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Abstract

Large language models (LLMs) often require001
task-relevant knowledge to augment their inter-002
nal knowledge through prompts. However, sim-003
ply injecting external knowledge into prompts004
does not guarantee that LLMs can identify005
and use relevant information in the prompts to006
conduct chain-of-thought reasoning, especially007
when the LLM’s internal knowledge is derived008
from the biased information on the pretraining009
data. In this paper, we propose a novel causal010
view to formally explain the internal knowl-011
edge bias of LLMs via a Structural Causal012
Model (SCM). We review the chain-of-thought013
(CoT) prompting from a causal perspective, and014
discover that the biased information from pre-015
trained models can impair LLMs’ reasoning016
abilities. When the CoT reasoning paths are017
misled by irrelevant information from prompts018
and are logically incorrect, simply editing fac-019
tual information is insufficient to reach the cor-020
rect answer. To estimate the confounding effect021
on CoT reasoning in LLMs, we use external022
knowledge as an instrumental variable. We fur-023
ther introduce CoT as a mediator to conduct024
front-door adjustment and generate logically025
correct CoTs where the spurious correlation be-026
tween LLMs’ pretrained knowledge and task027
queries is reduced. With extensive experiments,028
we validate that our approach enables more029
accurate CoT reasoning and enhances LLM030
generation on knowledge-intensive tasks.031

1 Introduction032

For knowledge-intensive tasks (Petroni et al., 2021;033

Hu et al., 2023; Sun et al., 2023b), specific knowl-034

edge is required in order to obtain an accurate re-035

sponse, which can be out of the distribution of036

LLMs’ internal knowledge (Yao et al., 2023; Yuan037

et al., 2023c). Since frequently fine-tuning LLMs038

can be highly expensive and inefficient (Zhai et al.,039

2023), the LLM’s internal knowledge can also be040

outdated and cause knowledge bias problems in041

LLMs (Zhang et al., 2023b; Wu et al., 2023; Zhang042

                 Biohazard is formed in Brooklyn

                 The heavy metal band formed in Jakarta is Kekal.

   … Biohazard was  formed in Brooklyn …
   The heavy metal band formed in Jakarta is Kekal ...

   "Judgment Night" was collaborated by Onyx and the 
   heavy metal band formed in which city?

Context:

Query:

Let’s think step-by-step.

CoT 1:

CoT 2:

"Judgment Night" is collaborated by Onyx and Biohazard .
 Onyx is a hip hop group from New York City.

wrongly located evidence 

Step 1 & 2: shared CoT paths

Step 3: Correct example

Step 3: Failure example

logically coherent

(External Knowledge)

(Internal Knowledge)

Figure 1: The LLM internal knowledge bias can trigger
the usage of irrelevant information in the prompts, gen-
erate incoherent reasoning chains, and impair model’s
logical reasoning ability. This example is derived from
the experiments by GPT3.5 on HotpotQA. Please note
that ‘The heavy metal band formed in Jakarta is Kekal’
refers to a heavy meta band which is different from
Biohazard. However, GPT3.5 incorrectly assume that
’The heavy metal band’ refers to Kekal, and provides
incorrect information in the step 3 of chain-of-thought.

et al., 2023c). In order to efficiently incorporate 043

external knowledge, prompt engineering methods 044

try to retrieve task-relevant language evidence into 045

prompts (Liu et al., 2023; He et al., 2022; Zhu et al., 046

2023b; Shao et al., 2023; Trivedi et al., 2022a). 047

Additionally, external knowledge bases can also 048

directly augment and edit the knowledge-injected 049

prompts (Wen et al., 2023; Sun et al., 2023a; Baek 050

et al., 2023; Zhao et al., 2023b). However, sim- 051

ply injecting external knowledge in prompts does 052

not guarantee that LLMs can identify and use rele- 053

vant information in the prompts (Shi et al., 2023a; 054

Weston and Sukhbaatar, 2023), especially when 055

the LLM acquires biased information on the pre- 056

training data (Zhang et al., 2023b), such that the 057

LLM may use the irrelevant information from 058
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prompts. The knowledge bias in LLMs can fur-059

ther cause knowledge conflict or misunderstanding060

between the external knowledge and the model’s in-061

ternal knowledge (Mallen et al., 2023; Wang et al.,062

2023g,a). In such cases, LLMs may generate in-063

correct and unexpected responses (Li et al., 2023c;064

Xie et al., 2023).065

When the LLM relies on chain-of-thought (CoT)066

reasoning for complex tasks, the biased informa-067

tion from pretrained models further impairs LLMs’068

reasoning abilities. To eliminate the factual errors069

in the generated CoT paths, many works propose to070

verify and post-edit the generated reasoning paths071

before prompt again (Zhao et al., 2023b; Peng et al.,072

2023; Wang et al., 2023c). However, the logical073

reasoning errors can not be easily detected or cor-074

rected, as the effectiveness of factual verification075

and post-editing reasoning chains can be limited076

to simply injecting more knowledge. For exam-077

ple in Figure 1, given the query (e.g., “"Judgment078

Night" was collaborated by Onyx and the heavy079

metal band formed in which city?”), the LLM may080

generate logically incorrect CoT (e.g., CoT 1), in081

which the last chain is deviated from the reasoning082

paths (e.g., instead of the origin of “Biohazard”,083

some arbitrary band mentioned). Such logical inco-084

herence can be caused by the spurious correlation085

between the query (e.g., the concept “the heavy086

mental band formed in”) and the LLM’s internal087

knowledge understanding. Thus, even the LLM088

is prompted with the gold-truth context, the spu-089

rious correlation can lead the LLM to find some090

arbitrary evidence regardless of its logical connec-091

tion to the previous chain, as long as it contains092

the exact phrase. In such cases, factual verification093

methods are not capable of detecting logical rea-094

soning errors, and the answer can still be incorrect095

even with the facts verified as correct.096

In this work, we propose a novel causal view097

via a Structural Causal Model (SCM) (Pearl et al.,098

2016) to formally explain the internal knowledge099

bias of LLMs. To measure spurious correlation,100

we propose to use external knowledge as an in-101

strumental variable (Morgan and Winship, 2015)102

to estimate the Average Causal Effect (ACE) of103

CoT reasoning paths in LLMs through causal in-104

tervention. Based on the measurement of ACE, we105

can further introduce a CoT sampling method to106

find the best CoT as a mediator and conduct front-107

door adjustment (Pearl, 2009). In this approach,108

the spurious correlation between LLMs’ internal109

knowledge and task queries can be reduced, which110

ensures correct CoT reasoning and LLM genera- 111

tion. We summarize our contributions as follows: 112

• We discover that the bias from pretrained 113

LLMs can trigger the usage of irrelevant in- 114

formation in the prompts, generate incoherent 115

reasoning chains, and impair model’s logical 116

reasoning ability. 117

• To formally understand the bias affecting CoT 118

reasoning abilities, we propose a novel causal 119

view introducing the external knowledge in 120

prompts as an instrumental variable. This 121

causal view uncovers the spurious correlation 122

between queries and LLMs’ internal knowl- 123

edge understanding. 124

• To alleviate the bias and ensure correct CoT 125

reasoning, we estimate the average causal ef- 126

fect (ACE) between the CoT and the answer, 127

and further propose a CoT sampling method 128

to conduct the front-door adjustment. 129

• We conduct multiple experiments on various 130

knowledge-intensive tasks as well as num- 131

bers of LLM backbone models, which demon- 132

strates the effectiveness of our method. 133

2 Related Work 134

LLMs in Knowledge-intensive Tasks. In 135

knowledge-intensive tasks (Petroni et al., 2021; 136

Hu et al., 2023; Yang et al., 2018; Welbl et al., 137

2018) the LLM is asked to provide responses based 138

on multiple pieces of evidence located in the con- 139

text or from LLMs’ intrinsic knowledge. Retrieval- 140

augmented prompting methods focus on how to 141

identify accurate and comprehensive evidence from 142

support documents (Hoshi et al., 2023; Qian et al., 143

2023), in-context examples (Press et al., 2022; 144

Khattab et al., 2022), knowledge bases (Trivedi 145

et al., 2022a; Xu et al., 2023; Wang et al., 2023c; 146

Feng et al., 2023; Zhu et al., 2023a), knowledge 147

graphs (Wen et al., 2023; Sun et al., 2023a; Sal- 148

nikov et al., 2023; Zhang et al., 2023a) and human 149

feedback (Zhang et al., 2023b). However, extensive 150

knowledge-injected prompts can introduce irrele- 151

vant information to distract LLMs (Shi et al., 2023a; 152

Wang et al., 2023h) and cause LLMs’ unpredictable 153

behaviours (Li et al., 2023c; Chen et al., 2023b). In 154

this case, the issue of spurious correlations between 155

the context and the LLM can become more signifi- 156

cant. Based on the motivation, instead of focusing 157

on how to identify the best knowledge evidence, 158

we investigate how to find logically correct CoT 159

reasoning paths. 160
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Chain-of-thought Prompting. Chain-of-thought161

prompting has shown great potential in explaining162

LLMs’ thinking process (Yuan et al., 2023a; Li163

and Du, 2023) and answering multi-hop questions164

(Wang et al., 2023d; Ma et al., 2022) in several165

complex reasoning tasks (Fu et al., 2023). How-166

ever, further works also mention issues of faithful-167

ness and self-consistency in LLMs (Lanham et al.,168

2023; Turpin et al., 2023). In order to improve the169

faithfulness of intermediate chains, several works170

propose to verify and edit (He et al., 2022; Wang171

et al., 2023e; Zhao et al., 2023b) the factual er-172

rors in unfaithful chains, supervised by an exter-173

nal knowledge base. (Radhakrishnan et al., 2023;174

Zhu et al., 2023a) propose to decompose complex175

questions and answer them individually. The self-176

consistency principle is also considered in chain-177

of-thought distillation (Wang et al., 2023f). While178

factual verification and post-editing methods can179

fix factual errors and alleviate inconsistency prob-180

lems in reasoning paths, how to detect logically181

incorrect chain-of-thoughts is less explored. We182

argue that such logically incorrect reasoning paths183

can lead the LLM astray from the right direction of184

finding the answer, even with the chains factually185

correct. Similar to previous works, our method also186

requires the LLM to first generate some candidate187

chain-of-thought reasoning paths, which makes our188

method using similar numbers of API calls (or in-189

ference times) per sample.190

Causal Intervention in Language Models. Previ-191

ous causal intervention methods in language mod-192

els are focusing on entity-level spurious correlation193

(Wang et al., 2023b; Zeng et al., 2020; Yang et al.,194

2023) or sentence-level selection bias (McMilin,195

2022). Since LLMs are black-box models (Gat196

et al., 2023; Cheng et al., 2023), direct methods197

of causal-aware model reparameterization methods198

are limited in usage. With causal explanability ex-199

tracted from the models (Wu et al., 2021; Zhao200

et al., 2023a), further studies introduce human-in-201

the-loop debiasing methods (Zhang et al., 2023b;202

Wu et al., 2022, 2021). Human feedback can serve203

as the unbiased intermediate verification source.204

However, human effort is normally more expen-205

sive and involving humans in the loop may reduce206

the efficiency of the system. Instead, our method207

uses counterfactual context to automatically mea-208

sure the causal effect. Without additional human209

effort or data resources for finetuning, our method210

can automatically find better CoT and improve the211

performance of LLMs.212

3 A Causal View 213

To understand the causal relationships in 214

knowledge-intensive tasks, we introduce a Struc- 215

tural Causal Model (SCM) (Pearl et al., 2000) and 216

identify the internal knowledge understanding 217

of the LLMs (Z) as the confounder. In Figure 218

2a and Figure 2b, we formulate two types of 219

conventional knowledge injection methods as two 220

SCMs respectively. With the SCMs, we explain 221

the effectiveness of conventional knowledge 222

injection methods as well as their limitations. We 223

further present the SCM of our method, debiasing 224

chain-of-thought (DeCoT), in Figure 2c. The 225

formulation of our method DeCoT is illustrated in 226

Figure 2d and explained in Section 5. 227

AQ

Z

E

(a) SCM for Exter-
nal Knowledge

E

C AQ

Z

(b) SCM for Chain-
of-thought

E

C AQ

Z

(c) SCM for De-
CoT

ACE = 0

ACE > 0

 
Biohazard was a heavy metal 
band in Chicago

 
"Judgment Night" by 
Acrassicauda formed in Iraq

E (Counterfactual)

E (Counterfactual)

C (CoT 1) A (Answer) Chicago

C (CoT 1) A (Answer) Iraq

C (CoT 2) A (Answer) Jakarta 

C (CoT 2) A (Answer) Jakarta 

(Section 5.3) ACE Guided CoT Sampling: Sample from {CoT 1, CoT 2} by importance 
scores in Eq (3) and prompt again. 

A (Answer)
E (Context) Q (Query)

Brooklyn

C (CoT 1) A (Answer) Brooklyn

C (CoT 2) A (Answer) Jakarta

 
"Judgment Night" is by 
Biohazard formed in Brooklyn

E (Gold Factuality)

Z (LLM)

                                  … Biohazard was  formed in Brooklyn …
                                  The heavy metal band formed in Jakarta is Kekal ...
                                  "Judgment Night" was collaborated by Onyx and the 
                                  heavy metal band formed in which city?

E (Context):

Q (Query):

C (CoT 1)

                 Biohazard is formed in Brooklyn
                 The heavy metal band formed in Jakarta is Kekal

CoT 1:
CoT 2:

C (CoT 2) A (Answer) Jakarta

(Section 5.2) External Knowledge (E) as an Instrumental Variable

(d) The illustration of our approach (detailed in Section 5).

Figure 2: Structural causal graphs for (a) injection of
external knowledge (i.e., context), (b) chain-of-thought
prompting and (c) our approach using external knowl-
edge as an instrumental variable (detailed in Section
5.2). Our proposed debiasing chain-of-thought method
DeCoT is illustrated in (d).

3.1 SCM for External Knowledge 228

In Figure 2a, the causal path E → Q ← Z repre- 229

sents the knowledge injection process, in which E 230

denotes the injected external knowledge, Q denotes 231
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the queries in the inference stage and Z denotes the232

LLM’s internal knowledge. Ideally, since in this233

causal path, the query (Q) is the collider influenced234

by the other two variables, the external knowledge235

(E) and LLM’s internal knowledge (Z), the spuri-236

ous correlation can be alleviated as long as E and Z237

are causally irrelevant (Pearl et al., 2000). However,238

most conventional knowledge injection techniques239

(Baek et al., 2023; Li et al., 2023b) simply incorpo-240

rate the external knowledge as the context which241

is prefixed to the input prompt. Thus, the causal242

influence of the external knowledge on the query243

is also determined by the LLM, which makes E244

and Z unable to be regarded as independent vari-245

ables and the spurious correlation between Q and246

Z remains.247

3.2 SCM for Chain-of-thought248

Chain-of-thought (as in Figure 2b) is introduced249

(Li et al., 2023a; Wei et al., 2022; Fu et al., 2023)250

to make the LLM explain and follow the reasoning251

path before giving the final answer. The causal252

path Q→ C → A shows that the chain-of-thought253

reasoning path (C) can serve as the mediator be-254

tween the query (Q) and the answer (A). However,255

since the chain-of-thought reasoning path is also256

prompted from the LLM (Wei et al., 2022; Fu et al.,257

2023), it can also be causally dependent to LLM’s258

internal knowledge, and thus forms the spurious259

correlation between C and Z. Notably, knowl-260

edge editing methods (Zhao et al., 2023b; Li et al.,261

2023a; Peng et al., 2023) can correct the factual262

errors in the context and the reasoning paths, while263

the reasoning logic remains incorrect.264

4 Preliminaries265

4.1 Task Formulation266

For knowledge-intensive question-answering tasks,267

the model is prompted with a query Q =268

[q1, q2, . . . , qn] and a passage of context E =269

[e1, e2, . . . , el] which contains the supportive in-270

formation to the query. Given the query Q and271

the context E, the model θ is prompted to recur-272

rently generate the response Y by sampling from273

the conditional probability distribution,274

yt ∼ pθ (y|E,Q, y<t) .275

As illustrated and explained in Figure 2a of Sec-276

tion 3.1, the model directly generates the answer277

A = [a1, a2, . . . , am] without providing the inter-278

mediate reasoning process (i.e., A = Y ).279

Chain-of-thought Prompting. Following (Wei 280

et al., 2022), we add the additional instruction 281

to ask the model to generate its reasoning paths 282

C by explaining step-by-step, before generating 283

the final answer A (i.e., Y = [C,A]). By sam- 284

pling N different chain-of-thought reasoning paths 285

C = [C1, C2, . . . , CN ] conditioned on the query 286

Q and the context E, we can further condition the 287

generation process of the final answer A, 288

Ci ∼ pθ (C|E,Q) , (1) 289

Ai,r ∼ pθ (A|E,Q,Ci) . (2) 290

In Equation 1, since conventional chain-of-thought 291

reasoning paths C are also generated from the LLM 292

in which the pretrained internal knowledge Z can 293

also confound on the chain-of-thought C gener- 294

ation process. As explained in Section 3.2, the 295

confounding effect can not only affect the factual 296

accuracy of the generated chain-of-thought, but 297

also lead to incorrect reasoning logic. Thus knowl- 298

edge editing and verification methods (Zhao et al., 299

2023b; Li et al., 2023a; Peng et al., 2023) which 300

solve the former problem, are limited in correcting 301

the reasoning logic of the chain-of-thought. 302

5 DeCoT: Debiasing Chain-of-thought 303

5.1 SCM for DeCoT 304

In Figure 2c, we propose to use the chain-of- 305

thought reasoning path (C) which serves as the 306

mediator between the query (Q) and the answer 307

(A), to enable front-door adjustment. Based on 308

the front-door criterion (Pearl et al., 2000), the me- 309

diator (C) should be causally independent to the 310

confounder (Z). However, in practice, the chain- 311

of-thought reasoning paths are also prompted from 312

LLMs, which suggests potential spurious correla- 313

tions between the chain-of-thought reasoning path 314

(C) and LLM’s internal knowledge (Z). Thus, to 315

track the bias from the unobserved confounder Z, 316

we introduce the external knowledge as the instru- 317

mental variable (IV) (Kawakami et al., 2023; Kil- 318

bertus et al., 2020; Yuan et al., 2023b). By chang- 319

ing the instrumental variable E (i.e., the external 320

knowledge), we can estimate the true causal rela- 321

tionship between C and A (Yuan et al., 2023b). For 322

example, in Figure 2d, two pieces of counterfactual 323

external knowledge (e.g. “Biohazard formed in 324

Chicago” and “Judegment Night was by Acrassi- 325

cauda formed in Iraq”) are introduced in the same 326

example of Figure 1 and the average causal effect 327

(ACE) can be calculated by the average difference 328
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of the former response distribution. Due to the329

spurious correlation in the third chain of thoughts330

of “CoT 1”, the response generated from “CoT 1”331

remains unchanged (i.e., ACE = 0), regardless of332

the counterfactual evidence. While for the correct333

reasoning path “CoT 2”, the generated response334

changes corresponding to the different counterfac-335

tual evidence (i.e., ACE > 0).336

5.2 External Knowledge as an Instrumental337

Variable338

We model the external knowledge as an instru-339

mental variable E, such that we can change the340

instrumental variable E and measure the ACE met-341

ric, to understand the causal relationship between342

the CoT C and the answer A (Yuan et al., 2023b).343

Due to the limitation of directly controlling the344

generation process of chain-of-thought reasoning345

paths, we perform the causal treatment by including346

counterfactual knowledge through the instrumental347

variable E to understand the causal relationship348

between the chain-of-thought C and the answer A349

(Kawakami et al., 2023; Yuan et al., 2023b). Specif-350

ically, we query the LLM to extract T factual en-351

tities V = [v1, v2, . . . , vT ] which correspond to352

T counterfactual context E∗
1 , E

∗
2 , . . . , E

∗
T (prompt353

design explained in Appendix B). In each sample354

E∗
j = [e1, e2, . . . , vj , . . . , el] ,355

the corresponding factual entity vj is to be replaced356

by counterfactual entities. Then, the LLM is fur-357

ther prompted to propose P counterfactual entities358

V ∗
j = [v∗j,1, v

∗
j,2, . . . , v

∗
j,P ] to each extracted entity359

vj ∈ V (prompt design explained in Appendix B).360

P counterfactual context samples361

E∗
j,k(v

∗
j,k) = [e1, e2, . . . , v

∗
j,k, . . . , el], k ≤ P (3)362

are constructed, by replacing the corresponding fac-363

tual entity vj in each sample E∗
j . In this approach,364

we can estimate the average causal effect (ACE)365

corresponding to each chain-of-thought reasoning366

path Ci,367

ACE(Ci, vj) = E (A|do(E), Q,Ci)− (4)368

E
(
A|do(E∗

j ), Q,Ci

)
369

= Ev∗j,k∈V
∗
j
[pθ (A|E,Q,Ci)−370

pθ
(
A|E∗

j,k(v
∗
j,k), Q,Ci

)
],371

in which the average causal effect measures the372

decreased confidence of the answer with counter-373

factual context as the evidence. We observe that374

the average causal effect of different factual en- 375

tities can be various to the context, queries and 376

chain-of-thoughts, which we further conduct analy- 377

sis experiments in Section 6.4. In order to consider 378

the overall causal effect of the external context on 379

each chain-of-thought reasoning path, we propose 380

to measure the average causal effect of all the inter- 381

vened entities, 382

ACE(Ci) = Evj∈V ACE(Ci, vj), (5) 383

in which we assume the intervened entities vj are 384

sampled from a uniform distribution of the external 385

context E. 386

5.3 Average Causal Effect Guided 387

Chain-of-thought Sampling 388

With the measured ACE scores, we develop an ef- 389

ficient sampling approach to obtain high-quality 390

CoTs with more coherent reasoning chains. Since 391

LLMs are black-box models (Gat et al., 2023; 392

Cheng et al., 2023), direct causal intervention meth- 393

ods on the parameterization of the input query Q 394

and the context E are limited. In addition, in- 395

serting additional deconfounding layers (Zhang 396

et al., 2020; Wu et al., 2022) to finetune the LLM 397

requires considerable computation and data re- 398

sources, which makes these methods less efficient. 399

We propose to use the sampled chain-of-thought 400

reasoning paths C as the mediator variable to con- 401

duct the front-door adjustment. 402

Based on the measured average causal effect 403

(ACE), we construct the importance scores in terms 404

of how the final answer A reacts to the different 405

chain-of-thought reasoning paths C that intervened 406

by the context E, 407

C∗ ∼ softmax [pθ (Ci|E,Q) · ACE(Ci)] , (6) 408

and the front-door adjustment can be realized by in- 409

troducing the mediator C∗ sampled with the largest 410

average causal effect in the reasoning path, 411

A∗ ∼ P (A|E,Q, do(C)) (7) 412

∝ pθ (A|E,Q,C∗) . 413

The causal effect on the sampled answer A∗ is 414

mediated by the sampled CoT reasoning path C∗, 415

whose mediator-outcome confounding effect is con- 416

trolled and alleviated. 417

We summarize our algorithm DeCoT in Algo- 418

rithm 1 (Appendix D). 419
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HotpotQA MuSiQue SciQ WikiHop Average

Model Decoding EM↑ F1↑ EM↑ F1↑ EM↑ F1↑ EM↑ F1↑ EM↑ F1↑

Flan-T5
CoT w/o ctx 7.41 17.99 2.57 8.50 11.09 17.80 4.12 6.88 6.30 12.79

CoT 9.48 23.70 19.53 27.61 51.75 63.79 15.02 21.79 23.95 34.22
CAD 9.65 24.77 20.56 28.57 59.69 69.94 17.28 24.31 26.80 36.90

DeCoT 11.72 28.70 20.56 30.54 63.55 75.64 22.34 28.41 29.54 40.82

LlaMA-2
CoT w/o ctx 1.67 3.04 0.56 1.44 4.08 5.45 1.19 1.64 1.88 2.89

CoT 8.86 26.79 20.22 27.46 30.64 39.59 23.10 28.23 20.71 30.52
CAD 10.53 30.98 21.62 28.10 33.93 41.35 23.50 29.81 22.40 32.56

DeCoT 10.03 31.48 22.75 30.99 48.58 57.95 27.35 34.46 27.18 38.72

GPT-3.5
CoT w/o ctx 5.60 30.97 2.09 7.96 29.82 43.18 11.62 19.31 12.28 25.36

CoT 5.10 32.55 22.30 34.22 54.53 68.50 25.40 35.25 26.83 42.63
CAD 5.43 35.24 24.14 36.81 57.74 70.73 28.37 38.45 28.92 45.31

DeCoT 10.21 40.19 31.28 44.14 64.61 78.10 31.89 43.45 34.50 51.47

Table 1: The comparison results of DeCoT based on different backbone LLMs on four knowledge-intensive tasks.
The best results for each backbone model and each dataset are highlighted in a bold font.

6 Experiments420

6.1 Dataset and Evaluation421

Knowledge-intensive tasks commonly require each422

question to be paired with a paragraph of context423

as support evidence (Li et al., 2023a; Zhu et al.,424

2023b; Su et al., 2023; Jang et al., 2023). We follow425

the evaluation protocols in (Yang et al., 2018) and426

conduct our experiments on datasets as follows:427

HotpotQA (Yang et al., 2018) contains questions428

which require multi-step reasoning over multiple429

support contexts. For each question, support docu-430

ments are provided in the dataset, which are used431

as the context in our experiments.432

MuSiQue (Trivedi et al., 2022b) is another multi-433

step question answering dataset. Similar to previ-434

ous work (Ramesh et al., 2023), we conduct our435

experiment on the challenging part of the dataset,436

in which questions are annotated as ≥ 4 hops.437

WikiHop (Welbl et al., 2018) is a multi-choice438

multi-hop reasoning dataset. We use the queries in439

the dataset as the questions (Tu et al., 2019) in our440

setting. For baselines and our method, the models441

are prompted to generate the answers free-form442

instead of retrieving from the candidate list.443

SciQ (Welbl et al., 2017) is a domain-specific ques-444

tion answering task which contains only scientific445

questions. We evaluate baselines and our method446

on test samples with support evidence.447

For datasets which lack of test labels, we follow448

the same evaluation protocol as (Press et al., 2022;449

Shao et al., 2023; Chen et al., 2023a) and use the450

development sets as our test set. We use the Exact451

Match (EM) and F1 proposed in (Yang et al., 2018) 452

as our evaluation metrics. 453

6.2 Baseline and Backbone Model 454

Following (Shi et al., 2023b; Su et al., 2023; Trivedi 455

et al., 2022a), we have applied our method to differ- 456

ent pretrained LLMs: Flan-T5-XXL (Chung et al., 457

2022) which has 11B model parameters, LlaMA- 458

2-7B (Touvron et al., 2023) and GPT-3.5 Turbo 459

(Brown et al., 2020). For LlaMA-2-7B model, we 460

choose the finetuned versions from human feed- 461

back (Christiano et al., 2017), which can generally 462

yield more stable chain-of-thought reasoning paths. 463

For baselines, we compare our method with a 464

conventional chain-of-thought prompting method 465

(CoT) (Wei et al., 2022) and context-aware con- 466

trastive decoding method CAD (Shi et al., 2023b). 467

We also include the baseline which devises conven- 468

tional chain-of-thought prompting methods with- 469

out context (CoT w/o ctx) (Wei et al., 2022), in 470

order to investigate the effect of context in different 471

datasets. The implementation details are described 472

in Appendix A. 473

6.3 Main Results 474

Table 1 presents evaluation results on the four 475

datasets with three LLM backbone models. 476

Comparison with Baselines. As we expected, for 477

all LLMs the performance are significantly lower 478

when the context of supporting evidence is ab- 479

sent. Because of the poor performance of the direct 480

prompting method, the context-aware contrastive 481

decoding (CAD) baseline is able to use its answer 482
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distribution as the negative penalty on the positive483

distribution which is obtained by prompting with484

both the query and context. However, with the485

gold-truth context provided, the negative answer486

distribution which is unsupported by either internal487

or external knowledge can be more random, which488

limits the effectiveness of contrastive decoding489

methods. On the other hand, our method DeCoT490

achieves generally higher improvements on regular491

CoT comparing with CAD by detecting logically492

incorrect CoTs and penalizing on them. Instead of493

simply contrasting the distributions of positive and494

negative answers, we use counterfactual context495

to examine the answer distribution changes, which496

provides a more fine-grained measurement of the497

causal effect on LLMs’ internal knowledge bias.498

The consistent performance improvements suggest499

DeCoT can more accurately detect logically incor-500

rect CoTs by the measurement, and perform more501

targeted causal intervention.502

Logical Reasoning Performance Understanding.503

We also observe that DeCoT gains relatively bet-504

ter F1 improvements on the SciQ dataset, which505

reach to 18.58%, 46.37% and 14.01% for Flan-T5-506

xxl, LlaMA-2-7B and GPT-3.5 models respectively.507

This is because for scientific questions, accurate508

logical reasoning paths are more strictly required,509

which makes the correctness of the generated CoTs510

more crucial. Thus, DeCoT’s better performance511

on the SciQ dataset suggests DeCoT is more effec-512

tive in debiasing LLMs’ logical reasoning ability513

in CoT.514

6.4 Impact of the Selected Entities515

We evaluate the impact of the number of the se-516

lected entities on the MuSiQue dataset based on517

the backbone model GPT-3.5. Since annotations in518

MuSiQue guarantee the minimal number of chains519

of thought is 4 hops (Ramesh et al., 2023), more520

factual evidence is required to support the final521

answer, which makes the impact of the selected522

entities higher in this case.523

To illustrate the trend, we only conduct exper-524

iments on number of the selected entities T with525

these representative values considering the expen-526

sive GPT API costs. In Figure 3a, we show the527

F1 and EM performance w.r.t. the different number528

of selected entities T = 0, 1, 3, 5. We include the529

result of T = 0 which indicate the regular CoT530

prompting method. With a larger T , it has a higher531

probability for DeCoT to find more important en-532

tities to perform causal intervention on. However,533

0 1 3 5
# Selected Entities (T)

20

30

40

50

F1
/E

M

F1
EM

(a) Impact of T .

0 1 3
# Counterfactual Entities (P)

20

30

40

50

F1
/E

M F1
EM

(b) Impact of P .

Figure 3: Sensitivity studies on impact of the number
of the selected entities and alternative entities. We also
include the T = 0 and P = 0 data points indicating the
performance of regular CoT prompting methods. The
experiments are conducted on the GPT-3.5 backbone
model on the MuSiQue dataset.

including more causal intervention experiments re- 534

quires more counterfactual prompting, which is at 535

the expense of more API calls or more inference 536

time. We observe that for context annotated as 537

the gold truth, we can accurately find good factual 538

entities by selecting the most popular entities. 539

6.5 Impact of the Alternative Entities 540

In Figure 3b, we also show the performance 541

w.r.t. the different number of alternative entities 542

P = 0, 1, 3. For the same reason of computational 543

cost, we only choose a small number of alternative 544

entities. Since the alternative entities are counter- 545

factual, normally the negative causal effect should 546

be similar among the alternative entities. How- 547

ever, practically the alternative entities may further 548

introduce unexpected causal relationship to the con- 549

text. Thus, by calculating the average causal effect 550

of multiple alternative entities, such unexpected 551

causal effect can be averaged out. 552

6.6 Case Study 553

We present case study results to understand the 554

impact of gold truth to the quality of CoTs. Be- 555

sides, we further examine the performance of CoT 556

w/ Post-Editing, in the setting when the gold truth 557

is not available. We further illustrate that our ap- 558

proach can overcome the limitations of these dif- 559

ferent CoT variants. In Table 2, we show the CoT 560

reasoning paths prompted from DeCoT and follow- 561

ing methods: 562

• CoTs w/ Gold Truth: regular CoT prompting 563

with gold-truth context (Wei et al., 2022) (i.e., 564

CoT in Section 6.2.). 565

• CoTs w/o Gold Truth: regular CoT prompt- 566

ing with only the task query (Wei et al., 2022) 567

(i.e., CoT w/o ctx in Section 6.2.). 568
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Dataset Question CoTs w/ Gold Truth CoTs w/o Gold Truth CoT w/ Post-Editing DeCoT

HotpotQA The Pluralist
school is said to
have included
what creator of
the theory of
atomism?

The Pluralist school was a
school of pre-Socratic philoso-
phers. The Pluralist school in-
cluded Leucippus and Democri-
tus. Therefore, the final answer
is [Democritus ✗ ].

One of the key pluralist figures
was Greek philosopher Aristotle.
Aristotle is known for his the-
ory that nature contains no vacu-
ums. Therefore, the final answer
is [Aristotle ✗ ].

One of the key pluralist figures
was Greek philosopher Aristotle.
Aristotle is known for his theory
of atomism. Therefore, the final
answer is [Aristotle ✗ ].

The Pluralist school is a philo-
sophical movement that emerged
in Ancient Greece. It is said
to have included Leucippus, the
creator of the theory of atom-
ism. Therefore, the final answer
is [Leucippus ✓ ].

MuSiQue What county
contains the
city with a
radio station
that broadcasts
to the capital
city of the
state where the
Peace center is
located?

The state where the Peace cen-
ter is located is Greenville, South
Carolina. The county contain-
ing the city with a radio sta-
tion broadcasting to Greenville
is likely Greenville County.
Therefore, the final answer is
[Greenville County ✗ ].

The Peace Center is located in
Greenville, South Carolina. The
capital city of South Carolina is
Columbia. There are two radio
stations in Greenville that broad-
cast to Columbia - WJMZ-FM
and WMYI. WMYI, which is lo-
cated in Greenville, broadcasts
to the capital city of Columbia.
Therefore, the final answer is
[Greenville County ✗ ].

The Peace Center is located in
Greenville, South Carolina. The
capital city of South Carolina is
Columbia. There are two radio
stations in Greenville that broad-
cast to Columbia - WJMZ-FM
and WMYI. WMYI is located in
Hendersonville, North Carolina.
Therefore, the final answer is
[Hendersonville ✗ ].

The Peace Center is located in
Greenville, South Carolina. The
radio station WWNQ is licensed
to Forest Acres and broadcasts
to Columbia, which is the capi-
tal city of South Carolina. For-
est Acres is a city in Richland
County, South Carolina. There-
fore, the final answer is [Rich-
land County ✓ ].

SciQ By exploding
what the space
probes get
separated from
their launchers?

The context is discussing how
space probes use exploding bolts
to separate from their launchers.
The question is asking what the
space probes are separated from
during this process. Therefore,
the final answer is [their launch-
ers ✗ ].

When a space probe is launched,
it is attached to a rocket or
launcher. Once the rocket has
reached a certain point in space,
it explodes, releasing the space
probe. Therefore, the final an-
swer is [the rocket or launcher ✗

].

When a space probe is launched,
it is attached to a rocket or
launcher. Once the rocket has
reached a certain point in space,
it explodes, releasing the space
probe. Therefore, the final an-
swer is [the explosion or detona-
tion ✗ ].

The context states that space
probes may be separated from
their launchers by exploding
bolts. Exploding bolts are bolts
that explode or break apart in
order to separate two objects.
Therefore, the final answer is
[bolts ✓ ].

WikiHop What’s the
genre of Terra
Brasilis?

"Genre" refers to a category of
artistic work. Terra Brasilis is a
famous album by Brazilian musi-
cian Milton Nascimento. There-
fore, the final answer is [Brazil-
ian music ✗ ].

"Terra Brasilis" is a song by
Brazilian composer Caetano
Veloso. The song is from his
1978 album "Muito (Dentro Da
Estrela Azulada)". Therefore,
the final answer is [Brazilian ✗ ].

"Terra Brasilis" is an album by
Brazilian composer Antônio Car-
los Jobim. The song is from his
1978 album "Muito (Dentro Da
Estrela Azulada)". Therefore, the
final answer is [Brazilian ✗ ].

The album Terra Brasilis was re-
leased in 1980 by Brazilian com-
poser Antônio Carlos Jobim. Jo-
bim is known for his contribu-
tions to bossa nova music. There-
fore, the final answer is [bossa
nova ✓ ].

Table 2: Examples of failure CoTs generated from regular CoT prompting, CoT prompting without gold-truth
context and knowledge post-edited CoT prompting, as well as DeCoT sampled successful CoTs, from four datasets
with the GPT3.5 model. In the examples, we highlight factual and logical errors with a red font, while the correct
reasoning evidence is in a green font. The edited factuality is also highlighted with a blue font.

• CoT w/ Post-Editing: CoT with knowledge569

verification and post-edit (Zhao et al., 2023b).570

For all the methods, the CoTs are prompted from571

the backbone GPT-3.5 model.572

Failure Cases by CoTs with Post-Editing. We ob-573

serve that CoTs generated without the gold truth are574

very likely to contain incorrect knowledge, which575

can further mislead the reasoning paths. For exam-576

ple, the directly generated CoTs of the question in577

the WikiHop dataset say “Terra Brasilis is a song578

by Caetano Veloso”, which is factually incorrect579

(highlighted in a red font). Due to this incorrect580

assumption made from LLMs’ hallucination, the581

following reasoning paths are misled to talk about582

irrelevant information (e.g., “Caetano Veloso’s al-583

bum”) and thus the answer is wrong even with584

factual edit (highlighted in a blue font).585

Failure Cases by CoTs with Gold Truth. Com-586

pared to CoTs generated without the gold truth,587

we observe that the CoTs prompted with the gold-588

truth context can be factually more faithful. How-589

ever, the logical reasoning of these CoTs can still590

be wrong. For example, the CoTs generated with591

the gold truth in the HotpotQA dataset are cor- 592

rectly locating “Leucippus and Democritus” as the 593

two “Pluralist school” members (highlighted in a 594

red font). However, instead of answering with the 595

one who creates the school, the LLM mistakenly 596

chooses the wrong answer “Democritus”. We high- 597

light the correct reasoning paths in a green font to 598

show that the key point in answering this question 599

is by identifying the “creator”. 600

7 Conclusion 601

In this paper, we formally examine the LLM’s in- 602

ternal knowledge bias and identify it as the con- 603

founder by a structural causal model (SCM). We 604

discover the spurious correlation between the LLM 605

and task queries, which can further impairs the 606

LLM’s CoT reasoning abilities. Then, we propose 607

DeCoT, a debiasing chain-of-thought prompting 608

method in knowledge-intensive tasks, which allevi- 609

ates the spurious correlation and enables the LLM 610

to find more accurate and logically sound responses. 611

Extensive experimental results and case studies val- 612

idate the effectiveness of our method DeCoT. 613
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8 Limitations614

Since DeCoT is an inference-stage causal interven-615

tion method, the improvement on LLMs’ reasoning616

abilities is attributed to alleviating the bias, but can617

be limited to the upper bound of the LLM’s ca-618

pacity. To alleviate the causal effect of knowledge619

bias on LLMs’ reasoning abilities, future works620

can incorporate unbiased causal learning methods621

in the model pretraining or instruction tuning stage,622

which may enable more robust CoT reasoning. It is623

also interesting to study the theoretical causal foun-624

dation of CoT prompting’s mediator role in LLMs,625

which can be beneficial to better interpretability of626

black-box LLMs.627

9 Ethics Statement628

Our study on mitigating bias in Large Language629

Models (LLMs) recognizes the ethical implications630

of data-driven biases in AI, specifically addressing631

how these biases affect reasoning processes. We632

propose a novel approach to reduce bias impact,633

emphasizing the responsible and ethical advance-634

ment of AI technology. The datasets we used in our635

experiments are all publicly available. No personal636

information was gathered from our human partic-637

ipants, and they were not exposed to any harmful638

model outputs.639
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A Implementation Details 1032
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the temperature set to 1.0 for all the backbone mod- 1035

els. For DeCoT, we let the LLM extract the top 1036

T = 5 most frequently appearing entities in the 1037

context as to be intervened. The LLM will be fur- 1038

ther prompted to provide P = 3 alternative coun- 1039
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XXL and LlaMA-2-7B), we use the official Hug- 1042

ging Face implementations. The experiments are 1043
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conducted using 4 NVIDIA RTX A6000 GPUs1044

with 48GBs. For GPT-3.5 Turbo, we use the Ope-1045

nAI API to conduct the experiments.1046

To prompt the LLMs to generate more robust1047

chain-of-thought results and also follow a unified1048

answer format, we have included 3 few-shot in-1049

context learning examples. The in-context learning1050

examples are from a separate set of data which1051

provide no extra knowledge to the evaluated tasks.1052

In addition, we have also included 3 in-context1053

learning examples for both the entity extraction and1054

the alternative entity proposal prompts. Detailed1055

designs of these in-context examples and prompts1056

are explained in Appendix C.1057

B Prompt Design1058

B.1 Factual Entity Extraction1059

To extract the most relevant factual entities V in1060

the context E (Section 5.2),1061

vj ∼ pθ (V |E, Instructent) , (8)1062

E∗
j = [e1, e2, . . . , vj , . . . , el] ,1063

in which Instructent is the explicit prompt instruc-1064

tion shown in following.1065

Context Example 1:
The Ritz-Carlton Jakarta is a hotel and
skyscraper in Jakarta, Indonesia and 14th Tallest
building in Jakarta. It is located in city center
of Jakarta, near Mega Kuningan, adjacent to the
sister JW Marriott Hotel. It is operated by The
Ritz-Carlton Hotel Company. The complex has
two towers that comprises a hotel and the Air-
langga Apartment respectively. Nakuul Mehta,
Kunal Jaisingh and Leenesh Mattoo respectively
portray Shivaay, Omkara and Rudra, the three
heirs of the Oberoi family.

1066

Instruction Example 1:
Extract the top 5 most frequently appeared en-
tities in the context and provide in the format
of a list: [Ritz-Carlton, Jakarta, Indonesia, Air-
langga Apartment, Nakuul Mehta]

1067

Context Example 2:
Lisa Marie Simpson is a fictional character in
the animated television series "The Simpsons".
She is the middle child and most intelligent of
the Simpson family. Voiced by Yeardley Smith,
Lisa first appeared on television in "The Tracey
Ullman Show" short "Good Night" on April 19,
1987. Cartoonist Matt Groening created and
designed her while waiting to meet James L.
Brooks. Groening had been invited to pitch a se-
ries of shorts based on his comic "Life in Hell",
but instead decided to create a new set of char-
acters. He named the elder Simpson daughter
after his younger sister Lisa Groening.

1068

Instruction Example 2:
Extract the top 5 most frequently appeared en-
tities in the context and provide in the format
of a list: [Lisa Marie Simpson, The Simpsons,
Yeardley Smith, The Tracey Ullman Show, Lisa
Groening]

1069

B.2 Alternative Entity Proposal 1070

To ask the LLM to propose P counterfactual enti- 1071

ties E∗
j,1, E

∗
j,2, . . . , E

∗
j,P to the extracted entity vj 1072

(Section 5.2), 1073

v∗j,k ∼ pθ (V |vj , Instructalt) , (9) 1074

E∗
j,k(v

∗
j,k) =

[
e1, e2, . . . , v

∗
j,k, . . . , el

]
, 1075

in which Instructalt is the explicit prompt instruc- 1076

tion shown in following. 1077

Example 1
Provide 3 most similar entities to "America",
which are from the same entity type and have
similar meanings. Provide the answers as a list:
[Britain, France, Germany].

1078

Example 2
Provide 3 most similar entities to "Florida",
which are from the same entity type and have
similar meanings. Provide the answers as a list:
[New York, California, Arizona].

1079

Example 3
Provide 3 most similar entities to "Beethoven",
which are from the same entity type and have
similar meanings. Provide the answers as a list:
[Mozart, Mahler, Wagner].

1080
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C In-context Learning Examples1081

We design several CoT prompting examples to1082

guide the LLM to generate in an expected format1083

as following:1084

Example 1
Context: The Ritz-Carlton Jakarta is a hotel and
skyscraper in Jakarta, Indonesia and 14th Tallest
building in Jakarta.
Question: The Oberoi family is part of a hotel
company that has a head office in what city?

Based on the context, answer the question step
by step and provide the final answer in the end.
1. The Oberoi family is an Indian family known
for their involvement in hotel management
2. The Oberoi Group is the hotel company
founded by the family
Therefore, the final answer is [Delhi].

1085

Example 2
Context: Lisa Marie Simpson is a fictional char-
acter in the animated television series "The
Simpsons".
Question: Musician Allie Goertz wrote a song
about the "The Simpsons" character Milhouse,
who Matt Groening named after who?

Based on the context, answer the question step
by step and provide the final answer in the end.
1. The character Milhouse from the TV show
"The Simpsons" was named by Matt Groening
2. Groening named the character after President
Richard Nixon’s middle name
Therefore, the final answer is [Richard Nixon].

1086

Example 3
Context: Moloch: or, This Gentile World is a
semi-autobiographical novel written by Henry
Miller in 1927-28, initially under the guise of a
novel written by his wife, June.
Question: What nationality was James Henry
Miller’s wife?
Based on the context, answer the question step
by step and provide the final answer in the end.
1. James Henry Miller (25 January 1915 – 22
October 1989) was an English folk singer and
songwriter
2. His second wife was Margaret "Peggy"
Seeger (born June 17, 1935), who is an Ameri-
can folksinger
Therefore, the final answer is [American].

1087

D Pseudo Code for DeCoT 1088

Algorithm 1: DeCoT
Input: Task query Q, Context E, the LLM

with model parameters θ
1 Init: Sample chain-of- thought reasoning

paths C = [C1, C2, . . . , CN ] by Eq. 1.

2 Extract T factual entities
V = [v1, v2, . . . , vT ] from E by Eq. 8 ;

3 while i < N do
4 while j < T do
5 Propose P counterfactual entities

{v∗j,1, v∗j,2, . . . , v∗j,P } by Eq. 9 ;
6 while k < P do
7 Construct counterfactual context

E∗
j,k(v

∗
j,k) by Eq. 3 ;

8 end
9 Estimate ACE(Ci, vj), i < N for

each entity vj by Eq. 4 ;
10 end
11 Estimate ACE(Ci) by Eq. 5 ;
12 end
13 Sample CoT by Eq. 6 ;
14 Sample the answer by Eq. 7 ;

14
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