the FT in
DomainNet. In (Liang et al., 2022), the FT has been optimized to fit the Office datasets and improved
the performance in the same datasets. However, DomainNet dataset was not used for the optimization,
and the FT could worsen the domain shift problem. Our method did not experience such failure.

4.3 PERFORMANCE ANALYSIS AND ABLATION STUDIES

Table 3: Ablation studies on Office, (a) when each component including warm up (WU), label
refinement (LR), and target adaptation (TA) is turned on or off, and (b) when the loss functions are
differently combined during the LR phase.

(a)

WU LR TA →A →D →W Avg.

✓ 62.4 89.9 89.5 80.6
✓ ✓ 57.8 89.4 87.6 78.3

✓ ✓ 75.6 88.9 97.1 87.2
✓ ✓ ✓ 77.2 99.5 98.7 91.8

(b)

Lcc Lcd Lld Ls →A →D →W Avg.

✓ 71.0 97.2 95.4 87.8
✓ ✓ 72.0 97.6 95.7 88.4
✓ ✓ ✓ 73.6 98.7 96.8 89.7
✓ ✓ ✓ ✓ 77.2 99.5 98.7 91.8

Effect of phases. In Table 3a, the warm-up (WU) and label refinement (LR) steps of the PRN
significantly improved the adaptation performance. LR has improved 6.6% in comparison to the TA
only. WU further improved 4.6 % . The tests demonstrated the efficacy of the components.
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Figure 3: (a) Ablation studies on PRN with loss functions and (b) a refinement interval. (a) and (b)
are tested with an Office dataset. (c) Classification accuracy of the refined predictions and target
prediction during the target adaptation phase for “→ Ar” task on an Office-Home dataset.

Loss function. In Table 3b, we presented the adaptation accuracy during LR, when each loss in
Eq.(11) was added. ResNet101 was used for both fS and fT . LPR achieved a similar performance to
DINE (w/o FT), when using only the Lcc. The performance has been further improved using Lcd and
Lld by the margin of 0.6% and 1.3%, respectively. We achieved further improvements of 2.1% with
Ls. More ablation tests are presented with various λcd, λld and λs of Eq. (11) in Sec E.4.

Training interval of LR. We then analyze the training interval of a LR phase. The LR phase
was performed every 1 epoch of target adaptation. In Figure 3(a), we illustrated the adaptation
performance, when the interval increased to 2, 3, and 4 epochs. We found that 1 epoch was
appropriate and the performance of the adaptation would degrade if the refinement process was not
sufficiently applied. In other words, the refinement process was effective during adaptation.

Investigation of a domain adaptation phase. In Figure 3(b), we illustrated how the quality of refined
source predictions changes during the target adaptation. We reported the result of the adaptation
to Art (Ar) domain of Office-Home. The orange, green and yellow curve displayed the variations
of the quality of source predictions from Cl, Pr, and Re source, respectively, and the black curve
displayed the adaptation performance. In the beginning, each source curve presented the quality of
the output of the PRN after the warm-up. Up to 2 training epochs, the quality tended to decrease,
because the target predictions up to this point were not helpful for refinement. However, the quality
constantly increased as the refinement phase went on, and the accuracy kept improving. Noisy source
predictions illustrated as orange and green curves have been further refined with a larger gradient
than the yellow curve. There were more noisy samples affected by the refinement phase, and the
quality has been improved, which implies the phase has been effective.

Selection of representative prediction pc and pd. In Sec. 3.2, we derive the condition of an
optimal pc. Nevertheless, because yT is unknown, it is intractable to precisely determine the
representative predictions. We presented a method to designate pc in Sec. 3.3, allowing for leveraging
complementary information from many sources to avoid the incorrect designation. To ensure the
effectiveness, we test several alternatives including a random selection (RS), the selection of a
confident prediction (CP). The proposed method presented a superior performance to the alternatives,
empirically justifying the selection of pc. We also chose pd to have lower confidence prediction in
Pd and test several alternatives to justify the performance. The results can be found in Sec. E.5.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel MSBDA pseudo-labeling framework that used only the predictions
of source models to explore positive knowledge from multiple source domains. We derived a
theoretical analysis to demonstrate the effectiveness of the proposed training method and justified the
design of the PRN architecture to use an attention mechanism to resolve complex relations among
different domains. We evaluated the performance of the proposed method on various benchmark
datasets and demonstrated its superiority in comparison to state-of-the-art methods in various domain
adaptation settings. In the future work, we will investigate open-set MSBDA problems.
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SUPPLEMENTARY MATERIAL

A PROOF OF THEOREMS

We define the triangular inequality for errors in (Crammer et al., 2008) stated below.
Definition 1. (Triangular inequality for errors) For any hypothesis f1, f2, f3 in class H,

ϵ(f1, f2) ≤ ϵ(f1, f3) + ϵ(f2, f3). (12)

Theorem 1. (General upper bound of a risk in target prediction) Denote h as a hypothesis in H.
We then establish a theoretical upper bound on the difference between the target error and the oracle
error as

|ϵ(h, p̂)− ϵ(h, yT )| ≤
∑

i
αiϵ(pi, yT ), (13)

where a pseudo label is defined as p̂ =
∑

i αipi, αi ≥ 0,
∑

i αi = 1.

Proof:

First, we find the upper bound of the target error.

ϵ(h, p̂) = Ex∈Dt
[|h(x)− p̂|] (14)

= Ex∈Dt

[∣∣∣∣∣h(x)−
M∑
i=1

αipi

∣∣∣∣∣
]
= Ex∈Dt

[∣∣∣∣∣
M∑
i=1

αi(h(x)− pi)

∣∣∣∣∣
]

(15)

≤
M∑
i=1

αiEx∈Dt [|h(x)− pi|] =
M∑
i=1

αiϵ(h, pi). (16)

Then, we find the upper bound by applying Definition 1.

|ϵ(h, p̂)− ϵ(h, yT )| (17)

≤

∣∣∣∣∣
M∑
i=1

αiϵ(h, pi)− ϵ(h, yT )

∣∣∣∣∣ (18)

≤
M∑
i=1

αi|ϵ(h, pi)− ϵ(h, yT )| (19)

≤
M∑
i=1

αiϵ(yT , pi). (20)

Lemma 1. (Modified upper bound of a risk)
|ϵ(h, p̂)− ϵ(h, yT )| ≤ ϵ(pc, yT ) + η, (21)

where pc = argminpi∈P ϵ(pi, yT ), and η =
∑

i αiϵ(pc, pi).

Proof:

Applying triangular inequality to each pseudo error,

|ϵ(h, p̂)− ϵ(h, yT )| (22)

≤
M∑
i=1

αi|ϵ(yT , pc) + ϵ(pc, pi)| (23)

≤ ϵ(yT , pc) +

M∑
i=1

αiϵ(pc, pi) = ϵ(pc, yT ) + η. (24)
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Let us assume there exist Pc and Pd ⊂ P as two subsets of an entire label space. Pc and Pd

are defined as the spaces, in which their samples are concentrated to pc and dispersed from pc,
respectively. They are mathematically defined as follows:

Pc = {pi|ϵ(pc, pi) ≤ ξ}, Pd = P \ Pc, (25)

where ξ denotes a threshold for the label space division.
Theorem 2. (Upper bound of a risk with a label space division)

|ϵ(h, p̂)− ϵ(h, yT )| ≤ ϵ(pc, yT ) + ηc + ηd +
∑

pi∈Pd

αiϵ(pc, pd), (26)

where pd = argminpi∈Pd
ϵ(pc, pi) is the representative prediction in Pd. ηc =

∑
pi∈Pc

αiϵ(pc, pi)

and ηd =
∑

pi∈Pd
αiϵ(pd, pi) are the dispersion of Pc and Pd, respectively.

Proof:

We apply the triangular inequality to the terms related to concentration.

|ϵ(h, p̂)− ϵ(h, yT )| (27)

≤ ϵ(pc, yT ) +
∑

pi∈Pc

αiϵ(pc, pi) +
∑

pi∈Pd

αiϵ(pc, pi) (28)

≤ ϵ(pc, yT ) + ηc +
∑

pi∈Pd

[αiϵ(pc, pd) + αiϵ(pd, pi)] = ϵ(pc, yT ) + ηc + ηd +
∑

pi∈Pd

αiϵ(pc, pd).

(29)

B NOTATIONS

We summarize all the notations of variables in Table 4.

C ARCHITECTURE OF PRN

We provide a detailed architecture of the proposed pseudo label refinery network in Table 5. PRN is
fed by the concatenated source prediction P ∈ RM×K and outputs the refined predictions with the
same size of the input, Pw and Pr in the warm-up and adaptation phase, respectively. The learnable
parameters are only related to the fully connected layer and the total number is NK2.

D PSEUDO CODE

We present the overall procedure of the proposed MSBDA training framework in Algorithm 1. All
the variables are defined in Table 4.

E EXPERIMENTAL DETAILS

E.1 EXPERIMENTAL RESOURCES AND IMPLEMENTATION DETAILS

E.1.1 DATASETS

We evaluate the proposed method on four benchmark datasets, including Office (Hoffman et al.,
2018b), Office-Caltech (Saenko et al., 2010), Office-Home (Venkateswara et al., 2017) and Do-
mainNet (Peng et al., 2019). Office dataset consists of three domains, i.e., Amazon (A), DSLR
(D), and Web (W) with 31 categories. Office-Caltech dataset is an extension of the Office dataset
with 10 categories in Amazon (A), CalTech (C), DSLR (D), and Web (W) domains. Office-Home
dataset contains four domains, i.e., Art (Ar), Clipart (Cl), Product (Pr), and Real-Word (Rw) with 65
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Table 4: Definition of the notations.

Variables Definition

M Number of source domains
K Number of classification categories
Di, 1 ≤ i ≤ M i-th source domain
Ds Collection of source domains
DT Target domain
X ,Y Set of samples and annotations
xT , yT Target sample and its groundtruth
fi Source model pre-trained using Di

ft Target model
PRN Pseudo label refinery network
N Number of refinement blocks of PRN
pi Source prediction on target sample by fi
P ∈ RM×K Set of source predictions
pc Representative label in P
Pc ∈ P Set of predictions concentrated to pc
Pd = P \ Pc Set of predictions dispersed from pc
pd Representative label in Pd

Isource Training iteration of source models
Iwarmup, Irefine, Itarget Training iteration of warm-up, label refinement, and target adaptation phase
Trefine Training interval of label refinement phase
ηwarmup, ηrefine, ηtarget Initial learning rate of warm-up, label refinement, and target adaptation phase
λcd, λld, λs Hyperparameter in Lcd,Lld,Ls

B Batch size

Table 5: Detailed architecture of PRN.

Block name Output size Architecture

Refinement block M ×K


Attention layer (AT)

Fully connected layer (FC)
ReLU

Dropout
Residual connection

Normalization

×N

Softmax M ×K

categories. DomainNet dataset, which is considered as the most challenging one in MSDA, includes
approximately 0.6 million images and 345 categories in six domains, i.e., Clipart (Clp), Infograph
(Inf), Painting (Pnt), Quickdraw (Qdr), Real (Rel), and Sketch (Skt). We designate one of the domains
as the target domain and the remaining domains as the source domains.

E.1.2 TRAINING AND IMPLEMENTATION DETAILS

For fair comparisons, we follow the same experimental settings as previous works (Liang et al., 2020;
Ahmed et al., 2021; Liang et al., 2022). The network is trained with a momentum value of 0.9 and a
weight decay of 10−3 in a stochastic gradient descent (SGD) optimizer and the same learning rate
scheduling strategy as in (Ahmed et al., 2021). The batch size is set to 64 for Office, Office-Caltech,
and Office-Home and 32 for DomainNet.

All the experiments on Office (Hoffman et al., 2018b), Office-Caltech (Saenko et al., 2010) and
Office-Home (Venkateswara et al., 2017) were conducted using 1 12GB Geforce GTX TITAN X. A
single 48GB NVIDIA RTX A6000 was used for the experiments on DomainNet (Peng et al., 2019).

We use two deep models with ResNet101 (He et al., 2016) and ViT-B 16 (ViT16 for simplicity)
(Dosovitskiy et al.) for source models. They have been pre-trained on the ImageNet (Deng et al.,
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Algorithm 1 Training of PRN and target model

Input: DT , P , Iwarmup, Irefine, Itarget, Trefine.
Output: well-trained PRN and fT .
for iter = 1 to Iwarmup do

Train PRN according to Section 3.4.1.
end for
for iter = 1 to Itarget do

Train fT according to Section 3.4.3.
if iter%Trefine == 0 then

Divide the label space according to Section 3.3.
for iter = 1 to Irefine do

Train PRN according to Section 3.4.2.
end for

end if
end for

2009) and fine-tuned on source samples. The number of training epochs is set to 100, 100, 50, and 50
for Office, Office-Caltech, Office-Home, and DomainNet datasets, respectively (Ahmed et al., 2021).
ResNet-101 is used as the target model. During the warm-up phase of PRN, the learning rate is set to
10−3 for every dataset, and the maximum training epoch is set to one. During the adaptation phase,
the initial learning rate is set to 10−3 for the DomainNet dataset and 10−4 for the other datasets.

E.2 TRAINING PARAMETERS

We show the detailed parameter values set to the experiments on different databases in Table 6.

Table 6: Parameter settings on different databases. I and T are the number of epochs.

Parameter Office Office-Caltech Office-Home DomainNet

N 2 2 2 1

Isource 100 100 50 50

Iwarmup 1 1 1 1
Irefine 1 1 1 1
Itarget 30 30 30 15
Trefine 1 1 1 1

ηwarmup 10−3 10−3 10−3 10−3

ηrefine 10−4 10−4 10−4 10−3

ηtarget 10−4 10−4 10−4 10−3

λcd 1 1 1 1
λld 1 1 1 1
λs 1 1 1 1

B 64 64 64 32

We used the same parameter values of Isource, Itarget and ηtarget in Table 6, as in the previous
studies (Ahmed et al., 2021; Liang et al., 2022), because these parameters contribute to the training
of the target model itself. The primary goal of this work was the investigation of selective knowledge
transfer in MSBDA. Notably, for fair comparisons, the PRN is independently trained, ensuring that
parameter selection has minimal impact, irrespective of the proposed modules. Thus, we have not
applied any selection methods and used the same hyper-parameters as the previous studies.

Concerning parameters related to the training of PRN, we conducted a grid search for the hyperpa-
rameters of ηwarmup, ηrefine, λcd, λld and λs. The selected values for these parameters are given in
Table 6. The sensitivity analysis of λcd, λld and λs are shown in Sec. E.4.

16



Under review as a conference paper at ICLR 2024

E.3 STANDARD DEVIATIONS

Since we performed the experiments on the proposed method three times with different random
seeds, we displayed the standard deviations of the experimental results in Table 7 and 8. The standard
deviations on all the tasks range from 0.05 to 1.03.

Table 7: Standard deviations of the experiments on Office, Office-Caltech, and Office-Home.

Office Office-Caltech Office-Home

fS →A →D →W Avg. →A →C →D →W Avg. →Ar →Cl →Pr →Re Avg.

ResNet101 0.64 0.38 0.21 0.13 0.08 0.41 0.19 0.16 0.13 0.05 0.34 0.27 0.23 0.22
ViT16 0.05 0.09 0.12 0.05 0.07 0.08 0.06 0.08 0.07 0.25 0.53 0.28 0.27 0.06

Table 8: Standard deviations of the experiments on DomainNet.

fS →Clp →Inf →Pnt →Qdr →Rel →Skt Avg.

ResNet101 0.37 0.10 0.25 0.22 0.40 0.27 0.03
ViT16 0.12 0.53 0.34 1.03 0.20 0.54 0.46

E.4 SENSITIVITY ANALYSIS OF HYPERPARAMETERS

We conducted ablation studies on the hyperparameters λcd, λld, and λs used in the label refinement
phase on Office. We changed the values of these parameters in the range of [0, 1] and analyzed
the effects of the parameters on the adaptation. In Figure 4 (a)-(c), we observed that changing the
parameters did not have a significant impact on the performance in our experiment. Specifically, the
adaptation performances were stable in the range of [0.4, 1], [0.4, 1] and [0.6, 1] of λcd, λld, and λs,
respectively.
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Figure 4: Sensitivity analysis of (a) λcd, (b) λld and (c) λs

E.5 SELECTION RULE OF pc AND pd

An issue on the theoretical analysis in Section 3.2 is that one cannot find the representative prediction
pc = argminpi∈P ϵ(pi, yT ) since yT is unknown in the unsupervised setting on the target domain.
Instead, we presented a practical method on how to designate pc in Section 3.3. The intuition of
such designation is to leverage complementary information from as many sources as possible to
avoid the incorrect designation of pc. To ensure the effectiveness of the proposed method, we test
several alternatives. In random selection (RS), we randomly select a prediction as pc and define Pc

with the predictions classifying the same category of pc. Pd are the set of the rest predictions. In
confident prediction (CP), we first pick the prediction with the highest probability as pc, which does
not consider the categorical agreement between predictions. The definition of Pc and Pd is the same
as random selection.

Table 9a displayed the results when using different methods on choosing pc. The experiments are on
Office-Home database and fS is ResNet101.
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RS has substantially degraded the performance of the proposed method. In RS, pc tends to be
incorrect in the beginning. Once an undesirable prediction is designated as pc, the training objectives
Lcd and Lld cause predictions in Pd to become noisy as well thus producing pseudo labels in low
quality.

CP overcame RS and improved the adaptation performance. However, it showed lower performance
than our method, implying that the prediction with the highest probability is not always the best option
for pc. Even if source prediction has a high probability on a certain category, it does not guarantee
the prediction is the best choice since predictions are inherently noisy due to the distributional shift
between source and target.

Our method, which aggregates the majority of the predictions, presented the best adaptation results
among all the methods. This method solves some failure cases in the confident prediction by providing
additional helpful support on defining pc. Even though the confidence of source predictions is low
with low probability, an agreement between predictions can act as a criterion of defining Pc. The
improvement in results to the confident prediction implies that the agreement takes precedence over
the confidence of each prediction.

Selection of representative prediction pd. Once Pd is defined as in Section 3.3, we define the
representative label pd in Pd as the prediction whose highest probability is minimum among the
remaining predictions in Pd. This is because the prediction with lower confidence is more likely to
be a pd = argminpi∈Pd

ϵ(pc, pi) as defined in Theorem 2. Intuitively speaking, such unconfident
prediction is liable to change its classification and tends to locate closer to pc by Lld during the
label refinement phase. To verify the effective selection of pd, we tested different methods. Random
selection (RS) refers to selecting random pd in Pd. In Maximum probability (MaxP), we select the
prediction with the highest probability as pd.

In Table 9b, we compared the different methods for defining pd. The selection method of pc was set
as explained in Section 3.3 for all the tests. RS and MaxP exhibited similar adaptation performances
on all the tasks. The proposed method outperformed both RS and MaxP on every task, implying that
prediction with the minimum highest probability is a better choice for pd.

Table 9: Various methods to choose (a) pc and (b)pd and their performance. RS refers to random
selection, CP refers to the solution of the highest probability without categorical agreement, and
MaxP refers to the solution of the highest probability in Pd.

(a)

Methods →Ar →Cl →Pr →Re Avg.

RS 61.2 50.8 75.8 73.9 65.4
CP 68.2 57.1 79.4 78.2 70.7
Ours 74.8 64.5 85.8 84.8 77.5

(b)

Methods →Ar →Cl →Pr →Re Avg.

RS 70.4 61.2 82.9 81.1 73.9
MaxP 70.1 61.8 83.2 81.2 74.1
Ours 74.8 64.5 85.8 84.8 77.5

F COMPLEXITY ANALYSIS

Although the proposed method uses two additional phases with the warm up and pseudo label refine-
ment, the proposed method remains relatively lightweight. We outlined the profiles of computational
complexity for each phase in Table 10, by calculating the proportion of each phase to the total
training time. The target adaptation phase commonly used with the previous studies consumed the
majority of the training time. Specifically, in the Office dataset, the label refinement and the warm-up
phase took 8.6 minutes and only 0.2 minutes, while target adaptation required 26.6 minutes. For the
DomainNet dataset, the refinement and warm up phase consumed 138 and 5 minutes, respectively. In
the other hand, the target adaptation consumed 277 minutes. The shorter training time for PRN can
be attributed to the fewer training parameters in PRN compared to the target model (e.g. ResNet101
used in the table). On average, the PRN has only approximately 0.33 % of the parameters of the
target model. It uses 0.14M parameters for the DomainNet dataset.
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Table 10: Comparison of training time (%) in different phases.

Benchmarks Warmup Label
Refinement

Target
Adaptation

Office 0.5% 24.3% 75.3%
Office-Caltech 0.4% 29.0% 70.6%
Office-Home 0.7% 28.8% 70.6%
DomainNet 1.2% 32.8% 66.0%

G LIMITATION

We presented a method on how to select pc, and the proposed method achieves better performance
than compared methods as described in Section 4.3. Nevertheless, we reveal that the method does
not guarantee that the pc would reach the minimal value of the risk, theoretically. The problem is
caused by an inherent error ϵ(pc, yT ) in Theorem 2, in which yT is unknown. However, in fact, this
is a common problem in all the BDA scenarios.

H CODE DISTRIBUTION

All the codes and instructions for implementation are enclosed with the supplementary material.
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