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ABSTRACT

Learning a data representation with strong transferability from an unlabeled
scenario is both crucial and challenging. In this paper, we propose a novel
self-supervised transfer learning approach via Adversarial Contrastive Training
(ACT). Additionally, we establish an end-to-end theoretical understanding for
self-supervised contrastive pretraining and its implications for downstream classi-
fication tasks in a misspecified, over-parameterized setting. Our theoretical find-
ings highlight the provable advantages of adversarial contrastive training in the
source domain towards improving the accuracy of downstream tasks in the target
domain. Furthermore, we illustrate that downstream tasks necessitate only a min-
imal sample size when working with a well-trained representation, offering valu-
able insights on few-shot learning. Last but not least, extensive experiments across
various datasets demonstrate a significant enhancement in classification accuracy
when compared to existing state-of-the-art self-supervised learning methods.

1 INTRODUCTION

Collecting unlabeled data is far more convenient and cost-effective than gathering labeled data in
real-world applications. As a result, learning representations from abundant unlabeled data has
become a critical and foundational challenge. Pretraining on unlabeled data enables the capture of
more general, abstract features without the need for specific labels. Consequently, the learned task-
invariant representations demonstrate superior transferability to unseen data, making them highly
effective in transfer learning scenarios.

One of the most popular approaches to learning representations from unlabeled data is self-
supervised contrastive learning, which has garnered significant attention due to its impressive perfor-
mance. The rationale behind contrastive learning involves acquiring a representation that maintains
augmentation invariance while preventing model collapse. The latter aspect is crucial, as solely
bringing positive pairs closer could result in trivial solutions. The initial body of work heavily re-
lies on the utilization of negative samples, such as Ye et al. (2019); He et al. (2020); Chen et al.
(2020a;b); HaoChen et al. (2021); Zhang et al. (2023). These studies prevent representation col-
lapse by pushing negative pairs apart in the feature space. However, the construction of negative
pairs poses significant challenges. Firstly, augmented views from distinct data points sharing the
same semantic meaning may inadvertently be treated as negative pairs, impeding semantic extrac-
tion. Secondly, the quality of the representation is highly dependent on the number of negative pairs,
necessitating substantial computational and memory resources.

In recent years, there has been a surge of interests in developing self-supervised learning methods
that eschew the use of negative samples (Grill et al., 2020; Caron et al., 2020; 2021; Ermolov et al.,
2021; Zbontar et al., 2021; Chen & He, 2021; Bardes et al., 2022; Ozsoy et al., 2022; HaoChen
et al., 2022; Wang et al., 2024). Among above mentioned studies, the most prominent works in-
clude Zbontar et al. (2021); Bardes et al. (2022); Ozsoy et al. (2022); HaoChen et al. (2022); Zhang
et al. (2023), which prevent the model collapse by incorporating a regularization term into the loss
function. However, as demonstrated later, either the population counterpart of Zbontar et al. (2021);
Bardes et al. (2022) is still under-investigated, or the sample version of population losses (HaoChen
et al., 2022; HaoChen & Ma, 2023) exhibits bias, presenting a significant challenge in terms of
theoretical analysis. Moreover, due to this bias, the learned representation does not close to the
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minimizer of the population loss. Specifically, when trained on mini-batch data, the limited sample
size in each mini-batch can amplify the bias, leading to accuracy loss, as shown in Table 1.

In this study, we introduce a novel self-supervised learning approach called Adversarial Contrastive
Training (ACT), designed to learn representations without the need for constructing negative sam-
ples, while avoiding the bias between population loss and sample-level loss. Particularly, let

R(f,G) =
〈
ExEx1,x2∈A(x)

[
f(x1)f(x2)

⊤]− Id∗ , G
〉
F
, (1)

where f : Rd → Rd∗ is a representation function, G is a matrix in Rd∗×d∗ , and the Frobenius inner
product is defined as ⟨A,B⟩F := tr(A⊤B) for any A,B ∈ Rd1×d2 . Then we learn the contrastive
representation through a minimax optimization problem

min
f

max
G∈G(f)

L(f,G) = ExEx1,x2∈A(x)

[
∥f(x1)− f(x2)∥22

]
+ λR(f,G), (2)

where the first term in (2) facilitates achieving augmentation invariance in the representation, sim-
ilar with the previous works (Zbontar et al., 2021; Bardes et al., 2022; HaoChen et al., 2022).
Here A(x) denotes the set of augmentations of a sample x, λ > 0 is the regularization pa-
rameter and G(f) :=

{
G ∈ Rd∗×d∗ : ∥G∥F ≤ ∥ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]− Id∗∥F
}

is the feasible set of G. In fact, the inner maximization problem has a explicit solution that
G = ExEx1,x2∈A(x)[f(x1)f(x2)

⊤] − Id∗ , therefore (2) is equivalent to minimizing following
loss

L(f) := ExEx1,x2∈A(x)

[
∥f(x1)− f(x2)∥22

]
+ λ

∥∥∥ExEx1,x2∈A(x)[f(x1)f(x2)
⊤]− Id∗

∥∥∥2
F
. (3)

The second term in L(f) encourages the separation of category centers within the latent space,
thereby avoiding collapse and improving classification accuracy in downstream tasks, so as R(f,G).
More details can be found in Appendix A. Thanks to the minimax formulation in (2), we propose
the following loss of our ACT at the sample level

L̂(f,G) := 1

ns

ns∑
i=1

[
∥f(x(i)

1 )− f(x
(i)
2 )∥22 + λ

〈
f(x

(i)
1 )f(x

(i)
2 )⊤ − Id∗ , G

〉
F

]
, (4)

where x(1), . . . ,x(ns) are unlabeled data, x(i)
1 and x

(i)
2 are independent augmentations of x(i). It can

be shown that (4) is unbiased in the sense that EDs [L̂(f,G)] = L(f,G) for each fixed G ∈ Rd∗×d∗ .

However, directly discretizing the expectation in (3) yields a biased sample-level loss as

L̂(f) := 1

ns

ns∑
i=1

∥f(x(i)
1 )− f(x

(i)
2 )∥22 + λ

∥∥∥ 1

ns

ns∑
i=1

f(x
(i)
1 )f(x

(i)
2 )⊤]− Id∗

∥∥∥2
F
.

Specifically, we have EDs [L̂(f)] ̸= L(f) due to the non-commutativity between the expectation
and the Frobenius norm, where Ds represents the dataset used for pretraining. While this biased
discretization method has been employed in previous studies (HaoChen et al., 2022; HaoChen &
Ma, 2023), its application presents a significant challenge in terms of theoretical analysis. For
instance, despite that Huang et al. (2023) establish a theoretical analysis for Zbontar et al. (2021) at
the population-level, the extensions of these findings to the sample-level is not straightforward due to
the bias of the estimation. HaoChen & Ma (2023) establish a theoretical understanding for HaoChen
et al. (2022) at the sample-level, nonetheless, the results are subject to strong assumptions given the
biased nature of the estimation.

From a theoretical perspective, we establish a rigorous end-to-end theoretical analysis for both the
contrastive pre-training and the downstream classification under mild conditions. Further, our find-
ings demonstrate the provable advantages of self-supervised contrastive pre-training and provides
theoretical insights into determining the sample size and selecting the appropriate scale for deep
neural networks. Our experiment yields remarkable classification accuracy when employing both
fine-tuned linear probes and the K-nearest neighbor (K-NN) protocol across a range of benchmark
datasets. These results showcase a high level of competitiveness with current state-of-the-art self-
supervised learning methodologies, as illustrated in Table 1.
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1.1 RELATED WORK

Self-supervised transfer learning Thanks to the robust transferability inherent in representa-
tions learned by self-supervised learning, the field of few-shot learning, which aims to train models
with only a limited number of labeled samples, has significantly advanced through self-supervised
methodologies. This progression is evidenced by the contributions of Liu et al. (2021); Rizve et al.
(2021); Yang et al. (2022); Lim et al. (2023). However, current work only demonstrates the effective-
ness of self-supervised learning for few-shot learning mainly empirically. Theoretical explanations
remain scarce. Understanding how the learned representations from unlabeled data enhance predic-
tion performance with only a few labeled samples in downstream tasks is a critical question that
requires further investigation. Especially investigating the impact of upstream samples on down-
stream samples. Therefore, a thorough theoretical analysis at sample level is urgently needed.

Although Saunshi et al. (2019); HaoChen et al. (2021); Garrido et al. (2022); Awasthi et al. (2022);
Ash et al. (2022); HaoChen et al. (2022); Lei et al. (2023); Huang et al. (2023) have offered some
theoretical progresses in understanding self-supervised learning, all these studies either remain at
the population level, or focus solely on the generalization property of hypothesis space with a finite
complexity measure. The effects of both upstream and downstream sample sizes are still unknown.

HaoChen & Ma (2023) use augmented graphs to provide a more thorough theoretical analysis at
sample level for the self-supervised learning loss proposed in HaoChen et al. (2022). They establish
a theoretical guarantees at the sample level, under certain strong assumptions, including Assump-
tions 4.2 and 4.4. Assumption 4.2 assumes the existence of a neural network capable of sufficiently
minimize the loss. In contrast, we demonstrate the existence of a measurable function that can
vanish our loss by accounting for additional approximation error. This necessitates an extension
of the well-specified setting to a misspecified setting. Moreover, the most important problem in
self-supervised transfer learning theory pertains to elucidating the mechanism through which the
representation acquired from the upstream task facilitates the learning process of the downstream
task. While HaoChen & Ma (2023) assume this relationship as Assumption 4.4 in their research,
our study surpasses the current body of literature by conducting a comprehensive investigation into
the impact of approximation error and generalization error during the pre-training phase on down-
stream test error. This analysis sheds light on how the size of the upstream sample influences the
downstream task, particularly in scenarios where the availability of downstream samples is con-
strained.

Comparison with existing contrastive learning algorithms HaoChen et al. (2022) can be re-
garded as a special version of our model with the constraint x1 = x2 at the population level.
However, its loss at the sample level adopts a biased discretization method, which leads to a differ-
ent optimization direction compared to ACT, especially in the mini-batch scenario. More discussion
can be found in Remark 2.1. Besides that, the loss at the sample level provided by Zbontar et al.
(2021) is also similar to our loss, but its unbiased counterpart at the population level is still unknown.

1.2 CONTRIBUTIONS

Our main contributions can be summarized as follows.

• We introduce a novel self-supervised transfer learning method called Adversarial
Contrastive Training (ACT). This approach learns representations from unlabeled data by
tackling a minimax optimization problem, which aims to de-bias the initially proposed risk,
thereby providing a foundation for establishing a thorough theoretical understanding.

• Our experimental results demonstrate outstanding classification accuracy using both fine-
tuned linear probe and K-nearest neighbor (K-NN) protocol on various benchmark
datasets, showing competitiveness with existing state-of-the-art self-supervised learning
methods.

• In the context of transfer learning, we present a thorough theoretical understanding for both
ACT and its downstream classification tasks within a misspecified and overparameterized
scenario. Our theoretical results offer insights into determining the samples size for pre-
training and appropriate depth, width, and norm restrictions of neural networks. These
findings illuminate the advantages of ACT in enhancing the accuracy of downstream tasks.
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Furthermore, we demonstrate that leveraging the representations learned by ACT in the
source domain enables high accuracy in the downstream tasks of the target domain, even
when only a small amount of data is available.

1.3 ORGANIZATIONS

The remainder of this paper is organized as follows. In Section 2, we introduce basic notations and
presents the adversarial self-supervised learning loss, along with an alternating optimization algo-
rithm to address the minimax problem. Section 3 showcases experimental results for representations
learned by ACT across various real datasets and evaluation protocols. Section 4 provides an end-to-
end theoretical guarantee for ACT. Conclusions are discussed in Section 5, respectively. Detailed
proofs and experimental details are differed to Section B and C respectively.

2 ADVERSARIAL CONTRASTIVE TRAINING

In this section, we provide a novel method for unsupervised transfer learning via adversarial con-
trastive training (ACT). We begin with some notations in Section 2.1. Then, we introduce ACT
method and alternating optimization algorithm in Section 2.2. Finally, we outline the setup of the
downstream task in Section 2.3.

2.1 PRELIMINARIES AND NOTATIONS

Denote by ∥·∥2 and ∥·∥∞ the 2-norm and ∞-norm of the vector, respectively. Let A,B ∈ Rd1×d2
be two matrices. Define the Frobenius inner product ⟨A,B⟩F = tr(A⊤B). Denote by ∥·∥F
the Frobenius norm induced by Frobenius inner product. We denote the ∞-norm of the matrix as
∥A∥∞ := sup∥x∥∞≤1 ∥Ax∥∞, which is the maximum 1-norm of the rows of A. The Lipschitz

norm of a map f from Rd1 to Rd2 is defined as ∥f∥Lip := supx ̸=y
∥f(x)−f(y)∥2

∥x−y∥2
.

Let L,N1, . . . , NL ∈ N, 0 < B1 ≤ B2. A deep ReLU neural network hypothesis space is defined
as

NN d1,d2(W,L,K, B1, B2) :=

{
ϕθ(x) = ALσ(AL−1σ(· · ·σ(A0x+ b0)) + bL−1),

W = max{N1, . . . , NL}, κ(θ) ≤ K, B1 ≤ ∥ϕθ∥2 ≤ B2

}
,

where σ(x) := x ∨ 0 is the ReLU activate function, N0 = d1, NL+1 = d2, Ai ∈ RNi+1×Ni

and bi ∈ RNi+1 . The integers W and L are called the width and depth of the neural network,
respectively. B1 ≤ ∥ϕθ∥2 ≤ B2 is used to indicate any u ∈ [0, 1]d, B1 ≤ ∥ϕθ(u)∥2 ≤ B2.
The parameters set of the neural network is defined as θ := ((A0, b0), . . . , (AL−1, bL−1),AL).
Further, κ(θ) is defined as

κ(θ) := ∥AL∥∞
L−1∏
l=0

max{∥(Al, bl)∥∞, 1}.

Appendix B.1 shows that ∥ϕθ∥Lip ≤ K for each ϕθ ∈ NN d1,d2(W,L,K, B1, B2).

2.2 ADVERSARIAL CONTRASTVE TRAINING

Learning representations from large amounts of unlabeled data has recently gained significant atten-
tion, as highly transferable representations offer substantial benefits for downstream tasks. Adver-
sarial contrastve training is driven by two key factors: augmentation invariance and a regularization
term to prevent model collapse. Specifically, augmentation invariance aims to make representations
of different augmented views of the same sample as similar as possible. However, a trivial represen-
tation that maps all augmented views to the same point is ineffective for downstream tasks, making
the regularization term essential.

Data augmentation A : Rd → Rd is essentially a transformation of the original sample before
training. A commonly-used augmentation is the composition of random transformations, such as
RandomCrop, HorizontalFlip, and Color distortion (Chen et al., 2020a). Denote by A = {Aγ(·) :
γ ∈ [m]} the collection of data augmentations, and denote the source domain as Xs ⊆ [0, 1]d, with
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its corresponding unknown distribution denoted by Ps. Let {x(1), . . . ,x(ns)} be ns i.i.d. unlabeled
samples from the source distribution. For each sample x(i), we define the corresponding augmented
pair as

x̃(i) = (x
(i)
1 ,x

(i)
2 ) = (A(x(i)), A′(x(i))), (5)

whereA andA′ are drawn from the uniform distribution on A independently. Further, the augmented
dataset for ACT is defined as Ds := {x̃(i)}i∈[ns].

The ACT method can be formulated as a minimax problem

f̂ns
∈ argmin

f∈F
sup

G∈Ĝ(f)
L̂(f,G), (6)

where the empirical risk is defined as

L̂(f,G) := 1

ns

ns∑
i=1

[
∥f(x(i)

1 )− f(x
(i)
2 )∥22 + λ

〈
f(x

(i)
1 )f(x

(i)
2 )⊤ − Id∗ , G

〉
F

]
, (7)

and λ > 0 is the regularization parameter, the hypothesis space F is chosen as the neural network
class NN d,d∗(W,L,K, B1, B2), and the feasible set Ĝ(f) is defined as

Ĝ(f) :=
{
G ∈ Rd

∗×d∗ : ∥G∥F ≤
∥∥ 1

ns

ns∑
i=1

f(x
(i)
1 )f(x

(i)
2 )⊤ − Id∗

∥∥
F

}
.

The first term of (7) helps the representation to achieve the augmentation invariance while the second
term is used to prevent model collapse. It is worth noting that, unlike existing contrastive learning
methods (Ye et al., 2019; He et al., 2020; Chen et al., 2020a;b; HaoChen et al., 2021), the loss func-
tion of ACT (7) does not need to construct negative pairs for preventing model collapse, avoiding
the issues introduced by negative samples.

We now introduce an alternating algorithm for solving the minimax problem (6). We take the t-th
iteration as an example. Observe that the inner maximization problem is linear. Given the previous
representation mapping f(t−1) : Rd → Rd∗ , the explicit solution to the maximization problem is
given as

Ĝ(t) =
1

ns

ns∑
i=1

f(t−1)(x
(i)
1 )f(t−1)(x

(i)
2 )⊤ − Id∗ . (8)

Then it suffices to solve the outer minimization problem

f̂(t) ∈ argmin
f∈F

1

ns

ns∑
i=1

[
∥f(x(i)

1 )− f(x
(i)
2 )∥22 + λ

〈
f(x

(i)
1 )f(x

(i)
2 )⊤ − Id∗ , Ĝ(t)

〉
F

]
. (9)

Solving the inner problem (8) and the outer problem (9) alternatively yields the desired representa-
tion mapping. The detailed algorithm is summarized as Algorithm 1.

Algorithm 1 Adversarial contrastive training (ACT)

Require: Augmented dataset Ds = {x̃(i)}i∈[n], initial representation f̂(0), iteration horizon T .
1: for t ∈ [T ] do
2: Update G by solving the inner problem (8).
3: Update the representation by solving the outer problem (9).
4: end for
5: return The learned representation mapping f̂(T ).

Remark 2.1. We note that Ĝ(t) will be detached from the computational graph when solving the
outer problem (9) in practice, which means that the gradient of the second term in (9) should be writ-

ten as ⟨∇θ
1
ns

ns∑
i=1

fθ(x
(i)
1 )fθ(x

(i)
2 )⊤ − Id∗ , Ĝ(t)⟩ instead of ∇θ

∥∥ 1
ns

ns∑
i=1

fθ(x
(i)
1 )fθ(x

(i)
2 )⊤−Id∗

∥∥2
F

,

which is a biased discretization of
∥∥ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]− Id∗
∥∥2
F

.
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2.3 DOWNSTREAM TASK

With the help of the representations learned by ACT, we address the downstream classification task
in the target domain. Let Xt ⊆ [0, 1]d represent the target domain, and let Pt be the corresponding
unknown distribution. Suppose we have nt i.i.d. labeled samples {(z(1), y1), . . . , (z

(nt), ynt
)} ⊆

Xt × [K] for the downstream task. We will say that z ∈ Ct(k) if its label is k ∈ [K]. By a similar
process as in obtaining (5), we can construct the augmented dataset in the target domain as follows.

Dt = {(z̃(i), yi) : z̃
(i) = (z

(i)
1 , z

(i)
2 )}i∈[nt], z

(i)
1 = A(z(i)), z

(i)
2 = A′(z(i)),

where A and A′ are drawn from the uniform distribution on A independently.

Given the representation f̂ns
learned by our self-supervised learning method (6), we adopt following

linear probe as the classifier for downstream task:

Qf̂ns
(z) = argmax

k∈[K]

(
Ŵ f̂ns(z)

)
k
, (10)

where the k-th row of Ŵ is given as

µ̂t(k) =
1

2nt(k)

nt∑
i=1

(f̂ns
(z

(i)
1 ) + f̂ns

(z
(i)
2 ))1{yi = k}, nt(k) :=

nt∑
i=1

1{yi = k}.

This means that we build a template for each class of downstream task through calculating the
average representations of each class. Whenever a new sample needs to be classified, simply classify
it into the category of the template that it most closely resembles. The algorithm for downstream
task can be summarized as Algorithm 2. Finally, the misclassification rate is defined as

Err(Qf̂ns
) =

K∑
k=1

Pt
(
Qf̂ns

(z) ̸= k,z ∈ Ct(k)
)
, (11)

which are used to evaluate the performance of the representation learned by ACT.

Algorithm 2 Downstream classification

Require: Representation mapping f̂ns , augmented dataset in the target domain Dt =
{(z̃(i), yi)}i∈[nt], testing data z.

1: Fit the linear probe according to

Ŵ (k, :) =
1

2nt(k)

nt∑
i=1

(f̂ns
(z

(i)
1 ) + f̂ns

(z
(i)
2 ))1{yi = k}

2: Predict the label of testing data by (10).
3: return The predicted label of testing data Qf̂ns

(z).

3 REAL DATA ANALYSIS

As the experiments conducted in existing self-supervised learning methods, we pretrain the represen-
tation on CIFAR-10, CIFAR-100 and Tiny ImageNet, and subsequently conduct fine-tuning on each
dataset with annotations. Table 1 shows the classification accuracy of representations learned by
ACT, compared with the results reported in Ermolov et al. (2021). We can see that ACT consistently
outperforms previous mainstream self-supervised methods across various datasets and evaluation
metrics.

The experimental details are deferred to Appendix C. The PyTorch code be found in
https://anonymous.4open.science/r/Adversarial-Contrastive-Training.
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Table 1: Classification accuracy (top 1) of a linear classifier and a 5-nearest neighbors classifier for
different loss functions and datasets. While the results for Barlow Twins are from Bandara et al.
(2023), the remains are derived from Ermolov et al. (2021).

Method CIFAR-10 CIFAR-100 Tiny ImageNet
linear 5-NN linear 5-NN linear 5-NN

SimCLR (Ermolov et al. (2021)) 91.80 88.42 66.83 56.56 48.84 32.86
BYOL (Ermolov et al. (2021)) 91.73 89.45 66.60 56.82 51.00 36.24
W-MSE 2 (Ermolov et al. (2021)) 91.55 89.69 66.10 56.69 48.20 34.16
W-MSE 4 (Ermolov et al. (2021)) 91.99 89.87 67.64 56.45 49.20 35.44
BarlowTwins (Bandara et al. (2023)) 87.76 86.66 61.64 55.94 41.80 33.60
VICReg (our repro.) 86.76 83.70 57.13 44.63 40.04 30.46
HaoChen et al. (2022) (our repro.) 86.53 84.20 59.68 49.26 35.80 20.36

ACT (our repro.) 92.11 90.01 68.24 58.35 49.72 36.40

4 THEORETICAL ANALYSIS

In this section, we will explore an end-to-end theoretical guarantee for ACT. It is crucial to introduce
several assumptions while expounding on their rationale in Section 4.1. The main theorem and its
proof sketch are presented in Section 4.2. The formal version of the main theorem and further details
of the proof can be found in Appendix B.2.

We first define the population ACT risk minimizer as

f∗ ∈ argmin
f :B1≤∥f∥2≤B2

sup
G∈G(f)

L(f,G), (12)

where L(·, ·), the unbiased population counterpart of L̂(·, ·) (7), is defined as

L(f,G) = ExEx1,x2∈A(x)

[
∥f(x1)− f(x2)∥22

]
+ λ

〈
ExEx1,x2∈A(x)

[
f(x1)f(x2)

⊤]− Id∗ , G
〉
F
,

and the population feasible set is defined as

G(f) =
{
G ∈ Rd

∗×d∗ : ∥G∥F ≤ ∥ExEx1,x2∈A(x)[f(x1)f(x2)
⊤]− Id∗∥F

}
.

Here B1 and B2 are two positive constant, and we will detail how to set B1 and B2 later.

4.1 ASSUMPTIONS

In this subsection, we will put forward certain assumptions that are necessary to establish our main
theorem. We first assume that each component of f∗ exhibits a certain regularity and smoothness.
Definition 4.1 (Hölder class). Let d ∈ N and α = r + β > 0, where r ∈ N0 and β ∈ (0, 1]. We
denote the Hölder class Hα(Rd) as

Hα(Rd) :=
{
f : Rd → R, max

∥s∥1≤r
sup
x∈Rd

|∂sf(x)| ≤ 1, max
∥s∥1=r

sup
x ̸=y

∂sf(x)− ∂sf(y)

∥x− y∥β∞
≤ 1

}
,

where the multi-index s ∈ Nd0. Furthermore, we denote Hα := {f : [0, 1]d → R, f ∈ Hα(Rd)} as
the restriction of Hα(Rd) to [0, 1]d.

The Hölder class is known to be a highly comprehensive functional class, providing a precise char-
acterization of the low-order regularity of functions.
Assumption 4.1. There exists α = r+ β with r ∈ N0 and β ∈ (0, 1] s.t f∗i ∈ Hα for each i ∈ [d∗].

Assumption 4.1 is a standard assumption in nonparametric statistics (Tsybakov, 2008; Schmidt-
Hieber, 2020), more specifically in studies of neural network approximation capacity (Yarotsky,
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2018; Yarotsky & Zhevnerchuk, 2020). It is a pretty mild requirement due to the universality of
Hölder class.

Next we enumerate the assumptions about the data augmentations A.
Assumption 4.2 (Lipschitz augmentation). Any data augmentation Aγ ∈ A is M -Lipschitz, i.e.,
∥Aγ(u1)−Aγ(u2)∥2 ≤M∥u1 − u2∥2 for any u1,u2 ∈ [0, 1]d.

A typical example to understand Assumption 4.2 is that the resulting augmented data obtained
through cropping would not undergo drastic changes when minor perturbations are applied to the
original image.

Denote the corresponding latent classes on source domain by {Cs(k)}k∈[K]. Beyond the general
assumption regarding data augmentation A above, we require a more precise way to describe the
intensity of data augmentations A. A more general version of the (σ, δ)-augmentation employed by
Huang et al. (2023) is adopted by us to distinguish the efficiency of data augmentations.
Definition 4.2 ((σs, σt, δs, δt)-Augmentation). The augmentations in A is (σs, σt, δs, δt)-
augmentations, that is, for each k ∈ [K], there exists a subset C̃s(k) ⊆ Cs(k) and C̃t(k) ⊆ Ct(k),
such that

Ps
(
x ∈ C̃s(k)

)
≥ σsPs

(
x ∈ Cs(k)

)
, sup

x1,x2∈C̃s(k)

min
x′

1∈A(x1),x′
2∈A(x2)

∥x′
1 − x′

2∥2 ≤ δs,

Pt
(
z ∈ C̃t(k)

)
≥ σtPt

(
z ∈ Ct(k)

)
, sup

z1,z2∈C̃t(k)

min
z′
1∈A(z1),z′

2∈A(z2)
∥z′

1 − z′
2∥2 ≤ δt,

Pt
( K⋃
k=1

C̃t(k)
)
≥ σt,

where σs, σt ∈ (0, 1] and δs, δt ≥ 0.
Remark 4.1. The (σs, σt, δs, δt)-augmentation methods emphasize that a robust data augmentation
should adhere to the principle that when the semantic information of the original images exhibit
heightened similarity, augmented views from them should be close according to specific crite-

ria. Among above requirements, Pt
( K⋃
k=1

C̃t(k)
)
≥ σt, which is used to replace the assumption

A(Ct(i)) ∩ A(Ct(j)) = ∅ of Huang et al. (2023), implies that the augmentation used should be in-
telligent enough to recognize objectives aligned with the image labels for the majority of samples in
the dataset. For instance, consider a downstream task involving classifying images of cats and dogs,
where the dataset includes some images featuring both cats and dogs together. This requirement de-
mands that the data augmentation intelligently selects dog-specific augmentations when the image
is labeled as dog, and similarly for cat-specific augmentations when the image is labeled as cat. A
simple alternative to this requirement is assuming different class Ct(k) are pairwise disjoint, i.e.,

∀i ̸= j, Ct(i) ∩ Ct(j) = ∅, which implies Pt
( K⋃
k=1

C̃t(k)
)
=

K∑
k=1

Pt(C̃t(k)) ≥ σt
K∑
k=1

Pt(Ct(k)) =

σt.
Assumption 4.3 (Existence of augmentation sequence). Assume there exists a sequence of
(σ

(ns)
s , σ

(ns)
t , δ

(ns)
s , δ

(ns)
t )-data augmentations Ans

= {A(ns)
γ (·) : γ ∈ [m]} and τ > 0 such that

max{δ(ns)
s , δ

(ns)
t } ≤ ns

− τ+d+1
2(α+d+1) , min{σ(ns)

s , σ
(ns)
t } ns→∞→ 1

It is worth mentioning that this assumption essentially aligns with Assumption 3.5 in HaoChen
et al. (2021), both stipulating the augmentations must be sufficiently robust so that the internal
connections within latent classes are strong enough to prevent instance clusters from being separated.
Recently, methods for building stronger data augmentation, as discussed by Jahanian et al. (2022)
and Trabucco et al. (2024), are constantly being proposed, making it more feasible to meet the
theoretical requirements for data augmentation.

Next we are going to introduce the assumption about distribution shift. For simplicity, denote
ps(k) = Ps(x ∈ Cs(k)) and Ps(k) be the conditional distribution of Ps(x|x ∈ Cs(k)) on the
upstream data, pt(k) = Pt(z ∈ Ct(k)) and Pt(k) be the conditional distribution Pt(z|z ∈ Ct(k))
on the downstream task. Following assumption is needed to quantify our requirement on domain
shift.
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Assumption 4.4. Assume there exists ν > 0 and ς > 0 such that

max
k∈[K]

W(Ps(k), Pt(k)) ≤ n
− ν+d+1

2(α+d+1)
s , max

k∈[K]
|ps(k)− pt(k)| ≤ n

− ς
2(α+d+1)

s ,

where W is the Wasserstein-1 distance.

A trivial scenario occurs when there is no gap between the upstream and downstream dis-
tributions, i.e., when (Xs, Ps) = (Xt, Pt), leading to both maxk∈[K] W(Ps(k), Pt(k)) and
maxk∈[K] |ps(k)− pt(k)| vanishing.

Assumption 4.5. Assume there exists a measurable partition {P1, . . . ,Pd∗} of Xs, such that
1/B2

2 ≤ Ps(Pi) ≤ 1/B2
1 for each i ∈ [d∗].

Assumption 4.5 is used to construct a measurable function f̃ with B1 ≤ ∥f̃∥2 ≤ B2, such that
L(f̃) = 0, tackling one of theoretical challenges introduced in Theorem 4.2 of HaoChen & Ma
(2023), further implying that L(f∗) vanishes (see B.2.6 for more details). It suggests that the data
distribution in the source domain should not be overly singular. All common continuous distribu-
tions defined on Borel algebra apparently satisfy these requirements, as the measure of any single
point is zero.

4.2 END-TO-END THEORETICAL GUARANTEE

Our main theoretical result is stated as follows.

Theorem 4.2. Suppose Assumptions 4.1-4.5 hold. Set the width, depth and the Lipschitz constraint
of the deep neural network as

W ≥ O
(
n

2d+α
4(α+d+1)
s

)
, L ≥ O(1), K = O

(
n

d+1
2(α+d+1)
s

)
.

Then the following inequality holds

EDs

[
Err(Qf̂ns

)
]
≤ (1− σ

(ns)
t ) +O(n

−min{α,ν,ς}
8(α+d+1)

s ),

with probability at least σ(ns)
s −O(n

−min{α,ν,ς,τ}
16(α+d+1)

s )−O( 1√
mink nt(k)

) for ns sufficiently large.

Remark 4.3. Note that only the probability term depends on the downstream sample size and the
failure probability decays rapidly with respect to mink nt(k) with order 1/2, implying that the
learned representation via ACT from a large amount of unlabeled data can indeed help capture
downstream knowledge, despite a limited downstream sample size. This demonstrates the proven
advantage of ACT and provides an explanation for the empirical success of few-shot learning, which
aligns with the concept of K-way mink nt(k)-shot learning. Apart from that, note the conditions of

Theorem 4.2 only require W ≥ O(n
2d+α

4(α+d+1)
s ), L ≥ O(1) and K = O(n

d+1
2(α+d+1)
s ), which implies

that the number of network parameters could be arbitrarily large if we control the norm of weight
properly, which is coincide with the concept of over-parametrization.

4.3 PROOF SKETCH OF THEOREM 4.2

Step 1. In Appendix B.2.1, we initially investigate the sufficient condition for achieving a low error
rate in a downstream task at the population level in Lemma B.1. It reveals that the misclassifica-
tion rate bounded by the strength of data augmentations 1 − σs, and the augmented concentration,
represented by Rt(ε, f). This dependence arises when the divergence between different classes,
quantified by µt(i)⊤µt(j), is sufficiently dispersed.

Step 2. Subsequently in Appendix B.2.2 and B.2.3, we regard supG∈G(f) L(f,G) as the
weighted summation of Lalign(f) and Ldiv(f), then attempt to show they are the upper bound
of Rt(ε, f),maxi ̸=j |µt(i)⊤µt(j)| respectively in Lemma B.4, which implies that optimizing our
adversarial self-supervised learning loss is equivalent to optimize the upper bound of Rt(ε, f) and
maxi̸=j |µt(i)⊤µt(j)| simultaneously, because Lalign(f) and Ldiv(f) are positive. Finally, apply
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Lemma B.1 and Lemma B.4 to f̂ns
, combining with the Markov inequality, to conclude Theorem

B.1, which is population version of Theorem 4.2.

Step 3. To further obtain an end-to-end theoretical guarantee, we subsequently decompose E(f̂ns
),

the excess risk defined in Definition B.3, into three parts: statistical error: Esta, approximation error
introduced by neural network class: EF , and the error brought by Ĝ: EĜ in Appendix B.2.7. Note that
the unbiased design of ACT plays a key role in such misspecified decomposition. We successively
deal each produced term. For EDs

[Esta], we claim it can be bounded by K
√
L√
ns

by adopting some
typical techniques of empirical process and the result claimed by Golowich et al. (2018) in Appendix
B.2.8. For EF , according to the existing conclusion of Jiao et al. (2023), we can show EF can
be bounded by K−α/(d+1) in Appendix B.2.9. By leveraging the unbiased property of ACT, the
problem bounding EDs [EĜ ] can be transformed into a common problem of mean convergence rate,
so that it can be controlled by 1

n
1/4
s

with high probability, shown as Appendix B.2.10. Trading off

over three errors helps us determine a appropriate K to bound EDs
[E(f̂ns

)], more details is showed
in Appendix B.2.11.

Step 4. However, L(f∗), the difference between the excess risk and the term L(f̂ns) involving
in Theorem B.1, still impedes us from building an end-to-end theoretical guarantee for ACT. To
address this issue, in Appendix B.2.6, we construct a representation making this term vanishing
under Assumption 4.5. Finally, just set appropriate parameters of Theorem B.1 to conclude Lemma
B.12, whose direct corollary is Theorem 4.2, and proof is presented in Appendix B.12. The bridge
between Lemma B.12 and Theorem 4.2 is shown in Appendix B.2.12.

5 CONCLUSIONS

In this paper, we propose a novel adversarial contrastive learning method for unsupervised transfer
learning. Our experimental results achieved state-of-the-art classification accuracy under both fine-
tuned linear probe and K-NN protocol on various real datasets, comparing with the self-supervised
learning methods. Meanwhile, we present end to end theoretical guarantee for the downstream
classification task under misspecified and over-parameterized setting. Our theoretical results not
only indicate that the misclassification rate of downstream task solely depends on the strength of
data augmentation on the large amount of unlabeled data, but also bridge the gap in the theoretical
understanding of the effectiveness of few-shot learning for downstream tasks with small sample size.

Minimax rates for supervised transfer learning are established in Cai & Wei (2019); Kpotufe &
Martinet (2021); Cai & Pu (2024). However, the minimax rate for unsupervised transfer learning
remains unclear. Establishing a lower bound to gain a deeper understanding of our ACT model
presents an interesting and challenging problem for future research.
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A EXPLANATION OF THE REGULARIZATION TERM

In brief, contrastive learning utilizes data augmentation to construct the loss function (specifically,
the first term in our loss) that aligns representations of the same class. However, to avoid trivial
solutions, an additional regularization term is necessary to ensure that clusters representing different
classes are well-separated. We measure this separation using the angles between the centroids of
different classes. While these angles are ideal for quantifying separation, they cannot be directly
optimized because the latent class annotations are unavailable in the upstream task. As an alternative,
we propose finding an appropriate computable loss function that serves as an upper bound for these
angles, effectively achieving the desired separation. Denote

Ldiv(f) =
∥∥∥ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]− Id∗
∥∥∥2
F
.

It can severs as a regularization term since in Lemma B.4, we can show

µs(i)
⊤µs(j) ≲

∥∥∥ExEx1,x2∈A(x)[f(x1)f(x2)
⊤]− Id∗

∥∥∥
F
, (13)

where µs(i) = Ex∈Cs(i)Ex′∈A(x)[f(x
′)] is the center of the latent class i. (13) implies that a lower

value of the regularization term leads the separation between different categories’ center, thereby
benefits classification in downstream tasks.
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At the sample level, one can use L̂div(f) =
∥∥∥ 1
ns

ns∑
i=1

f(x
(i)
1 )f(x

(i)
2 )⊤ − Id∗

∥∥∥2
F

to estimate Ldiv(f).

However, this lead to a bias loss, i.e.,

EDs [L̂div(f)] ̸= Ldiv(f),

where Ds is augmented dataset. This bias is caused by the non-commutativity of the expectation
and the Frobenius norm. To overcome this we can reformulate it as an equivalent form

Ldiv(f) = sup
G∈G(f)

R(f,G) := ⟨ExEx1,x2∈A(x)[f(x1)f(x2)
⊤]− Id∗ , G⟩F .

The counterpart of R(f,G) at the sample level is

R̂(f,G) = ⟨ 1

ns

ns∑
i=1

f(x
(i)
1 )f(x

(i)
2 )⊤ − Id∗ , G⟩F .

We can see that EDs
[R̂(f,G)] = R(f,G) for any fixed G due to the linearity of Frobenius inner

product, combining this property with the new decomposition method proposed by us, we build an
end-to-end theoretical guarantee in the transfer learning setting to provide an explanation for few
shot learning. And using an alternative optimization method to optimize this loss is natural.

B DEFERRED PROOF

The Section B will be divided into two parts. The first part B.1 is used to prove ∥ϕθ∥Lip ≤ K for
any ϕθ ∈ NN d1,d2(W,L,K, B1, B2). The proof of Theorem 4.2 is shown in the second part B.2.

B.1 K-LIPSCHITZ PROPERTY OF NN d1,d2(W,L,K, B1, B2)

Proof. To claim any ϕθ ∈ NN d1,d2(W,L,K, B1, B2) is K-Lipschitz function, we need to define
two special classes of neural network functions, the first is

NN d1,d2(W,L,K) := {ϕθ(x) = ALσ(AL−1σ(· · ·σ(A0x)) : κ(θ) ≤ K}, (14)

which equivalent to NN d1,d2(W,L,K, B1, B2) ignoring the condition ∥ϕθ∥2 ∈ [B1, B2], and the
second one

SNN d1,d2(W,L,K) := {ϕ̆(x) = ĂLσ(ĂL−1σ(· · ·σ(Ă0x̆)) :

L∏
l=1

∥Ăl∥∞ ≤ K}, x̆ :=

(
x
1

)
,

where Ăl ∈ RNl+1×Nl with N0 = d1 + 1.

It is obvious that NN d1,d2(W,L,K, B1, B2) ⊆ NN d1,d2(W,L,K) and every element in
SNN d1,d2(W,L,K) is K-Lipschitz function as the 1-Lipschitz property of ReLU, thus it suffices
to show that SNN d1,d2(W,L,K) ⊆ NN d1,d2(W,L,K) ⊆ SNN d1,d2(W +1, L,K) to yield what
we desired.

In fact, any ϕθ(x) = ALσ(AL−1σ(· · ·σ(A0x + b0)) + bL−1) ∈ NN d1,d2(W,L,K) can be
rewritten as ϕ̆(x) = ĂLσ(ĂL−1σ(· · ·σ(Ă0x̆))), where

x̆ :=

(
x
1

)
, Ă = (AL,0), Ăl =

(
Al bl
0 1

)
, l = 0, . . . , L− 1.

Notice that
∏L
l=0 ∥Ă∥∞ = ∥AL∥∞

∏L−1
l=0 max{∥(Al, bl)∥∞, 1} = κ(θ) ≤ K, which implies that

ϕθ ∈ SNN d1,d2(W + 1, L,K).

Conversely, since any ϕ̆ ∈ SNN (W,L,K) can also be parameterized in the form of
ALσ(AL−1σ(· · ·σ(A0x+ b0)) + bL−1) with θ = (Ă0, (Ă1,0), . . . , (ĂL−1,0), ĂL), and by the
absolute homogeneity of the ReLU function, we can always rescale Ăl such that ∥ĂL∥∞ ≤ K and
∥Ăl∥∞ = 1 for l ̸= L. Hence κ(θ) =

∏L
l=0 ∥Ăl∥∞ ≤ K, which yields ϕ̆ ∈ NN (W,L,K).

14
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B.2 PROOF OF THEOREM 4.2

We will begin by exploring the sufficient condition for achieving small Err(Qf ) in B.2.1. Follow-
ing that, we build the connection between the required condition and optimizing our adversarial
self-supervised learning loss in Theorem B.1 of B.2.3, it reveals that small quantity of our loss
function may induce significant class divergence and high augmented concentration. Although this
theorem can explain the essential factors behind the success of our method to some extent, its anal-
ysis still stay at population level, the impact of sample size on Err(Qf ) remains unresolved. To
obtain an end-to-end theoretical guarantee as Theorem 4.2, we first decompose E(f̂ns

), which is the
excess risk defined in the Definition B.3, into three parts: statistical error: Esta, approximation error
brought by F : EF and the error introduced by using Ĝ(f) to approximate G(f): EĜ in B.2.7, then
successively deal each produced term. For EDs

[Esta], we adopt some typical techniques of empirical
process and the result provided by Golowich et al. (2018) in B.2.8 for bounding it by K

√
L√
ns

. Regard-
ing bounding EF , we first convert the problem to a function approximation problem and adopt the
existing conclusion proposed by Jiao et al. (2023), yielding EF can be bounded by K−α/(d+1) in
B.2.9. By leveraging the property EDs

[L̂(f,G)] = L(f,G), we find that the problem of bounding
EDs

[EĜ ] can be transformed into a common problem of mean convergence rate and further control
it by 1

ns
1/4 in B.2.10. After finishing these preliminaries, trade off between these errors to determine

a appropriate Lipschitz constant K of neural network, while bound the expectation of excess risk
EDs

[E(f̂ns
)], more details are deferred to B.2.11. However, supG∈G(f∗) L(f∗, G), the difference

between the excess risk and the term supG∈G(f̂ns )
L(f̂ns , G) involving in Theorem B.1, still im-

pedes us from building an end-to-end theoretical guarantee for ACT. To address this issue, in B.2.6,
we construct a representation making this term vanishing under Assumption 4.5. Finally, just set
appropriate parameters of Theorem B.1 to conclude Lemma B.12, and the bridge between Lemma
B.12 and Theorem 4.2 is built in B.2.12.

B.2.1 SUFFICIENT CONDITION OF SMALL MISCLASSIFICATION RATE

Lemma B.1. Given a (σs, σt, δs, δt)-augmentation, if the encoder f such that B1 ≤ ∥f∥2 ≤ B2 is
K-Lipschitz and

µt(i)
⊤µt(j) < B2

2Θ(σt, δt, ε, f),

holds for any pair of (i, j) with i ̸= j, then the downstream error rate of Qf

Err(Qf ) ≤ (1− σt) +Rt(ε, f),

where ε > 0, µt(k) = Ez∈Ct(k)Ez′∈A(z)[f(z
′)] for any k ∈ [K], Γmin(σt, δt, ε, f) =

(
σt −

Rt(ε,f)
mini pt(i)

)(
1 +

(
B1

B2

)2 − Kδt
B2

− 2ε
B2

)
− 1, ∆µ̂t = 1 − mink∈[K] ∥µ̂t(k)∥2

2

B2
2

, Rt(ε, f) = Pt
(
z ∈

∪Kk=1Ct(k) : supz1,z2∈A(z) ∥f(z1)− f(z2)∥2 > ε
)

and Θ(σt, δt, ε, f) = Γmin(σt, δt, ε, f) −√
2− 2Γmin(σt, δt, ε, f)−

∆µ̂t

2 − 2maxk∈[K] ∥µ̂t(k)−µt(k)∥2

B2
.

Proof. For any encoder f , let St(ε, f) := {z ∈ ∪Kk=1Ct(k) : supz1,z2∈A(z) ∥f(z1)− f(z2)∥2 ≤
ε}, if any z ∈ (C̃t(1) ∪ · · · ∪ C̃t(K)) ∩ St(ε, f) can be correctly classified by Qf , it turns out that
Err(Qf ) can be bounded by (1− σt) +Rt(ε, f). In fact,

Err(Qf ) =

K∑
k=1

Pt
(
Qf (z) ̸= k,∀z ∈ Ct(k)

)
≤ Pt

((
C̃t(1) ∪ · · · ∪ C̃t(K)) ∩ St(ε, f)

)c)
= Pt

(
(C̃t(1) ∪ · · · ∪ C̃t(K))c ∪ (St(ε, f))

c
)

≤ (1− σt) + Pt
(
(St(ε, f))

c
)

= (1− σt) +Rt(ε, f).
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The first row is derived according to the definition of Err(Qf ). Since any z ∈ (C̃t(1) ∪ · · · ∪
C̃t(K)) ∩ St(ε, f) can be correctly classified by Qf , we yields the second row. De Morgan’s laws
implies the third row. The fourth row stems from the Definition 4.2. Finally, just note Rt(ε, f) =
(St(ε, f))

c to obtain the last line.

Hence it suffices to show for given i ∈ [K], z ∈ C̃t(i) ∩ St(ε, f) can be correctly classified by Qf
if for any j ̸= i,

µt(i)
⊤µt(j) < B2

2

(
Γi(σt, δt, ε, f)−

√
2− 2Γi(σt, δt, ε, f)−

∆µ̂t

2
− ∥µ̂t(i)− µt(i)∥2

B2

− ∥µ̂t(j)− µt(j)∥2
B2

)
,

where Γi(σt, δt, ε, f) =
(
σt − Rt(ε,f)

pt(i)

)(
1 +

(
B1

B2

)2 − Kδt
B2

− 2ε
B2

)
− 1.

To this end, without losing generality, consider the case i = 1. To turn out z0 ∈ C̃t(1) ∩ St(ε, f)
can be correctly classified by Qf , by the definition of C̃t(1) and St(ε, f), It just need to show
∀k ̸= 1, ∥f(z0)− µ̂t(1)∥2 < ∥f(z0)− µ̂t(k)∥2, which is equivalent to

f(z0)
⊤µ̂t(1)− f(z0)

⊤µ̂t(k)−
(1
2
∥µ̂t(1)∥22 −

1

2
∥µ̂t(k)∥22

)
> 0.

We will firstly deal with the term f(z0)
⊤µ̂t(1),

f(z0)
⊤µ̂t(1) = f(z0)

⊤µt(1) + f(z0)
⊤(µ̂t(1)− µt(1))

≥ f(z0)
⊤Ez∈Ct(1)Ez′∈A(z)[f(z

′)]− ∥f(z0)∥2∥µ̂t(1)− µt(1)∥2

≥ 1

pt(1)
f(z0)

⊤EzEz′∈A(z)[f(z
′)1{z ∈ Ct(1)}]−B2∥µ̂t(1)− µt(1)∥2

=
1

pt(1)
f(z0)

⊤EzEz′∈A(z)

[
f(z′)1{z ∈ Ct(1) ∩ C̃t(1) ∩ St(ε, f)}

]
+

1

pt(1)
f(z0)

⊤EzEz′∈A(z)

[
f(z′)1{z ∈ Ct(1) ∩ (C̃t(1) ∩ St(ε, f))c}

]
−B2∥µ̂t(1)− µt(1)∥2

=
Pt(C̃t(1) ∩ St(ε, f))

pt(1)
f(z0)

⊤Ez∈C̃t(1)∩St(ε,f)
Ez′∈A(z)[f(z

′)]

+
1

pt(1)
Ez

[
Ez′∈A(z)[f(z0)

⊤f(z′)]1{z ∈ Ct(1)\(C̃t(1) ∩ St(ε, f))}
]

−B2∥µ̂t(1)− µt(1)∥2

≥ Pt(C̃t(1) ∩ St(ε, f))
pt(1)

f(z0)
⊤Ez∈C̃t(1)∩St(ε,f)

Ez′∈A(z)[f(z
′)]

− B2
2

pt(1)
Pt
(
Ct(1)\(C̃t(1) ∩ St(ε, f))

)
−B2∥µ̂t(1)− µt(1)∥2, (15)

where the second row stems from Cauchy–Schwarz inequality. The third and the last rows are
according to the condition ∥f∥2 ≤ B2.

Note that

Pt
(
Ct(1)\(C̃t(1) ∩ St(ε, f))

)
= Pt

(
(Ct(1)\C̃t(1)) ∪ (C̃t(1) ∩ (St(ε, f))

c)
)

≤ (1− σt)pt(1) +Rt(ε, f), (16)

and

Pt
(
C̃t(1) ∩ St(ε, f)

)
= Pt(Ct(1))− Pt

(
Ct(1)\(C̃t(1) ∩ St(ε, f))

)
≥ pt(1)− ((1− σt)pt(1) +Rt(ε, f))

= σtpt(1)−Rt(ε, f). (17)
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Plugging (16), (17) into (15) yields

f(z0)
⊤µ̂t(1) ≥

(
σt −

Rt(ε, f)

pt(1)

)
f(z0)

⊤Ez∈C̃t(1)∩St(ε,f)
Ez′∈A(z)[f(z

′)]

−B2
2

(
1− σt +

Rt(ε, f)

pt(1)

)
−B2∥µ̂t(1)− µt(1)∥2. (18)

Notice that z0 ∈ C̃t(1) ∩ St(ε, f). Thus for any z ∈ C̃t(1) ∩ St(ε, f), by the defini-
tion of C̃t(1), we have minz′

0∈A(z0),z′∈A(z) ∥z′
0 − z′∥2 ≤ δt. Further denote (z∗

0 , z
∗) =

argminz′
0∈A(z0),z′∈A(z) ∥z′

0 − z′∥2, then ∥z∗
0 − z∗∥2 ≤ δt, combining K-Lipschitz property of

f to yield ∥f(z∗
0)− f(z∗)∥2 ≤ K∥z∗

0 − z∗∥2 ≤ Kδt. Besides that, since z ∈ St(ε, f),∀z′ ∈
A(z), ∥f(z′)− f(z∗)∥2 ≤ ε. Similarly, as z0 ∈ St(ε, f) and z0, z

∗
0 ∈ A(z0), we know

∥f(z0)− f(z∗
0)∥2 ≤ ε.

Therefore,

f(z0)
⊤Ez∈C̃t(1)∩St(ε,f)

Ez′∈A(z)[f(z
′)]

= Ez∈C̃t(1)∩St(ε,f)
Ez′∈A(z)[f(z0)

⊤f(z′)]

= Ez∈C̃t(1)∩St(ε,f)
Ez′∈A(z)[f(z0)

⊤(f(z′)− f(z0) + f(z0))]

≥ B2
1 + Ez∈C̃t(1)∩St(ε,f)

Ez′∈A(z)[f(z0)
⊤(f(z′)− f(z0))]

= B2
1 + Ez∈C̃t(1)∩St(ε,f)

Ez′∈A(z)[f(z0)
⊤( f(z′)− f(z∗)︸ ︷︷ ︸

∥·∥2≤ε

+ f(z∗)− f(z∗
0)︸ ︷︷ ︸

∥·∥2≤Kδt

+ f(z∗
0)− f(z0)︸ ︷︷ ︸
∥·∥2≤ε

)
]

≥ B2
1 − (B2ε+B2Kδt +B2ε)

= B2
1 −B2(Kδt + 2ε), (19)

where the fourth row is derived from ∥f∥2 ≥ B1.

Plugging (19) to the inequality (18) knows

f(z0)
⊤µ̂t(1) ≥

(
σt −

Rt(ε, f)

pt(1)

)
f(z0)

⊤ E
z∈C̃t(1)∩St(ε,f)

E
z′∈A(z)

[f(z′)]−B2
2

(
1− σt +

Rt(ε, f)

pt(1)

)
−B2∥µ̂t(1)− µt(1)∥2

≥
(
σt −

Rt(ε, f)

pt(1)

)(
B2

1 −B2(Kδt + 2ε)
)
−B2

2

(
1− σt +

Rt(ε, f)

pt(1)

)
−B2∥µ̂t(1)− µt(1)∥2

= B2
2

((
1 +

(B1

B2

)2)(
σt −

Rt(ε, f)

pt(1)

)
−
(
σt −

Rt(ε, f)

pt(1)

)(Kδt
B2

+
2ε

B2

)
− 1

)
−B2∥µ̂t(1)− µt(1)∥2

= B2
2

((
σt −

Rt(ε, f)

pt(1)

)(
1 +

(B1

B2

)2 − Kδt
B2

− 2ε

B2

)
− 1

)
−B2∥µ̂t(1)− µt(1)∥2

= B2
2Γ1(σt, δt, ε, f)−B2∥µ̂t(1)− µt(1)∥2.

Similar as above proving process, we can also turn out

f(z0)
⊤µt(1) ≥ B2

2Γ1(σt, δt, ε, f). (20)

Combining the fact that

∥µt(k)∥2 = ∥Ez∈C̃t(k)
Ez′∈A(z)[f(z

′)]∥2 ≤ Ex∈C̃t(k)
Ez′∈A(z)∥f(z′)∥2 ≤ B2,

we can conclude

f(z0)
⊤µ̂t(k) ≤ f(z0)

⊤µt(k) + f(z0)
⊤(µ̂t(k)− µt(k))

≤ f(z0)
⊤µt(k) + ∥f(z0)∥2∥µ̂t(k)− µt(k)∥2

≤ f(z0)
⊤µt(k) +B2∥µ̂t(k)− µt(k)∥2

17
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= (f(z0)− µt(1))
⊤µt(k) + µt(1)

⊤µt(k) +B2∥µ̂t(k)− µt(k)∥2
≤ ∥f(z0)− µt(1)∥2 · ∥µt(k)∥2 + µt(1)

⊤µt(k) +B2∥µ̂t(k)− µt(k)∥2

≤ B2

√
∥f(z0)∥22 − 2f(z0)⊤µt(1) + ∥µt(1)∥22 + µt(1)

⊤µt(k) +B2∥µ̂t(k)− µt(k)∥2

≤ B2

√
2B2

2 − 2f(z0)⊤µt(1) + µt(1)
⊤µt(k) +B2∥µ̂t(k)− µt(k)∥2

≤ B2

√
2B2

2 − 2B2
2Γ1(σt, δt, ε, f) + µt(1)

⊤µt(k) +B2∥µ̂t(k)− µt(k)∥2

=
√
2B2

2

√
1− Γ1(σt, δt, ε, f) + µt(1)

⊤µt(k) +B2∥µ̂t(k)− µt(k)∥2.

Note that we plug (20) into the seventh row to obtain the inequality of eighth row.

Thus, by ∆µ̂t = 1−mink∈[K] ∥µ̂t(k)∥22/B2
2 , we can conclude

f(z0)
⊤µ̂t(1)− f(z0)

⊤µ̂t(k)−
(1
2
∥µ̂t(1)∥22 −

1

2
∥µ̂t(k)∥2

)
= f(z0)

⊤µ̂t(1)− f(z0)
⊤µ̂t(k)−

1

2
∥µ̂t(1)∥22 +

1

2
∥µ̂t(k)∥22

≥ f(z0)
⊤µ̂t(1)− f(z0)

⊤µ̂t(k)−
1

2
B2

2 +
1

2
min
k∈[K]

∥µ̂t(k)∥22

= f(z0)
⊤µ̂t(1)− f(z0)

⊤µ̂t(k)−
1

2
B2

2∆µ̂t

≥ B2
2Γ1(σt, δt, ε, f)−B2∥µ̂t(1)− µt(1)∥2 −

√
2B2

2

√
1− Γ1(σt, δt, ε, f)

− µt(1)
⊤µt(k)−B2∥µ̂t(k)− µt(k)∥2 −

1

2
B2

2∆µ̂t
> 0,

which finishes the proof.

B.2.2 PRELIMINARIES FOR LEMMA B.4

To establish Lemma B.4, we must first prove Lemmas B.2 and B.3 in advance. Follow-
ing the notations in the target domain, we employ µs(k) := Ex∈Cs(k)Ex′∈A(x)[f(x

′)] =
1

ps(k)
ExEx′∈A(x)[f(x

′)1{x ∈ Cs(k)}] to denote the centre of k-th latent class in representation
space. Apart from that, it is necessary to introduce following assumption, which is the abstract
version of Assumption 4.4.

Assumption B.1. Review Ps(k) and Pt(k) are the conditional measures that P (x|x ∈ Cs(k))
and P (z|z ∈ Ct(k)) respectively, assume ∃ρ > 0 and η > 0, max

k∈[K]
W(Ps(k), Pt(k)) ≤ ρ and

max
k∈[K]

|ps(k)− pt(k)| ≤ η.

Lemma B.2. If the encoder f is K-Lipschitz and Assumption B.1 holds, for any k ∈ [K], we have:

∥µs(k)− µt(k)∥2 ≤
√
d∗MKρ.

Proof. For all k ∈ [K],

∥µs(k)− µt(k)∥22 =

d∗∑
l=1

(
(µs(k))l − (µt(k))l

)2
=

d∗∑
l=1

(Ex∈Cs(k)Ex′∈A(x)[fl(x
′)]− Ez∈Ct(k)Ez′∈A(z)[fl(z

′)])2

=

d∗∑
l=1

[ 1
m

m∑
γ=1

(
Ex∈Cs(k)[fl(Aγ(x))]− Ez∈Ct(k)[fl(Aγ(z))]

)]2
≤ d∗M2K2ρ2

18
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The final inequality is obtained by Assumption B.1 along with the fact that f(Aγ(·)) is MK-
Lipschitz continuous. In fact, as f ∈ Lip(K), then for every l ∈ [d∗], fl ∈ Lip(K), combining
the property that Aγ(·) ∈ Lip(M) stated in Assumption 4.2, we can turn out f(Aγ(·)) is MK-
Lipschitz continuous.

So that

∥µs(k)− µt(k)∥2 ≤
√
d∗MKρ.

Lemma B.3. Given a (σs, σt, δs, δt)-augmentation, if the encoder f with ∥f∥2 ≤ B2 is K-Lipschitz
continuous, then

E
x∈Cs(k)

E
x1∈A(x)

∥f(x1)− µs(k)∥22 ≤ 4B2
2

[(
1− σs +

Kδs + 2ε

2B2
+

Rs(ε, f)

ps(k)

)2

+
(
1− σs +

Rs(ε, f)

ps(k)

)]
,

where Rs(ε, f) = Ps
(
x ∈ ∪Kk=1Cs(k) : supx1,x2∈A(x) ∥f(x1)− f(x2)∥2 > ε

)
.

Proof. Let Ss(ε, f) := {x ∈ ∪Kk=1Cs(k) : supx1,x2∈A(x) ∥f(x1)− f(x2)∥2 ≤ ε}, for each
k ∈ [K],

Ex∈Cs(k)Ex1∈A(x)∥f(x1)− µs(k)∥22

=
1

ps(k)
ExEx1∈A(x)[1{x ∈ Cs(k)}∥f(x1)− µs(k)∥22]

=
1

ps(k)
ExEx1∈A(x)[1{x ∈ C̃s(k) ∩ Ss(ε, f)}∥f(x1)− µs(k)∥22]

+
1

ps(k)
ExEx1∈A(x)[1{x ∈ Cs(k)\(C̃s(k) ∩ Ss(ε, f))}∥f(x1)− µs(k)∥22]

≤ 1

ps(k)
ExEx1∈A(x)[1{x ∈ C̃s(k) ∩ Ss(ε, f)}∥f(x1)− µs(k)∥22]

+
4B2

2Ps
(
Cs(k)\(C̃s(k) ∩ Ss(ε, f))

)
ps(k)

≤ 1

ps(k)
E
x

E
x1∈A(x)

[1{x ∈ C̃s(k) ∩ Ss(ε, f)}∥f(x1)− µs(k)∥22] + 4B2
2

(
1− σs +

Rs(ε, f)

ps(k)

)
≤ Ps(C̃s(k) ∩ Ss(ε, f))

ps(k)
E

x∈C̃s(k)∩Ss(ε,f)
E

x1∈A(x)
∥f(x1)− µs(k)∥22 + 4B2

2

(
1− σs +

Rs(ε, f)

ps(k)

)
≤ Ex∈C̃s(k)∩Ss(ε,f)

Ex1∈A(x)∥f(x1)− µs(k)∥22 + 4B2
2

(
1− σs +

Rs(ε, f)

ps(k)

)
, (21)

the second inequality is due to

Ps
(
Cs(k)\((C̃s(k) ∩ Ss(ε, f))

)
= Ps

(
(Cs(k)\C̃s(k)) ∪ (Cs(k)\Ss(ε, f))

)
≤ (1− σs)ps(k) +Rs(ε, f).

Furthermore,

Ex∈C̃s(k)∩Ss(ε,f)
Ex1∈A(x)∥f(x1)− µs(k)∥22

= Ex∈C̃s(k)∩Ss(ε,f)
Ex1∈A(x)∥f(x1)− Ex′∈Cs(k)Ex2∈A(x′)f(x2)∥22

= Ex∈C̃s(k)∩Ss(ε,f)
Ex1∈A(x)

∥∥∥f(x1)−
P (C̃s(k) ∩ Ss(ε, f))

ps(k)
Ex′∈C̃s(k)∩Ss(ε,f)

Ex2∈A(x′)f(x2)

−
Ps

(
Cs(k)\(C̃s(k) ∩ Ss(ε, f))

)
ps(k)

Ex′∈Cs(k)\(C̃s(k)∩Ss(ε,f))
Ex2∈A(x′)f(x2)

∥∥∥2
2

= Ex∈C̃s(k)∩Ss(ε,f)
Ex1∈A(x)

∥∥∥Ps(C̃s(k) ∩ Ss(ε, f))
ps(k)

(
f(x1)− Ex′∈C̃s(k)∩Ss(ε,f)

Ex2∈A(x′)f(x2)
)
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−
Ps

(
Cs(k)\(C̃s(k) ∩ Ss(ε, f))

)
ps(k)

(
f(x1)− Ex′∈Cs(k)\(C̃s(k)∩Ss(ε,f))

Ex2∈A(x′)f(x2)
)∥∥∥2

2

≤ E
x∈C̃s(k)∩Ss(ε,f)

E
x1∈A(x)

[∥∥∥f(x1)− E
x′∈C̃s(k)∩Ss(ε,f)

E
x2∈A(x′)

f(x2)
∥∥∥
2
+ 2B2

(
1− σs +

Rs(ε, f)

ps(k)

)]2
(22)

For any x,x′ ∈ C̃s(k) ∩ Ss(ε, f), by the definition of C̃s(k), we can yield that

min
x1∈A(x),x2∈A(x′)

∥x1 − x2∥2 ≤ δs,

thus if we denote (x∗
1,x

∗
2) = argmin

x1∈A(x),x2∈A(x′)

∥x1 − x2∥2, we can turn out ∥x∗
1 − x∗

2∥2 ≤ δs,

further by K-Lipschitz continuity of f , we yield ∥f(x∗
1)− f(x∗

2)∥2 ≤ K∥x∗
1 − x∗

2∥2 ≤ Kδs. In
addition, since x ∈ Ss(ε, f), we know for any x1 ∈ A(x), ∥f(x1)− f(x∗

1)∥2 ≤ ε. Similarly,
x′ ∈ Ss(ε, f) implies ∥f(x2)− f(x∗

2)∥2 ≤ ε for any x2 ∈ A(x′). Therefore, for any x,x′ ∈
C̃s(1) ∩ Ss(ε, f) and x1 ∈ A(x),x2 ∈ A(x′),

∥f(x1)− f(x2)∥2 ≤ ∥f(x1)− f(x∗
1)∥2 + ∥f(x∗

1)− f(x∗
2)∥2 + ∥f(x∗

2)− f(x2)∥2 ≤ 2ε+Kδs.
(23)

Combining inequalities (21), (22), (23) to conclude

Ex∈Cs(k)Ex1∈A(x)∥f(x1)− µs(k)∥22

≤
[
2ε+Kδs + 2B2

(
1− σs +

Rs(ε, f)

ps(k)

)]2
+ 4B2

2

(
1− σs +

Rs(ε, f)

ps(k)

)
= 4B2

2

[(
1− σs +

Kδs
2B2

+
ε

B2
+
Rs(ε, f)

ps(k)

)2

+
(
1− σs +

Rs(ε, f)

ps(k)

)]

B.2.3 THE EFFECT OF MINIMAXING OUR LOSS

Lemma B.4. Given a (σs, σt, δs, δt)-augmentation, if d∗ > K and the encoder f with B1 ≤
∥f∥2 ≤ B2 is K-Lipschitz continuous, then for any ε > 0,

R2
s(ε, f) ≤

m4

ε2
Lalign(f),

R2
t (ε, f) ≤

m4

ε2
Lalign(f) +

8m4

ε2
B2d

∗MKρ+ 4m4

ε2
B2

2d
∗Kη,

and

max
i ̸=j

|µt(i)⊤µt(j)| ≤

√
2

mini̸=j ps(i)ps(j)

(
Ldiv(f) + φ(σs, δs, ε, f)

)
+ 2

√
d∗B2MKρ.

where Rs(ε, f) = Ps
(
x ∈ ∪Kk=1Cs(k) : supx1,x2∈A(x) ∥f(x1)− f(x2)∥ > ε

)
and φ(σs, δs, ε, f)

:= 4B2
2

[(
1−σs+Kδs+2ε

2B2

)2

+(1−σs)+KRs(ε, f)
(
3−2σs+

Kδs+2ε
B2

)
+R2

s(ε, f)
(∑K

k=1
1

ps(k)

)]
+

B2(ε
2 + 4B2

2Rs(ε, f))
1
2 .

Proof. Recall the Assumption 4.2, the measure on A is uniform, thus

Ez1,z2∈A(z)∥f(z1)− f(z2)∥2 =
1

m2

m∑
γ=1

m∑
β=1

∥f(Aγ(z))− f(Aβ(z))∥2.

so that

sup
z1,z2∈A(z)

∥f(z1)− f(z2)∥2 = sup
γ,β∈[m]

∥f(Aγ(z))− f(Aβ(z))∥2
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≤
m∑
γ=1

m∑
β=1

∥f(Aγ(z))− f(Aβ(z))∥2

= m2Ez1,z2∈A(z)∥f(z1)− f(z2)∥2.

Denote S := {z : Ez1,z2∈A(z)∥f(z1)− f(z2)∥2 > ε
m2 }, by the definition of Rt(ε, f) along with

Markov inequality, we have

R2
t (ε, f) ≤ P 2

t (S)

≤
(EzEz1,z2∈A(z)∥f(z1)− f(z2)∥2

ε
m2

)2

≤
EzEz1,z2∈A(z)∥f(z1)− f(z2)∥22

ε2

m4

=
m4

ε2
EzEz1,z2∈A(z)∥f(z1)− f(z2)∥22 (24)

Similar as above process, we can also get the first part stated in Lemma B.4:

R2
s(ε, f) ≤

m4

ε2
ExEx1,x2∈A(x)∥f(x1)− f(x2)∥22 =

m4

ε2
Lalign(f).

Besides that, we can turn out

EzEz1,z2∈A(z)∥f(z1)− f(z2)∥22
= E

x
E

x1,x2∈A(x)
∥f(x1)− f(x2)∥22 + E

z
E

z1,z2∈A(z)
∥f(z1)− f(z2)∥22

− E
x

E
x1,x2∈A(x)

∥f(x1)− f(x2)∥22

=
1

m2

m∑
γ=1

m∑
β=1

[
Ez∥f(Aγ(z))− f(Aβ(z))∥22 − Ex∥f(Aγ(x))− f(Aβ(x))∥22

]
+ ExEx1,x2∈A(x)∥f(x1)− f(x2)∥22

=
1

m2

m∑
γ=1

m∑
β=1

d∗∑
l=1

[
Ez

[
fl(Aγ(z))− fl(Aβ(z))

]2 − Ex

[
fl(Aγ(x))− fl(Aβ(x))

]2]
+ ExEx1,x2∈A(x)∥f(x1)− f(x2)∥22,

since for all γ ∈ [m], β ∈ [m] and l ∈ [d∗], we have

Ez

[
fl(Aγ(z))− fl(Aβ(z))

]2 − Ex

[
fl(Aγ(x))− fl(Aβ(x))

]2
=

K∑
k=1

[
pt(k)Ez∈Ct(k)

[
fl(Aγ(z))− fl(Aβ(z))

]2 − ps(k)Ex∈Cs(k)

[
fl(Aγ(x))− fl(Aβ(x))

]2]
=

K∑
k=1

[
pt(k)

(
Ez∈Ct(k)

[
fl(Aγ(z))− fl(Aβ(z))

]2 − Ex∈Cs(k)

[
fl(Aγ(x))− fl(Aβ(x))

]2︸ ︷︷ ︸
g(x)

)

+
(
pt(k)− ps(k)

)
Ex∈Cs(k)

[
fl(Aγ(x))− fl(Aβ(x))

]2]
≤ 8B2MKρ+ 4B2

2Kη.

It is necessary to claim g(x) ∈ Lip(8B2MK) at first to obtain the last inequality shown above. In
fact, ∀l ∈ [d∗], fl ∈ Lip(K) as f ∈ Lip(K), and review that Aγ(·) and Aβ(·) are both M -Lipschitz
continuous according to Assumption 4.2, therefore we can turn out fl(Aγ(·)) − fl(Aβ(·)) ∈
Lip(2MK). In addition, note that |fl(Aγ(·))− fl(Aβ(·))| ≤ 2B2 as ∥f∥2 ≤ B2, hence the out-
ermost quadratic function remains locally 4B2-Lipschitz continuity in [−2B2, 2B2], which implies
that g ∈ Lip(8B2MK).
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Now let’s separately derive the two terms of the last inequality, combine the conclusion that g ∈
Lip(8B2MK), the definition of Wasserstein distance and Assumption B.1 can obtain

K∑
k=1

[
pt(k)

(
Ez∈Ct(k)

[
fl(Aγ(z))− fl(Aβ(z))

]2 − Ex∈Cs(k)

[
fl(Aγ(x))− fl(Aβ(x))

]2)]
≤ 8B2MKρ

K∑
k=1

pt(k)

= 8B2MKρ,
For the second term in the last inequality, just need to notice that fl(Aγ(x)) − fl(Aβ(x)) ≤ 2B2,
and then apply Assumption B.1 to yield

K∑
k=1

[(
pt(k)− ps(k)

)
Ex∈Cs(k)

[
fl(Aγ(x))− fl(Aβ(x))

]2] ≤ 4B2
2Kη.

Hence we have

EzEz1,z2∈A(z)∥f(z1)− f(z2)∥22 ≤ ExEx1,x2∈A(x)∥f(x1)− f(x2)∥22 + 8B2d
∗MKρ+ 4B2

2d
∗Kη.

(25)

Combining (24) and (25) turn out the second inequality of Lemma B.4.

R2
t (ε, f) ≤

m4

ε2
Lalign(f) +

8m4

ε2
B2d

∗MKρ+ 4m4

ε2
B2

2d
∗Kη.

To prove the third part of this Lemma, first recall Lemma B.2 that ∀k ∈ [K],

∥µs(k)− µt(k)∥2 ≤
√
d∗MKρ.

Hence, ∀i ̸= j, we have

|µt(i)⊤µt(j)− µs(i)
⊤µs(j)| = |µt(i)⊤µt(j)− µt(i)

⊤µs(j) + µt(i)
⊤µs(j)− µs(i)

⊤µs(j)|
≤ ∥µt(i)∥2∥µt(j)− µs(j)∥2 + ∥µs(j)∥2∥µt(i)− µs(i)∥2
≤ 2

√
d∗B2MKρ,

so that we can further yield the relationship of class center divergence between the source domain
and the target domain:

max
i ̸=j

|µt(i)⊤µt(j)| ≤ max
i̸=j

|µs(i)⊤µs(j)|+ 2
√
d∗B2MKρ. (26)

Next, we will attempt to derive an upper bound for maxi ̸=j |µs(i)⊤µs(j)|. To do this, let U =(√
ps(1)µs(1), . . . ,

√
ps(K)µs(K)

)
∈ Rd∗×K , then∥∥∥ K∑

k=1

ps(k)µs(k)µs(k)
⊤ − Id∗

∥∥∥2
F
= ∥UU⊤ − Id∗∥2F

= Tr(UU⊤UU⊤ − 2UU⊤ + Id∗) (∥A∥2F = Tr(A⊤A)))

= Tr(U⊤UU⊤U − 2U⊤U) + Tr(IK) + d∗ −K
(Tr(AB) = Tr(BA))

≥ ∥U⊤U − IK∥2F (d∗ > K)

=

K∑
k=1

K∑
l=1

(
√
ps(k)ps(l)µs(k)

⊤µs(l)− δkl)
2

≥ ps(i)ps(j)(µs(i)
⊤µs(j))

2.

Therefore,

(µs(i)
⊤µs(j))

2 ≤

∥∥∥∑K
k=1 ps(k)µs(k)µs(k)

⊤ − Id∗
∥∥∥2

F

ps(i)ps(j)
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=

∥∥∥E
x

E
x1,x2∈A(x)

[f(x1)f(x2)
⊤]− Id∗ +

K∑
k=1

ps(k)µs(k)µs(k)
⊤ − E

x
E

x1,x2∈A(x)
[f(x1)f(x2)

⊤]
∥∥∥2

F

ps(i)ps(j)

≤
2
∥∥∥E

x
E

x1,x2∈A(x)
[f(x1)f(x2)

⊤]− Id∗
∥∥∥2

F
+ 2

∥∥∥ K∑
k=1

ps(k)µs(k)µs(k)
⊤ − E

x
E

x1,x2∈A(x)
[f(x1)f(x2)

⊤]
∥∥∥2

F

ps(i)ps(j)
(27)

For the term
∥∥∥∑K

k=1 ps(k)µs(k)µs(k)
⊤ − ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]
∥∥∥2
F

, note that

ExEx1,x2∈A(x)[f(x1)f(x2)
⊤]−

K∑
k=1

ps(k)µs(k)µs(k)
⊤

=

K∑
k=1

ps(k)Ex∈Cs(k)Ex1,x2∈A(x)[f(x1)f(x2)
⊤]−

K∑
k=1

ps(k)µs(k)µs(k)
⊤

=

K∑
k=1

ps(k)Ex∈Cs(k)Ex1∈A(x)[f(x1)f(x1)
⊤]−

K∑
k=1

ps(k)µs(k)µs(k)
⊤

+

K∑
k=1

ps(k)Ex∈Cs(k)Ex1,x2∈A(x)[f(x1)(f(x2)− f(x1))
⊤]

=

K∑
k=1

ps(k)Ex∈Cs(k)Ex1∈A(x)[(f(x1)− µs(k))(f(x1)− µs(k))
⊤]

+ ExEx1,x2∈A(x)[f(x1)(f(x2)− f(x1))
⊤], (28)

where the last equation is derived from

Ex∈Cs(k)Ex1∈A(x)[f(x1)f(x1)
⊤]− µs(k)µs(k)

⊤

= Ex∈Cs(k)Ex1∈A(x)[f(x1)f(x1)
⊤] + µs(k)µs(k)

⊤ −
(
Ex∈Cs(k)Ex1∈A(x)[f(x1)]

)
µs(k)

⊤

− µs(k)
(
Ex∈Cs(k)Ex1∈A(x)[f(x1)]

)⊤
= Ex∈Cs(k)Ex1∈A(x)[(f(x1)− µs(k))(f(x1)− µs(k))

⊤].

So its norm is∥∥∥ K∑
k=1

ps(k)µs(k)µs(k)
⊤ − ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]
∥∥∥
F

≤
K∑
k=1

ps(k)Ex∈Cs(k)Ex1∈A(x)[∥(f(x1)− µs(k))(f(x1)− µs(k))
⊤∥F ]

+ ExEx1,x2∈A(x)[∥f(x1)(f(x2)− f(x1))
⊤∥F ]

≤
K∑
k=1

ps(k) E
x∈Cs(k)

E
x1∈A(x)

[
∥f(x1)− µs(k)∥22

]
+ E

x
E

x1,x2∈A(x)

[
∥f(x1)∥2∥f(x2)− f(x1)∥2

]
≤

K∑
k=1

ps(k)Ex∈Cs(k)Ex1∈A(x)

[
∥f(x1)− µs(k)∥22

]
+
[
ExEx1∈A(x)∥f(x1)∥22

] 1
2
[
ExEx1,x2∈A(x)∥f(x2)− f(x1)∥22

] 1
2

≤
K∑
k=1

ps(k)Ex∈Cs(k)Ex1∈A(x)

[
∥f(x1)− µs(k)∥22

]
+B2

[
ε2 + ExEx1,x2∈A(x)

[
∥f(x2)− f(x1)∥221{x ̸∈ Ss(ε, f)}

]] 1
2
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(
Review that Ss(ε, f) := {x ∈ ∪Kk=1Cs(k) : sup

x1,x2∈A(x)

∥f(x1)− f(x2)∥2 ≤ ε}
)

≤
K∑
k=1

ps(k)Ex∈Cs(k)Ex1∈A(x)

[
∥f(x1)− µs(k)∥22

]
+B2

[
ε2 + 4B2

2Ex

[
1{x ̸∈ Ss(ε, f)}

]] 1
2

=

K∑
k=1

ps(k)Ex∈Cs(k)Ex1∈A(x)

[
∥f(x1)− µs(k)∥22

]
+B2(ε

2 + 4B2
2Rs(ε, f))

1
2

≤ 4B2
2

K∑
k=1

ps(k)
[(

1− σs +
Kδs
2B2

+
ε

B2
+
Rs(ε, f)

ps(k)

)2

+
(
1− σs +

Rs(ε, f)

ps(k)

)]
+B2(ε

2 + 4B2
2Rs(ε, f))

1
2 (Lemma B.3)

= 4B2
2

[(
1− σs +

Kδs + 2ε

2B2

)2

+ (1− σs) +KRs(ε, f)
(
3− 2σs +

Kδs + 2ε

B2

)
+R2

s(ε, f)
( K∑
k=1

1

ps(k)

)]
+B2(ε

2 + 4B2
2Rs(ε, f))

1
2

If we define φ(σs, δs, ε, f) := 4B2
2

[(
1 − σs +

Kδs+2ε
2B2

)2

+ (1 − σs) + KRs(ε, f)
(
3 − 2σs +

Kδs+2ε
B2

)
+R2

s(ε, f)
(∑K

k=1
1

ps(k)

)]
+B2(ε

2 + 4B2
2Rs(ε, f))

1
2 , above derivation implies

∥∥∥ K∑
k=1

ps(k)µs(k)µs(k)
⊤ − ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]
∥∥∥
F
≤ φ(σs, δs, ε, f). (29)

Besides that, Note that

Ldiv(f) = sup
G∈G(f)

⟨ExEx1,x2∈A(x)[f(x1)f(x2)
⊤]− Id∗ , G⟩F

=
∥∥∥ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]− Id∗
∥∥∥2
F
, (30)

which is from the facts that ExEx1,x2∈A(x)[f(x1)f(x2)
⊤]− Id∗ ∈ G(f) and

⟨ExEx1,x2∈A(x)[f(x1)f(x2)
⊤]− Id∗ , G⟩F ≤

∥∥∥ExEx1,x2∈A(x)[f(x1)f(x2)
⊤]− Id∗

∥∥∥
F
· ∥G∥F

Combining (27), (28), (29), (30) yields for any i ̸= j

(µs(i)
⊤µs(j))

2 ≤ 2

ps(i)ps(j)

(
Ldiv(f) + φ(σs, δs, ε, f)

)
,

which implies that

max
i ̸=j

|µs(i)⊤µs(j)| ≤

√
2

mini̸=j ps(i)ps(j)

(
Ldiv(f) + φ(σs, δs, ε, f)

)
.

So we can get what we desired according to (26)

max
i̸=j

|µt(i)⊤µt(j)| ≤

√
2

mini̸=j ps(i)ps(j)

(
Ldiv(f) + φ(σs, δs, ε, f)

)
+ 2

√
d∗B2MKρ.

B.2.4 CONNECTION BETWEEN PRETRAINING AND DOWNSTREAM TASK

Following theorem reveals that minimaxing our loss may achieve a small misclassification rate in
downstream task.
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Theorem B.1. Given a (σs, σt, δs, δt)-augmentation, for any ε > 0, if Θ(σt, δt, ε, f̂ns
) > 0, then

with probability at least 1 −

√√√√ 2
min
i̸=j

ps(i)ps(j)

(
1
λEDs [ sup

G∈G(f̂ns )

L(f̂ns ,G)]+ψ(σs,δs,ε,f̂ns )

)
+2

√
d∗B2MKρ

B2
2Θ(σt,δt,ε,f̂ns )

,
we have

EDs [Err(Qf̂ns
)] ≤ (1− σt) +

m2

ε

√
EDs [ sup

G∈G(f̂ns )

L(f̂ns , G)] + 8B2d∗MKρ+ 4B2
2d

∗Kη,

where

ψ(σs, δs, ε, f̂ns
) := B2

(
ε2 + 4B2

2

m2

ε

√
EDs

[ sup
G∈G(f̂ns )

L(f̂ns
, G)]

) 1
2

+ 4B2
2

[(
1− σs +

Kδs + 2ε

2B2

)2

+ (1− σs) +
Km2

ε

√
EDs

[ sup
G∈G(f̂ns )

L(f̂ns
, G)]

(
3− 2σs +

Kδs + 2ε

B2

)

+
m4

ε2
EDs [ sup

G∈G(f̂ns )

L(f̂ns , G)]
( K∑
k=1

1

ps(k)

)]
,

Γmin(σt, δt, ε, f) =
(
σt − Rt(ε,f)

mini pt(i)

)(
1 +

(
B1

B2

)2 − Kδt
B2

− 2ε
B2

)
− 1, ∆µ̂t

= 1− mink∈[K] ∥µ̂t(k)∥2

B2
2

,

Rt(ε, f) = Pt
(
z ∈ ∪Kk=1C̃t(k) : supz1,z2∈A(z) ∥f(z1)− f(z2)∥ > ε

)
and Θ(σt, δt, ε, f̂ns) =

Γmin(σt, δt, ε, f̂ns
)−

√
2− 2Γmin(σt, δt, ε, f̂ns)−

∆µ̂t

2 − 2maxk∈[K] ∥µ̂t(k)−µt(k)∥2

B2
.

In addition, the following inequalities always hold

EDs [R
2
t (ε, f̂ns)] ≤

m4

ε2

(
EDs [ sup

G∈G(f̂ns )

L(f̂ns , G)] + 8B2d
∗MKρ+ 4B2

2d
∗Kη

)
.

Proof. Note the facts that supG∈G(f) L(f,G) ≥ max{Lalign(f), λLdiv(f)}, B1 ≤ ∥f̂ns
∥2 ≤ B2

and K-Lipschitz continuity of f̂ns , apply Lemma B.4 to f̂ns to obtain

R2
s(ε, f̂ns

) ≤ m4

ε2
sup

G∈G(f̂ns )

L(f̂ns
) (31)

R2
t (ε, f̂ns) ≤

m4

ε2
sup

G∈G(f̂ns )

L(f̂ns , G) +
8m4

ε2
B2d

∗MKρ+ 4m4

ε2
B2

2d
∗Kη (32)

and

max
i ̸=j

|µt(i)⊤µt(j)| ≤
√

2

mini̸=j ps(i)ps(j)

( 1

λ
sup

G∈G(f̂ns )

L(f̂ns
, G) + φ(σs, δs, ε, f̂ns

)
)

+ 2
√
d∗B2MKρ (33)

Take expectation w.r.t Ds in the both side of (31), (32), (33) and apply Jensen inequality to yield

EDs
[R2
s(ε, f̂ns

)] ≤ m4

ε2
EDs

[ sup
G∈G(f̂ns )

L(f̂ns
, G)]

EDs
[R2
t (ε, f̂ns

)] ≤ m4

ε2
EDs

[ sup
G∈G(f̂ns )

L(f̂ns
, G)] +

8m4

ε2
B2d

∗MKρ+ 4m4

ε2
B2

2d
∗Kη

EDs
[max
i ̸=j

|µt(i)⊤µt(j)|] ≤

√√√√ 2

min
i ̸=j

ps(i)ps(j)

( 1

λ
EDs

[ sup
G∈G(f̂ns )

L(f̂ns
, G)] + EDs

[φ(σs, δs, ε, f̂ns
)]
)

+ 2
√
d∗B2MKρ
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where EDs
[φ(σs, δs, ε, f̂ns

)] = 4B2
2

[(
1 − σs +

Kδs+2ε
2B2

)2

+ (1 − σs) +KEDs
[Rs(ε, f̂ns

)]
(
3 −

2σs +
Kδs+2ε
B2

)
+ EDs

[R2
s(ε, f̂ns

)]
(∑K

k=1
1

ps(k)

)]
+B2EDs

[(ε2 + 4B2
2Rs(ε, f̂ns

))
1
2 ].

Therefore, by Jensen inequality, we have

EDs
[φ(σs, δs, ε, Rs(ε, f̂ns

))]

≤ 4B2
2

[(
1− σs +

Kδs + 2ε

2B2

)2

+ (1− σs) +KEDs
[Rs(ε, f̂ns

)]
(
3− 2σs +

Kδs + 2ε

B2

)
+ EDs

[R2
s(ε, f̂ns

)]
( K∑
k=1

1

ps(k)

)]
+B2(ε

2 + 4B2
2EDs

[Rs(ε, f̂ns
)])

1
2

≤ 4B2
2

[(
1− σs +

Kδs + 2ε

2B2

)2

+ (1− σs) +
Km2

ε

√
EDs

[ sup
G∈G(f̂ns )

L(f̂ns
, G)]

(
3− 2σs+

Kδs + 2ε

B2

)
+
m4

ε2
EDs [ sup

G∈G(f̂ns )

L(f̂ns , G)]
( K∑
k=1

1

ps(k)

)]
+B2

(
ε2 +

4B2
2m

2

ε

√
EDs

[ sup
G∈G(f̂ns )

L(f̂ns
, G)]

) 1
2

:= ψ(σs, δs, ε, f̂ns
).

Recall Lemma B.1 reveals that we can obtain

Err(Qf̂ns
) ≤ (1− σt) +Rt(ε, f̂ns

)

if maxi ̸=j |(µt(i))⊤µt(j)| < B2
2Θ(σt, δt, ε, f̂ns

).

So that if Θ(σt, δt, ε, f̂ns
) > 0, apply Markov inequality to know with probability at least

1−

√
2

mini̸=j ps(i)ps(j)

(
1
λEDs

[supG∈G(f̂ns )
L(f̂ns

, G)] + ψ(σs, δs, ε, f̂ns
)
)
+ 2

√
d∗B2MKρ

B2
2Θ(σt, δt, ε, f̂ns

)
,

we have

max
i̸=j

|µt(i)⊤µt(j)| < B2
2Θ(σt, δt, ε, f̂ns

),

so that we can get what we desired.

EDs
[Err(Qf̂ns

)] ≤ (1− σt) +Rt(ε, f̂ns
)

≤ (1− σt) +
m2

ε

√
EDs

[ sup
G∈G(f̂ns )

L(f̂ns
, G)] + 8B2d∗MKρ+ 4B2

2d
∗Kη,

where the last inequality is due to (32).

B.2.5 PRELIMINARIES FOR ERROR ANALYSIS

To prove Theorem 4.2 based on Theorem B.1, we need to first introduce some related definitions
and conclusions, which are going to be used in subsequent contents.

Recall that for any x ∈ Xs,x1,x2
i.i.d.∼ A(x), x̃ = (x1,x2) ∈ R2d∗ . If we define ℓ(x̃, G) :=

∥f(x1)− f(x2)∥22 + λ⟨f(x1)f(x2)
⊤ − Id∗ , G⟩F , then our loss function at sample level can be

rewritten as

L̂(f,G) := 1

ns

ns∑
i=1

[
∥f(x(i)

1 )− f(x
(i)
2 )∥22 + λ⟨f(x(i)

1 )f(x
(i)
2 )⊤ − Id∗ , G⟩F

]
=

1

ns

ns∑
i=1

ℓ(x̃(i), G),
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furthermore, denote G1 := {G ∈ Rd∗×d∗ : ∥G∥F ≤ B2
2 +

√
d∗}. It is obvious that both G(f) for

any f : ∥f∥2 ≤ B2 and Ĝ(f) for any f ∈ NN d,d∗(W,L,K, B1, B2) are contained in G1. Apart
from that, following Proposition B.1 reveals that ℓ(u, G) is a Lipschitz function on the domain
{u ∈ R2d∗ : ∥u∥2 ≤

√
2B2} × G1 ⊆ R2d∗+(d∗)2 .

Proposition B.1. ℓ is a Lipschitz function on the domain {u ∈ R2d∗ : ∥u∥2 ≤
√
2B2} × G1.

Proof. At first step, we will prove ∥ℓ(·, G)∥Lip < ∞ for any fixed G ∈ G1. To this end, denote
u = (u1,u2), where u1,u2 ∈ Rd∗ , we firstly show J(u) = ∥u1 − u2∥22 is Lipschtiz function. let
g(u) := u1 − u2, then

∥g(u1,u2)− g(v1,v2)∥22 = ∥u1 − u2 − v1 + v2∥22
≤

(
∥u1 − v1∥2 + ∥u2 − v2∥2

)2
= ∥u1 − v1∥22 + ∥u2 − v2∥22 + 2∥u1 − v1∥2∥u2 − v2∥2
≤ 2(∥u1 − v1∥22 + ∥u2 − v2∥22)
= 2∥(u1,u2)− (v1,v2)∥22,

which implies that g(u) ∈ Lip(
√
2). Apart from that, g also possess the property that ∥g(u)∥2 =

∥u1 − u2∥2 ≤ ∥u1∥2 + ∥u2∥2 ≤ 2∥u∥2 ≤ 2
√
2B2. Moreover, let h(v) := ∥v∥22, we know that∥∥∥∂h

∂v
(g(u))

∥∥∥
2
= 2∥g(u)∥2 ≤ 4

√
2B2.

Therefore, J(u) = h(g(u)) = ∥u1 − u2∥22 ∈ Lip(8B2)

To show Q(u) = ⟨u1u
⊤
2 − Id∗ , G⟩F is also a Lipschtiz function. Define g̃(u) := u1u

⊤
2 , we know

that

∥g̃(u)− g̃(v)∥F = ∥u1u
⊤
2 − v1v

⊤
2 ∥F

= ∥u1u
⊤
2 − u1v

⊤
2 + u1v

⊤
2 − v1v

⊤
2 ∥F

= ∥u1(u2 − v2)
⊤ + (u1 − v1)v

⊤
2 ∥F

≤ ∥u1∥F ∥u2 − v2∥F + ∥u1 − v1∥F ∥v2∥F
≤ (∥u1∥2 + ∥v2∥2)∥u− v∥2
≤ 2

√
2B2∥u− v∥2.

Furthermore, denote h̃(A) := ⟨A− Id∗ , G⟩F , then ∥∇h̃(A)∥F = ∥G∥F ≤ B2
2 +

√
d∗. So that

Q(u) = h̃(g̃(u)) ∈ Lip(2
√
2B2(B

2
2 +

√
d∗)).

Combining above conclusions knows that for anyG ∈ G1, we have ∥ℓ(·, G)∥Lip <∞ on the domain
{u : ∥u∥2 ≤

√
2B2}.

Next, fixed u ∈ R2d∗ such that ∥u∥2 ≤
√
2B2, we have

|ℓ(u, G1)− ℓ(u, G2)| = |⟨u, G1 −G2⟩F | ≤ ∥u∥2∥G1 −G2∥F =
√
2B2∥G1 −G2∥F ,

which implies that ℓ(u, ·) ∈ Lip(
√
2B2).

Finally, note that

|ℓ(u1, G1)− ℓ(u2, G2)|2 ≤ (|ℓ(u1, G1)− ℓ(u2, G1)|+ |ℓ(u2, G1)− ℓ(u2, G2)|)2

≤
((√

2 + 2
√
2B2(B

2
2 +

√
d∗)

)
∥u1 − u2∥2 +

√
2B2∥G1 −G2∥F

)2

≤ 2
(√

2 + 2
√
2B2(B

2
2 +

√
d∗)

)2∥u1 − u2∥22 + 4B2
2∥G1 −G2∥2F

≤ C∥vec(u1, G1)− vec(u2, G2)∥22

where C is a constant s.t C ≥ max{2
(√

2 + 2
√
2B2(B

2
2 +

√
d∗)

)2
, 4B2

2}, which yields what we
desired.
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Table 2: Lipschitz constant of ℓ with respect to each component
Function Lipschitz Constant

ℓ(u, ·)
√
2B2

ℓ(·, G) 2
√
2B2(B

2
2 +

√
d∗)

ℓ(·) max
{√

2B2, 2
√
2B2(B

2
2 +

√
d∗)

}

We summary the Lipschitz constants of ℓ(u, G) with respect to both u ∈ {u ∈ R2d∗ : ∥u∥2 ≤√
2B2} and G ∈ G1 in Table 2.

Definition B.1 (Rademacher complexity). Given a set S ⊆ Rn, the Rademacher complexity of S is
denoted by

Rn(S) := Eξ
[

sup
(s1,...,sn)∈S

1

n

n∑
i=1

ξisi
]
,

where {ξi}i∈[n] is a sequence of i.i.d Radmacher random variables which take the values 1 and −1
with equal probability 1/2.

Following vector-contraction principle of Rademacher complexity will be used in later contents.
Lemma B.5 (Vector-contraction principle). Let X be any set, (x1, . . . , xn) ∈ Xn, let F be a class
of functions f : X → ℓ2 and let hi : ℓ2 → R have Lipschitz norm L. Then

E sup
f∈F

∣∣∑
i

ϵihi(f(xi))
∣∣ ≤ 2

√
2LE sup

f∈F

∣∣∑
i,k

εikfk(xi)
∣∣,

where ϵik is an independent doubly indexed Rademacher sequence and fk(xi) is the k-th component
of f(xi).

Proof. Combining Maurer (2016) and Theorem 3.2.1 of Giné & Nickl (2016) obtains the desired
result.

Recall NN d1,d2(W,L,K) := {ϕθ(x) = ALσ(AL−1σ(· · ·σ(A0x)) : κ(θ) ≤ K}, which is de-
fined in (14). The second lemma we will employed is related to the upper bound for Rademacher
complexity of hypothesis space consisting of norm-constrained neural networks, which was pro-
vided by Golowich et al. (2018).
Lemma B.6 (Theorem 3.2 of Golowich et al. (2018)). ∀n ∈ N+,∀x1, . . . ,xn ∈ [−B,B]d with
B ≥ 1, S := {(ϕ(x1), . . . , ϕ(xn)) : ϕ ∈ NN d,1(W,L,K)} ⊆ Rn, then

Rn(S) ≤
1

n
K
√
2(L+ 2 + log(d+ 1)) max

1≤j≤d+1

√√√√ n∑
i=1

x2i,j ≤
BK

√
2(L+ 2 + log(d+ 1))√

n
,

where xi,j is the j-th coordinate of the vector (x⊤
i , 1)

⊤ ∈ Rd+1.
Definition B.2 (Covering number). ∀n ∈ N+, Fix S ⊆ Rn and ϱ > 0, the set N is called an ϱ-net
of S with respect to a norm ∥·∥ on Rn, if N ⊆ S and for any u ∈ S , there exists v ∈ N such that
∥u− v∥ ≤ ϱ. The covering number of S is defined as

N (S, ∥·∥, ϱ) := min{|Q| : Q is an ϱ-cover of S}
where |Q| is the cardinality of the set Q.

According to the Corollary 4.2.13 of Vershynin (2018), |N (B2, ∥·∥2, ϱ)|, which is the the covering
number of 2-norm unit ball in R(d∗)2 , can be bounded by ( 3ϱ )

(d∗)2 , so that if we denote NG1(ϱ) is
a cover of G1 with radius ϱ whose cardinality |NG1

(ϱ)| is equal to the covering number of G1, then
|NG1

(ϱ)| ≤ ( 3
(B2

2+
√
d∗)ϱ

)(d
∗)2 .

Apart from that, we need to employ following finite maximum inequality, which is stated in Lemma
2.3.4 of Giné & Nickl (2016), in later deduction.
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Lemma B.7 (Finite maximum inequality). For any N ≥ 1, if Xi, i ≤ N , are sub-Gaussian random
variables admitting constants σi, then

Emax
i≤N

|Xi| ≤
√
2 log 2N max

i≤N
σi

Definition B.3 (Excess risk). The difference between sup
G∈G(f̂ns )

L(f̂ns
, G) and sup

G∈G(f∗)

L(f∗, G) is

called excess risk, i.e.,

E(f̂ns
) = sup

G∈G(f̂ns )

L(f̂ns
, G)− sup

G∈G(f∗)

L(f∗, G).

B.2.6 DEAL WITH supG∈G(f∗) L(f∗)

We aim to claim supG∈G(f∗) L(f∗) = 0 in two step. At first, we assert that if there exists a mea-
surable map f satisfying Σ = Ex∼Ps

[f(x)f(x)⊤] be positive definite, then we can conduct some
minor rectification on it to get f̃ such that supG∈G(f̃) L(f̃) = 0. At the second step, we are going

to show the required f does exist under Assumption 4.5 and the rectification f̃ also fulfill the re-
quirement that B1 ≤ ∥f̃∥2 ≤ B2, which implies that supG∈G(f∗) L(f∗) = 0 as the definition of f∗

implies supG∈G(f∗) L(f∗) ≤ supG∈G(f̃) L(f̃).

Our final target is to result in a measurable map f , s.t B1 ≤ ∥f∥2 ≤ B2 and supf∈G(f) L(f) =

0, it suffices to find a f : B1 ≤ ∥f∥2 ≤ B2 satisfying both Lalign(f) = 0 and∥∥∥ExEx1,x2∈A(x)[f(x1)f(x2)
⊤]− Id∗

∥∥∥
F
= 0. Note that∥∥∥ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]− Id∗
∥∥∥
F

=
∥∥∥ExEx1,x2∈A(x)[f(x1)f(x1)

⊤] + ExEx1,x2∈A(x)[f(x1)
(
f(x2)− f(x1)

)⊤
]− Id∗

∥∥∥
F

≤
∥∥∥ExEx1∈A(x)[f(x1)f(x1)

⊤]− Id∗
∥∥∥
F
+ ExEx1,x2 [∥f(x1)∥2∥f(x1)− f(x2)∥2]

≤
∥∥∥ExEx′∈A(x)[f(x

′)f(x′)⊤]− Id∗
∥∥∥
F
+B2ExEx1,x2∥f(x1)− f(x2)∥2. (∥f∥2 ≤ B2)

Above deduction tells us that finding a measurable map f : B1 ≤ ∥f∥2 ≤ B2 making both Lalign(f)

and
∥∥∥ExEx′∈A(x)[f(x

′)f(x′)⊤]− Id∗
∥∥∥
F

vanished is just enough to achieve our goal.

Lemma B.8. If there exists a measurable map f making Σ = Ex∼Ps
[f(x)f(x)⊤] positive definite,

then there exists a measurable map f̃ making both

Lalign(f̃) = 0 and ∥ExEx′∈A(x)[f̃(x
′)f̃(x′)⊤]− Id∗∥F = 0.

Proof. We conduct following revision for given f to obtain f̃ .

For any x ∈ X , define

f̃x(x
′) =

{
V −1f(x) if x′ ∈ A(x)

f(x) if x′ ̸∈ A(x)

where Σ = V V ⊤, which is the Cholesky decomposition of Σ. It is well-defined as Σ is positive
definite. Iteratively repeat this argument for all x ∈ X to yield f̃ , then we have

ExEx′∈A(x)[f̃(x
′)f̃(x′)⊤] = V −1Ex[f(x)f(x)

⊤]V −T = Id∗

and

∀x ∈ X ,x1,x2 ∈ A(x), ∥f̃(x1)− f̃(x2)∥2 = ∥f̃(x)− f̃(x)∥2 = 0.

That is what we desired.
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Remark B.2. If we have a measurable partition X = ∪d∗i=1Pi stated in Assumption 4.5 such
that Pi ∩ Pj = ∅ and ∀i ∈ [d∗], 1

B2
2

≤ Ps(Pi) ≤ 1
B2

1
, just set the f(x) = ei if x ∈ Pi,

where ei is the standard basis of Rd∗ , then Σ = diag{Ps(P1), . . . , Ps(Pi), . . . , Ps(Pd∗)}, V −1 =

diag{
√

1
Ps(P1)

, . . . ,
√

1
Ps(Pi)

, . . . ,
√

1
Ps(Pd∗)

}, f̃(x) =
√

1
Ps(Pi)

ei if x ∈ Pi, it is obviously that

B1 ≤ ∥f̃∥2 ≤ B2.

B.2.7 RISK DECOMPOSITION

If denote Ĝ(f) = 1
ns

ns∑
i=1

f(x
(i)
1 )f(x

(i)
2 )⊤−Id∗ andG∗(f) = ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]−Id∗ ,

we can decompose E(f̂ns) into three terms shown as follow and then deal each term successively.
To achieve conciseness in subsequent conclusions, we employ X ≲ Y or Y ≳ X to indicate the
statement that X ≤ CY form some C > 0 if X and Y are two quantities.

Lemma B.9. The excess risk E(f̂ns) satisfies

E(f̂ns
) ≤ 2 sup

f∈F,G∈Ĝ(f)
|L(f,G)− L̂(f,G)|︸ ︷︷ ︸

statistical error : Esta

+ inf
f∈F

{ sup
G∈G(f)

L(f,G)− sup
G∈G(f∗)

L(f∗, G)}︸ ︷︷ ︸
approximation error of F : EF

+ sup
f∈F

{ sup
G∈G(f)

L(f,G)− L(f, Ĝ(f))}+ 2(B2
2 +

√
d∗) sup

f∈F
{EDs

[
∥Ĝ(f)∥F

]
− ∥G∗(f)∥F }︸ ︷︷ ︸

approximation error of Ĝ : EĜ

,

That is,

E(f̂ns) ≤ 2Esta + EF + EĜ .

Proof. Recall F = NN d,d∗(W,L,K, B1, B2), for any f ∈ F ,

sup
G∈G(f̂ns )

L(f̂ns
, G)− sup

G∈G(f∗)

L(f∗, G)

=
[

sup
G∈G(f̂ns )

L(f̂ns
, G)− sup

G∈Ĝ(f̂ns )

L(f̂ns
, G)

]
+

[
sup

G∈Ĝ(f̂ns )

L(f̂ns
, G)− sup

G∈Ĝ(f̂ns )

L̂(f̂ns
, G)

]
+
[

sup
G∈Ĝ(f̂ns )

L̂(f̂ns
, G)− sup

G∈Ĝ(f)
L̂(f,G)

]
+
[

sup
G∈Ĝ(f)

L̂(f,G)− sup
G∈Ĝ(f)

L(f,G)
]

+
[

sup
G∈Ĝ(f)

L(f,G)− sup
G∈G(f)

L(f,G)
]
+

[
sup

G∈G(f)
L(f,G)− sup

G∈G(f∗)

L(f∗, G)
]
,

where the second and fourth terms can be bounded by Esta. In fact, regarding to the fourth term, we
have

sup
G∈Ĝ(f)

L̂(f,G)− sup
G∈Ĝ(f)

L(f,G) ≤ sup
G∈Ĝ(f)

{L̂(f,G)− L(f,G)}

≤ sup
G∈Ĝ(f)

|L̂(f,G)− L(f,G)|

≤ sup
f∈F,G∈Ĝ(f)

|L̂(f,G)− L(f,G)|,

and the same conclusion holds for the second term.

The addition of first term and fifth term can be bounded by EĜ . Actually, for the first term

sup
G∈G(f̂ns )

L(f̂ns
, G)− sup

G∈Ĝ(f̂ns )

L(f̂ns
, G) ≤ sup

f∈F
{ sup
G∈G(f)

L(f,G)− sup
G∈Ĝ(f)

L(f,G)}

≤ sup
f∈F

{ sup
G∈G(f)

L(f,G)− L(f, Ĝ(f))},

(As Ĝ(f) ∈ Ĝ(f))
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and for the fifth term, we have

sup
G∈Ĝ(f)

L(f,G)− sup
G∈G(f)

L(f,G)

= sup
G∈Ĝ(f)

EDs

[
⟨Ĝ(f), G⟩F

]
− sup
G∈G(f)

⟨G∗(f), G⟩F (⟨G∗(f), G⟩F = EDs

[
⟨Ĝ(f), G⟩F

]
)

≤ EDs

[
sup

G∈Ĝ(f)
⟨Ĝ(f), G⟩F

]
− sup
G∈G(f)

⟨G∗(f), G⟩F

= EDs

[
∥Ĝ(f)∥2F

]
− ∥G∗(f)∥2F

≤ 2(B2
2 +

√
d∗)

(
EDs

[
∥Ĝ(f)∥F

]
− ∥G∗(f)∥F

)
(Both ∥Ĝ(f)∥F ≤ B2

2 +
√
d∗ and ∥G∗(f)∥F ≤ B2

2 +
√
d∗ hold)

≤ 2(B2
2 +

√
d∗)

(
sup
f∈F

{EDs

[
∥Ĝ(f)∥F

]
− ∥G∗(f)∥F }

)
which yields what we desired.

Apart from that, the third term supG∈Ĝ(f̂ns )
L̂(f̂ns , G) − supG∈Ĝ(f) L̂(f,G) ≤ 0 because of the

definition of f̂ns
. Taking infimum over all f ∈ NN d,d∗(W,L,K, B1, B2) yields

E(f̂ns) ≤ 2Esta + EF + EĜ ,

which completes the proof.

B.2.8 BOUND Esta

Lemma B.10. Regarding to Esta, we have

EDs
[Esta] ≲

K
√
L

√
ns

.

Proof. We are going to be introducing the relevant notations at first.

For any f : Rd → Rd∗ , let f̃ : R2d → R2d∗ such that f̃(x̃) = (f(x1), f(x2)), where x̃ =

(x1,x2) ∈ R2d. Furthermore, define F̃ := {f̃ : f ∈ NN d,d∗(W,L,K)} and denote D′
s =

{x̃′(i)}ns
i=1 as an independent identically distributed samples to Ds, which is called as ghost samples

of Ds.

Next, we are attempt to establish the relationship between EDs
[Esta] and the Rademacher complexity

of NN d,d∗(W,L,K). By the definition of Esta, we have

EDs [Esta] = EDs

[
sup

f∈NNd,d∗ (W,L,K,B1,B2),G∈Ĝ(f)
|L(f,G)− L̂(f,G)|

]
≤ EDs

[
sup

(f,G)∈NNd,d∗ (W,L,K,B1,B2)×G1

|L(f,G)− L̂(f,G)|
]

(As Ĝ(f) ⊆ G1 for any f ∈ NN d,d∗(W,L,K, B1, B2))

≤ EDs

[
sup

(f,G)∈NNd,d∗ (W,L,K)×G1

|L(f,G)− L̂(f,G)|
]

(As NN d,d∗(W,L,K, B1, B2) ⊆ NN d,d∗(W,L,K))

= EDs

[
sup

(f̃ ,G)∈F̃×G1

∣∣∣ 1
ns

ns∑
i=1

ED′
s
[ℓ(f̃(x̃′(i)), G)]− 1

ns

ns∑
i=1

ℓ(f̃(x̃(i)), G)
∣∣∣]

≤ EDs,D′
s

[
sup

(f̃ ,G)∈F̃×G1

∣∣∣ 1
ns

ns∑
i=1

ℓ(f̃(x̃′(i)), G)− 1

ns

ns∑
i=1

ℓ(f̃(x̃(i)), G)
∣∣∣]

= EDs,D′
s,ξ

[
sup

(f̃ ,G)∈F̃×G1

∣∣∣ 1
ns

ns∑
i=1

ξi
(
ℓ(f̃(x̃′(i)), G)− ℓ(f̃(x̃(i)), G)

)∣∣∣] (34)
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≤ 2EDs,ξ

[
sup

(f̃ ,G)∈F̃×G1

∣∣∣ 1
ns

ns∑
i=1

ξiℓ(f̃(x̃
(i)), G)

∣∣∣]
≤ 4

√
2∥ℓ∥Lip

(
EDs,ξ

[
sup

f∈NNd,d∗ (W,L,K)

∣∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

ξi,j,1fj(x
(i)
1 ) + ξi,j,2fj(x

(i)
2 )

∣∣∣]
+ Eξ

[
sup
G∈G1

∣∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

d∗∑
k=1

ξi,j,kGjk

∣∣∣]) (35)

≤ 8
√
2∥ℓ∥LipEDs,ξ

[
sup

f∈NNd,d∗ (W,L,K)

∣∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

ξi,j,1fj(x
(i)
1 )

∣∣∣]+ 4
√
2d∗∥ℓ∥Lipϱ

+ 4
√
2∥ℓ∥LipEξ

[
max

G∈NG1
(ϱ)

∣∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

d∗∑
k=1

ξi,j,kGjk

∣∣∣] (36)

≤ 8
√
2∥ℓ∥LipEDs,ξ

[
sup

f∈NNd,d∗ (W,L,K)

∣∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

ξi,jfj(x
(i)
1 )

∣∣∣]+ 4
√
2d∗∥ℓ∥Lipϱ

+ 4
√
2(B2

2 +
√
d∗)∥ℓ∥Lip

√
2 log

(
2|NG1(ϱ)|

)
ns

(37)

≤ 8
√
2d∗∥ℓ∥LipEDs,ξ

[
sup

f∈NNd,1(W,L,K)

∣∣∣ 1
ns

ns∑
i=1

ξif(x
(i)
1 )

∣∣∣]+ 4
√
2d∗∥ℓ∥Lipϱ

+ 4
√
2(B2

2 +
√
d∗)∥ℓ∥Lip

√
2 log

(
2( 3

(B2
2+

√
d∗)ϱ

)(d∗)2
)

n2
(|NG1

(ϱ)| ≤ ( 3
(B2

2+
√
d∗)ϱ

)(d
∗)2 )

≲
K
√
L

√
ns

+

√
log ns
ns

(Lemma B.6 and set ϱ = O(1/
√
ns))

≲
K
√
L

√
ns

(If K ≳
√
log ns)

Where (34) stems from the fact that ξi
(
ℓ(f̃(x̃′(i)), G) − ℓ(f̃(x̃(i)), G)

)
has identical distribution

with ℓ(f̃(x̃′(i)), G) − ℓ(f̃(x̃(i)), G). As we have shown that ∥ℓ∥Lip < ∞, just apply Lemma B.5
to obtain (35). Regarding (36), as NG1(ρ) is a ρ-covering, for any fixed G ∈ G1, we can find a
HG ∈ NG1

(ρ) satisfying ∥G−HG∥F ≤ ρ, therefore we have

Eξ
[
max
G∈G1

∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

d∗∑
k=1

ξi,j,k
(
(HG)jk +Gjk − (HG)jk

)∣∣]
≤ Eξ

[
max
G∈G1

∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

d∗∑
k=1

ξi,j,k(HG)jk
∣∣]+ Eξ

[
max
G∈G1

∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

d∗∑
k=1

ξi,j,k
(
Gjk − (HG)jk

)∣∣]

≤ Eξ
[

max
G∈NG1

(ρ)

∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

d∗∑
k=1

ξi,j,kGjk
∣∣]+ 1

ns

√
(d∗)2ns

√√√√ns

d∗∑
j=1

d∗∑
k=1

(
Gjk − (HG)jk

)2
(Cauchy-Schwarz inequality)

≤ Eξ
[

max
G∈NG1

(ρ)

∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

d∗∑
k=1

ξi,j,kGjk
∣∣]+ d∗ρ.
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To turn out the last term of (37), notice that ∥G∥F ≤ B2
2 +

√
d∗ implies that

d∗∑
j=1

d∗∑
k=1

ξi,j,kGjk ∼

subG(B2
2 +

√
d∗), therefore 1

ns

ns∑
i=1

d∗∑
j=1

d∗∑
k=1

ξi,j,kGjk ∼ subG(B2
2 +

√
d∗), just apply Lemma B.7

to finish the proof.

B.2.9 BOUND EF

If we denote

E(Hα,NN d,1(W,L,K)) := sup
g∈Hα

inf
f∈NNd,1(W,L,K)

∥f − g∥C([0,1]d),

where C([0, 1]d) is the space of continuous functions on [0, 1]d equipped with the sup-norm. Theo-
rem 3.2 of Jiao et al. (2023) has already proven E(Hα,NN d,1(W,L,K)) can be bound by a quantity
related to K when setting appropriate architecture of network, that is
Lemma B.11 (Theorem 3.2 of Jiao et al. (2023)). Let d ∈ N and α = r + β > 0, where r ∈ N0

and β ∈ (0, 1]. There exists c > 0 such that for any K ≥ 1, any W ≥ cK(2d+α)/(2d+2) and
L ≥ 2⌈log2(d+ r)⌉+ 2,

E(Hα,NN d,1(W,L,K)) ≲ K−α/(d+1).

For utilizing this conclusion, first notice that

inf
f∈NNd,d∗ (W,L,K)

∥f(u)− f∗(u)∥2

= inf
f∈NNd,d∗ (W,L,K)

√√√√ d∗∑
i=1

(fi(u)− f∗i (u))
2

≤ inf
f∈NNd,d∗ (W,L,K)

√√√√ d∗∑
i=1

∥fi − f∗i ∥2C([0,1]d)

≤ sup
g∈Hα

inf
f∈NNd,d∗ (W,L,K)

√√√√ d∗∑
i=1

∥fi − g∥2
C([0,1]d)

≤ sup
g∈Hα

√√√√ d∗∑
i=1

inf
f∈NNd,1(⌊W/d∗⌋, L,K)

∥f − g∥2
C([0,1]d)

≤
√
d∗E(Hα,NN d,1(⌊W/d∗⌋, L,K))

≲ K−α/(d+1),

where the third to last line inequality is from following reason: if fi ∈ NN d,1(⌊W/d∗⌋, L,K),
where i ∈ [d∗], whose parameter are independent with each other, then their concatenation f =
(f1, f2, · · · , fd∗)⊤ can be regarded as an elements of NN d,d∗(W,D,K) with specific parameters,
by following Proposition B.2, we have f ∈ NN d,d∗(W,L,K).
Proposition B.2 ((iii) of Proposition 2.5 in Jiao et al. (2023)). Let ϕ1 ∈ NN d,d∗1

(w1, L1,K1)
and ϕ2 ∈ NN d,d∗2

(W2, L2,K2), define ϕ(x) := (ϕ1(x), ϕ2(x)), then ϕ ∈ NN d,d∗1+d
∗
2
(W1 +

W2,max{L1, L2},max{K1,K2}).

Above conclusion implies optimal approximation element of f∗ in NN d,d∗(W,L,K) can be ar-
bitrarily close to f∗ under the setting that K is large enough. Hence we can conclude optimal
approximation element of f∗ is also contained in F = NN d,d∗(W,L,K, B1, B2) as the setting that
B1 ≤ ∥f∗∥2 ≤ B2.

Therefore, if we denote

T (f) := ExEx1,x2∈A(x)[∥f(x1)− f(x2)∥22] + λ∥ExEx1,x2∈A(x)[f(x1)f(x2)
⊤]− Id∗∥2F ,
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we can yield the upper bound of EF by following deduction

EF = inf
f∈F

{ sup
G∈G(f)

L(f,G)− sup
G∈G(f∗)

L(f∗, G)}

= inf
f∈F

{T (f)− T (f∗)}

= inf
f∈NNd,d∗ (W,L,K)

{T (f)− T (f∗)}

≤ ∥ℓ∥Lip inf
f∈NNd,d∗ (W,L,K)

ExEx̃∥f̃(x̃)− f̃∗(x̃)∥2 (Proposition B.1)

≤ ∥ℓ∥Lip inf
f∈NNd,d∗ (W,L,K)

ExEx′∈A(x)

√√√√2

d∗∑
i=1

(fi(x′)− f∗i (x
′))2

≤
√
2d∗∥ℓ∥Lip sup

g∈Hα

inf
f∈NNd,1(⌊W/d∗⌋, L,K/

√
d∗)

∥f − g∥C([0,1]d)

≤
√
2d∗∥ℓ∥LipE(Hα,NN d,1(⌊W/d∗⌋, L,K/

√
d∗))

≲ K−α/(d+1).

B.2.10 BOUND EĜ
Recall

EĜ = sup
f∈F

{ sup
G∈G(f)

L(f,G)− L(f, Ĝ(f))}+ 2(B2
2 +

√
d∗) sup

f∈F
{EDs

[
∥Ĝ(f)∥F

]
− ∥G∗(f)∥F },

then for the first item of EĜ , we have

sup
f∈F

{ sup
G∈G(f)

L(f,G)− L(f, Ĝ(f))}

= sup
f∈F

{L(f,G∗(f))− L(f, Ĝ(f))}

≤
√
2B2 sup

f∈F
∥G∗(f)− Ĝ(f)∥F (Look up Table 2 to yield ℓ(u, ·) ∈ Lip(

√
2B2))

≤
√
2B2 sup

f∈F

∥∥∥ExEx1,x2∈A(x)[f(x1)f(x2)
⊤]− 1

ns

ns∑
i=1

f(x
(i)
1 )f(x

(i)
2 )⊤

∥∥∥
F
.

And regrading to the second term, we can yield

sup
f∈F

{EDs

[
∥Ĝ(f)∥F

]
− ∥G∗(f)∥F }

= sup
f∈F

{
EDs

[∥∥∥ 1

ns

ns∑
i=1

f(x
(i)
1 )f(x

(i)
2 )⊤ − Id∗

∥∥∥
F
−
∥∥∥ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]− Id∗
∥∥∥
F

]}
≤ sup
f∈F

{
EDs

[∥∥∥ 1

ns

ns∑
i=1

f(x
(i)
1 )f(x

(i)
2 )⊤ − ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]
∥∥∥
F

]}
≤ EDs

[
sup
f∈F

{∥∥∥ 1

ns

ns∑
i=1

f(x
(i)
1 )f(x

(i)
2 )⊤ − ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]
∥∥∥
F

}]
Combine above two inequalities to turn out

EDs
[EĜ ] ≲ EDs

[
sup
f∈F

∥∥∥ExEx1,x2∈A(x)

[ 1

ns

ns∑
i=1

[
M(f̃(x̃))−M(f̃(x̃(i)))

]]∥∥∥
F

]
≤ ∥M∥LipEDs

[∥∥∥ExEx1,x2∈A(x)[f̃(x̃)]−
1

ns

ns∑
i=1

f̃(x̃(i))
∥∥∥
2

]
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where M(u) = u1u
⊤
2 , where u1,u2 ∈ Rd∗ , we have shown it is a Lipchitz map on {u ∈

R2d∗ : u ≤
√
2B2} in Proposition B.1. By Multidimensional Chebyshev’s inequality, we know

that Ps
(∥∥ 1

ns

∑ns

i=1 f̃(x̃
(i)) − ExEx1,x2∈A(x)[f̃(x̃)]

∥∥
2
≥ 1

n
1/4
s

)
≤ E∥f̃(x̃)−E[f̃(x̃)]∥2

2√
ns

≤ 8B2
2√
ns

as

∥f̃(x̃)∥2 ≤
√
2B2. Thus we have

EDs
[EĜ ] ≲

1

n
1/4
s

· Ps
(∥∥ 1

ns

ns∑
i=1

f̃(x̃(i))− ExEx1,x2∈A(x)[f̃(x̃)]
∥∥
2
≥ 1

n
1/4
s

)
+ 2

√
2B2 ·

8B2
2√
ns

(As ∥f̃(x̃)∥2 ≤
√
2B2)

≤ 1

n
1/4
s

+ 16
√
2B3

2

1
√
ns

≲
1

n
1/4
s

.

B.2.11 TRADE OFF BETWEEN STATISTICAL ERROR AND APPROXIMATION ERROR

Let W ≥ cK(2d+α)/(2d+2) and L ≥ 2⌈log2(d+ r)⌉ + 2, combine the bound results of statistical
error and approximation error to yield

EDs
[E(f̂ns

)] ≤ 2EDs
[Esta] + EF + 2EDs

[EĜ ] ≲
K

√
ns

+K−α/(d+1).

Taking K = n
d+1

2(α+d+1)
s to yield

EDs [E(f̂ns)] ≲ n
− α

2(α+d+1)
s .

As we have shown that supG∈G(f∗) L(f∗, G) = 0, above inequality implies

EDs
[ sup
G∈G(f̂ns )

L(f̂ns
, G)] ≲ n

− α
2(α+d+1)

s .

To ensure above deduction holds, We need to set W ≥ cn
2d+α

4(α+d+1)
s and L ≥ 2⌈log2(d+ r)⌉+ 2.

B.2.12 THE PROOF OF MAIN THEOREM

Next, we are going to prove our main theorem 4.2. We will state its formal version at first and then
conclude Theorem 4.2 as a corollary.

To notation conciseness, let p =

√
2

min
i̸=j

ps(i)ps(j)

(
C
λ n

− α
2(α+d+1)

s +ψ(ns)

)
+2

√
d∗B2Mn

− ν
2(α+d+1)

s

B2
2Θ(σ

(ns)
s ,δ

(ns)
s ,εns ,f̂ns )

, where

C is a constant, 0 ≤ ψ(ns) ≲ (1 − σ
(ns)
s + n

−min{α,ν,ς,τ}
4(α+d+1)

s )2 + (1 − σ
(ns)
s ) + n

−min{α,ν,ς,τ}
8(α+d+1)

s , then
the formal version of our main theoretical result can be stated as follow.

Lemma B.12. When Assumption 4.1-4.5 all hold, set εns
= m2n

−min{α,ν,ς,τ}
8(α+d+1)

s ,W ≥ cn
2d+α

4(α+d+1)
s ,

L ≥ 2⌈log2(d+ r)⌉+ 2,K = n
d+1

2(α+d+1)
s and A = Ans

in Assumption 4.3, then we have

EDs
[R2
t (εns

, f̂ns
)] ≲ n

−min{α,ν,ς}
4(α+d+1)

s (38)

and

EDs
[max
i ̸=j

|µt(i)⊤µt(j)|] ≲ 1− σ(ns)
s + ns

−min{α,2τ}
4(α+d+1) . (39)

Furthermore, If Θ(σ
(ns)
s , δ

(ns)
s , εns

, f̂ns
) > 0, then with probability at least 1− p, we have

EDs [Err(Qf̂ns
)] ≤ (1− σ

(ns)
t ) +O(n

−min{α,ν,ς}
8(α+d+1)

s ).
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Proof. First recall the conclusion we’ve got in Theorem B.1

EDs
[R2
t (ε, f̂ns

)] ≤ m4

ε2
(
EDs

[ sup
G∈G(f̂ns )

L(f̂ns
, G)] + 8B2d

∗MKρ+ 4B2
2d

∗Kη
)
,

EDs
[max
i ̸=j

|µt(i)⊤µt(j)|] ≤

√√√√ 2

min
i ̸=j

ps(i)ps(j)

( 1
λ
EDs

[ sup
G∈G(f̂ns )

L(f̂ns
, G)] + EDs

[ψ(σs, δs, ε, f̂ns
)]
)

+ 2
√
d∗B2MKρ,

and with probability at least

1−

√
2

mini̸=j ps(i)ps(j)

(
1
λEDs

[supG∈G(f̂ns )
L(f̂ns

, G)] + ψ(σs, δs, ε, f̂ns
)
)
+ 2

√
d∗B2MKρ

B2
2Θ(σt, δt, ε, f̂ns

)
,

we have

EDs [Err(Qf̂ns
)] ≤ (1− σt) +

m2

ε

√
EDs

[ sup
G∈G(f̂ns )

L(f̂ns
, G)] + 8B2d∗MKρ+ 4B2

2d
∗Kη,

where

ψ(σs, δs, ε, f̂ns) = 4B2
2

[(
1− σs +

Kδs+2ε
2B2

)2

+ (1− σs) +
Km2

ε

√
EDs [ sup

G∈G(f̂ns )

L(f̂ns , G)]
(
3−

2σs + Kδs+2ε
B2

)
+ m4

ε2 EDs
[ sup
G∈G(f̂ns )

L(f̂ns
, G)]

( K∑
k=1

1
ps(k)

)]
+ B2

(
ε2 +

4B2
2m

2

ε

√
EDs

[ sup
G∈G(f̂ns )

L(f̂ns
, G)]

) 1
2

.

To obtain the conclusion shown in this theorem from above formulations, first notice ρ =

n
− ν+d+1

2(α+d+1)
s and η = n

− ς
2(α+d+1)

s by comparing Assumption 4.4 and Assumption B.1, apart

from that, we have shown EDs [supG∈G(f̂ns )
L(f̂ns , G)] ≲ n

− α
2(α+d+1)

s in B.2.11 and known

δ
(ns)
s ≤ n

− τ+d+1
2(α+d+1)

s , combining with the setting εns = m2n
−min{α,ν,ς,τ}

8(α+d+1)
s ,K = n

d+1
2(α+d+1)
s

implies that Kρ/ε2ns
≤ n

− τ
2(α+d+1)

s , η/ε2ns
≤ ns

− τ
2(α+d+1) ,Kδ(ns)

s ≤ ns
− τ

2(α+d+1) and

EDs
[supG∈G(f̂ns )

L(f̂ns
, G)]/ε2ns

≤ n
− α

4(α+d+1)
s .

Plugin these facts into the corresponding term of above formulations to get what we desired.

Let us first state the formal version of Theorem 4.2 and then prove it.
Theorem B.3 (Formal version of Theorem 4.2). If Assumptions 4.1-4.5 all hold, set W ≥
cn

2d+α
4(α+d+1)
s , L ≥ 2⌈log2(d+ r)⌉ + 2,K = n

d+1
2(α+d+1)
s and A = Ans

in Assumption 4.3, then,

provided that ns is sufficiently large, with probability at least σ(ns)
s − O

(
n
−min{α,ν,ς,τ}

16(α+d+1)
s

)
−

O
(

1√
mink nt(k)

)
, we have

EDs [Err(Qf̂ns
)] ≤ (1− σ

(ns)
t ) +O(n

−min{α,ν,ς}
8(α+d+1)

s ).

Proof of Theorem 4.2. Note that the main difference between Theorem B.12 and Theorem 4.2 is the
condition Θ(σ

(ns)
s , δ

(ns)
s , εns

, f̂ns
) > 0, so we are going to focus on whether this condition holds

under the condition of Theorem 4.2.

To show this, first recall

Θ(σ
(ns)
t , δ

(ns)
t , εns

, f̂ns
) = Γmin(σ

(ns)
t , δ

(ns)
t , εns

, f̂ns
)−

√
2− 2Γmin(σ

(ns)
t , δ

(ns)
t , εns

, f̂ns
)− ∆µ̂t

2
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−
2maxk∈[K] ∥µ̂t(k)− µt(k)∥2

B2
.

Note (32) and dominated convergence theorem imply Rt(εns
, f̂ns

) → 0 a.s., thus

Γmin(σ
(ns)
t , δ

(ns)
t , εns

, f̂ns
) =

(
σ
(ns)
t − Rt(εns

, f̂ns
)

mini pt(i)

)(
1 +

(B1

B2

)2 − Kδ(ns)
t

B2
− 2εns

B2

)
− 1

→
(B1

B2

)2

Combining with the fact that ∆µ̂t

2 =
1−mink∈[K] ∥µ̂t(k)∥2/B2

2

2 < 1
2 can yield

Γmin(σ
(ns)
t , δ

(ns)
t , εns

, f̂ns
)−

√
2− 2Γmin(σ

(ns)
t , δ

(ns)
t , εns

, f̂ns
)− ∆µ̂t

2
> 1/2

if we select proper B1 and B2.

Besides that, by Multidimensional Chebyshev’s inequality, we know that

Pt
(
∥µ̂t(k)− µt(k)∥2 ≥ B2

8

)
≤

64
√

Ez∈C̃t(k)
Ez′∈A(z)∥f(z′)− µt(k)∥22
B2

2

√
2nt(k)

≤ 128

B2

√
nt(k)

,

so that Θ(σ
(ns)
t , δ

(ns)
t , εns , f̂ns) ≥ 1

4 with probability at least 1 − 128K

B2

√
mink nt(k)

if ns is large

enough, of course the condition Θ(σ
(ns)
t , δ

(ns)
t , εns

, f̂ns
) > 0 in Theorem B.12 can be satisfied.

Therefore, with probability at least

1− p− 128K

B2

√
mink nt(k)

≳ 1− (1− σ(ns)
s )−O

(
n
−min{α,ν,ς,τ}

16(α+d+1)
s

)
−O

( 1√
mink nt(k)

)
= σ(ns)

s −O
(
n
−min{α,ν,ς,τ}

16(α+d+1)
s

)
−O

( 1√
mink nt(k)

)
.

we have the conclusions shown in Theorem 4.2, which completes the proof.

C EXPERIMENTAL DETAILS

Implementation details. Except for tuning λ for different dataset, all other hyper parameters used
in our experiments are align with Ermolov et al. (2021). To be specific, we train 1, 000 epochs with
learning rate 3×10−3 for CIFAR-10, CIFAR-100 and 2×10−3 for Tiny ImageNet. The learning rate
warm-up is used for the first 500 iterations of the optimizer, in addition to a 0.2 learning rate drop
50 and 25 epochs before the end. We adopt a mini-batch size of 256. Same as W-MSE 4 of Ermolov
et al. (2021), we also set 4 as the number of positive samples per image. The dimension of the hidden
layer of the projection head is set as 1024. The weight decay is 10−6. We adopt an embedding size
(d∗) of 64 for CIFAR10, CIFAR100 and 128 for Tiny ImageNet and employ the trick mentioned in
Ermolov et al. (2021) during the pretraining process. The embedding size of BarlowTwins (Zbontar
et al., 2021) is different from above as BarlowTwins need much larger representation size (1024)
to guarantee its performance. As we see, the performance of our model can sufficiently outperform
BarlowTwins, revealing the alignment term is pretty crucial for downstream performance practically.
The backbone network used in our implementation is ResNet-18.

Image transformation details. We randomly extract crops with sizes ranging from 0.08 to 1.0 of
the original area and aspect ratios ranging from 3/4 to 4/3 of the original aspect ratio. Furthermore,
we apply horizontal mirroring with a probability of 0.5. Additionally, color jittering is applied with
a configuration of (0.4; 0.4; 0.4; 0.1) and a probability of 0.8, while grayscaling is applied with a
probability of 0.2. For CIFAR-10 and CIFAR-100, random Gaussian blurring is adopted with a
probability of 0.5 and a kernel size of 0.1. During testing, only one crop is used for evaluation.

Evaluation protocol. During evaluation, we freeze the network encoder and remove the projection
head after pretraining, then train a supervised linear classifier on top of it, which is a fully-connected
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layer followed by softmax. we train the linear classifier for 500 epochs using the Adam optimizer
with corresponding labeled training set without data augmentation. The learning rate is exponen-
tially decayed from 10−2 to 10−6. The weight decay is set as 10−6. we also include the accuracy of
a k-nearest neighbors classifier with k = 5, which does not require fine tuning.

All experiments were conducted using a single Tesla V100 GPU unit.
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