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ABSTRACT

Learning a data representation with strong transferability from an unlabeled
scenario is both crucial and challenging. In this paper, we propose a novel
self-supervised transfer learning approach via Adversarial Contrastive Training
(ACT). Additionally, we establish an end-to-end theoretical understanding for
self-supervised contrastive pretraining and its implications for downstream classi-
fication tasks in a misspecified, over-parameterized setting. Our theoretical find-
ings highlight the provable advantages of adversarial contrastive training in the
source domain towards improving the accuracy of downstream tasks in the target
domain. Furthermore, we illustrate that downstream tasks necessitate only a min-
imal sample size when working with a well-trained representation, offering valu-
able insights on few-shot learning. Last but not least, extensive experiments across
various datasets demonstrate a significant enhancement in classification accuracy
when compared to existing state-of-the-art self-supervised learning methods.

1 INTRODUCTION

Collecting unlabeled data is far more convenient and cost-effective than gathering labeled data in
real-world applications. As a result, learning representations from abundant unlabeled data has
become a critical and foundational challenge. Pretraining on unlabeled data enables the capture of
more general, abstract features without the need for specific labels. Consequently, the learned task-
invariant representations demonstrate superior transferability to unseen data, making them highly
effective in transfer learning scenarios.

One of the most popular approaches to learning representations from unlabeled data is self-
supervised contrastive learning, which has garnered significant attention due to its impressive perfor-
mance. The rationale behind contrastive learning involves acquiring a representation that maintains
augmentation invariance while preventing model collapse. The latter aspect is crucial, as solely
bringing positive pairs closer could result in trivial solutions. The initial body of work heavily re-
lies on the utilization of negative samples, such as Ye et al. (2019); He et al. (2020); Chen et al.
(2020a;b); HaoChen et al. (2021); Zhang et al. (2023). These studies prevent representation col-
lapse by pushing negative pairs apart in the feature space. However, the construction of negative
pairs poses significant challenges. Firstly, augmented views from distinct data points sharing the
same semantic meaning may inadvertently be treated as negative pairs, impeding semantic extrac-
tion. Secondly, the quality of the representation is highly dependent on the number of negative pairs,
necessitating substantial computational and memory resources.

In recent years, there has been a surge of interests in developing self-supervised learning methods
that eschew the use of negative samples (Grill et al., 2020; Caron et al., 2020; 2021; Ermolov et al.,
2021; Zbontar et al., 2021; Chen & He, 2021; Bardes et al., 2022; Ozsoy et al., 2022; HaoChen
et al., 2022; Wang et al., 2024). Among above mentioned studies, the most prominent works in-
clude Zbontar et al. (2021); Bardes et al. (2022); Ozsoy et al. (2022); HaoChen et al. (2022); Zhang
et al. (2023), which prevent the model collapse by incorporating a regularization term into the loss
function. However, as demonstrated later, either the population counterpart of Zbontar et al. (2021);
Bardes et al. (2022) is still under-investigated, or the sample version of population losses (HaoChen
et al., 2022; HaoChen & Ma, 2023) exhibits bias, presenting a significant challenge in terms of
theoretical analysis. Moreover, due to this bias, the learned representation does not close to the



Under review as a conference paper at ICLR 2025

minimizer of the population loss. Specifically, when trained on mini-batch data, the limited sample
size in each mini-batch can amplify the bias, leading to accuracy loss, as shown in Table 1.

In this study, we introduce a novel self-supervised learning approach called Adversarial Contrastive
Training (ACT), designed to learn representations without the need for constructing negative sam-
ples, while avoiding the bias between population loss and sample-level loss. Particularly, let

R(fv G) = <EwEw1,m2€A(w) [f(ml)f($2)T} - Id*7G>Fa (1)

where f : RY 5 RY isa representation function, GG is a matrix in RY %4"  and the Frobenius inner
product is defined as (A, B) r := tr(AT B) forany A, B € R%*%_ Then we learn the contrastive
representation through a minimax optimization problem

min max £(7.6) = EoEa, myea (/@) = f@)I5] 1 XR(£.0). @

where the first term in (2) facilitates achieving augmentation invariance in the representation, sim-
ilar with the previous works (Zbontar et al., 2021; Bardes et al., 2022; HaoChen et al., 2022).
Here A(x) denotes the set of augmentations of a sample @, A > 0 is the regularization pa-
rameter and G(f) = {G € R"*" : ||G|lr < |EaBq, zpca(mlf(@1)f(®2)"] — lor||r}
is the feasible set of G. In fact, the inner maximization problem has a explicit solution that
G = EoBy, zyeamlf(x1)f(®2)"] — Ig-, therefore (2) is equivalent to minimizing following
loss

2

. (3

L(F) = EaEay ayc @ [1(@1) = £(@2)[3] + 2| EaBo, mcaim (@) f(@2) T~ La- ||

The second term in £(f) encourages the separation of category centers within the latent space,
thereby avoiding collapse and improving classification accuracy in downstream tasks, so as R(f, G).
More details can be found in Appendix A. Thanks to the minimax formulation in (2), we propose
the following loss of our ACT at the sample level

~ 1 i i § i
£(£.G) = > [IF @) = @3+ M f @) f@)T ~10,6), ] @
S =1
where (1) ..., 2("<) are unlabeled data, acgi) and acgi) are independent augmentations of (¥, It can

be shown that (4) is unbiased in the sense that Ep_[L(f, G)] = L(f,G) for each fixed G € R4 4",

However, directly discretizing the expectation in (3) yields a biased sample-level loss as

2

£(7) = nlz I7(@?) = )8+ 3] > )T~ o

F

~

Specifically, we have Ep_[L(f)] # L(f) due to the non-commutativity between the expectation
and the Frobenius norm, where D represents the dataset used for pretraining. While this biased
discretization method has been employed in previous studies (HaoChen et al., 2022; HaoChen &
Ma, 2023), its application presents a significant challenge in terms of theoretical analysis. For
instance, despite that Huang et al. (2023) establish a theoretical analysis for Zbontar et al. (2021) at
the population-level, the extensions of these findings to the sample-level is not straightforward due to
the bias of the estimation. HaoChen & Ma (2023) establish a theoretical understanding for HaoChen
et al. (2022) at the sample-level, nonetheless, the results are subject to strong assumptions given the
biased nature of the estimation.

From a theoretical perspective, we establish a rigorous end-to-end theoretical analysis for both the
contrastive pre-training and the downstream classification under mild conditions. Further, our find-
ings demonstrate the provable advantages of self-supervised contrastive pre-training and provides
theoretical insights into determining the sample size and selecting the appropriate scale for deep
neural networks. Our experiment yields remarkable classification accuracy when employing both
fine-tuned linear probes and the K -nearest neighbor (K -NN) protocol across a range of benchmark
datasets. These results showcase a high level of competitiveness with current state-of-the-art self-
supervised learning methodologies, as illustrated in Table 1.
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1.1 RELATED WORK

Self-supervised transfer learning Thanks to the robust transferability inherent in representa-
tions learned by self-supervised learning, the field of few-shot learning, which aims to train models
with only a limited number of labeled samples, has significantly advanced through self-supervised
methodologies. This progression is evidenced by the contributions of Liu et al. (2021); Rizve et al.
(2021); Yang et al. (2022); Lim et al. (2023). However, current work only demonstrates the effective-
ness of self-supervised learning for few-shot learning mainly empirically. Theoretical explanations
remain scarce. Understanding how the learned representations from unlabeled data enhance predic-
tion performance with only a few labeled samples in downstream tasks is a critical question that
requires further investigation. Especially investigating the impact of upstream samples on down-
stream samples. Therefore, a thorough theoretical analysis at sample level is urgently needed.

Although Saunshi et al. (2019); HaoChen et al. (2021); Garrido et al. (2022); Awasthi et al. (2022);
Ash et al. (2022); HaoChen et al. (2022); Lei et al. (2023); Huang et al. (2023) have offered some
theoretical progresses in understanding self-supervised learning, all these studies either remain at
the population level, or focus solely on the generalization property of hypothesis space with a finite
complexity measure. The effects of both upstream and downstream sample sizes are still unknown.

HaoChen & Ma (2023) use augmented graphs to provide a more thorough theoretical analysis at
sample level for the self-supervised learning loss proposed in HaoChen et al. (2022). They establish
a theoretical guarantees at the sample level, under certain strong assumptions, including Assump-
tions 4.2 and 4.4. Assumption 4.2 assumes the existence of a neural network capable of sufficiently
minimize the loss. In contrast, we demonstrate the existence of a measurable function that can
vanish our loss by accounting for additional approximation error. This necessitates an extension
of the well-specified setting to a misspecified setting. Moreover, the most important problem in
self-supervised transfer learning theory pertains to elucidating the mechanism through which the
representation acquired from the upstream task facilitates the learning process of the downstream
task. While HaoChen & Ma (2023) assume this relationship as Assumption 4.4 in their research,
our study surpasses the current body of literature by conducting a comprehensive investigation into
the impact of approximation error and generalization error during the pre-training phase on down-
stream test error. This analysis sheds light on how the size of the upstream sample influences the
downstream task, particularly in scenarios where the availability of downstream samples is con-
strained.

Comparison with existing contrastive learning algorithms HaoChen et al. (2022) can be re-
garded as a special version of our model with the constraint ; = x5 at the population level.
However, its loss at the sample level adopts a biased discretization method, which leads to a differ-
ent optimization direction compared to ACT, especially in the mini-batch scenario. More discussion
can be found in Remark 2.1. Besides that, the loss at the sample level provided by Zbontar et al.
(2021) is also similar to our loss, but its unbiased counterpart at the population level is still unknown.

1.2  CONTRIBUTIONS
Our main contributions can be summarized as follows.

* We introduce a novel self-supervised transfer learning method called Adversarial
Contrastive Training (ACT). This approach learns representations from unlabeled data by
tackling a minimax optimization problem, which aims to de-bias the initially proposed risk,
thereby providing a foundation for establishing a thorough theoretical understanding.

* Our experimental results demonstrate outstanding classification accuracy using both fine-
tuned linear probe and K-nearest neighbor (K-NN) protocol on various benchmark
datasets, showing competitiveness with existing state-of-the-art self-supervised learning
methods.

* In the context of transfer learning, we present a thorough theoretical understanding for both
ACT and its downstream classification tasks within a misspecified and overparameterized
scenario. Our theoretical results offer insights into determining the samples size for pre-
training and appropriate depth, width, and norm restrictions of neural networks. These
findings illuminate the advantages of ACT in enhancing the accuracy of downstream tasks.
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Furthermore, we demonstrate that leveraging the representations learned by ACT in the
source domain enables high accuracy in the downstream tasks of the target domain, even
when only a small amount of data is available.

1.3 ORGANIZATIONS

The remainder of this paper is organized as follows. In Section 2, we introduce basic notations and
presents the adversarial self-supervised learning loss, along with an alternating optimization algo-
rithm to address the minimax problem. Section 3 showcases experimental results for representations
learned by ACT across various real datasets and evaluation protocols. Section 4 provides an end-to-
end theoretical guarantee for ACT. Conclusions are discussed in Section 5, respectively. Detailed
proofs and experimental details are differed to Section B and C respectively.

2 ADVERSARIAL CONTRASTIVE TRAINING

In this section, we provide a novel method for unsupervised transfer learning via adversarial con-
trastive training (ACT). We begin with some notations in Section 2.1. Then, we introduce ACT
method and alternating optimization algorithm in Section 2.2. Finally, we outline the setup of the
downstream task in Section 2.3.

2.1 PRELIMINARIES AND NOTATIONS

Denote by ||-|2 and ||-|| s the 2-norm and co-norm of the vector, respectively. Let A, B € R4z
be two matrices. Define the Frobenius inner product (A, B)r = tr(A" B). Denote by |-||r
the Frobenius norm induced by Frobenius inner product. We denote the co-norm of the matrix as
[Allcc := supjg.. <1 [[AZ||oc, which is the maximum 1-norm of the rows of A. The Lipschitz

norm of a map f from R to R% is defined as || f||Lip := Supg, W

Let L, N1,...,Nrp € N,0 < By < By. A deep ReLU neural network hypothesis space is defined
as

NNa, .a,(W,L,K, By, By) := {¢9(m) = Apo(Ap_10(---0(Aox + b)) + br 1), } ,

W = maX{le"' 7NL}7 5(0) S ’Ca Bl S ||¢9||2 S B2

where o(x) := x V 0 is the ReLU activate function, Ny = dy, N1 = do, A; € RN+ XN
and b; € RNi+1. The integers W and L are called the width and depth of the neural network,
respectively. B; < ||¢g|l2 < Bs is used to indicate any u € [0,1]%, B; < |¢o(u)|2 < Bo.
The parameters set of the neural network is defined as 0 := ((Ao, bo),...,(Ar—1,br-1), AL).
Further, x(0) is defined as

L—-1

1(0) = || AL]lse [T max{]l(As b))l 1}.

1=0
Appendix B.1 shows that ||¢g||Lip < K for each ¢pg € NNy, 4, (W, L, K, By, Bs).

2.2 ADVERSARIAL CONTRASTVE TRAINING

Learning representations from large amounts of unlabeled data has recently gained significant atten-
tion, as highly transferable representations offer substantial benefits for downstream tasks. Adver-
sarial contrastve training is driven by two key factors: augmentation invariance and a regularization
term to prevent model collapse. Specifically, augmentation invariance aims to make representations
of different augmented views of the same sample as similar as possible. However, a trivial represen-
tation that maps all augmented views to the same point is ineffective for downstream tasks, making
the regularization term essential.

Data augmentation A : R? — R? is essentially a transformation of the original sample before
training. A commonly-used augmentation is the composition of random transformations, such as
RandomCrop, HorizontalFlip, and Color distortion (Chen et al., 2020a). Denote by A = {A,(-) :

7 € [m]} the collection of data augmentations, and denote the source domain as X, C [0, 1], with
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its corresponding unknown distribution denoted by P;. Let {x("), ... (")} be n, i.i.d. unlabeled
samples from the source distribution. For each sample (*), we define the corresponding augmented
pair as

20 = (21", 24") = (A@?), A' (")), 5)
where A and A’ are drawn from the uniform distribution on A independently. Further, the augmented
dataset for ACT is defined as D, := {2V },c(,.).

The ACT method can be formulated as a minimax problem

fa, €argmin sup L(f,G), ©6)
FeF  Geg(f)

where the empirical risk is defined as

2.6 = -5 (1) — f@ B+ M@ @) -1 e),] @

S =1

and A > 0 is the regularization parameter, the hypothesis space F is chosen as the neural network
class NN g+« (W, L, K, By, Bs), and the feasible set G(f) is defined as
o}

The first term of (7) helps the representation to achieve the augmentation invariance while the second
term is used to prevent model collapse. It is worth noting that, unlike existing contrastive learning
methods (Ye et al., 2019; He et al., 2020; Chen et al., 2020a;b; HaoChen et al., 2021), the loss func-
tion of ACT (7) does not need to construct negative pairs for preventing model collapse, avoiding
the issues introduced by negative samples.

6 s LSS (0 oo (i
G(f) = {G e R Gr < || =Y @) fl@i) T ~ L
S =1

We now introduce an alternating algorithm for solving the minimax problem (6). We take the ¢-th
iteration as an example. Observe that the inner maximization problem is linear. Given the previous
representation mapping f;_1) : R? — R?", the explicit solution to the maximization problem is
given as

A 1 i i
G = — > fu-n @) fe-n (@) 1o (8)
5 =1
Then it suffices to solve the outer minimization problem
; WER S IPRe OV 4 A(f O g 0
foy € wgmin =3 1) = Fa I+ AP @) Lo G )
S =1

Solving the inner problem (8) and the outer problem (9) alternatively yields the desired representa-
tion mapping. The detailed algorithm is summarized as Algorithm 1.

Algorithm 1 Adversarial contrastive training (ACT)

Require: Augmented dataset Dy = {i(i) }icn)» initial representation f(o) , iteration horizon 7T'.
1: fort € [T] do
2 Update G by solving the inner problem (8).
3: Update the representation by solving the outer problem (9).
4: end for .
5: return The learned representation mapping f(7).

Remark 2.1. We note that @(t) will be detached from the computational graph when solving the
outer problem (9) in practice, which means that the gradient of the second term in (9) should be writ-

ten as (Vg Z fg(:cl )ﬁg(azz))T — Id*7@(t)> insteadofVeHn% Z fg( )fg( )—r Id*
i=1

which is a blased discretization of | ExEy, wyea(a)[f (x1) f(z2) ] — I || »
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2.3 DOWNSTREAM TASK

With the help of the representations learned by ACT, we address the downstream classification task
in the target domain. Let X; C [0, 1]¢ represent the target domain, and let P; be the corresponding

unknown distribution. Suppose we have n; i.i.d. labeled samples {(z™"), y1),..., (2(") y,)} C
X x [K] for the downstream task. We will say that z € Cy(k) if its label is k € [K]. By a similar
process as in obtaining (5), we can construct the augmented dataset in the target domain as follows.

Dy = {(2D ;) : 20 = (ZY%Z?)}%[WN zgi) = A(zD), Zéi) = A'(z"),
where A and A’ are drawn from the uniform distribution on A independently.

Given the representation fn learned by our self-supervised learning method (6), we adopt following
linear probe as the classifier for downstream task:

an (z) = arg max (/an (z))k, (10)
s ke[K]

where the k-th row of W is given as

n

(fn () + fu (AN =k}, ma(k) =D My = k}.

i=1

1
2ne (k) <

fi (k) =

TM:

This means that we build a template for each class of downstream task through calculating the
average representations of each class. Whenever a new sample needs to be classified, simply classify
it into the category of the template that it most closely resembles. The algorithm for downstream
task can be summarized as Algorithm 2. Finally, the misclassification rate is defined as

Err(Q; ) ZPt Q;, (2) # k,z € Cy(k)), (11)

which are used to evaluate the performance of the representation learned by ACT.

Algorithm 2 Downstream classification

Require: Representation mapping fns, augmented dataset in the target domain D; =

{(z29, Yi) Yie[n,]> testing data z.
1: Fit the linear probe according to

o~

Wk,

S U ) + DL = )
=1

27’Lt

2: Predict the label of testing data by (10).
3: return The predicted label of testing data Q@ (z).

3 REAL DATA ANALYSIS

As the experiments conducted in existing self-supervised learning methods, we pretrain the represen-
tation on CIFAR-10, CIFAR-100 and Tiny ImageNet, and subsequently conduct fine-tuning on each
dataset with annotations. Table 1 shows the classification accuracy of representations learned by
ACT, compared with the results reported in Ermolov et al. (2021). We can see that ACT consistently
outperforms previous mainstream self-supervised methods across various datasets and evaluation
metrics.

The experimental details are deferred to Appendix C. The PyTorch code be found in
https://anonymous.4open.science/r/Adversarial-Contrastive-Training.
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Table 1: Classification accuracy (top 1) of a linear classifier and a 5-nearest neighbors classifier for
different loss functions and datasets. While the results for Barlow Twins are from Bandara et al.
(2023), the remains are derived from Ermolov et al. (2021).

Method CIFAR-10 CIFAR-100 Tiny ImageNet

linear 5-NN | linear 5-NN | linear 5-NN
SimCLR (Ermolov et al. (2021)) 91.80 88.42 | 66.83 56.56 | 48.84 32.86
BYOL (Ermolov et al. (2021)) 91.73 89.45 | 66.60 56.82 | 51.00 36.24

W-MSE 2 (Ermolov et al. (2021)) 91.55 89.69 | 66.10 56.69 | 48.20 34.16
W-MSE 4 (Ermolov et al. (2021)) 91.99 89.87 | 67.64 56.45 | 49.20 35.44
BarlowTwins (Bandara et al. (2023)) | 87.76 86.66 | 61.64 5594 | 41.80 33.60

VICReg (our repro.) 86.76  83.70 | 57.13 44.63 | 40.04 30.46
HaoChen et al. (2022) (our repro.) 86.53 84.20 | 59.68 49.26 | 35.80 20.36
ACT (our repro.) ‘ 92.11 90.01 | 68.24 58.35 | 49.72  36.40

4 THEORETICAL ANALYSIS

In this section, we will explore an end-to-end theoretical guarantee for ACT. It is crucial to introduce
several assumptions while expounding on their rationale in Section 4.1. The main theorem and its
proof sketch are presented in Section 4.2. The formal version of the main theorem and further details
of the proof can be found in Appendix B.2.

We first define the population ACT risk minimizer as

f*€ argmin sup L(f,G), (12)
f:B1<||fll2<B2 GEG(f)

where £(-, ), the unbiased population counterpart of £ (-, -) (7), is defined as
L(f,G) = EaFo, ascaw@) [I1f(®1) = F(@2)3]) + MEaEo, aseaw@) [f (@) f(22) "] — 2=, G)

and the population feasible set is defined as

G(f) = {GeR"* :||G||F < |EeBu, mpea(mf(@1)f(@2) "] — Ia-||r }-

Here B; and B5 are two positive constant, and we will detail how to set By and B later.

4.1 ASSUMPTIONS

In this subsection, we will put forward certain assumptions that are necessary to establish our main
theorem. We first assume that each component of f* exhibits a certain regularity and smoothness.

Definition 4.1 (Holder class). Letd € Nand o« = r + 8 > 0, where r € Ny and 8 € (0,1]. We
denote the Holder class H*(R?) as

HY(RY) = {f :RY - R, max sup |0°f(x)| <1, max sup 0" f(@) - 8Bf(y) < 1},
sl <r peRa lslh=raty | —y|%

where the multi-index s € N¢. Furthermore, we denote H® := {f : [0,1]¢ = R, f € H*(R%)} as
the restriction of H*(R?) to [0, 1]%.

The Holder class is known to be a highly comprehensive functional class, providing a precise char-
acterization of the low-order regularity of functions.

Assumption 4.1. There exists & = r + § withr € Ngand 8 € (0, 1] s.t f* € H* for each i € [d*].

Assumption 4.1 is a standard assumption in nonparametric statistics (Tsybakov, 2008; Schmidt-
Hieber, 2020), more specifically in studies of neural network approximation capacity (Yarotsky,
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2018; Yarotsky & Zhevnerchuk, 2020). It is a pretty mild requirement due to the universality of
Holder class.

Next we enumerate the assumptions about the data augmentations .A.
Assumption 4.2 (Lipschitz augmentation). Any data augmentation A, € A is M-Lipschitz, i.e.,
| Ay (u1) — Ay (u2)]l2 < M|jug — uz| for any uq, us € [0,1]%.

A typical example to understand Assumption 4.2 is that the resulting augmented data obtained
through cropping would not undergo drastic changes when minor perturbations are applied to the
original image.

Denote the corresponding latent classes on source domain by {C(k)}re[x]. Beyond the general
assumption regarding data augmentation .A above, we require a more precise way to describe the
intensity of data augmentations .A. A more general version of the (o, §)-augmentation employed by
Huang et al. (2023) is adopted by us to distinguish the efficiency of data augmentations.

Definition 4.2 ((0s, 04,5, 6;)-Augmentation). The augmentations in A is (o, 0t,0s,0t)-

augmentations, that is, for each k € [K], there exists a subset Cy (k) C Cy(k) and Cy (k) C Cy(k),
such that

Py(z € Cs(k)) > o5 P, (x € Cy(k)), su min ) —xh|s < 6,
( ( )) ( ( )) wl’mze%s(k) A (1) € A(w3) |} 5l2
Pi(z € 5',5(16)) > 0P (z € Cy(k)), sup min |2 — 25|l < &,

21,22€C4 (k) F1EA(21),25€A(=2)

K ~
Py( U Cy(k)) > o,
k=1

where 05,04 € (0,1] and d5,d; > 0.

Remark 4.1. The (o, oy, ds, 0 )-augmentation methods emphasize that a robust data augmentation
should adhere to the principle that when the semantic information of the original images exhibit
heightened similarity, augmented views from them should be close according to specific crite-

K
ria. Among above requirements, P;( |J Ci(k)) > oy, which is used to replace the assumption
k=1

A(Ct(7)) N A(Ct(j)) = 0 of Huang et al. (2023), implies that the augmentation used should be in-
telligent enough to recognize objectives aligned with the image labels for the majority of samples in
the dataset. For instance, consider a downstream task involving classifying images of cats and dogs,
where the dataset includes some images featuring both cats and dogs together. This requirement de-
mands that the data augmentation intelligently selects dog-specific augmentations when the image
is labeled as dog, and similarly for cat-specific augmentations when the image is labeled as cat. A
simple alternative to this requirement is assuming different class C;(k) are pairwise disjoint, i.e.,

K K _ K
0. k=1 k=1 k=1

Assumption 4.3 (Existence of augmentation sequence). Assume there exists a sequence of
(o) o) 5(19) 5(m))_data augmentations A, = {A")(-) : v € [m]} and 7 > 0 such that

_ _T+d+1 . X s
max{6("), (55”5)} < ng 2etdtD) | mln{agns),ot(nﬁ)} S|

It is worth mentioning that this assumption essentially aligns with Assumption 3.5 in HaoChen
et al. (2021), both stipulating the augmentations must be sufficiently robust so that the internal
connections within latent classes are strong enough to prevent instance clusters from being separated.
Recently, methods for building stronger data augmentation, as discussed by Jahanian et al. (2022)
and Trabucco et al. (2024), are constantly being proposed, making it more feasible to meet the
theoretical requirements for data augmentation.

Next we are going to introduce the assumption about distribution shift. For simplicity, denote
ps(k) = Ps(x € Cy(k)) and Ps(k) be the conditional distribution of Ps(x|x € Cy(k)) on the
upstream data, p;(k) = P,(z € Cy(k)) and P;(k) be the conditional distribution P;(z|z € C;(k))
on the downstream task. Following assumption is needed to quantify our requirement on domain
shift.
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Assumption 4.4. Assume there exists v > 0 and ¢ > 0 such that

vtdt1

P,(k), P,(k)) < ;2(a+d+l) (k) — B < 8_2<a4:d+1)
IQ%W((), (k) <n ) &1%@() (k)| <n

)

where WV is the Wasserstein-1 distance.

A trivial scenario occurs when there is no gap between the upstream and downstream dis-
tributions, i.e., when (X,, P;) = (A&}, P;), leading to both maxjecix) W(Ps(k), Pi(k)) and
maxye(k] |ps(k) — pe(k)| vanishing.

Assumption 4.5. Assume there exists a measurable partition {Pi,...,P4-} of Xy, such that
1/B3 < Py(P;) < 1/B? foreach i € [d*].

Assumption 4.5 is used to construct a measurable function f with By < ||f||2 < Ba, such that
L(f) = 0, tackling one of theoretical challenges introduced in Theorem 4.2 of HaoChen & Ma
(2023), further implying that £(f*) vanishes (see B.2.6 for more details). It suggests that the data
distribution in the source domain should not be overly singular. All common continuous distribu-
tions defined on Borel algebra apparently satisfy these requirements, as the measure of any single
point is zero.

4.2 END-TO-END THEORETICAL GUARANTEE

Our main theoretical result is stated as follows.

Theorem 4.2. Suppose Assumptions 4.1-4.5 hold. Set the width, depth and the Lipschitz constraint
of the deep neural network as

2d+ o d+1

W >0 ), L>0(1), K=0(nd").
Then the following inequality holds

min{a,v,s}

]EDS [EI‘I‘(QJ;"S )] < (1 _ O,tns)) + (g(ns_m)7

min{a,v,,7}

with probability at least o) — O(ng Dy O(\/ﬁ)ﬁ)r n, sufficiently large.
Remark 4.3. Note that only the probability term depends on the downstream sample size and the
failure probability decays rapidly with respect to ming n;(k) with order 1/2, implying that the
learned representation via ACT from a large amount of unlabeled data can indeed help capture
downstream knowledge, despite a limited downstream sample size. This demonstrates the proven
advantage of ACT and provides an explanation for the empirical success of few-shot learning, which
aligns with the concept of K-way ming, n(k)-shot learning. Apart from that, note the conditions of

2d+o d+1
Theorem 4.2 only require W > O(ngs****") L > O(1) and K = O(ns“"**?), which implies
that the number of network parameters could be arbitrarily large if we control the norm of weight
properly, which is coincide with the concept of over-parametrization.

4.3 PROOF SKETCH OF THEOREM 4.2

Step 1. In Appendix B.2.1, we initially investigate the sufficient condition for achieving a low error
rate in a downstream task at the population level in Lemma B.1. It reveals that the misclassifica-
tion rate bounded by the strength of data augmentations 1 — o, and the augmented concentration,
represented by R (Ta, f). This dependence arises when the divergence between different classes,
quantified by p+(2) ' p1¢(4), is sufficiently dispersed.

Step 2. Subsequently in Appendix B.2.2 and B.2.3, we regard supgcgy) L(f,G) as the
weighted summation of Laiign(f) and Laiv(f), then attempt to show they are the upper bound
of Ry(e, f), max;z; |pe(i) " p1 ()| respectively in Lemma B.4, which implies that optimizing our
adversarial self-supervised learning loss is equivalent to optimize the upper bound of R;(e, f) and
max;; |pe(i) " pe(4)| simultaneously, because Lalign (f) and Laiy(f) are positive. Finally, apply
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Lemma B.1 and Lemma B.4 to fns, combining with the Markov inequality, to conclude Theorem
B.1, which is population version of Theorem 4.2.

Step 3. To further obtain an end-to-end theoretical guarantee, we subsequently decompose & ( fns ),
the excess risk defined in Definition B.3, into three parts: statistical error: Egt,, approximation error
introduced by neural network class: £, and the error brought by G: £z in Appendix B.2.7. Note that
the unbiased design of ACT plays a key role in such misspecified decomposition. We successively

deal each produced term. For Ep_[Esta], we claim it can be bounded by % by adopting some

typical techniques of empirical process and the result claimed by Golowich et al. (2018) in Appendix
B.2.8. For £r, according to the existing conclusion of Jiao et al. (2023), we can show £ can
be bounded by K£~*/(4+1) in Appendix B.2.9. By leveraging the unbiased property of ACT, the
problem bounding Ep, [€5] can be transformed into a common problem of mean convergence rate,

so that it can be controlled by % with high probability, shown as Appendix B.2.10. Trading off

over three errors helps us determine a appropriate K to bound Ep_[£(f,,.)], more details is showed
in Appendix B.2.11.

Step 4. However, £(f*), the difference between the excess risk and the term £(f,,,) involving
in Theorem B.1, still impedes us from building an end-to-end theoretical guarantee for ACT. To
address this issue, in Appendix B.2.6, we construct a representation making this term vanishing
under Assumption 4.5. Finally, just set appropriate parameters of Theorem B.1 to conclude Lemma
B.12, whose direct corollary is Theorem 4.2, and proof is presented in Appendix B.12. The bridge
between Lemma B.12 and Theorem 4.2 is shown in Appendix B.2.12.

5 CONCLUSIONS

In this paper, we propose a novel adversarial contrastive learning method for unsupervised transfer
learning. Our experimental results achieved state-of-the-art classification accuracy under both fine-
tuned linear probe and K -NN protocol on various real datasets, comparing with the self-supervised
learning methods. Meanwhile, we present end to end theoretical guarantee for the downstream
classification task under misspecified and over-parameterized setting. Our theoretical results not
only indicate that the misclassification rate of downstream task solely depends on the strength of
data augmentation on the large amount of unlabeled data, but also bridge the gap in the theoretical
understanding of the effectiveness of few-shot learning for downstream tasks with small sample size.

Minimax rates for supervised transfer learning are established in Cai & Wei (2019); Kpotufe &
Martinet (2021); Cai & Pu (2024). However, the minimax rate for unsupervised transfer learning
remains unclear. Establishing a lower bound to gain a deeper understanding of our ACT model
presents an interesting and challenging problem for future research.
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A  EXPLANATION OF THE REGULARIZATION TERM

In brief, contrastive learning utilizes data augmentation to construct the loss function (specifically,
the first term in our loss) that aligns representations of the same class. However, to avoid trivial
solutions, an additional regularization term is necessary to ensure that clusters representing different
classes are well-separated. We measure this separation using the angles between the centroids of
different classes. While these angles are ideal for quantifying separation, they cannot be directly
optimized because the latent class annotations are unavailable in the upstream task. As an alternative,
we propose finding an appropriate computable loss function that serves as an upper bound for these
angles, effectively achieving the desired separation. Denote

2

»Cdiv(f) = ‘ EwEml,mQEA(m)[f(wl)f(wQ)T] — Iy F

It can severs as a regularization term since in Lemma B.4, we can show

o) 15(3) S || BaBay maca@ [/ (@) (@) = I |

; 13)

where 115(7) = Egcc, (i) Earca() [f ()] is the center of the latent class 7. (13) implies that a lower
value of the regularization term leads the separation between different categories’ center, thereby
benefits classification in downstream tasks.
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2
to estimate Lqiy (f).
F

Ns

LY f@) @) — I

i=1

At the sample level, one can use Zdiv( f)=
Howeyver, this lead to a bias loss, i.e.,

Ep, [Ediv(f)] # Laiv(f),

where D, is augmented dataset. This bias is caused by the non-commutativity of the expectation
and the Frobenius norm. To overcome this we can reformulate it as an equivalent form

Ldiv(f) = Ssup R(f7 G) = <EwEw1,mzeA(w) [f(wl)f(wZ)T] — Iy ’ G>F
Geg(f)
The counterpart of R(f, G) at the sample level is
5 1 & i i
R(£,G) = (= > flay)f(@y))" ~ L. C)p.
5 i=1

We can see that Ep_ [R(f,G)] = R(f,G) for any fixed G due to the linearity of Frobenius inner
product, combining this property with the new decomposition method proposed by us, we build an
end-to-end theoretical guarantee in the transfer learning setting to provide an explanation for few
shot learning. And using an alternative optimization method to optimize this loss is natural.

B DEFERRED PROOF

The Section B will be divided into two parts. The first part B.1 is used to prove ||¢g||Lip < K for
any ¢g € NN, a,(W, L, K, By, By). The proof of Theorem 4.2 is shown in the second part B.2.

B.1 KC-LIPSCHITZ PROPERTY OF NNy, 4, (W, L, K, By, Bs)

Proof. To claim any ¢g € NN, q4,(W, L, K, By, By) is K-Lipschitz function, we need to define
two special classes of neural network functions, the first is

NN, .0, W, LK) := {pg(x) = ALo(Ar_10(---0(Aoz)) : K(0) < K}, (14)

which equivalent to NNy, 4,(W, L, K, B, Bs) ignoring the condition ||¢g||2 € [B1, Bs], and the
second one

L
SNA 1,1, (WL, ) i= (9(a) = Aro(Arro(-o(do)): [T 1Al <& = (7),
=1

where fil € RNi+1 XN with Ny = dq + 1.

It is obvious that NNy, 4, (W, L,K,B1,B2) C NNy, 4,(W,L,K) and every element in
SNN 4, a,(W,L,K) is K-Lipschitz function as the 1-Lipschitz property of ReLU, thus it suffices
to show that SN N g, a4, (W, L,K) C NN 4, ,4,(W,L,K) € SNN 4, 4,(W+1, L, K) to yield what
we desired.

In fact, any ¢g(x) = Apo(Ar_10(-- 0(Aox + bg)) + br—1) € NN, 4, (W, L,K) can be
rewritten as ¢(x) = Apo(AL_10(--- o(Ag))), where

. T g < A b

&= <1> ,A=(A7,0), A = (Ol 1l> JA=0,...,L—1
Notice that [T}, [ Allco = [[ALleo [T) = max{||(As, b;)]|co; 1} = £(8) < K, which implies that
do € 8./\/'./\/'d17d2(W + l,L,/C).

Conversely, since any 95 € SNN(W,L,K) can also be parameterized in the form of
Apo(Ap_10(--0(Agx +bg)) +bp_1) with @ = (Ag, (A1,0),...,(AL_1,0), AL), and by the
absolute homogeneity of the ReLU function, we can always rescale A; such that || A ||sc < K and
| Al = 1 forl # L. Hence x(0) = [, | Aillso < K, which yields ¢ € NN (W, L,K). O

14
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B.2 PROOF OF THEOREM 4.2

We will begin by exploring the sufficient condition for achieving small Err(Qy) in B.2.1. Follow-
ing that, we build the connection between the required condition and optimizing our adversarial
self-supervised learning loss in Theorem B.1 of B.2.3, it reveals that small quantity of our loss
function may induce significant class divergence and high augmented concentration. Although this
theorem can explain the essential factors behind the success of our method to some extent, its anal-
ysis still stay at population level, the impact of sample size on Err(Q) ;) remains unresolved. To

obtain an end-to-end theoretical guarantee as Theorem 4.2, we first decompose & ( fns ), which is the
excess risk defined in the Definition B.3, into three parts: statistical error: Ey,, approximation error
brought by F: 7 and the error introduced by using G (f) to approximate G(f): €5 in B.2.7, then
successively deal each produced term. For Ep_[Esta], We adopt some typical techniques of empirical
process and the result provided by Golowich et al. (2018) in B.2.8 for bounding it by Ff Regard-
ing bounding £, we first convert the problem to a function approximation problem and adopt the
existing conclusion proposed by Jiao et al. (2023), yielding £ can be bounded by K ~¢/(@+1) i

B.2.9. By leveraging the property Ep, [A( L(f,G)] = L(f,G), we find that the problem of bounding
Ep.[&5 ] can be transformed into a common problem of mean convergence rate and further control

itby — 1 —77 in B.2.10. After finishing these preliminaries, trade off between these errors to determine
a approprlate Lipschitz constant /C of neural network, while bound the expectation of excess risk

D.[E(fn.)], more details are deferred to B.2.11. However, SUpgeg(s+) L(f*, G), the difference
between the excess risk and the term supgcg 7 L(f,., @) involving in Theorem B.1, still im-

pedes us from building an end-to-end theoretical guarantee for ACT. To address this issue, in B.2.6,
we construct a representation making this term vanishing under Assumption 4.5. Finally, just set
appropriate parameters of Theorem B.1 to conclude Lemma B.12, and the bridge between Lemma
B.12 and Theorem 4.2 is built in B.2.12.

B.2.1 SUFFICIENT CONDITION OF SMALL MISCLASSIFICATION RATE

Lemma B.1. Given a (o, 0y, 05, 0¢)-augmentation, if the encoder f such that By < ||f||2 < Bs is
KC-Lipschitz and

Nt(z)TMt(-]) < Bg@(ata 5t7 g, f)7
holds for any pair of (i, j) with i # j, then the downstream error rate of Q)

Err(Qf) < (1 —oy) + Re(e, f),

where & > 0, (k) = Evc,goBxeanlf ()] for any k € (K], Tun(ondre. £) = (o1 -
Rt(a,f)_))(l n (%)2 _Kéy 275) 1 Aﬂt — 1 minke[Kélzlﬂt(k)Hz’ Rile, f) = Pt(z c

min; p¢ (¢ B> B>

UszlCt(k) : supZ1,ZQE.A(z) ||f(21) — f(ZQ)HQA > E) and @(Ut,5t,a,f) = Fmin(o't,fstys,f) —
R N R R

B2

Proof. For any encoder f, let Si(e, f) := {z € Uj_;Cy(k) : sup,, . zaed(z) 1f(21) = f(z2)]l2 <

e} ifany z € (Cy,(1) U--- U Cy(K)) N Sy(e, f) can be correctly classified by Qy, it turns out that
Err(Q ) can be bounded by (1 — o) + Ry (e, f). In fact,

K

Err(Qy) = ZPt Q1(z) # k,Vz € Cy(k))

=P,((Ci(1) U+ UCK))" U (Si(e, ))°)
< (1 —04) + P((Si(e, )))
= (1 —o0¢) + Re(e, f).
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The first row is derived according to the definition of Err(Qy). Since any z € (&(1) U---u

Cy(K)) N Sy (e, f) can be correctly classified by Q 7, we yields the second row. De Morgan’s laws
implies the third row. The fourth row stems from the Definition 4.2. Finally, just note R;(e, f) =
(St(e, f))€ to obtain the last line.

Hence it suffices to show for given i € [K], z € Cy(i) N S (e, f) can be correctly classified by Q f
if for any j # 4,

i) ) < B3 (Do be, £) — V2~ (o ae, ) - e Wl el

2 B
. Il (5) — Nt(j)”z)
B ’
2
where T';(0y, 04, ¢, f) = (O’t — R;f?;p) (1 + (%) — % — %52) -1

To this end, without losing generality, consider the case ¢ = 1. To turn out zy € CN't(l) N Si(e, f)

can be correctly classified by )¢, by the definition of Cy(1) and S (e, f). It just need to show
Vk # 1, [ f(20) — fe(1)[l2 < [ f(20) — fe(K)||2, which is equivalent to

F(z0) (1)~ F(z0) (k) — (5eDIE ~ g BIZ) >0
We will firstly deal with the term f(2z0) " j1¢(1),

f(ZO)Tﬂt(l) = f(zO)Tut(l) + f(ZO)T(ﬂt(l) — (1))
> f(z0) "Ezec,()Ezrea [F(2)] = £ (z0)ll2ll e (1) — e (1)l
(

F(z0) "EzEzcas) [f(Z)1{z € Ci(1)}] — Balfue(1) — e (1)]2

—_

>

~ pe(1)
- ﬁﬂzo)%z&@w [£(z1{z € Cu(1) N Ci(1) N Sule, )]

" ﬁ F(20) "ExEureas [f()1{z € Ci(1) N (Co(1) N Sile, £)°Y]
= Ballfae(1) = pa(L)ll2

— Pt(Ct(lzztr(]lk)gt(E, 1) F(20) "B e, 15, (o, 1) B ea) [ (2))]

+ s [Boeao [F(20) S ()= € GG 1 5. )Y

— Bol (1) — p(1)]]2

>H@ﬂM&@ﬂ)
pe(1)

- Z%Pt(ct(l)\(@(l) N Si(e, f))) = Balliie(1) — pe(1) o, (15)

where the second row stems from Cauchy—Schwarz inequality. The third and the last rows are
according to the condition || f||2 < Bs.

f(ZO)TEZEGt(1)mst(s7f)Ez’EA(z) [f(z')}

Note that
P (CyO\(Ci(1) N Si(e, £))) = PL((CL(D\Co(1)) U (Co(1) N (Sile, £))))
< (L=o)pe(1) + Re(e, f), (16)
and
P (ét(l) NS, f)) = P(Ci(1) — P, (Ct(l)\(ét(l) N Si(e, f)))
> pe(1) = (1 = o)pe(1) + Re(e, f))
=opi(1) — Re(e, f). (17)

16
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Plugging (16), (17) into (15) yields

Rt ) /
f(z0) (1) > (Ut - pf?l)f))f(zO)TEzeét(1)ﬂSt(g7f)Ez’€.A(z)[f(z )]
~B(1-0+ R;fz)f D)~ Ballu(1) - (1) o (18)

Notice that zg € Cy(1) N Sy(e, f). Thus for any z € Cy(1) N Si(e, f), by the defini-
tion of Cy(1), we have minzoeA(ZO) 2eA(z) 120 — Z'[l2 < d;. Further denote (zj,2*) =
arg Miny ¢ A(zy),z'€ A=) |20 — 2'll2, then |[z5 — 2*||2 < &;, combining K-Lipschitz property of
f to yield || f(z5) — ( NMa < Kllz§ — z*[|2 < K. Besides that, since z € Si(e, f),Vz' €
A(2), |f(Z") — f(z")|l2 < e. Similarly, as zo € Si(e, f) and zo, 2§ € A(zo), we know
1f(z0) = f(z5)ll2 <.

Therefore,
F(20) "Ec, (1yns, .5 Berearn) [ (2)]
=E, 6,190, c.nBream [ (20) T f(2)]
=E_ &, )ns.e.nBreamf(20) T (f(Z') = f(20) + f(20))]
> B% + Ezeétu)mst(g,f) 2/ €EA(2) [f(ZO)T( f(z") = f(20))]
= B +E_ &, 1)ns,(e.p) Brream [ (z0) T ( () = [(2) + f(2*) = f(25) + f(25) — [(20) )]

l-ll2<e -2 <Ko ll-llz<e
> B} — (Bae + B2K6; + Boe)
= B? — By (K5, + 2¢), (19)
where the fourth row is derived from || f||2 > Bj.
Plugging (19) to the inequality (18) knows
. Ry (e, Ry (e,
o) (1) = (o= =) )T B LE UGB (1o =)

— Bol| ¢ (1) — ps(1)][2

> (at - R;EZ{)) (B? — By(K6, + 2¢)) — B§(1 —o+ R;EZ{))

= Ba||f1e(1) — pe(1) |2
2 B Ry (e, Ry (e, Ké:  2e

=5 ((1+ (30°) (o= P2 = (o - D) (G 5) 1)
— Bollfue(1) — pe(1)]]2

=53 ((or - BT (14 (217 - 2 - ) 1) = Ballelt) - (V)

= Bgl“l(at, 8t,6, f) — Ba|lfie(1) — pe(1) |2

Similar as above proving process, we can also turn out

f(z0) Tue(1) > B2T1 (04, 01,8, f). (20)

Combining the fact that
[e(B)ll2 = 1B, e, 1) Exreas [f(Z)]ll2 € Epc, i Exea |1 f(2)]l2 < B,
we can conclude
F(z0) " fue(k) < f(z0) T pe(k) + f(20) T (fue(k) — pue(K))
< f(z0) "ha (k) + £ (z0) 21 f2e (k) — pa(K) 2
< f(z0) " pe(k) + Ballie (k) — pe(k)|2

17
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= (f(z0) — pe(1)) T e (k) + pe(1) T (k) + Ball e (k) — pe (k)2
< |1f(z0) — peW)l2 - le(k) |2 + pe(1) T (k) + Ballfie (k) — pe (k)2

< B2\/||f(Zo)H§ —2f(20) T (1) + [l (V)13 + (1) " e (K) + Ballfie (k) — poe (k)
< BQ\/QB§ —2f(20) T (1) + (1) T e (k) + Ballfie (k) — e (k)]
< B2\/QB§ —2B3T (0, 00,2, f) + (1) T e (k) + Ballfie (k) — pe (k)2

= V2B3\/1=T1(01,61,¢, f) + pe(1) " e (k) + Ballfue (k) — e (k)|2-

Note that we plug (20) into the seventh row to obtain the inequality of eighth row.

Thus, by As, = 1 — minge(x ||fi¢(k)||3/B3, we can conclude
Flz0) (1) = f(z0) (k) — (5 e(DIE ~ 3 ()1
= F(z0) (1) — F(z0) (k) — g (DI + L (I3

> f(z0) (1) ~ F(z0) k) - ;Bg + min 1)1

= f(zo) fie(1) — f(ZO)T/lt(k) - §B§Aﬂt
> Bgl—‘l(gt,5t7€,f) - B2||ﬂt(1) - lflt(l)HQ - \/iBg\/l - Pl(ataétagvf)
— (1) T (k) = Balfun (k) — e ()| 2 — %BSAm >0,

which finishes the proof. O

B.2.2 PRELIMINARIES FOR LEMMA B .4

To establish Lemma B.4, we must first prove Lemmas B.2 and B.3 in advance. Follow-
ing the notations in the target domain, we employ ps(k) = Egcc,(n)Epcawmlf(@)] =
p%(k)EmEm’e A@) [ f(®)1{x € C,(k)}] to denote the centre of k-th latent class in representation

space. Apart from that, it is necessary to introduce following assumption, which is the abstract
version of Assumption 4.4.

Assumption B.1. Review P,(k) and P;(k) are the conditional measures that P(x|x € Cs(k))
and P(z|z € Cy(k)) respectively, assume 3p > 0 and n > 0, ;11%}((] W(Ps(k), P,(k)) < p and
€

X k)| <n.
grelgg]lp() pe(k)] <n

Lemma B.2. [fthe encoder f is K-Lipschitz and Assumption B.1 holds, for any k € [K|, we have:

s (k) = e (R)ll2 < Vd*MKp.

Proof. Forall k € [K],

.
s (B) = ()13 = 37 (k) — e (B))1)?
=1
-

= Z(EmeCs(k)Em’EA(m)[fl(w/)] —E.ec,(t)Bareamfi(2))?
=1

(Eacc, ) [fi(Ay(@)] — Esecymlfi( A, (2))]?

I
M= T
hE

[

1
“M2K

1
m

T
N2
&

IN
,
.
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The final inequality is obtained by Assumption B.1 along with the fact that f(A,(-)) is MK-
Lipschitz continuous. In fact, as f € Lip(K), then for every | € [d*], fi € Lip(K), combining
the property that A,(-) € Lip(M) stated in Assumption 4.2, we can turn out f(A,(-)) is MK-
Lipschitz continuous.

So that
(k) = ()2 < Vd*MEKp.
O]

Lemma B.3. Givena (o, 0y, ds, 01)-augmentation, if the encoder f with || f||2 < Bs is K-Lipschitz
continuous, then

1 f@1) = (B3 < 4B3[(1- o + 'C‘S;Bt =+ R;ff;;{)f G Rﬁf?{))}’

E E
xz€Cs (k) 1 EA()

where Ry (e, f) = Ps(x € UE_, Cs(k) : SUPg, woca(w) I1f (1) = f@2)[]2 > e).

Proof. Let Ss(e, f) = {x € UL Cs(k) : SUPg, moc (@) | f(T1) — f(x2)l]2 < €}, for each
k € [K],

Exec. () Ear e a@) | f(@1) — ps(k)]3
1

= o EeEeeam 1@ € WM (@1) - (B3]
- ZﬁﬂamﬁzwlGA(Q,,.)[Jl{ac € Cs(k) N Sy HYIf (1) = ps(R)]3]

’ zﬁ EoEa,ca@) [ L{z € Co(k)\(Ca(k) N Sale, A (1) — s (R3]
< IﬁEmeleA(w)[ﬂ{m € és(k') N Ss(s, f)}Hf(-'Bl) - ,Lts(k)”%]

| B3P, (Cs(\(Cs(k) N Ss(e, £)))

ps(k)

1 -~ 2 2 RS(&" f)

< B E e e CmnSe NS @) - p b + 453 (1-o+ m)
P,(Ca(k) 1 S4(e, 1) BB+ 4B3 (1 — oy 1 Bale])

< o) weéﬁ(ﬁs&w) mlelg(m) [f(z1) — ps(k)|2 + 4853 (1 s+ (k) )

RS(€7 f)
< Byt tons. o Emneaw 1 (@1) = w3 + 483 (1~ 0, + ):

ps(k)
the second inequality is due to

Py(Cs(R\(Cs(k) N Ss(e, ) = Po((Cs(k)\Cs(k)) U (Cs(k)\Ss e, £)))
< (]- - Us)ps(k) + Rs(€, f)
Furthermore,
]Emeés(k)mss(s,f)EmeA(:c)Hf(ml) - ﬂS(k)Hg
=E_c6.00ns. ./ Berea@ | F(@1) = Earec, ) Earea@) f(22)3

wEés(k)ﬂSs(e,f)EmleA(m) flx1) —

P(Cy(k) N Sy(e, f))
 P(Cu(b)\(Cs(k) N Sa(e, £)))

=k ps(k) Epce.mns.e.nBescat) f(@2)
2
ps(k) Eorec.on@.mns. .0 Faeca@) f (“)HQ

Py(Cs(k) N Ss(e, f))

=k ps(k)

me@(k)mss(s,f)EazleA(m) (f(ml) - Em’eCN*S(k)mss(e,f)]szEA(w’)f(m2)>

19
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Py(Cs(k)\(Cs(k) N Ss(e, 1))
- ps(k) (f(””) = Earco @ (s, e, ) Beaea@n /( )H
R
< _E (|7 E E [@)|| +2B:(1-0 €, f))}
zeC, (k)NSs (e, f)wleA x) x'eC,(k)NSs (e, f) T2EA(Z') ps(k)
(22)
Forany z, ' € C,(k) N Ss(e, f), by the definition of C(k), we can yield that
min HiL‘l - CEQHQ < (55,
z1EA(x),x2EA(x')
thus if we denote (x],x3) = arg min lz1 — x2||2, we can turn out ||z} — xi|l2 < ds,

z1EA(x), 2 EA(T’)
further by K-Lipschitz continuity of f, we yield ||f(x) — f(23)]l2 < K|z} — x5]2 < K.
addition, since © € Ss(e, f), we know for any =1 € A(z), | f(x1) — f(x})]]2 < e. Slmﬂarly,
x' € Ss(e, f) implies || f(x2) — f(x3)]|2 < e for any o € A(x’). Therefore, for any x,x’ €

Cy(1)N Ss(e, f) and @y € A(x), x5 € Al'),
[f(z1) = f(@2)ll2 < 1f (1) — F(2D)ll2 + £ (2T) = f(@)ll2 + [[f (23) — f(2) |2 < 26 + Kbs.

(23)
Combining inequalities (21), (22), (23) to conclude
Ezec,(k)Earca@) || f(®1) — ps(k )||§
Rs (57 f)
< [2e 4+ K8, +2B5(1 -0, + )} +4B3(1- 0o+ D )
Ko, ( f) R(e, f)
_ 2 _ _
_4BQ[<1 77 9B, 32 ps(K) ) <1 7t k) }
O

B.2.3 THE EFFECT OF MINIMAXING OUR LOSS

Lemma B.4. Given a (os, 0y, s, 0t)-augmentation, if d* > K and the encoder f with By <
I fll2 < Bsg is K-Lipschitz continuous, then for any € > 0,

4
m
RE(‘C:) f) S 7£align(f)
‘ 8m* 4m
R%(Ev f) S %ﬁalign(f) BQd*M’CP + 7BQd*K7],
and
2

)" )| < L iv sa657 ) 2\/CFB MKp.
Igfj?dm(z) pe(5)] < \/mini# ps(i)ps(j)( aiv(f) + (o € f)) + 2" MKp

where Ry(z, ) = Ps(x € U Cy(k) : SUPg, woea(@) If(@1) — f(22)]| > e) and ¢(0s, 65, ¢, f)

.= 4B? {(1—0#%) +(1—0)+KR4(e, f) (3—20#%‘;%)“%3(5, f)(zle ﬁk))} +
By(¢? + 4B3R, (e, f))*.

Proof. Recall the Assumption 4.2, the measure on .A is uniform, thus

Eey maea 170210 = £l = —3 303 17(44(2)) — F(As())e

y=1p=1

so that

sup  |[f(z1) = f(z2)l2 = sup [[f(A,(2)) — f(Ap(2))ll2

z1,22€A(2) v.8€[m]

20
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<> s — (As(2))l2

y=1p=1
=m’Ea, zyeac2) £ (21) = f(22)]2.

Denote S := {z : E,, .,caz)||f(21) — f(22)|l2 > ==}, by the definition of R, (e, f) along with
Markov inequality, we have

R?(e, [) < P2(S)
- (Ez]Ezl,zzeA(z)Hf(zl) - f(z2)H2)2

m?2

_E 2Bz zea I f(21) — f(22)]3

52
m4
m4 2
= gEz]Ezl,zzeA(z)Hf(Zl) — f(z2)I2 (24)

Similar as above process, we can also get the first part stated in Lemma B.4:

2 m* 2 m*
Ri(e, f) < ET]Emel,meA(w)Hf(ml) = f(z2)|3 = ?Qﬁalign(f)-

Besides that, we can turn out

E:E., zoca lf(z1) — f(22)3
=E E ( )|\f($1)—f(w2)||§+]E E - I1f(z1) — f(22)II3

T x,e2€A(x Z z1,22€
—-E  E |[[f(z1) - f(za)l3
Tz, :BQE.A(E

m m

= S (B (2) — (AR (DIE ~ Eall (4, (@) ~ S(As() ]
y=1p=1
+ EaBoy pca(o)|f(@1) = £(@2)]3
m m dF
= S S [ LA (2) — As()]” ~ B [y ) ~ filAs@))]’]
y=1p=11=1

+ ExEay wpeam |l f(m1) = f(22)]3,

since for all v € [m], 8 € [m] and | € [d*], we have
E [fi(A;(2)) — fi(45(2))])" = Ea [fi(Ay(x)) — fi(Ap(x))]*
[P Esec, i [i(44(2)) = fi(Aa(2))])” = po(k)Eaec, ) [l Ay(@)) — filAs(@))]?]

> 10>

[pe() (Bacono [(A4(2)) = fi(A45(2)]" = Baec.i [ilAy() = filAp())]”)
g(x)

~
Il
-

+ (pe(k) = ps (k) Egec, ) [fi(Ay(2)) — fz(Aﬁ(w))]Q]
< 8By MKp + 4B2Kn.

It is necessary to claim g(x) € Lip(8 B2 MK) at first to obtain the last inequality shown above. In
fact, VI € [d*], f; € Lip(K) as f € Lip(K), and review that A, (-) and Ag(-) are both M-Lipschitz
continuous according to Assumption 4.2, therefore we can turn out f;(A,(-)) — fi(Ag(-)) €
Lip(2MK). In addition, note that | f;(A,(-)) — fi(Ag(-))| < 2B as || f|l2 < Bs, hence the out-
ermost quadratic function remains locally 4 Bs-Lipschitz continuity in [—2Bs, 2Bs], which implies
that g € Lip(8B2MK).
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Now let’s separately derive the two terms of the last inequality, combine the conclusion that g €
Lip(8 B2 M K), the definition of Wasserstein distance and Assumption B.1 can obtain

K

> [P 0) (Baccuim [71(44(2) = filAs(2))])” = Eaec.i [il4: (@) = filAs(@))]*) ]
k=1
K

< 8B MKp Zpt(k)
k=1
= 8BQM]C[),

For the second term in the last inequality, just need to notice that f;(A,(x)) — fi(Ag(x)) < 2B,,
and then apply Assumption B.1 to yield

K
S [(ek) = po (k) B0 [ Ay (@) = filAs(@))]’] < 4B3Kn.

k=1

Hence we have

E2Eay zcae) | f(21) = f(22)|13 € EaEay s am) |l f (1) — f(22)]5 + 8B2d* MKp + 4B3d* K.
(25)

Combining (24) and (25) turn out the second inequality of Lemma B.4.

m* 8m* y 4m? .
Rt2(€7 f) S ?Ealign(f) + ?Bgd M’Cp —+ ?Bgd K’I’}

To prove the third part of this Lemma, first recall Lemma B.2 that Vk € [K],
(k) = e ()| < Vd*MEKp.
Hence, Vi # j, we have
e (8) " e (5) = s () T s ()] = Le () T 1 (5) — e (6) T pas (3) + e () "o (5) — pas (i) " pas ()
< @) 2Ml2e () — pos G ll2 + [ pes G 2l 2 (7) — 125 (3) |2
< 2v/d*BsMKp,

so that we can further yield the relationship of class center divergence between the source domain
and the target domain:

maxc e (i) pre(7)] < maxc s (8) s ()] + 2v/d* By MKp. (26)
Next, we will attempt to derive an upper bound for max;z; |us(i) " ps(j)|. To do this, let U =
(VPs(L)ps (1), ..., /ps(K)ps(K)) € R XK then
K 2
| p s ps®)” = L | = 00T = 1|3
k=1
=Tr(UU'UU" —20U" +1p) (|A|% = Tr(AT A)))
=Tr(U'UU'U - 2U"U) + Tr(Ix) +d* — K
(Tr(AB) = Tr(BA))
> |UTU — Ikl (d* > K)

= ( ps(k)ps(l)us(kj)—r”s(l) - 6kl)2

Therefore,

H S Ps (k) (R) s ()T = Lae
ps(9)ps(4)

2
F

(MS(i)TNS(j))Q <
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2

B E [f@)f@)] - le+ 3 p@n®n®’ -E e i) ]

T @1, w0 A(x) T x1,z2€A(x) F

Ps(1)ps(5)

BB i@ ] - e 2] S pmunmT-E B (s

T xq,x2€A(x) T xy,x2€A()

2

2
F

ps(1)ps(4)
27)

2
For the term H S P (k) s (k) s (B) T — EoBay e (e [f (1) f(2) 7] HF, note that

K
EoBay zaea@ f (@) f(@2) ] =D pa(k)us(k)us (k)"

k=1

M-

=
Il
—

K
ps(k)EwECs(k)EwthEA(w)[f($1)f(w2)—r] - ZPS(k)NS(k)NS(k)T
k=1

K
ps(k)EmGCS(k)EwleA(m) [f(wl)f(wl>—r] - Zps(k’)ﬂs(k’)ﬂs(k/’)T
k=1

I
]~

=~
Il
MR

K

+ Zps(k)EmeCs(k)Ewl,wgeA(m) [f(x1)(f(x2) — f(xl))T]

k=1

] >

= ps(k)Bacc, (k) Eayeam [(f(21) — ps (k) (f (1) — ps(k)) ]
k=1

+EoBa, aea@)[f(@1)(f(22) — f(21))7], (28)
where the last equation is derived from
Eocc, () Earea@[f (@) (@) "] = ps (k) s (k)T
= Eaec.(hEarea@) (@) f(@1) ]+ s (B)ps (k)" = (Baco, (v Bayca@) [ (@0)]) s (k) T
— 115 (k) (Eaec, (0 Ear e Ae) [f(21)]) |

= Eacc. () Eayea@) [(f(@1) — ps(k) (f (1) — ps(k)) T].
So its norm is

| S B ()T — Exay et (@) (@) "))
k=1

K
< D o) Eaec, (i Eaycaie (I (F(@1) = s (k) (f (1) = s (k) T ]
+ EaBay apea@) ([ (@0) (f(22) — f(21)) " l|F]

<> k) E B If@)-pm@B+E E [If@)]allf (@) - f@)ll]

1 zeCs(k) z1€A(T) x1,x2€A(x)

+
1
=
8
=
8
m
S
&
=
8
%
-
TS
—_
(SIS
=
8
=
B
8
[V
m
S
&
=
8
™
S~—
I
=
8
—
-
oo
(I

W=

+ B[ + BaBo, mac (o) [I1f(@2) — f(@1)[31{e & Si(c, )}
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(Review that S (e, f) := {x € UE_C,(k):  sup  ||f(z1) — fz2)||2 < 5})

x,x2€A(x)

1
2

] >

Po(R)Eaco, i Earca@) I/ @1) = 15 (K) 3] + Ba[* + 4B3Ea [1{= ¢ S, (=, )}

=
Il
—

I
M=

ps(k)EmeCs(k)EwleA(m) [Hf(wl) - Ua(k)”g] + B2(62 + 4B§Rs(5a f))%

>
Il

1

b o Ke e RV, R
<4BQI;ps(k)[(1 st =+ — + )+(1 ot )}

232 BQ ps(k) ps(k)

+ By(e2 + 4B3R,(c, f))? (Lemma B.3)
2

:4Bﬂ@fng+ﬁ%gzs +ﬂ—aQ+KRJafK3—%g+E%;Eq
2 2
K
2 1 2 2 %
+RS(€’f)(kZ_1p§(k)):| +BQ(E +4B2RS(€af))

2
If we define ¢(0y,ds,¢, f) = 4B§[(1 — 05+ %) + (1 —0,) + KRS(E,f)(3 — 20, +
%) + R2(e, f) ( PO p%(k))} + By(e2 + 4B2R,(e, f)) =, above derivation implies

K
| > e B)1s ()T = BaBay e [ @0)f (@) 7] < (0w, de. ) 29)
k=1

Besides that, Note that

Lai(f) = sup (ExEy, mpea@ [f(@1)f(22)"] — 14+, G)p
Geg(f)

-

which is from the facts that Eg B, oy e a(z)[f(®1) f(x2) '] — I+ € G(f) and

2
) (30)
F

Em]Em1,m2€A(m) [f(w1>f(m2)—r] — Iy

(Bala, oo (@) f@2)T] = Lae, G < [EaBa, wocamlf @) f@) ]~ Lar|| -G
Combining (27), (28), (29), (30) yields for any i # j
2
siTs.2<f£'iv + 08568767 )
(1) 10 (1))? < s (L () - n)
which implies that
max | s (1) " ps(5)| < - 2 - - (Ediv(f) + @(03,55,87f)).
i#j miNj+j Ps (1)ps(J)
So we can get what we desired according to (26)
2
) ()| < Lai(f) + ¢(0s,05,¢, ) ) + 2Vd* BaMKp.
mae g (i) e (5)] < \/ ) L)+ 900802 ) 2MKp
O

B.2.4 CONNECTION BETWEEN PRETRAINING AND DOWNSTREAM TASK

Following theorem reveals that minimaxing our loss may achieve a small misclassification rate in
downstream task.
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Theorem B.1. Given a (o, 04,05, 0;)-augmentation, for any € > 0, if O(oy, dy, €, fn) > 0, then

m( Ep,[ sup ﬁ(fnsVG)H’/J(Usﬁs,&fns))+2vd*BaM’Cp
#j GEG(fny)

B20(0¢,0t,¢, fny) ’

with probability at least 1 —

we have

2
Ep, [Err(Q )] <(1—0¢) + ”Z\/]EDS[ sup  L(fn., Q)] + 8Bad* MKp + 4B2d* K1,

GEG(fny)
where
; § ? 3 KOs + 2612
w(0_5765757fn5) = 32(524_43%& ]EDs[ sup ;C(anG)}) +4B§|:<1_03+$)
€ GEG(fn,) 2Bs
Km? " Koy + 2
+ (=) + = (B[ sup L(fa,G))(3 - 20, + =00 )
¢ GEG(fn,) 2
m* . Ko
+ —=Ep,[ sup L(fn,,G)] ,
& GEG(fny) (kz—l ps(k‘))}

_ Ry (e, f) B1\2 _ K&, _ ming e |2 (F)|1
l—‘min(at,ét,g,f) = (O’t - Lnlnfzt(l)> (1 + (?;) ~ By %) - ]., Aﬂt =1 kEB—Q’
Rt(gaf) = Pt(z € U?:lct(k) $ SUDPz, 2,cA(2) Hf( )_ (ZQ)H > 5) and @(Ut75t7€’ fns) =

; : Ay, 2 k k
Cmin(0t, 0,65 fn,) — \/2 — 2lmin (04, 61, €, fn,) — =5+ — =kelld Hg;( LS

In addition, the following inequalities always hold

4
~ m ~
Ep, [R} (e, fa.)] < 55 (EDS[ sup  L(fu,, G)] +8Bad” MKp + 4B§d*Kn).
GGg(fns)

Proof. Note the facts that SUPGeg(f) L(f,G) > max{Lalign(f), \MLaiv(f)}, B1 < anS”g < By
and KC-Lipschitz continuity of fné apply Lemma B.4 to fn5 to obtain

2/ F m* ;
Ri(e, f,) < — sup L(fn,) €2
€ GeG(fns)
N 4 A 8m 4m
Ri(e, fn,) < % sup  L(fn,, G) + —Bzd*MleJr BQd* (32)

Geg(fns)
and

2 1 N -
- —— (v sup  L(fn,,G) + @(0s,6s,¢, fn,
MmN 5 ps(1)ps(4) (/\ GEG(fn,) ( )+ ( ))

+ 2V d* By MKp (33)
Take expectation w.r.t Dy in the both side of (31), (32), (33) and apply Jensen inequality to yield

rggxlut() e (7)] <\/

m

Ep,[R:(e fn.)] € 7 Ep.[ sup  L{fn,, )]
€ GGg(fns)
4 mt
2 4
m—ED [ sup L(fn.,G)]+ 8—Bgd*Mle+ m! ——B2d*Kn

2 s ~
€ GEG(fny)

Ep,[R{ (e, fu,)] <

2 (3o, swp L£(fa.O) +Ep,[p(0s, 60, i)

E max i T ] < N N
Ds[#j e (i) e (9)]] < Ig?ps(z)ps(g)<A GEG(fn,)

+ 2Vd*BoMKp
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A 2 A
where Ep, [p(04, 84, €, f,)] = 4B3[ (1 — 0w + 5552 )" + (1 = 0.) + KEp [Ri(e, £.)] (3 -
. % 1

20, + K528 ) 4 Ep [R2(e, fu,)|( Z4s 507 )| + BoEn.[(€2 + 4B3 R, (e, fu. ).
Therefore, by Jensen inequality, we have

EDS [@(05755,8,]%5(5, fns))}

KCos + 22 p Kos + 2¢
<4B%|(1- s = - _ AOs T 2
<aB[(1- oo+ S5 )+ (1 - 00) + KB, [Ru(e fu,)] (3~ 200 + =5 )
K
2(c f b 2 2 ; 1
+Ep, [R2(e, fn) (; )] B ABEED (R )
2 2 -
< 433[(1 — 0.+ M) + (1 —o0y) Km Ep,[ sup L(fy.,G)](3 20+
2B, < GEG(fn,)

K3y + 2¢ 4 K
T) + mTEDS[ sup  L( fnba (Z
2 < GEG(fn,) i s

4B2 2 ~
+ By 4 2 \/EDS[ swp L(f..G)))

GEG(fn,)

)]

[N

= (0, ds, €, fns)
Recall Lemma B.1 reveals that we can obtain

Err(Q;f, ) < (1= 01) + Ri(e, fu.)

if maxxiz; | (1e(0) T ()| < B3O(01, 6., fa, ).

So that if © (o, d¢, €, fns) > 0, apply Markov inequality to know with probability at least

X \/W (%EDS [SUPGeg(fns) E(fns ) G)] + Q/J(Usa s, €, fm)) + 2\/dTBQM’CP
B%®<Ut76t757 fné)

)

we have
Ig?JXWt(i)TMt(jN < B36(01,01,¢, fn.),
so that we can get what we desired.

Ep,[Err(Qf, )] < (1—04) + Ri(e, fn,)

2 A
<Q-0)+ ™ [Ep[ sup L(fn.,G)] +8Bad*MKp + 4B2d*Kn,
€ GEG(fn.)

where the last inequality is due to (32). O

B.2.5 PRELIMINARIES FOR ERROR ANALYSIS

To prove Theorem 4.2 based on Theorem B.1, we need to first introduce some related definitions
and conclusions, which are going to be used in subsequent contents.

Recall that for any © € X, x1,xo i Alx), & = (x1,x3) € R* . If we define (&, G) :=
|l f(x1) — f(x2)]|3 + AN f(21)f(22) " — L4+, G)F, then our loss function at sample level can be
rewritten as

~ 1 & i i i i i
L(£.60) = — > [If(a") = @3 + Mf (@) f(@8))T = Lar G| = = Zﬂ &0,

S =1
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furthermore, denote G, := {G € R* %" . |G| < B3 + V/d*}. It is obvious that both G(f) for

any f : ||f|l2 < By and G(f) for any f € NN ga-(W, L, K, By, By) are contained in G;. Apart
from that, following Proposition B.1 reveals that ¢(u,G) is a Lipschitz function on the domain

{u € R2 : |jully < V2By} x G C R2A™+(d)?
Proposition B.1. / is a Lipschitz function on the domain {u € R** : |lulls < v2Bs} x Gi.

Proof. At first step, we will prove ||¢(-, G)||Lip < oo for any fixed G € G;. To this end, denote
u = (w1, uy), where uy, uy € R, we firstly show J(u) = |[u; — uz||3 is Lipschtiz function. let
g(u) := u1 — uq, then
lg(ur, uz) — g(vi,v2) |3 = [ur — uz — v1 + 023
2

< (llur —vill2 + [Juz — vall2)

= [lur — 13 + [[uz — val[3 + 2l|wr — vil2]luz — vz

< 2(|lur — o113 + luz — v23)

= 2| (u1, u2) — (v1,02) |3,

which implies that g(u) € Lip(v/2). Apart from that, g also possess the property that ||g(u)|s =
lur —uszll2 < ||lui]lz + [[uzll2 < 2[jull2 < 2v/2Bs. Moreover, let h(v) := ||v||3, we know that

|2 g, = 2lgtes)le < v,

Therefore, J(u) = h(g(u)) = ||u1 — uz||3 € Lip(8B>)

To show Q(u) = (ujug — I4-,G)F is also a Lipschtiz function. Define §(u) := u;ug , we know
that

1§(u) = §(v)||r = [[urug —v1v ||F
= ||U1U;r - Uw;r + ulv;r — Ulv;—HF
= |lug (w2 — Uz)T + (uy — 'vl)v;HF
< Jui||pllue — v2|lF + |lur — vi||p||lve] P
< ([Jusll2 + [Jvall2) lu — v]|2

< 2v2Bslu — .

Furthermore, denote h(A) := (A —I4,G)p, then |Vh(A)||r = |G|lr < B3 + Vd*. So that
Q(u) = h(g(u)) € Lip(2V2B2(B3 + Vd*)).

Combining above conclusions knows that for any G € Gy, we have ||4(-, G)||Lip < oo on the domain

{u:|lull < V2Bs}.
Next, fixed u € R?? such that ||uy < v/2B,, we have
0(u,G1) — £(u, Ga)| = [(u, Gy — Ga)p| < ||ull2]|G1 — Gallr = V2B Gy — Ga|
which implies that £(u, ) € Lip(v/2B2).
Finally, note that

[£(ur, G1) — £(ug, Go)* < (|€(ur, G1) — £(uz, G1)| + [U(uz, G1) — L(ug, G2)|)?
(V2 +2V3B2(B} + Vi) s — sl + V3B Gy — Gl )

<
< 2(V2 4 2v2By (B2 + V)| uy — usl|3 + 4B2||Gy — G| %
< C||vec(uy, Gy) — vec(ug, Ga)||3

where C'is a constant s.t C > max{2(v/2 + 2v/2B5(B3 + V cl*))27 4B2}, which yields what we
desired. 0

27



Under review as a conference paper at ICLR 2025

Table 2: Lipschitz constant of £ with respect to each component

Function Lipschitz Constant
E(u, ) \/§BQ
0-.G) 2V2B, (B} + V")

o) max{ﬁ32,2ﬁ32(33 n \/(F)}

We summary the Lipschitz constants of ¢(u, G') with respect to both u € {u € R?**" : |uly <
V2By} and G € Gy in Table 2.

Definition B.1 (Rademacher complexity). Given a set S C R™, the Rademacher complexity of .S is
denoted by

where {&; }i[n) is a sequence of i.i.d Radmacher random variables which take the values 1 and —1
with equal probability 1/2.

Following vector-contraction principle of Rademacher complexity will be used in later contents.

Lemma B.5 (Vector-contraction principle). Let X' be any set, (x1,...,x,) € X", let F be a class
of functions f : X — €y and let h; : {5 — R have Lipschitz norm L. Then

E hi( ()| < 2V2LE i ;
?2‘;‘;6 (f(z))]| ?gg‘izk:gkfk(m)

)

where ;1. is an independent doubly indexed Rademacher sequence and fi,(x;) is the k-th component

of f(zi).

Proof. Combining Maurer (2016) and Theorem 3.2.1 of Giné & Nickl (2016) obtains the desired
result. O

Recall NNy, 4,(W,L,K) := {¢g(x) = Aro(Ar_10(---0(Aox)) : k(f) < K}, which is de-
fined in (14). The second lemma we will employed is related to the upper bound for Rademacher
complexity of hypothesis space consisting of norm-constrained neural networks, which was pro-
vided by Golowich et al. (2018).

Lemma B.6 (Theorem 3.2 of Golowich et al. (2018)). ¥n € N, Vx,,..., 2, € [-B, B]? with
B>1,8:={(¢(x1),...,0(xn)) : e NNg1(W,L,K)} CR", then

n

2 BK+/2(L + 2 +log(d + 1))
=1 W \/ﬁ 7

where x; j is the j-th coordinate of the vector (ac:, )7 € R4+,

Definition B.2 (Covering number). ¥n € N, Fix S C R™ and ¢ > 0, the set A is called an p-net
of S with respect to a norm ||-|| on R™, if V' C S and for any u € S, there exists v € A such that
|l — v|| < o. The covering number of S is defined as

N (S, |I]l, ) := min{| Q| : Q is an p-cover of S}
where | Q)| is the cardinality of the set Q.

1
< —
Rn(S) nIC\/Q(L+2+10g(d+ 1)) 1<I}1<a§( )

According to the Corollary 4.2.13 of Vershynin (2018), [N (Bz, ||-||2, )|, which is the the covering
number of 2-norm unit ball in R@")”, can be bounded by (%)(d*f, so that if we denote Ng, (o) is
a cover of G; with radius ¢ whose cardinality |Ng, (0)| is equal to the covering number of Gy, then

*\2
N, (o)] < (m)(d "

Apart from that, we need to employ following finite maximum inequality, which is stated in Lemma
2.3.4 of Giné & Nickl (2016), in later deduction.
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Lemma B.7 (Finite maximum inequality). Forany N > 1, if X;,i < N, are sub-Gaussian random
variables admitting constants o;, then

| < )
]Er%%\)ﬂXA < \/210g2NriI%&}\),<al

Definition B.3 (Excess risk). The difference between sup £(f,.,G)and sup L(f*, G)is
GEG(fny) GeG(f*)
called excess risk, i.e.,

E(fn) = swp L(fa.G)— sup L(f*,Q).
GEG(fn,) Geg(f)

B.2.6 DEAL WITH supgeg(s+) £(f*)

We aim to claim supgeg(s+) £(f*) = 0 in two step. At first, we assert that if there exists a mea-
surable map f satisfying ¥ = E,p.[f(x)f(x) ] be positive definite, then we can conduct some
minor rectification on it to get f such that supcg %) L(f) = 0. At the second step, we are going

to show the required f does exist under Assumption 4.5 and the rectification f also fulfill the re-
quirement that By < || f|[2 < B, which implies that supgeg(s«) £(f*) = 0 as the definition of f*

implies supgeg(s-) £(f*) < subgeg(f) L(f).

Our final target is to result in a measurable map f, s.t B1 < ||fll2 < Bz and sup;cg(s) L(f) =
0, it suffices to find a f : By < | flla < By satisfying both Lajign(f) = 0 and

|BaBas wacato (@) (@2) 7] = La-|| = 0. Note that

|

Em]Ewl,wze.A(:c) [f(ml)f(wQ)T] — Iy

<]

P
EoEay opc (o [f(@0) (@) 7]+ EoEay mmea[f(@1) (fa2) — f(21) ] Lo -

ExEa,ca(@) [f(@1) f(21)T] — Ig- o T EaBayas [ f(@1)ll2]lf (1) = f(2)]2]

EoEaca@) () (@) ] = Lo ||+ BoEaFay | f(1) = f(@2)2- (If]l2 < Ba)

<]

Above deduction tells us that finding a measurable map f : By < || f||2 < Bz making both Lajign (f)
and ||BaEaream £ (@) ()] ~ L

Lemma B.8. If there exists a measurable map f making > = Eqp,[f(x)f(x) ] positive definite,
then there exists a measurable map f making both

Latign(f) = 0 and ||EoEqrc a(ay [f (') f (') ] = Lu-

vanished is just enough to achieve our goal.
F

r=0.

Proof. We conduct following revision for given f to obtain f .

For any x € X, define

o (V=) ife' € A(x)
e ={5” e

where ¥ = VV'T, which is the Cholesky decomposition of Y. Itis well-defined as X is positive
definite. Iteratively repeat this argument for all € X to yield f, then we have

EoBo e [f(@)f(2) ] = VT Ealf(2)f(2) VT = I
and

Vz € X, @1, @s € Ax), || f(1) — fz2)]2 = | f(z) — f(a)]]2 = 0.
That is what we desired. O
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Remark B.2. If we have a measurable partition X' = Uf;{PZ- stated in Assumption 4.5 such
that P, N P; = @ and Vi € [d*], 3z < Ps(P;) < gz, just set the f(z) = e; if z € P,
2 1

where e; is the standard basis of R, then ¥ = diag{P,(P1),..., Ps(Ps),..., Ps(Pg:)}, V1 =

diag{, /ﬁ7 ce \/P.;(qu;)""’\/Rg(%?d*)}’f(w) = ,/ﬁei if x € P, it is obviously that
By < || f[l2 < Ba.

B.2.7 RISK DECOMPOSITION

If denote G (f) = -1 ; F@ ) (@) =g and G*(f) = EoFa, mpe @ f(@1) f(@2) ]~ -,

we can decompose & ( fns) into three terms shown as follow and then deal each term successively.
To achieve conciseness in subsequent conclusions, we employ X < Y or Y = X to indicate the
statement that X < C'Y form some C' > 0 if X and Y are two quantities.

Lemma B.9. The excess risk £(f,,) satisfies

Efn) <2 swp  |L(f,G) = L(.G)|+ inf{ sup L(f.G)— sup L(f*,G)}

FEF.GEG(S) GeG(f) Geg(f*)
statistical error : Egpa approximation error of F : Ex
+sup{ sup L(f,G) — L(/.G()} +2(B3 + Vd*) sup{Ep, [|G()|r] = 16" (£)ll}.
fE€F GeG(f) feF

approximation error of(/j & 5
That is,
E(fn.) <2850 +EF + 55.

Proof. Recall F = NN g 4+(W,L,K, By, Bs), forany f € F,

sup  L(fn,,G)— sup L(f",G)
GEG(fn.) Geg(f)

= sw L(u,G) = sw L(fan@)| ] s L(fa, @)= s L(fa,,G)]
GeG(fns) GEG(fny) GEG(fny) GeG(fns)

+[ s E(fa. @)= swp L(£.G)] 4 [ sw Z(£.G)~ sw £(£.6)]
GeG(fn.) GeG(f) GEG(f) Geg(f)

+[ sw L6 = suwp £(£.G)] + | sup L(£.G)— s L(£.G)].
GeG(f) Geg(f) Geg(f) GegG(f)

where the second and fourth terms can be bounded by E,. In fact, regarding to the fourth term, we
have

sup L(f,G)— sup L(f,G)< sup {L(f,G)—L(f,G)}

Gced(f) GeG(f) GeG(f)
< sup |L(f,G) - L(f,G)|
GeG(f)
< swp |L(f,G) - L(£,G),
FEF,GEG(F)

and the same conclusion holds for the second term.

The addition of first term and fifth term can be bounded by £5. Actually, for the first term

sup E(fns,G)— sup E(fnS,G)Ssup{ sup L(f,G)— sup L(f,G)}

GEG(fn,) GEG(fn,) fer aeg(s) Ged(f)
<sup{ sup L(f,G)—L(f,G(f)},
fEF GeG(f)

(AsG(f) € G(f)
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and for the fifth term, we have

sup L(f,G)— sup L(f,G)

GeG(f) GeG(f)
= sup Ep, [(G(f),G)r] — suwp (G'(f),G)r  (G(f),G)r =Ep,[(G(f),G)r))
GeG(f) Geg(f)
<Ep,[ sup (G(f),G)r] — sup (G*(f),G)r
Geg(f) Geg(f)

=Ep, [IG(NIE] ~ IG" (N
< 2(B3 + Vd*) (Ep, [IG(N)] = 16" (Hlr)
Both [|G()||# < B3 + V" and | G*(f)|r < B3 + Vd* hold)

2(B3 + \/cﬁ)(;lelg{ﬂ‘ips GWNIF] = 6" (£)llr})

which yields what we desired.
Apart from that, the third term sup;cg 5, ( fn, G) — SUDGeg (1) Z( f,G) < 0 because of the
definition of fns. Taking infimum over all f € NN g4 (W, L, K, By, By) yields

E(fng) <280 +EF + 5Aa

which completes the proof. O

B.2.8 BOUND &ga
Lemma B.10. Regarding to Es,, we have

IED [5sta} § ’C\/E
s \/TTb

Proof. We are going to be introducing the relevant notations at first.

For any f : R? — R%, let f : R2® — R24" such that f(z) = (f(x1), f(x2)), where &
(xz1,x2) € R?4. Furthermore, define F := {f : f € NNyqa(W,L,K)} and denote D), =

{&'(V}72 as an independent identically distributed samples to D, which is called as ghost samples
of Dy.

Next, we are attempt to establish the relationship between E p_[Est,] and the Rademacher complexity
of NN g4+ (W, L, K). By the definition of &y, we have

Ep,[Eaal = Ep, | sup LG = L(1,6)]
fGNNd,d* (W,L,]C,Bl,BQ),GEQ(f)
<Ep,|[ sup IL(f.G) — L(f,G)]

(f,G)GNNd‘d* (W,L,]C,Bl,Bg)Xgl
(AS g(f) g gl for any f € NNd,d* (VV7 L>’Cu Bh BQ))
<Ep,| sup IL(f,G) — L(f.Q)]
(f,G)GNNd,d* (W,L,]C)Xgl
(ASNNdd*(WL ’C Bl,BQ) CNNdd*(VV,L,K:))

Ns

—Ep, [ sw |- Eo (@), —Eze 59,0

(F,G)eFxg, ' s 51 P
<Ep,p/ [ sup ’—Zﬁ &), _725 ‘
(f.G)eFxg, s 74 N
~Eoe s [L3e(@).6) - i@, o)) e
(F.G)eFxg: s 1=
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LN, 5 i
<2p.[ sw =Y &u(f@?),0)
(f G)E}-Xgl s i=1

< 4\[2||€||Lip (EDS,E[f sup ni Zzgm 1f5( C'31 )+§u 2f](w2 )“

ENN g g+ (W,L,K) i=1 j=1

+Ee[ sup EZZZ@MGM) (35)

i=1 j=1k=1
< 8V2||¢||LipEbp,, sup — ijafi(x l))‘ + 4v2d*||¢||Lipo
14] P dfeNNdd*(W,L,IC) nS;; g1 ] 4] P
+ 4V g Be [ maxe EZZZ@J’“G”’ (36)
1=1 j=1 k=1
< 8Vl 3N i @]+ 42 e
p 5[ ENNdd*(W’LJC) ng;jzl JJi P
21log (2|,
+4\/§(B§ +\/d>*)|€||Lip\/g(|ngl(g)|) (37
< 8V |[llipEp. e[ su —Z& D)) +4v3d €llLipe
fe/wvdl(w,LJC) Ns i3

2log (%m) @)

+4v2(B3 + ﬁwump\/ E
(NG, ()] < () )

S VL + log s (Lemma B.6 and set p = O(1//n5))

KL
< IfKC > /1
~ \/775 (If K Z vlogns)

Where (34) stems from the fact that & (£(f(2/?),G) — £(f(&?), G)) has identical distribution

with £(f(2' D), G) — £(f(£D),G). As we have shown that ||¢||;, < oo, just apply Lemma B.5
to obtain (35). Regarding (36), as Ng, (p) is a p-covering, for any fixed G € G;, we can find a
Hg € Ng, (p) satisfying ||G — Hg||r < p, therefore we have

max }7 ZZZfz,g k HG jk + ij - (HG)]k) H

GeGr s = ricis
<E gleagx ;ZZZ&J, (He)jk|] +Ee| max ;ZZZ&J, Gjr — (Ha)jk)|]
i=1 j=1k=1 i=1 j=1k=1
ng d* d* da* d* )

(Cauchy-Schwarz inequality)

< Bl Ge/\[g (p) Ng ZZZ&,M@GM‘ | +d*p.

=1 j=1 k=1
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d d
To turn out the last term of (37), notice that ||G||p < B3 + v/d* implies that > > & ; xGjx ~
j=1k=1

n, d° d*
subG (B3 + v/d*), therefore - LSS 3y & j kG ~ subG(B3 + V/d*), just apply Lemma B.7
fi=1j=1k=1

to finish the proof. O

B.2.9 BOUND &r

If we denote

EHYNNg1(W,L,K)) :=
( aW LK) = sw il 1F = glloqou

where C([0, 1]9) is the space of continuous functions on [0, 1]¢ equipped with the sup-norm. Theo-
rem 3.2 of Jiao et al. (2023) has already proven £(H*, NN 4.1(W, L, K)) can be bound by a quantity
related to /C when setting appropriate architecture of network, that is

Lemma B.11 (Theorem 3.2 of Jiao et al. (2023)). Letd € Nand oo = r + § > 0, where r € Ny
and B € (0,1]. There exists ¢ > 0 such that for any K > 1, any W > cK2d+e)/2d+2) guq
L > 2[logy(d+7)] + 2,

EHY NN 41 (W, L,K)) < Ko/,

For utilizing this conclusion, first notice that

[f(u) = " (w)ll2

fe NNd ax (W7LJC)

d*

> (filw) = fi(u))?

= inf
FENN g,q+ (W,L,K) im1

< inf )
- feNN;?*(W,L,K) \ Z i = 12 HC( 0,1]%)

d*
a inf l
_gbeﬂ‘* fGNNdd (W,L.K) zz::Hf 9”0([01
d*
< sup Z inf If — g||2c([011]d)

ger> \| 51 FeNNaa([W/d* ], L, K)

S \/dTS(HayNNd,l(\_W/d*J ) La IC))
s ,Cfoz/(EH*l)7

where the third to last line inequality is from following reason: if f; € NN g1(|W/d*], L,K),
where i € [d*], whose parameter are independent with each other, then their concatenation f =
(fi,f2,-++, fa-)" can be regarded as an elements of N'N 4 4« (W, D, K) with specific parameters,
by following Proposition B.2, we have f € NN g 4«(W, L, K).

Proposition B.2 ((iii) of Proposition 2.5 in Jiao et al. (2023)). Let ¢1 € NNdyd; (w1, L1, K1)
and g3 € NN ga5(Wa, L2, K2), define ¢(x) = (¢1(x), d2(x)), then ¢ € NNagz+a5(W1 +
WQ, max{Ll, LQ}, max{ICl, ,C2})

Above conclusion implies optimal approximation element of f* in NN 44+ (W, L,K) can be ar-
bitrarily close to f* under the setting that /C is large enough. Hence we can conclude optimal
approximation element of f* is also contained in F = NN g 4« (W, L, K, By, Ba) as the setting that
By <[ f*]l2 < Bo.

Therefore, if we denote

T(f) = EitEwl@zGA(w)[Hf(wl) - f(w2>||§] + )‘HEmel,wzeA(m)[f(wl)f($2)—r] — Iy %‘a
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we can yield the upper bound of £ by following deduction

Er=inf{ sup L(f,G)— sup L(f",G)}
feF ceg(y) Geg(f*)

~ WL{T() T
(T =T}

= inf
FENN g,q+ (W,L,K)

< 1€llLip

inf EL Ez|f(2) — f*(x P ition B.1
fe/\//\/;?*(W,LJC) If (&) — f*(@)]2 (Proposition B.1)

i=1

d*
< ||| inf EpEq x 2 i(x') = [ ()
< ”LpfeNN;i(w,L,;q cA( >J > (fil@) = fi (@)
< V2d* ||| ip sup inf 1f = gllcoe
9SS peNN 1 ((W/d* ], L, K/Vd¥)
< V2| 0|LipE (K NN a1 ((W/d* |, L KC/Vd))
< o/ (d+1)
B.2.10 BOUND 53
Recall

g =sup{ sup L(f,G)—L(f,G(f)}+2(BF + Vd*) sup{Ep, [|G(f)llr] - |G ()] r},
fEF Geg(f) feF

then for the first item of 5@, we have

sup{ sup L(f,G)— L(f,G(f))}

feF Geg(f)
= sup{L(f.G*(f) - L(£.G()}
feF
< V2B, sup ||G*(f) — G(f)||r (Look up Table 2 to yield £(u, ) € Lip(v/2B2))
feF
1 & i i
< V282 51 |[Ea B, e ate) [ (00) (@) ] = -3 S @)

i=1

And regrading to the second term, we can yield

sup{Ep, [|G(H)llr] = IG*(F)lr}
feF

— sup {EDS H ni is:f(wgl))f(wél))—r _ Id*HF — ’
S =1

fer

]EmEml,mzeA(m)[f(wl)f(wQ)T] — 1o HF] }

< sup {Bp, || 5" H@l)f (@) ~ BaBa, mpeio @) fan) ]| ]}

° =1

=3 @ @)~ Bk, e @S @) }]

i=1

Combine above two inequalities to turn out

0,155 5 o, 30 BB, oo [ 32 M0 ~ M

< [MlipEp, |

EoFa, wsca(e)|f(E)] - EX i f@(i))Hz}
=1
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where M(u) = ujug, where u;,uy € R?, we have shown it is a Lipchitz map on {u €
R2?" : 4 < /2B,} in Proposition B.1. By Multidimensional Chebyshev’s inequality, we know

F(& 7 (@) -E[f(®)]I32 2
that Pé(”ﬂ% z:ZL:sl f(j(Z)) - ]EwEtcl,mzeA(m) [f(:c)]”2 =z n11/4) < M\/w < \8/% as
| f(&)|l2 < v/2Bs. Thus we have

8B3
NG
(As || f(2)]|l2 < V2Bs)

1 R ~ . 1
EDS[SQA] 5 /4 PS(HTT Zf(:l:( )) _EwEml,mzeA(m)[f(x)mQ > n71/4) + 2\/532 :
5 =1 s

S

1 1
< —— +16V2B3
_n;/4+ V2B =
<

ns/

B.2.11 TRADE OFF BETWEEN STATISTICAL ERROR AND APPROXIMATION ERROR

Let W > ci(2d+2)/(2d+2) and [, > 2[log,(d + )] + 2, combine the bound results of statistical
error and approximation error to yield

K
Vs

Ep,[E(fn.)] < 2Ep, [Extal + EF + 2Ep, [E5] S + e/,

d+1
Taking KC = nd* """V to yield

Ep, [E(fn.)] S ns 2@F 0.

As we have shown that supgcg s+ L(f*,G) = 0, above inequality implies

Ep,[ sup L(fo,,G)] <ny ToroD,

s

GEG(fn,)

2d+a

To ensure above deduction holds, We need to set W > ens """ and L > 2[log,(d + )] + 2.

B.2.12 THE PROOF OF MAIN THEOREM

Next, we are going to prove our main theorem 4.2. We will state its formal version at first and then
conclude Theorem 4.2 as a corollary.

\/7111“97)5(271)715(;‘) (%n Pty +¢(ns)) +2v/d* BoMn, 20D

i#J

To notation conciseness, let p = , where

Bge(Uéns> ;62"'8) Eng 7fn5)

7min{a,u,<,-r} 7min{a,u,c,-r}
Cis a constant, 0 < ¥(n,) < (1 — olne) 4 gy TEFID 2+ (1— aé”s)) +ng 2D then
the formal version of our main theoretical result can be stated as follow.

min{o,v,s,7} 2d+a

Lemma B.12. When Assumption 4.1-4.5 all hold, set ¢,,, = m2ng SCFEU W > o ST

d+1
L > 2[logy(d+7)] +2,K = n“**Y and A = A, in Assumption 4.3, then we have

N _ min{a,v,c}
Ep,[R}(en,s o)) S s H0FTY (38)
and

min{«a,27}

Ep, [max e () T e ()] S 1= olm) 4 n,~ Herdtn (39)
i#j

Furthermore, If@(agns), 5§n3), Engs fns) > 0, then with probability at least 1 — p, we have

min{«a,v,c}

Ep, [Err(Qy )] <(1- o)) + O(ng ST,
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Proof. First recall the conclusion we’ve got in Theorem B.1

4
~ m A
Ep, [R2(e, fu.)] < E—Q(EDS[ sup  L(fn,, Q)] +8Bad* MKp +4B3d*Kn),
G€EG(fny)

2 SEp,| swp  L(fa,, G)] +Ep, (00 bnrc, fo)])

Ep, max | (8) ()] € | ——r—v
DS[i#j |:ut( ) /U't( )H TZI;El?ps(l)ps(J)(/\ E Geg(f"s)

—|— 2 V d* BQMICP,
and with probability at least

\/W (%EDS [SuPeg( ) £(fnes Q)]+ (05, 85,6, fn)) +2Vd* By MKp

1-— =
Bge(ahdtagmfns)

i

we have

2 ~
Ep, [Err(Qy, )] < (1—00)+ n;\/IEDS[ sup  L(fn,,G)| + 8B2d* MKp + 4B3d* K1,
Geg(fns)

where

a 2
V(0w 02, fr) = 4B3[ (1 0ut B2 ) 4 (1 - o)

Kot fip [ s L(fa, G(3-
G€G(fn,)

A K
205 + %;r?f) + ?—;EDS[ sup E(fnS,G)]( > pi’ﬂ))} + By (52 +
GeG(fny) k=1

|-

= N )

GEG(fn,)

To obtain the conclusion shown in this theorem from above formulations, first notice p =

 utd+1 B <
ns "t and n = ng 7Y by comparing Assumption 4.4 and Assumption B.1, apart
from that, we have shown Ep_[supq, g ;. ) L(fn.,@)] < ns D in B2.11 and known
(n2)  rtd+1 ® _ min{a,v,s,7} d+1
85" < ng 2D combining With the setting £,. = m?n, "7V K = petY

implies that Kp/e2 < n R ’17/62 < p, Terem K50 < op,TEere and

ns
2

Ep, [SUPGeg(f“ns) E(fnsa )]/Ens < ns

m
Plugin these facts into the corresponding term of above formulations to get what we desired. O

Let us first state the formal version of Theorem 4.2 and then prove it.
Theorem B.3 (Formal version of Theorem 4.2). If Assumptions 4.1-4.5 all hold, set W >

2d+a

g4l
ns T L > 2Mlogy(d+7)] + 2,K = nZCTY and A = A, in Assumption 4.3, then,

_ minf{a.v,,T}
provided that ns is sufficiently large, with probability at least JgnS) — O(ns 1olatdty ) —

(9(%), we have

v/ ming ng (k)
min{a,v,s}

Ep, [Err(QJ;ﬂs)} (1— Ut ) + O(n, SEFFT),

Proof of Theorem 4.2. Note that the main difference between Theorem B.12 and Theorem 4.2 is the

condition O(o () §§"S), Ene)s fn) > 0, so we are going to focus on whether this condition holds
under the condltlon of Theorem 4.2.

To show this, first recall

A~

Mt

9(U§ns),5§ns),€nsaﬁzs) = Fmin(0§n5)75§n5)75nsafns) - \/2 - 2Fmin (ns 6(n5 Ensafns> - 9
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3 2maxke[1<] Hﬂt(k) - Nt(k)H2
B, '

Note (32) and dominated convergence theorem imply R; (e, _, fn) — 0 a.s., thus

M) (1+ (31)2 B jesine) B QEnS) 1

(ns) ¢(ns) £ (ns)
1—‘min 75 s€ngyrJng) = ( -
(Ut t € s f s ) Oy minZ D (Z) 32 BQ B2

~(5)

L—ming ek [|4:(K)|I>/B3

Combining with the fact that % = < % canyield

2
ng ng ; ng ng A Al
Fmin(o't( b)76t( b)vsnsafns) - \/2 - 2Fmin(0}£ ),5§ )7€7L37fn5) - # > 1/2

if we select proper B; and Bs.

Besides that, by Multidimensional Chebyshev’s inequality, we know that

B, 64\/Ez€5t(k)]Ez/e,A(z) 1f(z") = me (k)13 128
7) S S ’
8 B2\/2n,(k) Ba /4 (k)

so that @(Ut(”‘*‘),ét(”‘*),sns,fns) > 1 with probability at least 1 — % if n, is large
24/ ming ny

Py(||fue (k) = pe(k)|2 >

enough, of course the condition G(Ut(n‘“), 5t(n5), En,) fn) > 0 in Theorem B.12 can be satisfied.

Therefore, with probability at least

128K _min{a.vs,7} 1
l-p— ——— Z 1— (1 _ UgnS)) _ (’)(ns T6(atd+1) ) _ O(.i
By y/ming ny (k) ming n (k)
o) Ony WY oL
miny n¢ (k)
we have the conclusions shown in Theorem 4.2, which completes the proof. O

C EXPERIMENTAL DETAILS

Implementation details. Except for tuning A for different dataset, all other hyper parameters used
in our experiments are align with Ermolov et al. (2021). To be specific, we train 1, 000 epochs with
learning rate 3 x 10~3 for CIFAR-10, CIFAR-100 and 2 x 10~3 for Tiny ImageNet. The learning rate
warm-up is used for the first 500 iterations of the optimizer, in addition to a 0.2 learning rate drop
50 and 25 epochs before the end. We adopt a mini-batch size of 256. Same as W-MSE 4 of Ermolov
etal. (2021), we also set 4 as the number of positive samples per image. The dimension of the hidden
layer of the projection head is set as 1024. The weight decay is 10~¢. We adopt an embedding size
(d*) of 64 for CIFAR10, CIFAR100 and 128 for Tiny ImageNet and employ the trick mentioned in
Ermolov et al. (2021) during the pretraining process. The embedding size of BarlowTwins (Zbontar
et al., 2021) is different from above as BarlowTwins need much larger representation size (1024)
to guarantee its performance. As we see, the performance of our model can sufficiently outperform
BarlowTwins, revealing the alignment term is pretty crucial for downstream performance practically.
The backbone network used in our implementation is ResNet-18.

Image transformation details. We randomly extract crops with sizes ranging from 0.08 to 1.0 of
the original area and aspect ratios ranging from 3/4 to 4/3 of the original aspect ratio. Furthermore,
we apply horizontal mirroring with a probability of 0.5. Additionally, color jittering is applied with
a configuration of (0.4;0.4;0.4;0.1) and a probability of 0.8, while grayscaling is applied with a
probability of 0.2. For CIFAR-10 and CIFAR-100, random Gaussian blurring is adopted with a
probability of 0.5 and a kernel size of 0.1. During testing, only one crop is used for evaluation.

Evaluation protocol. During evaluation, we freeze the network encoder and remove the projection
head after pretraining, then train a supervised linear classifier on top of it, which is a fully-connected
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layer followed by softmax. we train the linear classifier for 500 epochs using the Adam optimizer
with corresponding labeled training set without data augmentation. The learning rate is exponen-
tially decayed from 1072 to 1075, The weight decay is set as 10~°. we also include the accuracy of
a k-nearest neighbors classifier with k& = 5, which does not require fine tuning.

All experiments were conducted using a single Tesla V100 GPU unit.
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