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Abstract

Large language models (LLMs) often require
task-relevant knowledge to augment their inter-
nal knowledge through prompts. However, sim-
ply injecting external knowledge into prompts
does not guarantee that LLMs can identify
and use relevant information in the prompts to
conduct chain-of-thought reasoning, especially
when the LLM’s internal knowledge is derived
from the biased information on the pretraining
data. In this paper, we propose a novel causal
view to formally explain the internal knowl-
edge bias of LLMs via a Structural Causal
Model (SCM). We review the chain-of-thought
(CoT) prompting from a causal perspective, and
discover that the biased information from pre-
trained models can impair LLMs’ reasoning
abilities. When the CoT reasoning paths are
misled by irrelevant information from prompts
and are logically incorrect, simply editing fac-
tual information is insufficient to reach the cor-
rect answer. To estimate the confounding effect
on CoT reasoning in LLMs, we use external
knowledge as an instrumental variable. We fur-
ther introduce CoT as a mediator to conduct
front-door adjustment and generate logically
correct CoTs where the spurious correlation be-
tween LLMs’ pretrained knowledge and task
queries is reduced. With extensive experiments,
we validate that our approach enables more
accurate CoT reasoning and enhances LLM
generation on knowledge-intensive tasks.

1 Introduction

For knowledge-intensive tasks (Petroni et al., 2021;
Hu et al., 2023; Sun et al., 2023b), specific knowl-
edge is required in order to obtain an accurate re-
sponse, which can be out of the distribution of
LLMs’ internal knowledge (Yao et al., 2023; Yuan
et al., 2023c). Since frequently fine-tuning LLMs
can be highly expensive and inefficient (Zhai et al.,
2023), the LLM’s internal knowledge can also be
outdated and cause knowledge bias problems in
LLMs (Zhang et al., 2023b; Wu et al., 2023; Zhang
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Figure 1: The LLM internal knowledge bias can trigger
the usage of irrelevant information in the prompts, gen-
erate incoherent reasoning chains, and impair model’s
logical reasoning ability. This example is derived from
the experiments by GPT3.5 on HotpotQA. Please note
that “The heavy metal band formed in Jakarta is Kekal’
refers to a heavy meta band which is different from
Biohazard. However, GPT3.5 incorrectly assume that
"The heavy metal band’ refers to Kekal, and provides
incorrect information in the step 3 of chain-of-thought.

et al., 2023c). In order to efficiently incorporate
external knowledge, prompt engineering methods
try to retrieve task-relevant language evidence into
prompts (Liu et al., 2023; He et al., 2022; Zhu et al.,
2023b; Shao et al., 2023; Trivedi et al., 2022a).
Additionally, external knowledge bases can also
directly augment and edit the knowledge-injected
prompts (Wen et al., 2023; Sun et al., 2023a; Baek
et al., 2023; Zhao et al., 2023b). However, sim-
ply injecting external knowledge in prompts does
not guarantee that LLMs can identify and use rele-
vant information in the prompts (Shi et al., 2023a;
Weston and Sukhbaatar, 2023), especially when
the LLM acquires biased information on the pre-
training data (Zhang et al., 2023b), such that the
LLM may use the irrelevant information from



prompts. The knowledge bias in LLMs can fur-
ther cause knowledge conflict or misunderstanding
between the external knowledge and the model’s in-
ternal knowledge (Mallen et al., 2023; Wang et al.,
2023g,a). In such cases, LLMs may generate in-
correct and unexpected responses (Li et al., 2023c;
Xie et al., 2023).

When the LLM relies on chain-of-thought (CoT)
reasoning for complex tasks, the biased informa-
tion from pretrained models further impairs LLMs’
reasoning abilities. To eliminate the factual errors
in the generated CoT paths, many works propose to
verify and post-edit the generated reasoning paths
before prompt again (Zhao et al., 2023b; Peng et al.,
2023; Wang et al., 2023c). However, the logical
reasoning errors can not be easily detected or cor-
rected, as the effectiveness of factual verification
and post-editing reasoning chains can be limited
to simply injecting more knowledge. For exam-
ple in Figure 1, given the query (e.g., “"Judgment
Night" was collaborated by Onyx and the heavy
metal band formed in which city?”), the LLM may
generate logically incorrect CoT (e.g., CoT 1), in
which the last chain is deviated from the reasoning
paths (e.g., instead of the origin of “Biohazard”,
some arbitrary band mentioned). Such logical inco-
herence can be caused by the spurious correlation
between the query (e.g., the concept “the heavy
mental band formed in”’) and the LLLM’s internal
knowledge understanding. Thus, even the LLM
is prompted with the gold-truth context, the spu-
rious correlation can lead the LLM to find some
arbitrary evidence regardless of its logical connec-
tion to the previous chain, as long as it contains
the exact phrase. In such cases, factual verification
methods are not capable of detecting logical rea-
soning errors, and the answer can still be incorrect
even with the facts verified as correct.

In this work, we propose a novel causal view
via a Structural Causal Model (SCM) (Pearl et al.,
2016) to formally explain the internal knowledge
bias of LLMs. To measure spurious correlation,
we propose to use external knowledge as an in-
strumental variable (Morgan and Winship, 2015)
to estimate the Average Causal Effect (ACE) of
CoT reasoning paths in LLMs through causal in-
tervention. Based on the measurement of ACE, we
can further introduce a CoT sampling method to
find the best CoT as a mediator and conduct front-
door adjustment (Pearl, 2009). In this approach,
the spurious correlation between LLMs’ internal
knowledge and task queries can be reduced, which

ensures correct CoT reasoning and LLM genera-
tion. We summarize our contributions as follows:

* We discover that the bias from pretrained
LLMs can trigger the usage of irrelevant in-
formation in the prompts, generate incoherent
reasoning chains, and impair model’s logical
reasoning ability.

* To formally understand the bias affecting CoT
reasoning abilities, we propose a novel causal
view introducing the external knowledge in
prompts as an instrumental variable. This
causal view uncovers the spurious correlation
between queries and LLMs’ internal knowl-
edge understanding.

* To alleviate the bias and ensure correct CoT
reasoning, we estimate the average causal ef-
fect (ACE) between the CoT and the answer,
and further propose a CoT sampling method
to conduct the front-door adjustment.

* We conduct multiple experiments on various
knowledge-intensive tasks as well as num-
bers of LLM backbone models, which demon-
strates the effectiveness of our method.

2 Related Work

LLMs in Knowledge-intensive Tasks. In
knowledge-intensive tasks (Petroni et al., 2021;
Hu et al., 2023; Yang et al., 2018; Welbl et al.,
2018) the LLM is asked to provide responses based
on multiple pieces of evidence located in the con-
text or from LLMs’ intrinsic knowledge. Retrieval-
augmented prompting methods focus on how to
identify accurate and comprehensive evidence from
support documents (Hoshi et al., 2023; Qian et al.,
2023), in-context examples (Press et al., 2022;
Khattab et al., 2022), knowledge bases (Trivedi
et al., 2022a; Xu et al., 2023; Wang et al., 2023c;
Feng et al., 2023; Zhu et al., 2023a), knowledge
graphs (Wen et al., 2023; Sun et al., 2023a; Sal-
nikov et al., 2023; Zhang et al., 2023a) and human
feedback (Zhang et al., 2023b). However, extensive
knowledge-injected prompts can introduce irrele-
vant information to distract LLMs (Shi et al., 2023a;
Wang et al., 2023h) and cause LLMs’ unpredictable
behaviours (Li et al., 2023c; Chen et al., 2023b). In
this case, the issue of spurious correlations between
the context and the LLM can become more signifi-
cant. Based on the motivation, instead of focusing
on how to identify the best knowledge evidence,
we investigate how to find logically correct CoT
reasoning paths.



Chain-of-thought Prompting. Chain-of-thought
prompting has shown great potential in explaining
LLMs’ thinking process (Yuan et al., 2023a; Li
and Du, 2023) and answering multi-hop questions
(Wang et al., 2023d; Ma et al., 2022) in several
complex reasoning tasks (Fu et al., 2023). How-
ever, further works also mention issues of faithful-
ness and self-consistency in LLMs (Lanham et al.,
2023; Turpin et al., 2023). In order to improve the
faithfulness of intermediate chains, several works
propose to verify and edit (He et al., 2022; Wang
et al., 2023e; Zhao et al., 2023b) the factual er-
rors in unfaithful chains, supervised by an exter-
nal knowledge base. (Radhakrishnan et al., 2023;
Zhu et al., 2023a) propose to decompose complex
questions and answer them individually. The self-
consistency principle is also considered in chain-
of-thought distillation (Wang et al., 2023f). While
factual verification and post-editing methods can
fix factual errors and alleviate inconsistency prob-
lems in reasoning paths, how to detect logically
incorrect chain-of-thoughts is less explored. We
argue that such logically incorrect reasoning paths
can lead the LLM astray from the right direction of
finding the answer, even with the chains factually
correct. Similar to previous works, our method also
requires the LLM to first generate some candidate
chain-of-thought reasoning paths, which makes our
method using similar numbers of API calls (or in-
ference times) per sample.

Causal Intervention in Language Models. Previ-
ous causal intervention methods in language mod-
els are focusing on entity-level spurious correlation
(Wang et al., 2023b; Zeng et al., 2020; Yang et al.,
2023) or sentence-level selection bias (McMilin,
2022). Since LLMs are black-box models (Gat
et al., 2023; Cheng et al., 2023), direct methods
of causal-aware model reparameterization methods
are limited in usage. With causal explanability ex-
tracted from the models (Wu et al., 2021; Zhao
et al., 2023a), further studies introduce human-in-
the-loop debiasing methods (Zhang et al., 2023b;
Wu et al., 2022, 2021). Human feedback can serve
as the unbiased intermediate verification source.
However, human effort is normally more expen-
sive and involving humans in the loop may reduce
the efficiency of the system. Instead, our method
uses counterfactual context to automatically mea-
sure the causal effect. Without additional human
effort or data resources for finetuning, our method
can automatically find better CoT and improve the
performance of LLMs.

3 A Causal View

To understand the causal relationships in
knowledge-intensive tasks, we introduce a Struc-
tural Causal Model (SCM) (Pearl et al., 2000) and
identify the internal knowledge understanding
of the LLMs (Z) as the confounder. In Figure
2a and Figure 2b, we formulate two types of
conventional knowledge injection methods as two
SCMs respectively. With the SCMs, we explain
the effectiveness of conventional knowledge
injection methods as well as their limitations. We
further present the SCM of our method, debiasing
chain-of-thought (DeCoT), in Figure 2c. The
formulation of our method DeCoT is illustrated in
Figure 2d and explained in Section 5.
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Figure 2: Structural causal graphs for (a) injection of
external knowledge (i.e., context), (b) chain-of-thought
prompting and (c) our approach using external knowl-
edge as an instrumental variable (detailed in Section
5.2). Our proposed debiasing chain-of-thought method
DeCoT is illustrated in (d).

3.1 SCM for External Knowledge

In Figure 2a, the causal path £ — @) < Z repre-
sents the knowledge injection process, in which E/
denotes the injected external knowledge, () denotes



the queries in the inference stage and Z denotes the
LLM’s internal knowledge. Ideally, since in this
causal path, the query (@) is the collider influenced
by the other two variables, the external knowledge
(E) and LLM’s internal knowledge (Z), the spuri-
ous correlation can be alleviated as long as E and Z
are causally irrelevant (Pearl et al., 2000). However,
most conventional knowledge injection techniques
(Baek et al., 2023; Li et al., 2023b) simply incorpo-
rate the external knowledge as the context which
is prefixed to the input prompt. Thus, the causal
influence of the external knowledge on the query
is also determined by the LLM, which makes F
and Z unable to be regarded as independent vari-
ables and the spurious correlation between () and
Z remains.

3.2 SCM for Chain-of-thought

Chain-of-thought (as in Figure 2b) is introduced
(Lietal., 2023a; Wei et al., 2022; Fu et al., 2023)
to make the LLM explain and follow the reasoning
path before giving the final answer. The causal
path Q — C' — A shows that the chain-of-thought
reasoning path (C') can serve as the mediator be-
tween the query (Q)) and the answer (A). However,
since the chain-of-thought reasoning path is also
prompted from the LLM (Wei et al., 2022; Fu et al.,
2023), it can also be causally dependent to LLM’s
internal knowledge, and thus forms the spurious
correlation between C' and Z. Notably, knowl-
edge editing methods (Zhao et al., 2023b; Li et al.,
2023a; Peng et al., 2023) can correct the factual
errors in the context and the reasoning paths, while
the reasoning logic remains incorrect.

4 Preliminaries

4.1 Task Formulation

For knowledge-intensive question-answering tasks,
the model is prompted with a query @ =
[q91,92,--.,qn] and a passage of context F =
le1, e, ..., €] which contains the supportive in-
formation to the query. Given the query () and
the context F/, the model 6 is prompted to recur-
rently generate the response Y by sampling from
the conditional probability distribution,

Yt ~ Po (Z/|E7 Q,y<t) .

As illustrated and explained in Figure 2a of Sec-
tion 3.1, the model directly generates the answer
A = a1, ag,...,an,] without providing the inter-
mediate reasoning process (i.e., A =Y).

Chain-of-thought Prompting. Following (Wei
et al., 2022), we add the additional instruction
to ask the model to generate its reasoning paths
C by explaining step-by-step, before generating
the final answer A (i.e., Y = [C, A]). By sam-
pling N different chain-of-thought reasoning paths
C = [C1,Cy,...,Cy]| conditioned on the query
(Q and the context F, we can further condition the
generation process of the final answer A,

Ci~po (C|E,Q), ey
Air ~po (AlE,Q,C)). 2

In Equation 1, since conventional chain-of-thought
reasoning paths C' are also generated from the LLM
in which the pretrained internal knowledge Z can
also confound on the chain-of-thought C' gener-
ation process. As explained in Section 3.2, the
confounding effect can not only affect the factual
accuracy of the generated chain-of-thought, but
also lead to incorrect reasoning logic. Thus knowl-
edge editing and verification methods (Zhao et al.,
2023b; Li et al., 2023a; Peng et al., 2023) which
solve the former problem, are limited in correcting
the reasoning logic of the chain-of-thought.

5 DeCoT: Debiasing Chain-of-thought
5.1 SCM for DeCoT

In Figure 2c, we propose to use the chain-of-
thought reasoning path (C) which serves as the
mediator between the query (()) and the answer
(A), to enable front-door adjustment. Based on
the front-door criterion (Pearl et al., 2000), the me-
diator (C') should be causally independent to the
confounder (7). However, in practice, the chain-
of-thought reasoning paths are also prompted from
LLMs, which suggests potential spurious correla-
tions between the chain-of-thought reasoning path
(C) and LLM’s internal knowledge (Z). Thus, to
track the bias from the unobserved confounder Z,
we introduce the external knowledge as the instru-
mental variable (IV) (Kawakami et al., 2023; Kil-
bertus et al., 2020; Yuan et al., 2023b). By chang-
ing the instrumental variable F (i.e., the external
knowledge), we can estimate the true causal rela-
tionship between C and A (Yuan et al., 2023b). For
example, in Figure 2d, two pieces of counterfactual
external knowledge (e.g. “Biohazard formed in
Chicago” and “Judegment Night was by Acrassi-
cauda formed in Iraq”) are introduced in the same
example of Figure 1 and the average causal effect
(ACE) can be calculated by the average difference



of the former response distribution. Due to the
spurious correlation in the third chain of thoughts
of “CoT 17, the response generated from “CoT 1”
remains unchanged (i.e., ACE = 0), regardless of
the counterfactual evidence. While for the correct
reasoning path “CoT 27, the generated response
changes corresponding to the different counterfac-
tual evidence (i.e., ACE > 0).

5.2 External Knowledge as an Instrumental
Variable

We model the external knowledge as an instru-
mental variable F, such that we can change the
instrumental variable ' and measure the ACE met-
ric, to understand the causal relationship between
the CoT C and the answer A (Yuan et al., 2023b).
Due to the limitation of directly controlling the
generation process of chain-of-thought reasoning
paths, we perform the causal treatment by including
counterfactual knowledge through the instrumental
variable E to understand the causal relationship
between the chain-of-thought C' and the answer A
(Kawakami et al., 2023; Yuan et al., 2023b). Specif-
ically, we query the LLM to extract T" factual en-
tities V' = [v1,v2,...,vr| which correspond to
T counterfactual context £, £, . .., BT, (prompt
design explained in Appendix B). In each sample

E_;k: [617627"’77}j”"’6l]7

the corresponding factual entity v; is to be replaced
by counterfactual entities. Then, the LLM is fur-
ther prompted to propose P counterfactual entities
V=010, ?U;: p) to f:ach -extracted e.:ntity
v; € V (prompt design explained in Appendix B).
P counterfactual context samples

e,k < P (3)

TeWik) = lene2, 00y,

are constructed, by replacing the corresponding fac-
tual entity v; in each sample E7. In this approach,
we can estimate the average causal effect (ACE)
corresponding to each chain-of-thought reasoning
path Cj,

ACE(Ci, vj) = E(Aldo(E), Q,Ci) — (4
E (Aldo(E3),Q,Ci)
=Eue evelpo (AIE, Q, Ci) —
Do (A|E;,k(v}:k)a Q, Ci)L

in which the average causal effect measures the
decreased confidence of the answer with counter-
factual context as the evidence. We observe that

the average causal effect of different factual en-
tities can be various to the context, queries and
chain-of-thoughts, which we further conduct analy-
sis experiments in Section 6.4. In order to consider
the overall causal effect of the external context on
each chain-of-thought reasoning path, we propose
to measure the average causal effect of all the inter-
vened entities,

ACE(C;) = Ey;ev ACE(Cy,v5),  (5)

in which we assume the intervened entities v; are
sampled from a uniform distribution of the external
context E.

5.3 Average Causal Effect Guided
Chain-of-thought Sampling

With the measured ACE scores, we develop an ef-
ficient sampling approach to obtain high-quality
CoTs with more coherent reasoning chains. Since
LLMs are black-box models (Gat et al., 2023;
Cheng et al., 2023), direct causal intervention meth-
ods on the parameterization of the input query @)
and the context I/ are limited. In addition, in-
serting additional deconfounding layers (Zhang
et al., 2020; Wu et al., 2022) to finetune the LLM
requires considerable computation and data re-
sources, which makes these methods less efficient.
We propose to use the sampled chain-of-thought
reasoning paths C' as the mediator variable to con-
duct the front-door adjustment.

Based on the measured average causal effect
(ACE), we construct the importance scores in terms
of how the final answer A reacts to the different
chain-of-thought reasoning paths C' that intervened
by the context F,

C* ~ softmax [pg (C;|E, Q) - ACE(C;)], (6)

and the front-door adjustment can be realized by in-
troducing the mediator C'* sampled with the largest
average causal effect in the reasoning path,

A"~ P(A|E,Q,do(C)) (M
x pg (A|E,Q,C7).

The causal effect on the sampled answer A* is
mediated by the sampled CoT reasoning path C*,
whose mediator-outcome confounding effect is con-
trolled and alleviated.

We summarize our algorithm DeCoT in Algo-
rithm 1 (Appendix D).



HotpotQA MuSiQue SciQ WikiHop Average

Model Decoding | EMt FIt | EMt FIt | EM{ Fit | EMt FIt | EMt  FIt
CoTwioctx | 741 1799 | 257 850 | 11.09 17.80 | 412 688 | 630 12.79

Flan-T5 CoT 948 2370 | 19.53 2761 | 51.75 63.79 | 15.02 21.79 | 23.95 3422
CAD 9.65 2477 | 20.56 2857 | 59.69 69.94 | 1728 2431 | 26.80 36.90
DeCoT 1172 2870 | 20.56 30.54 | 63.55 75.64 | 22.34 28.41 | 29.54 40.82

CoTwiloctx | 1.67 3.04 | 056 144 | 408 545 1.19 1.64 1.88  2.89

LlaMA-2 CoT 8.86 2679 | 2022 27.46 | 30.64 39.59 | 23.10 28.23 | 2071 30.52
CAD 10.53 3098 | 21.62 28.10 | 33.93 4135 | 2350 29.81 | 2240 32.56
DeCoT 10.03 3148 | 22.75 30.99 | 48.58 57.95 | 27.35 34.46 | 27.18 38.72

CoTwiloctx | 5.60 3097 | 209 796 | 2982 43.18 | 11.62 1931 | 12.28 25.36

GPT-3.5 CoT 510 32.55 | 2230 3422 | 5453 68.50 | 2540 3525 | 26.83 42.63
CAD 543 3524 | 2414 3681 | 57.74 7073 | 2837 3845 | 2892 4531

DeCoT 1021  40.19 | 31.28 44.14 | 64.61 78.10 | 31.89 4345 | 34.50 51.47

Table 1: The comparison results of DeCoT based on different backbone LLMs on four knowledge-intensive tasks.
The best results for each backbone model and each dataset are highlighted in a bold font.

6 Experiments

6.1 Dataset and Evaluation

Knowledge-intensive tasks commonly require each
question to be paired with a paragraph of context
as support evidence (Li et al., 2023a; Zhu et al.,
2023b; Su et al., 2023; Jang et al., 2023). We follow
the evaluation protocols in (Yang et al., 2018) and
conduct our experiments on datasets as follows:
HotpotQA (Yang et al., 2018) contains questions
which require multi-step reasoning over multiple
support contexts. For each question, support docu-
ments are provided in the dataset, which are used
as the context in our experiments.

MuSiQue (Trivedi et al., 2022b) is another multi-
step question answering dataset. Similar to previ-
ous work (Ramesh et al., 2023), we conduct our
experiment on the challenging part of the dataset,
in which questions are annotated as > 4 hops.
WikiHop (Welbl et al., 2018) is a multi-choice
multi-hop reasoning dataset. We use the queries in
the dataset as the questions (Tu et al., 2019) in our
setting. For baselines and our method, the models
are prompted to generate the answers free-form
instead of retrieving from the candidate list.

SciQ (Welbl et al., 2017) is a domain-specific ques-
tion answering task which contains only scientific
questions. We evaluate baselines and our method
on test samples with support evidence.

For datasets which lack of test labels, we follow
the same evaluation protocol as (Press et al., 2022;
Shao et al., 2023; Chen et al., 2023a) and use the
development sets as our test set. We use the Exact

Match (EM) and F1 proposed in (Yang et al., 2018)
as our evaluation metrics.

6.2 Baseline and Backbone Model

Following (Shi et al., 2023b; Su et al., 2023; Trivedi
et al., 2022a), we have applied our method to differ-
ent pretrained LLMs: Flan-T5-XXL (Chung et al.,
2022) which has 11B model parameters, LlaMA-
2-7B (Touvron et al., 2023) and GPT-3.5 Turbo
(Brown et al., 2020). For LlaMA-2-7B model, we
choose the finetuned versions from human feed-
back (Christiano et al., 2017), which can generally
yield more stable chain-of-thought reasoning paths.

For baselines, we compare our method with a
conventional chain-of-thought prompting method
(CoT) (Wei et al., 2022) and context-aware con-
trastive decoding method CAD (Shi et al., 2023b).
We also include the baseline which devises conven-
tional chain-of-thought prompting methods with-
out context (CoT w/o ctx) (Wei et al., 2022), in
order to investigate the effect of context in different
datasets. The implementation details are described
in Appendix A.

6.3 Main Results

Table 1 presents evaluation results on the four
datasets with three LLM backbone models.

Comparison with Baselines. As we expected, for
all LLMs the performance are significantly lower
when the context of supporting evidence is ab-
sent. Because of the poor performance of the direct
prompting method, the context-aware contrastive
decoding (CAD) baseline is able to use its answer



distribution as the negative penalty on the positive
distribution which is obtained by prompting with
both the query and context. However, with the
gold-truth context provided, the negative answer
distribution which is unsupported by either internal
or external knowledge can be more random, which
limits the effectiveness of contrastive decoding
methods. On the other hand, our method DeCoT
achieves generally higher improvements on regular
CoT comparing with CAD by detecting logically
incorrect CoTs and penalizing on them. Instead of
simply contrasting the distributions of positive and
negative answers, we use counterfactual context
to examine the answer distribution changes, which
provides a more fine-grained measurement of the
causal effect on LLMs’ internal knowledge bias.
The consistent performance improvements suggest
DeCoT can more accurately detect logically incor-
rect CoTs by the measurement, and perform more
targeted causal intervention.

Logical Reasoning Performance Understanding.
We also observe that DeCoT gains relatively bet-
ter F1 improvements on the SciQ dataset, which
reach to 18.58%, 46.37% and 14.01% for Flan-T5-
xxl, LlaMA-2-7B and GPT-3.5 models respectively.
This is because for scientific questions, accurate
logical reasoning paths are more strictly required,
which makes the correctness of the generated CoTs
more crucial. Thus, DeCoT’s better performance
on the SciQ dataset suggests DeCoT is more effec-
tive in debiasing LLMs’ logical reasoning ability
in CoT.

6.4 Impact of the Selected Entities

We evaluate the impact of the number of the se-
lected entities on the MuSiQue dataset based on
the backbone model GPT-3.5. Since annotations in
MuSiQue guarantee the minimal number of chains
of thought is 4 hops (Ramesh et al., 2023), more
factual evidence is required to support the final
answer, which makes the impact of the selected
entities higher in this case.

To illustrate the trend, we only conduct exper-
iments on number of the selected entities 7" with
these representative values considering the expen-
sive GPT API costs. In Figure 3a, we show the
F1 and EM performance w.r.t. the different number
of selected entities T' = 0, 1, 3, 5. We include the
result of 7' = 0 which indicate the regular CoT
prompting method. With a larger 7', it has a higher
probability for DeCoT to find more important en-
tities to perform causal intervention on. However,
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Figure 3: Sensitivity studies on impact of the number
of the selected entities and alternative entities. We also
include the 7' = 0 and P = 0 data points indicating the
performance of regular CoT prompting methods. The
experiments are conducted on the GPT-3.5 backbone
model on the MuSiQue dataset.

including more causal intervention experiments re-
quires more counterfactual prompting, which is at
the expense of more API calls or more inference
time. We observe that for context annotated as
the gold truth, we can accurately find good factual
entities by selecting the most popular entities.

6.5 Impact of the Alternative Entities

In Figure 3b, we also show the performance
w.r.t. the different number of alternative entities
P = 0,1, 3. For the same reason of computational
cost, we only choose a small number of alternative
entities. Since the alternative entities are counter-
factual, normally the negative causal effect should
be similar among the alternative entities. How-
ever, practically the alternative entities may further
introduce unexpected causal relationship to the con-
text. Thus, by calculating the average causal effect
of multiple alternative entities, such unexpected
causal effect can be averaged out.

6.6 Case Study

We present case study results to understand the
impact of gold truth to the quality of CoTs. Be-
sides, we further examine the performance of CoT
w/ Post-Editing, in the setting when the gold truth
is not available. We further illustrate that our ap-
proach can overcome the limitations of these dif-
ferent CoT variants. In Table 2, we show the CoT
reasoning paths prompted from DeCoT and follow-
ing methods:
* CoTs w/ Gold Truth: regular CoT prompting
with gold-truth context (Wei et al., 2022) (i.e.,
CoT in Section 6.2.).

* CoTs w/o Gold Truth: regular CoT prompt-
ing with only the task query (Wei et al., 2022)
(i.e., CoT w/o ctx in Section 6.2.).



Dataset Question

CoTs w/ Gold Truth

CoTs w/o Gold Truth

CoT w/ Post-Editing

DeCoT

HotpotQA | The  Pluralist
school is said to
have included
what creator of
the theory of

atomism?

MuSiQue | What  county
contains the
city with a
radio  station
that broadcasts
to the capital
city of the
state where the
Peace center is
located?

SciQ By exploding
what the space
probes get
separated from
their launchers?

WikiHop | What’s the
genre of Terra

Brasilis?

The Pluralist school was a
school of pre-Socratic philoso-
phers. The Pluralist school in-
cluded Leucippus and Democri-
tus. Therefore, the final answer
is [Democritus X ].

The state where the Peace cen-
ter is located is Greenville, South
Carolina. The county contain-
ing the city with a radio sta-
tion broadcasting to Greenville
is likely Greenville County.
Therefore, the final answer is
[Greenville County X ].

The context is discussing how
space probes use exploding bolts
to separate from their launchers.
The question is asking what the
space probes are separated from
during this process. Therefore,
the final answer is [their launch-
ers X ].

"Genre" refers to a category of
artistic work. Terra Brasilis is a
famous album by Brazilian musi-
cian Milton Nascimento. There-
fore, the final answer is [Brazil-
ian music X .

One of the key pluralist figures
was Greek philosopher Aristotle.
Aristotle is known for his the-
ory that nature contains no vacu-
ums. Therefore, the final answer
is [Aristotle X ].

The Peace Center is located in
Greenville, South Carolina. The
capital city of South Carolina is
Columbia. There are two radio
stations in Greenville that broad-
cast to Columbia - WIMZ-FM
and WMYIL. WMYI, which is lo-
cated in Greenville, broadcasts
to the capital city of Columbia.
Therefore, the final answer is
[Greenville County X ].

When a space probe is launched,
it is attached to a rocket or
launcher. Once the rocket has
reached a certain point in space,
it explodes, releasing the space
probe. Therefore, the final an-
swer is [the rocket or launcher X
1.

"Terra Brasilis" is a song by

Brazilian composer Caetano
Veloso. The song is from his

1978 album "Muito (Dentro Da
Estrela Azulada)". Therefore,
the final answer is [Brazilian X ].

One of the key pluralist figures
was Greek philosopher Aristotle.
Aristotle is known for his theory
of atomism. Therefore, the final
answer is [Aristotle X ].

The Peace Center is located in
Greenville, South Carolina. The
capital city of South Carolina is
Columbia. There are two radio
stations in Greenville that broad-
cast to Columbia - WIMZ-FM
and WMYIL. WMYT is located in
Hendersonville, North Carolina.
Therefore, the final answer is
[Hendersonville X ].

‘When a space probe is launched,
it is attached to a rocket or
launcher. Onee-therocket-has

hed-a-certain-pointinspae
14 {4
it Jodes 1 H th SPaAC
i-exp releasing—the—spa
probe: Therefore, the final an-
swer is [the explosion or detona-
tion X ].
"Terra Brasilis" is an album by
Brazilian composer Antonio Car-
los Jobim. Fhe-song-is-from-his
Estrela-Azulada)"- Therefore, the

final answer is [Brazilian X |.

The Pluralist school is a philo-
sophical movement that emerged
in Ancient Greece. It is said
to have included Leucippus, the
creator of the theory of atom-
ism. Therefore, the final answer
is [Leucippus v/ .

The Peace Center is located in
Greenville, South Carolina. The
radio station WWNQ is licensed
to Forest Acres and broadcasts
to Columbia, which is the capi-
tal city of South Carolina. For-
est Acres is a city in Richland
County, South Carolina. There-
fore, the final answer is [Rich-
land County v ].

The context states that space
probes may be separated from
their launchers by exploding
bolts. Exploding bolts are bolts
that explode or break apart in
order to separate two objects.
Therefore, the final answer is
[bolts v ].

The album Terra Brasilis was re-
leased in 1980 by Brazilian com-
poser Antdnio Carlos Jobim. Jo-
bim is known for his contribu-
tions to bossa nova music. There-
fore, the final answer is [bossa

nova v/ |.

Table 2: Examples of failure CoTs generated from regular CoT prompting, CoT prompting without gold-truth
context and knowledge post-edited CoT prompting, as well as DeCoT sampled successful CoTs, from four datasets
with the GPT3.5 model. In the examples, we highlight factual and logical errors with a red font, while the correct
reasoning evidence is in a green font. The edited factuality is also highlighted with a blue font.

* CoT w/ Post-Editing: CoT with knowledge
verification and post-edit (Zhao et al., 2023b).

For all the methods, the CoTs are prompted from
the backbone GPT-3.5 model.

Failure Cases by CoTs with Post-Editing. We ob-
serve that CoTs generated without the gold truth are
very likely to contain incorrect knowledge, which
can further mislead the reasoning paths. For exam-
ple, the directly generated CoTs of the question in
the WikiHop dataset say “Terra Brasilis is a song
by Caetano Veloso”, which is factually incorrect
(highlighted in a red font). Due to this incorrect
assumption made from LLMs’ hallucination, the
following reasoning paths are misled to talk about
irrelevant information (e.g., “Caetano Veloso’s al-
bum”) and thus the answer is wrong even with
factual edit (highlighted in a blue font).

Failure Cases by CoTs with Gold Truth. Com-
pared to CoTs generated without the gold truth,
we observe that the CoTs prompted with the gold-
truth context can be factually more faithful. How-
ever, the logical reasoning of these CoTs can still
be wrong. For example, the CoTs generated with

the gold truth in the HotpotQA dataset are cor-
rectly locating “Leucippus and Democritus™ as the
two “Pluralist school” members (highlighted in a
red font). However, instead of answering with the
one who creates the school, the LLM mistakenly
chooses the wrong answer “Democritus”. We high-
light the correct reasoning paths in a green font to
show that the key point in answering this question
is by identifying the “creator”.

7 Conclusion

In this paper, we formally examine the LLLM’s in-
ternal knowledge bias and identify it as the con-
founder by a structural causal model (SCM). We
discover the spurious correlation between the LLM
and task queries, which can further impairs the
LLM’s CoT reasoning abilities. Then, we propose
DeCoT, a debiasing chain-of-thought prompting
method in knowledge-intensive tasks, which allevi-
ates the spurious correlation and enables the LLM
to find more accurate and logically sound responses.
Extensive experimental results and case studies val-
idate the effectiveness of our method DeCoT.



8 Limitations

Since DeCoT is an inference-stage causal interven-
tion method, the improvement on LLMs’ reasoning
abilities is attributed to alleviating the bias, but can
be limited to the upper bound of the LLM’s ca-
pacity. To alleviate the causal effect of knowledge
bias on LLMs’ reasoning abilities, future works
can incorporate unbiased causal learning methods
in the model pretraining or instruction tuning stage,
which may enable more robust CoT reasoning. It is
also interesting to study the theoretical causal foun-
dation of CoT prompting’s mediator role in LL.Ms,
which can be beneficial to better interpretability of
black-box LLMs.

9 Ethics Statement

Our study on mitigating bias in Large Language
Models (LLMs) recognizes the ethical implications
of data-driven biases in Al, specifically addressing
how these biases affect reasoning processes. We
propose a novel approach to reduce bias impact,
emphasizing the responsible and ethical advance-
ment of Al technology. The datasets we used in our
experiments are all publicly available. No personal
information was gathered from our human partic-
ipants, and they were not exposed to any harmful
model outputs.
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T = 5 most frequently appearing entities in the
context as to be intervened. The LLM will be fur-
ther prompted to provide P = 3 alternative coun-
terfactual entities to each of the extracted entities.
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conducted using 4 NVIDIA RTX A6000 GPUs
with 48GBs. For GPT-3.5 Turbo, we use the Ope-
nAl API to conduct the experiments.

To prompt the LLMs to generate more robust
chain-of-thought results and also follow a unified
answer format, we have included 3 few-shot in-
context learning examples. The in-context learning
examples are from a separate set of data which
provide no extra knowledge to the evaluated tasks.
In addition, we have also included 3 in-context
learning examples for both the entity extraction and
the alternative entity proposal prompts. Detailed
designs of these in-context examples and prompts
are explained in Appendix C.

B Prompt Design

B.1 Factual Entity Extraction

To extract the most relevant factual entities V' in
the context E' (Section 5.2),

vj ~ pg (VIE, Instructent) )

E;: [617627"‘716""76[}’

in which Instructey; is the explicit prompt instruc-
tion shown in following.

Context Example 1:

The Ritz-Carlton Jakarta is a hotel and
skyscraper in Jakarta, Indonesia and 14th Tallest
building in Jakarta. It is located in city center
of Jakarta, near Mega Kuningan, adjacent to the
sister JW Marriott Hotel. It is operated by The
Ritz-Carlton Hotel Company. The complex has
two towers that comprises a hotel and the Air-
langga Apartment respectively. Nakuul Mehta,
Kunal Jaisingh and Leenesh Mattoo respectively
portray Shivaay, Omkara and Rudra, the three
heirs of the Oberoi family.

Instruction Example 1:

Extract the top 5 most frequently appeared en-
tities in the context and provide in the format
of a list: [Ritz-Carlton, Jakarta, Indonesia, Air-
langga Apartment, Nakuul Mehta]
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Context Example 2:

Lisa Marie Simpson is a fictional character in
the animated television series "The Simpsons".
She is the middle child and most intelligent of
the Simpson family. Voiced by Yeardley Smith,
Lisa first appeared on television in "The Tracey
Ullman Show" short "Good Night" on April 19,
1987. Cartoonist Matt Groening created and
designed her while waiting to meet James L.
Brooks. Groening had been invited to pitch a se-
ries of shorts based on his comic "Life in Hell",
but instead decided to create a new set of char-
acters. He named the elder Simpson daughter
after his younger sister Lisa Groening.

Instruction Example 2:

Extract the top 5 most frequently appeared en-
tities in the context and provide in the format
of a list: [Lisa Marie Simpson, The Simpsons,
Yeardley Smith, The Tracey Ullman Show, Lisa
Groening]

B.2 Alternative Entity Proposal

To ask the LLM to propose P counterfactual enti-
ties E;l, Elge-os EJ* p to the extracted entity v;
(Section 5.2),

©)

/U;f,k ~ Do (V"U]7 Instructalt) 3

Te(ig) = [61,62, N ,el] ,

in which Instruct, is the explicit prompt instruc-
tion shown in following.

Example 1

Provide 3 most similar entities to "America",
which are from the same entity type and have
similar meanings. Provide the answers as a list:
[Britain, France, Germany].

Example 2

Provide 3 most similar entities to "Florida",
which are from the same entity type and have
similar meanings. Provide the answers as a list:
[New York, California, Arizona].

Provide 3 most similar entities to "Beethoven",
which are from the same entity type and have
similar meanings. Provide the answers as a list:
[Mozart, Mahler, Wagner].




C In-context Learning Examples

We design several CoT prompting examples to
guide the LLM to generate in an expected format
as following:

Example 1

Context: The Ritz-Carlton Jakarta is a hotel and
skyscraper in Jakarta, Indonesia and 14th Tallest
building in Jakarta.

Question: The Oberoi family is part of a hotel
company that has a head office in what city?

Based on the context, answer the question step
by step and provide the final answer in the end.
1. The Oberoi family is an Indian family known
for their involvement in hotel management

2. The Oberoi Group is the hotel company
founded by the family

Therefore, the final answer is [Delhi].

Context: Lisa Marie Simpson is a fictional char-
acter in the animated television series "The
Simpsons".

Question: Musician Allie Goertz wrote a song
about the "The Simpsons" character Milhouse,
who Matt Groening named after who?

Based on the context, answer the question step
by step and provide the final answer in the end.
1. The character Milhouse from the TV show
"The Simpsons" was named by Matt Groening
2. Groening named the character after President
Richard Nixon’s middle name

Therefore, the final answer is [Richard Nixon].

Example 3

Context: Moloch: or, This Gentile World is a
semi-autobiographical novel written by Henry
Miller in 1927-28, initially under the guise of a
novel written by his wife, June.

Question: What nationality was James Henry
Miller’s wife?

Based on the context, answer the question step
by step and provide the final answer in the end.
1. James Henry Miller (25 January 1915 — 22
October 1989) was an English folk singer and
songwriter

2. His second wife was Margaret "Peggy"
Seeger (born June 17, 1935), who is an Ameri-
can folksinger

Therefore, the final answer is [American].
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D Pseudo Code for DeCoT

Algorithm 1: DeCoT

Input: Task query (), Context E, the LLM
with model parameters 6

1 Init: Sample chain-of- thought reasoning
paths C' = [C1,Cy,...,Cyn] by Eq. 1.

2 Extract T factual entities
V = [vy,vg,...,vp] from E by Eq. 8 ;

3 while 7 < N do

4 while j < T do

5 Propose P counterfactual entities
{v;1,059,..., 0] pt by Eq. 9

while k£ < P do

Construct counterfactual context
E} . (v;,) by Eq. 3

end
Estimate ACE(Cj, v;),i < N for
each entity v; by Eq. 4 ;

end

Estimate ACE(C;) by Eq. 5 ;
end

Sample CoT by Eq. 6;

Sample the answer by Eq. 7 ;
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