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Figure 1: MagicTryOn can accurately transfer the target garment onto the target person under uncon-
strained settings, while preserving spatiotemporal consistency and high garment fidelity throughout
multi-pose video sequences.

ABSTRACT

Video Virtual Try-On (VVT) aims to synthesize garments that appear natural
across consecutive video frames, capturing both their dynamics and interactions
with human motion. Despite recent progress, existing VVT methods still suf-
fer from inadequate garment fidelity and limited spatiotemporal consistency. The
reasons are (i) under-exploitation of garment information, with limited garment
cues being injected, resulting in weaker fine-detail fidelity, and (ii) the lack of
spatiotemporal modeling, which hampers cross-frame identity consistency and
causes temporal jitter and appearance drift. In this paper, we present Magic-
TryOn, a diffusion transformer–based framework for garment-preserving video
virtual try-on. To preserve fine-grained garment details, we propose a fine-grained
garment-preservation strategy that disentangles garment cues and injects these de-
composed priors into the denoising process. To improve temporal garment con-
sistency and suppress jitter, we introduce a garment-aware spatiotemporal rotary
positional embedding (RoPE) that extends RoPE within full self-attention, using
spatiotemporal relative positions to modulate garment tokens. We further impose a
mask-aware loss during training to enhance fidelity within garment regions. More-
over, we adopt distribution-matching distillation to compress the sampling trajec-
tory to four steps, enabling real-time inference without degrading garment fidelity.
Extensive quantitative and qualitative experiments demonstrate that MagicTryOn
outperforms existing methods, delivering superior garment-detail fidelity and tem-
poral stability in unconstrained settings. Code will be made publicly available.
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1 INTRODUCTION

Video Virtual Try-On (VVT) aims to simulate the realistic appearance of individuals wearing gar-
ments across consecutive video frames, capturing the natural look of garments in dynamic environ-
ments and their complex interactions with human movements. Compared to image-based virtual
try-on (Choi et al., 2024; Gou et al., 2023; Kim et al., 2024; Morelli et al., 2023; Xu et al., 2025;
Wan et al., 2024; Jiang et al., 2024; Li et al., 2025b), video virtual try-on exhibits greater capabilities
and application potential in presenting garment motion variations and deformation responses.

Recently, several methods (Fang et al., 2024; He et al., 2024; Xu et al., 2024a; Wang et al., 2024b; Li
et al., 2025c; Nguyen et al., 2025; Chong et al., 2025; Zuo et al., 2025) have been proposed specif-
ically for the VVT task. These methods typically build on pretrained diffusion models and inject
garment information into the denoising network. For example, they employ stable video diffusion
(Blattmann et al., 2023a) or multi-modal diffusion transformer (Li et al., 2024) as the backbone,
inject garment information via a reference network or low-rank adaptation modules, and then fuse it
into the main sequence through feature concatenation. Although they achieve notable results, they
still show limitations in garment fidelity and spatiotemporal consistency. The reasons are two-fold.
(i) They under-exploit garment information, and the injected cues are limited, which constrains the
network’s ability to preserve fine details. In practice, a single garment image or a text caption is often
injected via feature concatenation, without explicitly leveraging complementary cues, resulting in
limited use of garment information. Intuitively, decomposing the garment image into complemen-
tary semantic, structural, and appearance cues and injecting them jointly into the denoising network
can improve garment preservation. (ii) They lack spatiotemporal modeling of garment features and
garment-specific positional encoding, which prevents self-attention from consistently aligning the
same garment across frames. As a result, the network struggles to maintain a stable garment identity
under deformation, leading to temporal jitter and appearance drift.

Based on the above analysis, we propose MagicTryOn, a diffusion transformer–based framework for
garment-preserving video virtual try-on. To tackle the under-exploitation of garment information,
we introduce a fine-grained garment-preservation strategy. Specifically, we decompose garment cues
into three complementary streams (semantics, structure, and appearance) and inject them into the
denoising network. The semantics stream encodes the garment’s category, attributes, material, and
color. The structure stream encodes the garment’s silhouette and topology. The appearance stream
encodes the garment’s detail features. To address temporal jitter caused by the lack of spatiotemporal
modeling, we improve the rotary position embedding (RoPE) within full self-attention by extending
it to a garment-aware spatiotemporal RoPE. We apply spatiotemporal relative position modulation
to garment token, explicitly characterizing the relative relations and correspondence constraints of
the same garment under cross-frame deformation. In addition, to further enhance the model’s ability
to preserve garments, we introduce a mask-aware loss during training to strengthen the optimization
of garment regions. Furthermore, to meet the demands of scenarios requiring faster inference, we
apply distribution matching distillation to MagicTryOn, reducing the inference steps to four and
accelerating the inference speed by 50× while maintaining try-on quality. Our contributions to the
community are threefold:

(i) We propose MagicTryOn and improve garment preservation by decomposing garment cues into
semantics, structure, and appearance, injecting them into the denoising network, and introducing a
mask-aware loss that focuses optimization on garment regions.

(ii) We extend RoPE to a garment-aware spatiotemporal RoPE, providing explicit cross-frame corre-
spondence constraints that reduce temporal jitter and preserve garment identity under deformation.

(iii) We apply distribution-matching distillation to compress inference to four steps, achieving 50×
speed-up while maintaining try-on quality. Extensive experiments show that our MagicTryOn sur-
passes state-of-the-art approaches on standard metrics and visual quality.

2 RELATED WORK

2.1 VIDEO VIRTUAL TRY-ON

Compared to image virtual try-on (Kim et al., 2024; Wan et al., 2024; Jiang et al., 2024; Liang et al.,
2024; Li et al., 2025b; Xu et al., 2025; Luo et al., 2025; Zhou et al., 2025; Luan et al., 2025), video
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virtual try-on (VVT) enables more natural and fluid try-on experiences for users. Current methods
(Fang et al., 2024; He et al., 2024; Xu et al., 2024a; Li et al., 2025c; Nguyen et al., 2025; Wang
et al., 2024b; Karras et al., 2024; Zuo et al., 2025) predominantly leverage diffusion models for VVT
tasks. For instance, WildVidFit (He et al., 2024) generated video try-on results using image-guided
controllable diffusion models, replacing explicit warping operations with a detail-oriented single-
stage image try-on network to alleviate occlusion issues. ViViD (Fang et al., 2024) adapted image
diffusion models to video tasks by introducing temporal modeling modules and designed a garment
encoder to extract fine-grained semantic features of clothing. RealVVT (Li et al., 2025c) proposed
a photorealistic video virtual try-on framework to enhance stability and realism in dynamic video
scenes. CatV2TON (Chong et al., 2025) adopted a video DiT architecture to unify image and video
try-on within a single diffusion model. DPIPM (Li et al., 2025a) leveraged diffusion modeling to
explicitly capture dynamic pose interactions, advancing video virtual try-on. However, they remain
limited under complex cases such as multi-garment scenarios, as they fail to fully exploit garment
information and lack spatiotemporal modeling for garments. To overcome these challenges, we
design MagicTryOn to enhance generation performance in complex cases.

2.2 VIDEO GENERATION

Video generation methods based on diffusion models can be broadly categorized into two groups,
Text-to-Video (T2V) (Blattmann et al., 2023b; Deng et al., 2023; Guo et al., 2023; Yang et al.,
2024; Menapace et al., 2024; Ren et al., 2024; Jeong et al., 2024) and Image-to-Video (I2V) (Hu,
2024; Xu et al., 2024b; Zeng et al., 2024; Guo et al., 2024; Shi et al., 2024; Zhang et al., 2024;
Niu et al., 2024). For instance, AnimateDiff (Guo et al., 2023) introduced a plug-and-play mo-
tion modeling module that seamlessly integrates with personalized text-to-image models to enable
animation generation. Tune-A-Video (Wu et al., 2023) enhanced temporal consistency by strength-
ening self-attention mechanisms to jointly reference previous frames and the initial frame during
current frame synthesis. VideoPainter (Bian et al., 2025) incorporated a lightweight contextual en-
coder to generalize across various types of occlusions. As a specialized form of video generation,
video virtual try-on requires synthesizing given garments onto appropriate regions of dynamically
moving humans, while simultaneously preserving garment details and styles and ensuring spatial
and temporal consistency in the generated videos. To address these unique challenges, in this paper,
we specifically design a DiT-based generative framework tailored for video virtual try-on.

3 METHODOLOGY

Our method aims to tame the pretrained diffusion transformer (DiT) for video virtual try-on, ad-
dressing the common issues of temporal jitter and the difficulty in preserving garment details. The
overall pipeline of our MagicTryOn is shown in Fig. 2(a). MagicTryOn takes videos of persons,
clothing-agnostic masks, pose representations, and target garment images as input. Specifically, the
videos of persons and pose representations are first encoded by the encoder into the latent space,
producing the agnostic latent and pose latent, respectively. The clothing-agnostic masks are resized
and mapped into the latent space to obtain the mask latent. These latents are then concatenated with
random noise along the channel dimension to form the input for the DiT backbone. Meanwhile, we
decompose the garment image into semantic, structural, and appearance streams. These streams are
encoded by dedicated encoders to produce the text token, CLIP token, line token, and garment to-
ken. The text and CLIP tokens encode garment semantics, the line token encodes garment structure,
and the garment token encodes garment appearance. The garment token is concatenated with the
input token along the sequence dimension to provide global garment guidance. In addition, these
tokens are fed into the DiT blocks to provide fine-grained garment detail conditioning. After mul-
tiple denoising steps through the DiT backbone, the network generates the latent representation of
the try-on results, which is subsequently decoded into videos by the decoder.

3.1 FINE-GRAINED GARMENT PRESERVATION

Unlike generic video generation, the video virtual try-on task faces a unique challenge of main-
taining garment pattern details and overall style under dynamic human poses and movements
while ensuring natural, seamless visual coherence. Therefore, we propose a fine-grained garment-
preservation strategy that decomposes the garment image into semantic, structural, and appearance

3
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Figure 2: Overview of MagicTryOn. We introduce a garment-aware spatiotemporal RoPE within
full self-attention to provide spatiotemporal modeling of garment features. We decompose the gar-
ment image into the text token and the CLIP token that encode semantics, the line token that encodes
structure, and the garment token that encodes appearance, as shown in (b). Fine-grained garment
preservation comprises semantic-guided cross-attention (SGCA) and feature-guided cross-attention
(FGCA), as shown in (c). SGCA fuses semantic information, while FGCA fuses structural and
appearance information to improve garment consistency.

cues and uses them to provide principled guidance during denoising, thereby improving garment
consistency. In the following sections, we describe the garment-image decomposition pipeline and
the subsequent injection of the decomposed tokens into the denoising network.

3.1.1 GARMENT INFORMATION DECOMPOSITION

We design a series of operations for decomposing garment details, as shown in Fig. 2(b). First, we
introduce a line estimation module (Pan, 2025) to extract structure line maps from garment images,
which encapsulate structural information and critical edges. Effectively leveraging these line maps
provides stable structural guidance under dynamic human poses, enabling the network to better
preserve the structural integrity of garments. Furthermore, we design a trainable Patchfier module
subsequent to the frozen VAE encoder (Wang et al., 2025) to more effectively extract latent features
from both garment images and line maps, obtaining garment token Tg and line token Tl. Here,
a zero projection is introduced to enhance training stability and mitigate potential latent collapse
during the training process. Furthermore, we employ the Qwen2.5-VL-7B (Wang et al., 2024a)
to generate highly-specific text descriptions of garment images, constructing a text vector V that
encapsulates multiple attributes including color, style, and patterns. Notice that we use Qwen2.5-
VL-7B to augment the existing try-on dataset (Dong et al., 2019; Choi et al., 2021; Morelli et al.,
2022; Fang et al., 2024) by adding a caption attribute to each garment. During inference, either
the Qwen2.5-VL-7B generated caption or a user-provided caption can be used. These generated
descriptions are subsequently integrated with simplified prompts (e.g., Model is wearing [V]) and
fed into the UmT5 Encoder (Chung et al.) to derive the text token Ttxt. Meanwhile, semantic
features of the garment images are extracted using a CLIP encoder (Radford et al., 2021), yielding
the CLIP token Tclip, as shown in Fig. 2(a).

3.1.2 INJECTION OF DECOMPOSED GARMENT INFORMATION

After obtaining the decomposed garment information, injecting it into the denoising network is
a critical step. Simply concatenating these garment-related tokens along the sequence dimension
exploits the information only coarsely, which results in losing fine-grained details during denois-
ing. Therefore, we introduce Semantic-Guided Cross-Attention (SGCA) and Feature-Guided Cross-
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Attention (FGCA) within DiT blocks to provide fine-grained garment detail guidance, as shown in
Fig. 2(c). SGCA takes text tokens and CLIP tokens as inputs to supply global semantic represen-
tations of garments. In FGCA, we design a fine-grained control by keeping the query unchanged
and concatenating the key and value of garment tokens and structure line tokens along the sequence
dimension. This joint modeling enhances the model’s ability to perceive and preserve complex
garment details, thereby improving the fidelity and consistency of the generated results.

SGCA. We formally define the input token sequence as Tin
seq ∈ RB×L×C . This sequence is projected

as the query Q, while CLIP tokens Tclip and text tokens Ttxt are separately mapped to key-value
pairs: Kclip, Vclip and Ktxt, Vtxt. The decoupled cross-attention is performed as:

SGCAi = Attention(Qi,K
clip
i ,Vclip

i ) + Attention(Qi,K
txt
i ,Vtxt

i ). (1)

Following the attention computation, we obtain fused output tokens Os ∈ RB×L×C that consolidate
garment-aware global semantics.

FGCA. We jointly incorporate both the garment token and the line token to perform cross-attention
with the input token sequence. Specifically, we project Tin

seq into the query Q, while the garment
token Tg is projected into Kg, Vg, and the line token Tl is projected into Kl, Vl. The attention
computations are then formulated as:

FGCAi = Attention(Qi, [K
g
i ,K

l
i], [V

g
i ,V

l
i]), (2)

where [·] means concatenated along the sequence dimension. After equation 2, we obtain detail-
enriched output tokens Ot ∈ RB×L×C . The final output sequence Tout

seq ∈ RB×L×C is obtained
by adding Os and Ot. In FGCA, we propose a lightweight adapter module that facilitates efficient
adaptation to the garment feature distribution during the fine-tuning of pretrained diffusion models,
achieved by introducing only a small number of learnable parameters. This design not only improves
the stability of the optimization process, but also enables more precise and fine-grained control over
the generation of garment-related features.

3.2 GARMENT-AWARE SPATIOTEMPORAL ROPE

Maintaining a stable garment identity across frames remains challenging for video virtual try-on , as
existing models lack spatiotemporal modeling tied to the garment itself. This limitation often mani-
fests as temporal jitter and appearance drift under deformation. We address this by extending rotary
position embedding (RoPE) to a garment-aware spatiotemporal (GAS) RoPE that encodes relative
spatiotemporal relations for garment tokens, as shown in Fig. 2(a). Specifically, we concatenate
garment token with input tokens along the sequence dimension L. Let Tinp ∈ RB×L×C denote the
input tokens, where B represents the batch size, C denotes the channel dimension, and the sequence
length L = F ×H×W (with F , H , and W corresponding to the video’s frames, height, and width,
respectively). To incorporate garment information, we prepend a garment token of size 1×H ×W
to the input sequence, thereby extending the sequence length to L′ = (F + 1) × H × W . To en-
sure spatial positional encoding compatibility for the concatenated garment token, we adjust the grid
size in RoPE computation from the original [F,H,W ] to [F + 1, H,W ]. This modification enables
both the garment token and input tokens to receive consistent positional encodings, allowing the
denoising network to effectively recognize and utilize garment features. The concatenated sequence
Tseq ∈ RB×L′×C is subsequently fed into a full self-attention module to capture inter-frame and
image-garment dependency relationships.

For each position p = (t, x, y) on the [F + 1, H,W ] grid with t ∈ {0, . . . , F}, x ∈ {0, . . . ,H−1},
y ∈ {0, . . . ,W−1}, (where t = 0 indexes the garment token), queries and keys are rotated before
attention:

q̃i,k(p) = R
(
ϑk(p)

)
qi,k(p), k̃i,k(p) = R

(
ϑk(p)

)
ki,k(p), (3)

where R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
is a rotation applied to each pair of channels, i indexes the head,

k indexes the channel pairs within a head, and the rotation angle is: ϑk(p) = ωt
k t + ωx

k x + ωy
k y,

where ω
{·}
k are RoPE frequencies. The full self-attention is computed with the rotated queries/keys:

Attentioni(Tseq) = softmax
(
Q̃iK̃

⊤
i d

−1/2
h

)
Vi Q̃i = RoPE(Qi), K̃i = RoPE(Ki). (4)
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Spatiotemporal Consistency Discussion. Ensuring spatiotemporal consistency across frames is a
key challenge in VVT task. Existing methods (Fang et al., 2024; He et al., 2024; Xu et al., 2024a; Li
et al., 2025c; Nguyen et al., 2025) usually separate spatial and temporal attention, but this isolated
design struggles to capture fine-grained spatiotemporal dependencies and dynamic changes, often
leading to frame instability and garment flicker. To overcome this, we employ full self-attention
that unifies spatial and temporal modeling, enabling interactions across all frames and positions to
capture both intra-frame details and inter-frame dynamics. Moreover, we enhance this mechanism
with a GAS RoPE and a prepended garment token, which jointly assign relative positions to garment
and video tokens on a shared grid. This design provides reliable temporal anchors for garment
features, strengthening cross-frame correspondence under deformation and reducing texture flicker.

3.3 TRAINING OBJECTIVE

As shown in Fig. 2, we conduct comprehensive fine-tuning of the DiT blocks and Patchfier modules
based on pretrained weights, while keeping other modules frozen. During fine-tuning, in addition to
using the standard diffusion loss, we introduce a mask-aware loss based on clothing-agnostic masks.
This loss aims to enhance the network’s focus and modeling capability on garment generation re-
gions, thereby improving the restoration quality and consistency of garment details. The overall
training objective is formulated as follows:

L = Et,x1,c,x0∼N (0,I)

[
∥u (xt, t, c)− vt∥2

]
+ Et,x1,c,x0∼N (0,I)

[
∥M⊙ (u (xt, t, c)− vt)∥2

]
,

(5)
where x1 is video latent, x0 is a random noise, xt represents a linear interpolation between x0 and
x1. The groud truth velocity vt is: vt = dxt

dt = x1 − x0. c is the condition, such as garment,
text, pose, and agnostic. u(xt, t, c) is the output velocity predicted by the model. M is the binary
mask generated from the clothing-agnostic mask. ⊙ denotes element-wise multiplication. For the
description of distribution-matching distillation, please refer to Appendix A.2.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

We select two publicly available image virtual try-on datasets VITON-HD (Choi et al., 2021) and
DressCode (Morelli et al., 2022) and one publicly available video try-on dataset ViViD (Fang et al.,
2024) for hybrid training. Specifically, VITON-HD and DressCode contains 11,647 and 48,392
paired image training samples at 768×1024 resolution. ViViD includes 7,759 paired video training
samples at 624×832 resolution. We evaluate our method on the test sets of ViViD (Fang et al.,
2024) and VVT (Dong et al., 2019) for video virtual try-on. We conduct experiments under paired
and unpaired settings. In the paired setting, the input garment matches the one worn by the human
model, while in the unpaired setting, the model tries on a different garment. During testing, the
resolution of videos is the same as that in the original dataset. We adopt four widely used metrics
to evaluate the quality of video try-on results, including SSIM, LPIPS, VFID-I3D (VFIDI ) (Fang
et al., 2024), and VFID-ResNeXt (VFIDR) (Fang et al., 2024). VFID is used to evaluate both the
spatial quality and temporal consistency of videos, where I3D (Carreira & Zisserman, 2017) and
ResNeXt (Xie et al., 2017) are different backbone models. In the paired setting, all four metrics are
used, whereas in the unpaired setting, only VFIDI and VFIDR are applied.

4.2 IMPLEMENTATION DETAILS

We adopt the pretrained weights from Wan2.1-Fun-Control (alibaba pai, 2025) as the foundational
model, which is fine-tuned based on Wan2.1-I2V (Team, 2025). The model training employs a two-
stage progressive strategy. In the first stage, we train the model using random image resolutions
ranging from 256 to 512 on three datasets, including VITON-HD (Choi et al., 2021), DressCode
(Morelli et al., 2022), and ViViD (Fang et al., 2024). During the second stage, training continues
on the aforementioned datasets with image resolutions randomly sampled between 512 and 1024.
For all stages, each training video sample contains 49 frames, with a batch size set to 2. The total
number of training iterations is 45K (15K in stage one and 30K in stage two). The AdamW optimizer
is utilized with a fixed learning rate of 1e-5. All training processes are conducted on 8 NVIDIA H20
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Figure 3: Qualitative comparison of video virtual try-on results under unconstrained settings, includ-
ing model runway (left), complex and occluded motions (middle), and large-scale dance movements
(right). The faces are blurred due to privacy concerns. Please zoom-in for better visualization.
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Input Video & Multi-Garment

Figure 4: Qualitative comparison of video virtual try-on results on multi-garment scenarios. The
faces are blurred due to privacy concerns. Please zoom-in for better visualization.

(96GB) GPUs. The number of inference steps during testing is set to 20. For the distilled version of
MagicTryOn, the inference steps are reduced to 4. We call the distilled version MagicTryOn-Turbo.

4.3 COMPARISON WITH SOTA METHODS

In this section, we present comparisons on the ViViD (Fang et al., 2024) dataset between Mag-
icTryOn and other methods, comparisons under unconstrained settings, as well as multi-garment
scenarios. We also provide comparisons with image-based try-on methods (refer to Appendix A.4),
comparisons on the VVT (Dong et al., 2019) dataset (refer to Appendix A.9), comparisons under
in-the-wild settings (refer to Appendix A.10), and a user study (refer to Appendix A.11). We further
provide video results in the Supplementary Material to better demonstrate the try-on performance.

Comparison on the ViViD Dataset. We conduct quantitative comparisons on the ViViD (Fang
et al., 2024) datasets with state-of-the-art open-source video virtual try-on methods, as shown in Tab.
1. As can be seen, our method outperforms existing approaches across evaluation metrics, which
demonstrates that our design can greatly enhance garment consistency and spatiotemporal stability
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Figure 5: Qualitative comparison of cross-category try-on results, including trousers to shorts,
trousers to skirts, and skirts to trousers. Please zoom in for details.
Table 1: Quantitative comparison on the ViViD (Fang et al., 2024) dataset. MagicTryOn-Turbo
denotes the distilled version. The best results are in red. p and u denote the paired and unpaired
settings, respectively. - indicates that video inference time and memory are not applicable to image-
based try-on methods, or are not reported in the original paper.
Methods VFIDp

I↓ VFIDp
R↓ SSIM↑ LPIPS↓ VFIDu

I ↓ VFIDu
R↓ GPU memory Inference time

StableVITON (Kim et al., 2024) 34.2446 0.7735 0.8019 0.1338 36.8985 0.9064 - -
OOTDiffusion (Xu et al., 2025) 29.5253 3.9372 0.8087 0.1232 35.3170 5.7078 - -
IDM-VTON (Choi et al., 2024) 20.0812 0.3674 0.8227 0.1163 25.4972 0.7167 - -
ViViD (Fang et al., 2024) 17.2924 0.6209 0.8029 0.1221 21.8032 0.8212 62.59G 204.183s
CatV2TON (Chong et al., 2025) 13.5962 0.2963 0.8727 0.0639 19.5131 0.5283 27.66G 209.127s
DreamVVT (Zuo et al., 2025) 11.0180 0.2549 0.8737 0.0619 16.9468 0.4285 - -

MagicTryOn-Turbo 9.4082 0.2836 0.8745 0.0624 16.2213 0.4958 21.32G 6.69s
MagicTryOn 8.4030 0.2346 0.9011 0.0602 14.7147 0.3200 51.51G 345.271s

in generated try-on videos. Note that the inference time and GPU memory usage are measured on a
single NVIDIA H20 when generating a 64-frame video at a resolution of 624×832. We also provide
qualitative comparisons on the ViViD dataset, please refer to Appendix A.5 and Fig. 8.

Comparison of the Distilled Version. We compare the distilled version MagicTryOn-Turbo with
other methods, as shown in Tab. 1. We observe that MagicTryOn-Turbo achieves comprehensive
advantages over competing methods, especially in inference time, generating a 64-frame video with
a resolution of 624×832 only takes 6.69s on a single H20 GPU. It is 30× faster than CatV2TON
while maintaining strong performance. Compared with MagicTryOn, it is 50× faster. Beyond its
speed, MagicTryOn-Turbo also delivers strong try-on performance, showing substantial potential
for practical deployment. Visual comparison results can be found in the Appendix A.6 and Fig. 9.

Comparison under Unconstrained Settings. We compare our method with the open-source video
virtual try-on methods ViViD (Fang et al., 2024) and CatV2TON (Chong et al., 2025) under uncon-
strained settings, as shown in Fig. 3. ViViD and CatV2TON suffer from garment texture blurring,
detail loss, and inter-frame instability in runway, complex motion, and dance scenarios. In contrast,
MagicTryOn maintains higher garment fidelity and stronger spatiotemporal consistency across all
three scenarios, as it combines fine-grained garment feature modeling with spatiotemporal consis-
tency enhancement, enabling the generation of more natural, realistic, and consistent try-on videos.

Comparison in Multi-garment Scenarios. We compare the performance of different methods on
multi-garment try-on, as shown in Fig. 4. We observe that ViViD and CatV2TON often produce
incomplete or misaligned garment overlays in multi-garment scenarios, failing to preserve the pat-
terns or colors of the second garment in some frames, which leads to unstable results. In contrast,
our method not only clearly preserves the textures and patterns of multiple garments but also cor-
rectly maintains their compositional relationships, avoiding misalignment or blending errors. This
superiority comes from our fine-grained garment feature disentanglement, which allows different
garments to be modeled separately while maintaining their relative relationships, thereby preventing
blurring and misalignment and generating more natural and consistent multi-garment video results.

Comparison in Cross-Category Garment Scenarios. We compare the performance of different
methods under cross-category garment scenarios, as shown in Fig. 5. We observe that our method
produces superior try-on results across various transformations, including skirt to trousers, trousers

8
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Table 2: Quantitative comparisons on the ViViD (Fang et al., 2024) dataset, including Magic-
TryOn versus Wan2.1-I2V (Team, 2025) and Wan2.1-Fun-Control (alibaba pai, 2025), as well as
MagicTryOn-Hunyuan (using Hunyuan-DiT (Li et al., 2024) as the base model) versus CatV2TON.
p and u denote the paired and unpaired settings. The best and second-best results are in red and blue.
Methods VFIDp

I↓ VFIDp
R↓ SSIM↑ LPIPS↓ VFIDu

I ↓ VFIDu
R↓ GPU memory Inference time

Wan2.1-I2V (Team, 2025) 18.6245 1.2303 0.7986 0.1786 22.2147 1.0087 56.55G 359.634s
Wan2.1-Fun-Control (alibaba pai, 2025) 14.2180 0.7113 0.8529 0.0818 19.9284 0.8656 54.68G 356.686s
CatV2TON (Chong et al., 2025) 13.5962 0.2963 0.8727 0.0639 19.5131 0.5283 27.66G 209.127s

MagicTryOn-Hunyuan 10.1835 0.2782 0.8956 0.0607 15.6360 0.3209 20.02G 205.106s
MagicTryOn 8.4030 0.2346 0.9011 0.0602 14.7147 0.3200 51.51G 345.271s

Table 3: Ablation study of each component on the ViViD (Fang et al., 2024) test set with a resolution
of 624×832 and 64 frames. p and u denote the paired and unpaired settings, respectively.

Metric w/o GAS w/o SGCA-T w/o SGCA-C w/o SGCA w/o FGCA-G w/o FGCA-L w/o FGCA w/o mask Full model

VFIDp
I↓ 16.1083 18.6721 16.0452 19.2796 17.4817 16.4579 17.7598 18.3322 12.1988

VFIDp
R↓ 0.5080 0.7971 0.5447 0.9075 0.8284 0.7182 0.9304 0.5147 0.2346

SSIM↑ 0.8429 0.8832 0.8535 0.8163 0.8683 0.8619 0.8511 0.8458 0.8841
LPIPS↓ 0.0953 0.0830 0.0862 0.0884 0.0870 0.0833 0.0882 0.1057 0.0815

VFIDu
I ↓ 23.2657 24.6428 24.6383 25.1229 25.2449 23.6495 25.6789 24.5531 17.5710

VFIDu
R↓ 0.8544 0.8128 0.8283 0.9247 0.9324 0.8704 1.0106 0.9260 0.5073

to shorts, and trousers to skirts. This demonstrates that MagicTryOn is not constrained by the shape
of the input mask. MagicTryOn can generate garment contours and structures that match the target
clothing, without being restricted by the mask shape of the original garment.

Effectiveness Beyond the Base Model. To verify that the improvement in try-on performance pri-
marily stems from our module design, we compare MagicTryOn with the video backbones Wan2.1
(Team, 2025). For fairness, we fine-tune Wan2.1-I2V (Team, 2025) and Wan2.1-Fun-Control (al-
ibaba pai, 2025) on the same try-on datasets and use Qwen2.5-VL-7B (Wang et al., 2024a) for
garment captioning in both settings. As shown in Tab. 2, merely fine-tuning the Wan2.1 backbones
fails to achieve optimal try-on performance. In contrast, introducing our proposed modules on the
same backbone yields the best results. This indicates that the performance gains are primarily at-
tributable to our architectural design rather than the base model itself. Qualitative comparisons are
provided in Appendix A.7 and Fig. 10.

To further show that the gains are mainly attributable to our proposed strategies and modules rather
than the base model, we conduct a controlled study using Hunyuan-DiT (Li et al., 2024) as the back-
bone. Specifically, we integrate garment-aware spatiotemporal RoPE, fine-grained garment preser-
vation, and a mask-aware loss into Hunyuan-DiT, and train MagicTryOn-Hunyuan under the same
experimental settings as in Section 4.2. We compare it with CatV2TON (Chong et al., 2025), which
also uses Hunyuan-DiT as the backbone, as shown in Tab. 2. The results show that MagicTryOn-
Hunyuan outperforms CatV2TON across all metrics, indicating that the performance improvements
are primarily attributable to our modular design rather than the inherent capability of the base model.
Corresponding qualitative comparisons are provided in Appendix A.8 and Fig. 11.

4.4 ABLATION STUDY

To evaluate each component’s contribution to overall performance, we conduct ablation studies on
the fine-grained garment-preservation strategy, garment-aware spatiotemporal RoPE, and the mask-
aware loss. All variants are trained for a total of 25K iterations (15K in stage one and 10K in stage
two) using the same datasets as in Section 4.1. Quantitative results for each variant are shown in
Tab. 3. We also provide visual comparisons of the ablation variants in Appendix A.15 and Fig. 14.

Fine-grained garment preservation. We design six variants to perform ablation studies on the
SGCA and FGCA modules in the fine-grained garment preservation strategy. Specifically, for the
SGCA module, we construct three variants, removing the text token branch (w/o SGCA-T), re-
moving the CLIP token branch (w/o SGCA-C), and completely removing the SGCA module (w/o
SGCA). For the FGCA module, we adopt the same settings, obtaining the three variants: w/o FGCA-
G, w/o FGCA-L, and w/o FGCA. The results are shown in Tab. 3. As can be seen, each garment-
related token contributes positively to the network’s generation performance, and the absence of
these tokens significantly degrades the generated results. This demonstrates that injecting various
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Table 4: Additive study of each component on the ViViD (Fang et al., 2024) test set with a resolution
of 384×512 and 64 frames. p and u denote the paired and unpaired settings, respectively.

Variants VFIDp
I↓ VFIDp

R↓ SSIM↑ LPIPS↓ VFIDu
I ↓ VFIDu

R↓
Bare Model 21.9270 1.2376 0.8087 0.1181 28.2298 1.2003

+ SGCA 19.2988 0.9313 0.8329 0.1007 25.3479 1.0360
+ SGCA + FGCA 18.0794 0.7001 0.8630 0.0839 23.3136 0.8925
+ SGCA + FGCA + mask loss 15.4081 0.5252 0.8704 0.0791 20.2338 0.7249
+ SGCA + FGCA + mask loss + GAS RoPE 12.0640 0.2019 0.8852 0.0747 18.0523 0.5068

garment-related information into the denoising network through fine-grained garment preservation
is effective and essential for maintaining both structural and semantic fidelity.

Line-Token Attention MapLine ImageGarment Image Line Attention Overlay

Figure 6: Visualizations of the line-token atten-
tion map. The attention weights are primarily
concentrated on key garment regions, such as
sharp details, patterns, and logos.

GAS RoPE. To verify the effectiveness of the
garment-aware spatiotemporal (GAS) RoPE, we
design a variant that removes GAS RoPE, re-
ferred to as w/o GAS. As shown in Tab. 3, re-
moving GAS RoPE degrades generation perfor-
mance. Without GAS RoPE, the network cannot
assign garment-aware relative positions, lead-
ing to inaccurate preservation of garment style
and noticeable temporal jitter. This indicates
that GAS RoPE provides preliminary garment-
structure anchors during denoising, which are
crucial for maintaining overall style and cross-
frame consistency.

Mask-aware Loss. To validate the role of the
mask-aware loss, we design a variant that does
not utilize the mask-aware loss during training,
referred to as w/o mask, as shown in Tab. 3. We
notice that removing the mask-aware loss leads
to a degradation in overall model performance.
This indicates that the mask-aware loss effec-
tively guides the model to focus on and optimize
clothing areas, thereby enhancing the accuracy
and coherence of the generated results.

Additive of Incremental Components. We supplement additive experiments that progressively in-
corporate each module into the bare model to more clearly demonstrate the marginal contribution
of every component. Specifically, starting from the Bare Model, we gradually add the SGCA mod-
ule, the FGCA module, the mask loss, and the GAS RoPE, as shown in Tab. 4. As shown, each
incremental component consistently improves performance, with clear and steady gains across all
metrics as the SGCA, FGCA, mask loss, and GAS modules are progressively incorporated.

Line-Token Attention Map. To better demonstrate the contribution of the decomposed structural
cues, we provide visualizations of the line-token attention map, as shown in Fig. 6. We observe
that the attention weights are primarily concentrated on key garment regions, such as sharp details,
patterns, and logos. This helps the model better understand fine-grained structural cues of garments
and produce more accurate try-on results.

5 CONCLUSION

In this paper, we present MagicTryOn, a diffusion-transformer framework for garment-preserving
video virtual try-on. Our system integrates a fine-grained garment-preservation module that decom-
poses garment cues and injects them via cross-attention, a garment-aware spatiotemporal RoPE to
stabilize cross-frame identity, and a mask-aware loss to enhance fidelity in garment regions. Addi-
tionally, distribution-matching distillation compresses inference to 4 steps (50× faster). These com-
ponents deliver superior garment-detail fidelity and temporal stability, and extensive experiments
demonstrate state-of-the-art performance in unconstrained settings.
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REPRODUCIBILITY STATEMENT

We use publicly accessible datasets, VITON-HD (Choi et al., 2021), DressCode (Morelli et al.,
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A APPENDIX

In the appendix, we first provide the LLM usage statement. We then present a detailed description
of distribution-matching distillation. Subsequently, we report additional experimental comparisons,
including image-based try-on baselines and a series of visual evaluations on multiple datasets and
backbones. We also provide the user study setup and results, followed by visual outcomes from our
ablation studies.
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A.1 USE OF LLMS

The LLMs are used only for language polishing and editing of the manuscript text, primarily to
refine grammar and word choice in the Introduction and Related Work sections.

A.2 DISTRIBUTION-MATCHING DISTILLATION

Given a strong bidirectional teacher diffusion model (teacher) and a causal few-step student genera-
tor (student), our goal is to make the student’s conditional distributions at key timesteps align with
the teacher’s under a budget of just four sampling steps, thereby markedly reducing latency while
preserving garment fidelity and temporal stability.

A.2.1 STEP 1: ODE INITIALIZATION

Training the causal few-step student directly with the distribution matching distillation (DMD) loss
tends to be unstable due to architectural and information-flow mismatches with the bidirectional
teacher. To address this, we first construct a small set of deterministic ODE trajectories using the
teacher and perform an efficient regression-based initialization of the student, which significantly
stabilizes the subsequent distillation (Yin et al., 2025). We use MagicTryOn to generate the ODE
data. We construct the ODE data as follows.
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First, sample a set of initial latent variables from a standard Gaussian:

{x(i)
T }Li=1 ∼ N (0, I). (6)

Sxecond, use the pretrained bidirectional teacher with an ODE solver to deterministically simulate
the reverse process from T to 0: {

x
(i)
t

}
t=T→0,

i = 1, . . . , L. (7)

producing full trajectories over the teacher’s 50-step schedule. Third, select the four student-aligned

timesteps S = {0, 36, 44, 49} from each trajectory and cache the corresponding states
{
x
(i)
tk

}4

k=1

and their targets
{
x
(i)
0

}L

i=1
. For initialization, we run a brief regression phase so that the student

generator Gϕ learns a few-step mapping to x0 using the following loss:

Linit = E{xti
},{ti}

∥∥∥Gϕ

(
{x(i)

ti }
N
i=1, {ti}Ni=1

)
− {x(i)

0 }Ni=1

∥∥∥2
2
. (8)

A.2.2 STEP 2: DISTRIBUTION-MATCHING DISTILLATION

Distribution matching distillation converts a slow, multi-step teacher diffusion model into an ef-
ficient few-step student generator by minimizing a reverse KL divergence across randomly sam-
pled timesteps t. Concretely, we match the student’s output distribution pgen,t(xt) to the teacher-
smoothed data distribution pdata,t(xt) (obtained via the teacher diffusion process).

LDMD ≜ Et

[
KL

(
pgen,t ∥ pdata,t

)]
. (9)

The gradient of the reverse KL can be approximated by the difference of score functions evaluated
along the student’s sample path:

∇ϕLDMD ≜ Et

[
∇ϕ KL

(
pgen,t ∥ pdata,t

)]
(10)

≈ −Et

(∫ [
sdata

(
Ψ(Gϕ(ϵ), t), t

)
− sgen,ξ

(
Ψ(Gϕ(ϵ), t), t

)] dGϕ(ϵ)

dϕ
dϵ

)
. (11)

Here, Ψ denotes the forward diffusion operator that maps a clean sample to its noised version at
time t. Gϕ is the few-step generator (student) parameterized by ϕ. ϵ ∼ N (0, I) is Gaussian noise.
sdata(xt, t) = ∇xt

log pdata,t(xt) is the data score (approximated by the pretrained teacher network).
sgen,ξ(xt, t) = ∇xt

log pgen,t(xt) is the generator score (given by the student). During training,
DMD (Yin et al., 2024) initializes both score functions using a pretrained diffusion model. The
data score is kept fixed, whereas the generator score is updated online from the generator’s current
outputs. In parallel, the generator itself is optimized to move its output distribution toward the data
distribution.

After training, the student model performs four-step inference, substantially reducing computational
complexity and runtime while meeting real-time requirements without sacrificing garment detail and
temporal stability.

A.2.3 IMPLEMENTATION DETAILS

Table 5: Quantitative comparison under multi-
garment scenarios. The best results are in red.

Methods VFIDu
I ↓ VFIDu

R↓
CatV2TON 61.6164 14.1268
Ours 26.1804 5.6258

During training, we first use MagicTryOn to
generate 6K ODE pairs from the ViViD (Fang
et al., 2024) dataset and use them to initialize
the student model, training for 6K iterations with
AdamW at a learning rate of 5× 10−6. We then
switch to the DMD objective and continue train-
ing for 12K iterations with AdamW at a learning
rate of 2 × 10−6. For additional details about
DMD, please refer to CausVid (Yin et al., 2025).
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A.3 QUANTITATIVE METRICS UNDER MULTI-GARMENT SCENARIOS

We conduct a quantitative comparison with CatV2TON (Chong et al., 2025) in the multi-garment
scenario. Since no paired data are available in this setting, we compute the V FIDu

I and V FIDu
R

metrics, as shown in Tab. 5. Combining the quantitative metrics and visual comparisons, Magic-
TryOn outperforms existing methods in the multi-garment scenario.

Garment CatV2TONStableVITONLaDI-VTONDCI-VTON MagicTryOnCatVTONIDM-VTON

Garment MagicTryOnCatVTON CatV2TON Garment MagicTryOnCatVTON CatV2TON

Figure 7: Qualitative comparison of image virtual try-on results on the VITON-HD (Choi et al.,
2021) (1-st and 2-nd row) and DressCode (Morelli et al., 2022) (3-rd row) datasets. Please zoom-
in for better visualization.

Table 6: Quantitative comparison with other methods on image virtual try-on datasets. The best and
second-best results are in red and blue. p and u denote the paired setting and unpaired setting.

Metric Methods

GP-VTON LaDI-VTON IDM-VTON OOTDiffusion CatVTON CatV2TON MagicTryOn

V
IT

O
N

-H
D

FIDp ↓ 8.726 11.386 6.338 9.305 6.139 8.095 4.959
KIDp ↓ 3.944 7.248 1.322 4.086 0.964 2.245 0.572
SSIM ↑ 0.8701 0.8603 0.8806 0.8187 0.8691 0.8902 0.9104
LPIPS ↓ 0.0585 0.0733 0.0789 0.0876 0.0973 0.0572 0.0429
FIDu ↓ 11.844 14.648 9.611 12.408 9.143 11.222 9.079
KIDu ↓ 4.310 8.754 1.639 4.689 1.267 2.986 1.032

D
re

ss
C

od
e

FIDp ↓ 9.927 9.555 6.821 4.610 3.992 5.722 6.550
KIDp ↓ 4.610 4.683 2.924 0.955 0.818 2.338 0.725
SSIM ↑ 0.7711 0.7656 0.8797 0.8854 0.8922 0.9222 0.9295
LPIPS ↓ 0.1801 0.2366 0.0563 0.0533 0.0455 0.0367 0.0301
FIDu ↓ 12.791 10.676 9.546 12.567 6.137 8.627 11.727
KIDu ↓ 6.627 5.787 4.320 6.627 1.549 3.838 1.544

A.4 COMPARISON WITH IMAGE-BASED TRY-ON METHODS

For image virtual try-on benchmarking, we conduct evaluations on the test sets of VITON-HD (Choi
et al., 2021) and DressCode (Morelli et al., 2022). The testing experiments are conducted under two
settings, paired and unpaired. In the paired setting, the input garment image and the garment worn by
the human model are the same item. In contrast, the human model tries on different garment in the
unpaired setting. During testing, the resolution of images is the same as that in the original dataset.
We adopt four widely used metrics to evaluate the quality of image try-on results, including SSIM,
LPIPS, FID, and KID. SSIM and LPIPS measure the similarity between two individual images,
while FID and KID evaluate the similarity between two image distributions. In the paired setting,
all four metrics are used, whereas in the unpaired setting, only FID and KID are applied.
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Figure 8: Qualitative comparison of video virtual try-on results on the ViViD (Fang et al., 2024)
dataset. Please zoom-in for better visualization.

We perform quantitative comparisons with state-of-the-art image-based methods on the VITON-HD
(Choi et al., 2021) and DressCode (Morelli et al., 2022) datasets under both paired and unpaired
settings. As shown in Tab. 6, our method consistently outperforms existing approaches across
multiple metrics, particularly in the unpaired scenario. This demonstrates that the use of full self-
attention not only facilitates temporal consistency modeling but also enhances spatial perception,
further highlighting the effectiveness of the proposed coarse-to-fine garment preservation strategy.
Fig. 7 presents the visual results of different methods on the image virtual try-on task. As can be
observed, our method demonstrates superior performance in preserving complex garment patterns
compared to other methods specifically designed for image try-on.

A.5 VISUAL COMPARISON ON THE VIVID DATASET

Fig. 8 shows the qualitative comparison between our method and existing open-source video virtual
try-on approaches. We observe that our method achieves outstanding performance in generating try-
on videos, with improved temporal coherence and garment consistency—including color, style, and
pattern. The garments also exhibit natural wrinkles and motion in response to human movement,
demonstrating effective spatiotemporal modeling and fine detail preservation.

A.6 VISUAL COMPARISON OF THE DISTILLED VERSION

Fig. 9 presents visual comparisons of the distilled MagicTryOn-Turbo against multiple methods
on the ViViD (Fang et al., 2024) dataset. With only four inference steps, MagicTryOn-Turbo still
performs stable and accurate garment transfer. In terms of detail and style fidelity, high-frequency
patterns—such as logos, stripes, and lettering—remain sharp and faithful. In terms of spatiotem-
poral consistency, the garment appearance varies smoothly with human motion and remains stable
across frames. Despite its very high speed, MagicTryOn-Turbo maintains high try-on quality and
strong spatiotemporal consistency, meeting real-time requirements. These results indicate that our
distribution-matching distillation achieves substantial step reduction without sacrificing garment de-
tail or stability.
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Figure 9: Visual comparison of MagicTryOn-Turbo and other methods on the ViViD (Fang et al.,
2024) dataset. Please zoom-in for better visualization.
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Figure 10: Visual comparison with the base model Wan2.1-I2V (Team, 2025) under ViViD (Fang
et al., 2024) dataset. Please zoom-in for better visualization.

A.7 VISUAL COMPARISON WITH WAN2.1

Fig. 10 compares the results of the video backbone Wan2.1-I2V (Team, 2025) and MagicTryOn un-
der identical inputs and the same captioning, with captions generated by Qwen2.5-VL (Wang et al.,
2024a). With the backbone alone, Wan2.1-I2V exhibits incomplete transfer of garment patterns and
textures and weaker garment consistency. In contrast, MagicTryOn better preserves overall garment
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Table 7: Quantitative comparison on the VVT (Dong et al., 2019) dataset. The best and second-best
results are in red and blue. p and u denote the paired and unpaired settings, respectively.

Methods VFIDp
I↓ VFIDp

R↓ SSIM↑ LPIPS↓ VFIDu
I ↓ VFIDu

R↓
FW-GAN (Dong et al., 2019) 8.019 0.1215 0.675 0.283 - -
MV-TON (Deng et al., 2023) 8.367 0.0972 0.853 0.233 - -
ClothFormer (Jiang et al., 2022) 3.967 0.0505 0.921 0.081 - -
ViViD (Fang et al., 2024) 3.793 0.0348 0.822 0.107 3.994 0.0416
SwiftTry (Nguyen et al., 2025) - - 0.887 0.066 3.589 0.5340
CatV2TON (Chong et al., 2025) 1.778 0.0103 0.900 0.039 1.902 0.0141

MagicTryOn-Hunyuan 1.690 0.0097 0.902 0.038 1.834 0.0125
MagicTryOn 1.487 0.0039 0.917 0.024 1.662 0.0053

style and fine textures, and achieves stronger cross-frame consistency. Since both methods share
the same backbone and the same captioning pipeline, these gains are attributable to our proposed
modules: the fine-grained garment-preservation strategy, the garment-aware spatiotemporal RoPE,
and the mask-aware loss, rather than to the base model’s capacity.
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Figure 11: Qualitative comparison between our design and CatV2TON (Chong et al., 2025) under
the same base model (Hunyuan-DiT (Li et al., 2024)) on the ViViD (Fang et al., 2024) dataset.
Please zoom-in for better visualization.

A.8 VISUAL COMPARISON USING HUNYUAN-DIT

Fig. 11 compares CatV2TON (Chong et al., 2025) and MagicTryOn-Hunyuan under the same back-
bone Hunyuan-DiT (Li et al., 2024). CatV2TON shows deficiencies in pattern reconstruction and
boundary stability, texture details tend to deform, and consistency around the neckline is weaker.
In contrast, MagicTryOn-Hunyuan better preserves the overall garment style and high-frequency
details (e.g., patterns, stripes, lettering) and maintains stronger spatiotemporal consistency across
frames. Because both methods share the Hunyuan-DiT backbone, these improvements can be at-
tributed to our module design, rather than to differences in the base model.

A.9 VISUAL COMPARISON ON THE VVT DATASET

Tab. 7 reports quantitative results on the VVT (Dong et al., 2019) dataset. We observe that Magic-
TryOn attains the best performance across all metrics, achieving the lowest VFID in both paired and
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Figure 12: Visual comparison of different methods in in-the-wild scenarios. We select two dance
cases to evaluate garment consistency and spatiotemporal stability. The faces are blurred due to
privacy concerns. Please zoom-in for better visualization.

unpaired settings, as well as the highest SSIM and the lowest LPIPS. MagicTryOn-Hunyuan ranks
second on every metric, surpassing all prior methods including CatV2TON (Chong et al., 2025). Be-
cause lower VFID/LPIPS and higher SSIM indicate better perceptual quality and structural fidelity,
these results demonstrate that our approach delivers superior garment fidelity and spatiotemporal
stability on the VVT dataset.

A.10 VISUAL COMPARISON IN IN-THE-WILD SCENARIOS

Fig. 12 compares different methods on two dance videos in in-the-wild scenarios. Existing meth-
ods generally struggle to preserve garment content and exhibit temporal instability: patterns and
lettering drift or stretch under rapid motion, colors and textures vary randomly over time, flicker is
noticeable, and cross-frame consistency is weak. In contrast, MagicTryOn delivers higher garment
fidelity and stronger spatiotemporal stability in both dance cases. This advantage arises from our
fine-grained garment-preservation strategy and the garment-aware spatiotemporal RoPE, which ex-
plicitly constrains cross-frame correspondences, jointly improving garment consistency and stability
in complex in-the-wild motion.

A.11 USER STUDY
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CatV2TON CatV2TON

Figure 13: User study visualization. Partici-
pants were surveyed on spatiotemporal consis-
tency and garment consistency.

We conduct a user study involving 50 partici-
pants to evaluate the performance of our method
in comparison to CatV2TON from two perspec-
tives: temporal consistency and garment con-
sistency. Each participant views 8 try-on video
pairs for each aspect (a total of 16 questions) and
is asked to select the more favorable result. The
8 generated try-on videos spanned diverse in-
the-wild scenarios. The visual results are shown
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Table 8: Comparison between the line estimation module and Canny edge extraction. Results are
evaluated under identical testing conditions on the ViViD dataset. The best results are in red. p and
u denote the paired and unpaired settings, respectively.

Methods VFIDp
I↓ VFIDp

R↓ SSIM↑ LPIPS↓ VFIDu
I ↓ VFIDu

R↓
w/ Canny edges 8.9092 0.2772 0.8957 0.0609 15.0156 0.3469
w/ Line estimation 8.4030 0.2346 0.9011 0.0602 14.7147 0.3200

in the Fig. 13. When asked to choose the video with better temporal consistency, considering smooth
motion, absence of flickering artifacts, and visual stability, our method is selected 360 times out of
400 total responses (90%), significantly outperforming CatV2TON (40 out of 400, 10%). In the
garment consistency assessment, which measures the faithfulness of the generated garment to the
target in terms of color, style, and structure, our method again receives a dominant preference with
335 out of 400 responses (83.75%), compared to CatV2TON’s 65 (16.25%). Participants showed
a clear preference for MagicTryOn over CatV2TON on both axes. These results substantiate that
MagicTryOn delivers more stable and more faithful try-on videos, aligning with real-world user
perception.

Source Video w/o GAS w/o SGCA-T w/o SGCA-C w/o SGCA w/o FGCA-G w/o FGCA-L w/o FGCA w/o mask Full model

Figure 14: Visual comparison of the ablation variants. Please zoom-in for better visualization.

A.12 VISUAL RESULTS OF ABLATION STUDIES

Fig. 14 presents a visual comparison of the ablation variants. Removing GAS (garment-aware
spatiotemporal RoPE) degrades cross-frame consistency and causes noticeable drift of garment fea-
tures. When SGCA is partially removed, w/o SGCA-T (without text semantics) more often yields
color and style deviations, while w/o SGCA-C (without CLIP semantics) leads to mismatches in
garment category. Disabling SGCA entirely weakens global style and category constraints. The
FGCA ablations show that w/o FGCA-G (without the appearance stream) produces blurred or faded
high-frequency details such as logos and lettering, whereas w/o FGCA-L (without the structure
stream) makes the silhouette and boundaries more prone to deformation and misalignment. Re-
moving FGCA altogether simultaneously degrades texture and structure, often introducing blocky
or smearing artifacts. Eliminating the mask-aware loss reduces optimization emphasis on garment
regions, lowering regional consistency. In contrast, the Full model combines SGCA for semantic
guidance, FGCA for appearance and structure feature guidance, GAS for spatiotemporal anchoring,
and mask-aware reinforcement, maintaining silhouette and details stably across frames and achiev-
ing the best garment fidelity and spatiotemporal consistency.

A.13 LINE ESTIMATION VS. CANNY EDGE
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Figure 15: Visual comparison of line maps.

We provide a comparison where the line esti-
mation module is replaced with Canny edges.
We evaluate both settings under the same test-
ing conditions on the ViViD dataset, and the
quantitative results are shown Tab. 8. As can
be seen, when using the line maps extracted by
Canny edges, the network performance drops
slightly. We also provide visual comparisons
between line maps extracted by line estimation
module and those extracted by Canny edges in
the Fig. 15. The line maps extracted by the
line estimation module contain clearer contours
and capture nearly all garment details, such as
complex patterns, cuffs, collars, and other key
elements that define garment structure. In con-
trast, the line maps produced by the Canny edges
method fail to capture many of these important
details. This explains why the generation perfor-
mance drops when using the Canny line maps.
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The garment is a white T-shirt made of soft, lightweight cotton fabric, featuring a classic crew 
neckline and short sleeves. A small woven label is attached at the inner neckline, indicating the 
brand and manufacturing information. The shirt has a clean, minimal silhouette that highlights 
the bold graphic on the front. The front of the T-shirt displays a large, colorful cartoon-style 

illustration occupying the central chest area. ……… Above the woman's head, a speech bubble is 
prominently displayed, containing the text “IT’S ABOUT KICKING ASS!!” in bold, capital comic-
style lettering. The bubble is drawn with clear, rounded borders, contributing an expressive, 
energetic tone to the overall design. Overall, the T-shirt combines a clean white base with a 
visually striking, story-driven graphic illustration, characterized by its vivid colors, clear shapes, 
and expressive text element, giving the garment a playful and energetic comic-book aesthetic.

Q
w

en
2

.5
-V

L
-7

B
S

am
p

le
 C

ap
ti

o
n

W
ro

n
g

 C
ap

ti
o

n

The garment is a white T-shirt featuring a graphic print on the front. The print depicts a 
cartoon-style illustration of a woman boxing, with one arm raised and the other holding a boxing 
glove. She is standing next to a punching bag. The background of the graphic includes a yellow 
wall with a star, a blue door, and a green floor. Above the woman's head, there is a speech bubble 
containing the text "IT'S ABOUT KICKING ASS!!" in bold, capital letters. The T-shirt has a 
crew neck and short sleeves. A small label is visible at the neckline, indicating the brand and 
possibly the country of manufacture.

A white crew-neck T-shirt featuring a front graphic of a cartoon woman boxing next to a 
punching bag.

A pleated midi skirt with a high waist and flowing panels, featuring no graphics or upper-body 
structure.

Figure 16: Comparison of generation results under four types of garment captions: 7B-generated,
32B-generated, simple-correct, and manually incorrect. Please zoom-in for better visualization.

A.14 IMPACT OF CAPTION QUALITY

We perform an additional ablation study to investigate the influence of caption quality on the re-
sulting try-on generation. we compare four different conditions, 1) using the caption generated
by Qwen2.5-VL-7B, 2) using the caption generated by Qwen2.5-VL-32B, 3) using a very simple
but semantically correct garment caption, and 4) using a manually written, completely incorrect
garment caption (because the Qwen2.5-VL models rarely produce fully incorrect descriptions for
garment images). The visual results are shown in Fig. 16. Although Qwen2.5-VL-32B produces
more detailed garment descriptions, its generation quality is similar to that of Qwen2.5-VL-7B. A
simple but correct garment caption can also produce strong try-on results. These findings show that
as long as the caption provides a correct coarse description of the garment type and key features,
high-quality try-on generation can be achieved. However, if the caption is completely incorrect
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and does not match the garment category or main patterns of the target garment, the model cannot
generate correct garment characteristics.

A.15 UNDERPERFORMING SCENARIO

When the input garment mask is severely misaligned or semantically inconsistent, the model per-
formance degrades. For example, during trouser try-on, if a mask corresponding to an upper-body
garment is provided instead, the try-on performance underperforms. However, this issue is not spe-
cific to our method; it is a common limitation shared by all mask-based virtual try-on approaches.
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