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ABSTRACT

This work answers the question of whether it is feasible to create a compre-
hensive metric-semantic 3D virtual world using everyday devices equipped with
multi-view stereo. We propose an open-ended metric-semantic representation
learning framework based on 3D Gaussians, which distills open-set semantics
from 2D foundation models into a scalable and continuously evolving 3D Gaus-
sian representation, optimized within a SLAM framework. The process is non-
trivial. The scalability requirements make direct embedding of semantic informa-
tion into Gaussians impractical, resulting in excessive memory usage and seman-
tic inconsistencies. In response, we propose to learn semantics by aggregating
from a condensed, fixed-sized semantic pool rather than directly embedding high-
dimensional raw features, significantly reducing memory requirements compared
to the point-wise representation. Additionally, by enforcing pixel-to-pixel and
pixel-to-object semantic consistency through contrastive learning and stability-
guided optimization, our framework enhances coherence and stability in semantic
representations. Extensive experiments demonstrate that our framework presents
a precise open-ended metric-semantic field with superior rendering quality and
tracking accuracy. Besides, it accurately captures both closed-set object categories
and open-set semantics, facilitating various applications, notably fine-grained, un-
restricted 3D scene editing. These results mark an initial yet solid step towards
efficient and expressive 3D virtual world modeling. Our code will be released.

1 INTRODUCTION

A 3D virtual world functions as a collective space where user avatars interact seamlessly within
a metric-semantic representation of 3D environments, encompassing both appearance and seman-
tics (Gupta et al., 2009; Dionisio et al., 2013). Recent technological strides, seen in platforms like
VisionPro (Apple, 2023) and Metaverse (Meta, 2024), signify a transition towards richer content,
vast expanses, and the ambitious goal of encompassing the entire Earth within this digital realm (Li
et al., 2023a; Huang et al., 2023; Puig et al., 2023; Wang et al., 2024; Cai et al., 2024). This progres-
sion raises a fundamental query: is it possible to develop an open-ended metric-semantic 3D virtual
world using everyday devices equipped with multi-view stereo?

Such a system should not only capture the spatial layout but also incorporate semantic information
crucial for meaningful interactions. It must possess three essential characteristics: i) scalability to
adapt limitlessly to evolving environments; ii) open-ended semantic framework capable of accom-
modating new concepts and free-form queries; iii)efficiency in rendering speed and memory usage to
ensure portability as scene complexity increases. While recent breakthroughs like Neural Radiance
Fields (NeRFs) (Mildenhall et al., 2020) and Diffusion models (Nichol & Dhariwal, 2021; Rombach
et al., 2022) have enabled photorealistic representations of intricate 3D scenes, yet their slow train-
ing and inference speeds impede their practicality (Barron et al., 2021; 2022; Chen et al., 2023; Sun
et al., 2022; Müller et al., 2022), particularly in expanding applications. On the other hand, recent
progress such as 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has notably enhanced train-
ing and rendering speeds, holding promise for real-time novel view synthesis. Nonetheless, these
advancements focus primarily on visual fidelity, still overlooking the intrinsic semantics within 3D
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Figure 1: Two inherent challenges arise in the open-ended 3D metric-semantic representation learn-
ing. (a) Assigning a semantic feature to each Gaussian is inefficient and consumes excessive GPU
memory. For instance, allocating 512-dimensional features per Gaussian in a scene increases GPU
occupancy by ∼40×. (b) Inconsistencies in open-set semantic features across frames hinder the
learning of a coherent semantic field.

environments (Yu et al., 2024; Sun et al., 2024a; Li et al., 2024a). The challenge of constructing a
scalable and semantically rich 3D scene representation remains a significant, unresolved problem.

This work aims to bridge this gap by presenting an open-ended 3D metric-semantic representation
learning framework based on 3DGS. The core idea is to distill open-set semantics from 2D founda-
tion models like CLIP (Radford et al., 2021) or SAM (Kirillov et al., 2023) into a scalable and con-
tinuously evolving 3D Gaussian representation, optimized within a simultaneous localization and
mapping (SLAM) framework. One straightforward approach involves embedding feature dimen-
sions to each 3D Gaussian, alongside color information, to represent additional semantics. However,
this process encounters two inherent challenges as environments evolve gradually. First, memory
and computation consumption can become prohibitively large, significantly reducing optimization
and rendering efficiency with respective to the number of Gaussian points and the dimension of the
learned feature. Existing solutions often restrict feature dimensions to a smaller scale (Qin et al.,
2024), i.e., 3 vs. 512 (the original feature dimension of CLIP), to mitigate this issue, albeit at the
cost of semantic expressiveness. Second, semantic inconsistency across viewpoints. As depicted
in Fig. 1, due to the 2D nature of off-the-shelf foundation models, ensuring semantic coherence for
identical objects across continuous view renderings cannot be guaranteed, thereby impeding effec-
tive learning of semantic fields.

Focusing on the aforementioned two intrinsic challenges, we first integrate the Semantic Feature
Aggregation mechanism into the framework. Instead of directly expanding the semantic feature
channel, this module associates each Gaussian with a low-dimensional key vector to access point-
specific semantics from a fixed-size learnable semantic feature pool. This pool holds a condensed
representation of open-set semantics across the entire scene, significantly smaller in scale compared
to the number of Gaussian points, i.e., 200 vs. 5× 106. This mechanism not only mitigates the sub-
stantial memory requirements but also diminishes the redundancy of local semantic features. Given
that local Gaussians representing the same object should exhibit similar semantics, this approach
promotes more effective semantic field learning. Next, to improve semantic consistency during op-
timization, the approach is intuitive: ensuring that the semantic representation of any pixel in a 2D
image aligns with neighboring pixels from the same object (intra-frame) and pixels at the same 3D
locations aligned with camera poses from previous frames (inter-frame). We employ contrastive
learning to enforce these correspondences and introduce the Intra-Inter Semantic Consistency Ob-
jective during semantic field learning. Finally, to further address semantic ambiguity, which arises
when different semantic labels are attributed to the same object, hindering field learning, we intro-
duce Semantic Stability Guidance. By measuring the inter-frame pixel-to-object semantic consis-
tency through cosine similarity, we leverage this metric to adjust the learning signal. Signals from
inconsistent regions are reduced, while those from consistent regions are amplified, enhancing the
overall coherence and stability of semantic representations within the framework.

For examination, we compare our framework with both NeRF-based (Yang et al., 2022; Zhu et al.,
2022; Johari et al., 2023; Wang et al., 2023; Sandström et al., 2023) and 3DGS-based (Yan et al.,
2024; Keetha et al., 2024; Li et al., 2024c) SLAM methods on the Replica dataset (Straub et al.,
2019) in §3.2. Experimental results demonstrate that our framework establishes a precise open-
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Figure 2: Framework. (a) Each Gaussian is linked to a low-dimensional key vector that retrieves
point-specific semantics from a fixed-size learnable feature pool. (b) The SLAM framework pro-
cesses RGB-D frames alongside a semantic feature map generated by a pre-trained model. (c) To
enhance semantic consistency and address semantic ambiguity during optimization, we introduce
the Intra-Inter Semantic Consistency Objective and Semantic Stability Guidance.

ended metric-semantic field, exhibiting superior rendering quality and tracking accuracy. It show-
cases the ability to accurately capture not only closed-set object categories (§3.3) but also open-set
semantics, facilitating a wide range of applications such as 3D scene editing (§3.4). This function-
ality empowers fine-grained and unrestricted semantic-based manipulation of target objects without
affecting the surrounding environment, a capability rarely reported in previous studies.

2 METHODOLOGY

2.1 FRAMEWORK OVERVIEW

Given an RGB-D stream, our framework aims to reconstruct a scalable Gaussian field enriched with
open-set semantic information. Since assigning a high-dimensional semantic feature to each Gaus-
sian is both computationally expensive and spatially redundant, we introduce the Semantic Feature
Aggregation, allocating semantic features only to Gaussians involved in rendering and optimiza-
tion. To further address inconsistencies of the open-set semantic features generated across frames,
we introduce the Intra-Inter Semantic Consistency Objective technique. Additionally, to reduce the
impact of inaccurate new-income semantic features to the reconstructed semantic field, we develop
a Semantic Stability Guidance. An overview of our framework is presented in Fig. 2.

2.2 SEMANTIC-EMBEDDED GAUSSIAN REPRESENTATION

3DGS (Kerbl et al., 2023) represents an explicit 3D scene with a set of Gaussians. In our work, we
simplify the Gaussians to be isotropic for more efficient scene representation:

g(x) = σ exp(−∥x− µ∥2

2r2
), (1)

where µ ∈ R3, r and σ indicates the position, radius and opacity of the Gaussian in 3D space.

Color and Depth Rendering. Given a set of 3D Gaussians and a camera pose, the first step is to
sort all Gaussians. The influence of all Gaussians on a certain pixel can be integrated by performing
front-to-back volume rendering. Images can be generated by applying alpha-compositing to the
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splatted 2D projection of each Gaussian in a sequential manner within the pixel space. The center µ
and the radius r of each Gaussian can be written with the depth of the ith Gaussian d as:

µ2D = Kc
Etµ

d
, r2D =

fr

d
,where d = (Etµ)z, (2)

where Kc represents the camera intrinsic matrix, Et represents the extrinsic matrix capturing the
rotation and translation of the camera at frame t, and f is the focal length. Thus, the rendered color
of a particular pixel p can be computed with N splatted 2D Gaussians as:

C(p) =
∑N

i=1
cigi(p)

∏i−1

j=1
(1− gj(p)), (3)

where ci denotes the RGB color of each Gaussian and fi(p) is computed via Eq. 1. Similarly, we
differentiably render depth with:

D(p) =
∑N

i=1
digi(p)

∏i−1

j=1
(1− gj(p)), (4)

where di represents the depth of each Gaussian.

Semantic Feature Aggregation. We enhance each Gaussian with an additional semantic feature.
Previous NeRF-based methods (Kerr et al., 2023) often directly integrate high-dimensional seman-
tic features into the scene. However, assigning such features to every Gaussian greatly increases
memory demands, and many Gaussians are inactive during rendering, which reduces efficiency.
Additionally, unlike color maps, objects of the same category share identical semantics, making re-
dundant features unnecessary. To address this, we propose using a semantic feature pool to reduce
memory and assign features efficiently to active Gaussians.

Specifically, we assign a key k̂ to each Gaussian, projecting keys of active Gaussians into high-
dimensional features. To facilitate this, we develop a learnable key pool K = {kl|l = 1, 2, · · · ,M}
and a learnable high-dimensional semantic feature pool F = {fl|l = 1, 2, · · · ,M}, both of size M .
We calculate the similarity between each Gaussian’s key k̂ and the keys in the key pool, aggregating
the semantic feature f̂ from the most similar key:

f̂ =
∑M

l=1
f̂l · softmax(simVec(k̂,K)), (5)

where simVec(k̂,K) represents the similarity scores. This approach minimizes memory overhead
while ensuring that the Gaussians retain high-dimensional semantic features.

Semantic Feature Rendering. Within the rendering phase, our method is capable of rendering a
2D semantic feature map from the 3D scene, following the rendering process of the color map:

F (p) =
∑N

i=1
f̂igi(p)

∏i−1

j=1
(1− gj(p)), (6)

where f̂i represents the semantic feature of each Gaussian.

2.3 SEMANTIC-EMBEDDED SLAM FRAMEWORK

Our SLAM framework begins by processing RGB images to generate semantic feature frames with
pre-trained models (supp. B.1). Given a Gaussian field constructed from frames 1 to t, along with
new RGB, depth, semantic feature frames at t+ 1, the framework performs tracking and mapping.

Tracking. Camera tracking determines the current camera position using incoming data to estimate
relative motion. During tracking, only camera parameters are optimized, with Gaussians parame-
ters fixed. When initializing with the first frame, the camera tracking stage is bypassed. For each
subsequent timestep, the camera pose is estimated by forward-projecting pose parameters from the
camera center into quaternion space. Consequently, the camera parameters are initialized as:

Et+1 = Et + (Et − Et−1). (7)

Mapping. The mapping process generates an open-ended metric-semantic spatial representation
of the scene. Using the camera’s tracked position and depth frames, it refines the map by adding
Gaussians to underdeveloped areas. Unlike in the tracking phase, the poses remain fixed during
mapping, while Gaussian parameters are updated. We optimize these parameters through differen-
tiable rendering of RGB, depth, and semantic feature frames using gradient-based techniques. Large
or low-opacity Gaussians are removed, as outlined in (Kerbl et al., 2023).
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2.4 OVERALL OBJECTIVES

Given a reconstructed field from frames 1 to t, along with rendered RGB, depth, semantic feature
frames C, D, F and new RGB, depth, semantic feature frames CGT , DGT , FGT at t + 1, our
framework optimizes using tracking and mapping losses. For the mapping loss, we include two
key components: the Intra-Inter Semantic Consistency Objective and Semantic Stability Guidance,
ensuring accurate semantic field optimization.

Tracking Loss. This process relies on the differentiable rendering of RGB, depth, and semantic
maps via Eqs. 3, 4 and 6. For each pixel p, let CGT (p), DGT (p) and FGT (p) represent the ground
truth RGB, depth, and semantic feature, respectively. We optimize camera parameters with:

Ltracking =
∑

p
(λT

CLT
color + λT

DLT
depth + λT

FLT
sem), (8)

where

LT
color = ∥C(p)− CGT (p)∥ ,LT

depth = ∥D(p)−DGT (p)∥ ,LT
sem = ∥F (p)− FGT (p)∥ . (9)

We utilize the loss only on pixels from well-reconstructed parts of the map.

Intra-Inter Semantic Consistency Objective. The semantic features derived from the open-set
approach are better suited for 2D images than for 3D scenes. While this allows for reconstructing a
semantic field from RGB-D inputs, it can also lead to inconsistencies of semantic features generated
between frames—particularly at objects from the edges of images. Such inconsistencies pose chal-
lenges for accurately reconstructing the open-set semantic field. Since the semantic features of the
same object should remain consistent, we address this issue with a contrastive learning approach.

For a given pixel p in frame F , it should have the same semantic feature as other pixels belonging
to the same object. Based on this principle, we select a pixel from intra-frame that shares the same
object and treat it as a positive sample. Additionally, p should also maintain the same semantic
feature as the corresponding pixel in previous frames which has the same projection position in 3D
space. To accomplish this, we project p into 3D space using the depth map and then reproject it
back onto the previous frame, to find the corresponding pixel in the inter-frame, which serves as a
second positive sample. Remaining pixels from F are added to the negative sample pool.

Following this approach, we selective a positive sample p+ mentioned above and a negative sample
pool N− containing negative samples p−

i , to compute the semantic consistency objective:

LCO = − log
exp(p · p+)∑

p−
i ∈N− exp(p · p−

i )
. (10)

low similarity

high similarity

MSG ↑

MSG ↓

Figure 3: Semantic Stability Guidance.

Semantic Stability Guidance. We continue to address
semantic ambiguity between frames. When given a Gaus-
sian field built from frames 1 to t and inputting FGT at
t + 1, inconsistencies in the same object’s features can
negatively impact the existing semantic field. To mitigate
this, we propose Semantic Stability Guidance to reduce
the influence of inaccurate features.

For a pixel p in frame F , we use the same projection rules
from the Intra-Inter Semantic Consistency Objective to
locate the corresponding pixel in the previous semantic
frame, identifying its segmentation region. As in Fig. 3, We calculate the cosine similarity between
F (p) and the average feature of pixels in this region, using this similarity as the Semantic Stability
Guidance MSG(p). In areas of high similarity, the loss remains larger for normal optimization,
while in low-similarity areas, it is reduced to limit negative impacts on correct reconstructions.

Overall Mapping Loss. Different from Eq. 8, we optimizes a mapping loss that all pixels are
calculated. Specifically, we calculate the color loss with an additional SSIM (Wang et al., 2004) loss:

LM
color = λc

1 ∥C(p)− CGT (p)∥+ λc
2(1− SSIM(C(p), CGT (p))). (11)

We get the semantic feature loss with Eq. 10:

LM
sem = λs

1 ∥F (p)− FGT (p)∥ ·MSG(p) + λs
2LCO. (12)
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Figure 4: Qualitative Comparisons (§3.4) on Replica (Straub et al., 2019).

While depth loss can be calculated with

LM
depth = ∥D(p)−DGT (p)∥ , (13)

combining Eqs. 11, 12, 13, the final mapping loss is:

Lmapping = λM
C LM

color + λM
D LM

depth + λM
F LM

sem. (14)

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Datasets. Experiments are carried out on eight scenes of Replica (Straub et al., 2019). Results on
real-world data TUM (Sturm et al., 2012) and ScanNet (Dai et al., 2017) are delivered in supp. C.

Metrics. We adopt a standardized set of metrics to evaluate both camera pose estimation and ren-
dering performance. Camera pose tracking is assessed by the average absolute trajectory error (ATE
RMSE) (Sturm et al., 2012). RGB rendering performance is measured using PSNR, SSIM (Wang
et al., 2004), and LPIPS (Zhang et al., 2018), while reconstruction performance is evaluated using
Depth L1. For semantic segmentation, we employ the mean Intersection over Union (mIoU) as our
evaluation metric. In all tables, the best results are marked as first and second.

Baselines. We compare our approach to latest NeRF-based and 3DGS-based methods. Among
NeRF-based methods, our competitors include Vox-Fusion (Yang et al., 2022), NICE-SLAM (Zhu
et al., 2022), ESLAM (Johari et al., 2023), Co-SLAM (Wang et al., 2023), and Point-SLAM (Sand-
ström et al., 2023). Within the 3DGS framework, we compare our method with GS-SLAM (Yan
et al., 2024), SplaTAM (Keetha et al., 2024), and SGS-SLAM (Li et al., 2024c). Additionally,
we compare our mIoU results with several semantic SLAM approaches, including NIDS-SLAM
(Haghighi et al., 2023), DNS-SLAM (Li et al., 2023b), SNI-SLAM (Zhu et al., 2024b), SGS-SLAM
(Li et al., 2024c). Notably, existing semantic SLAM frameworks focus solely on closed-set seg-
mentation, whereas our approach learns an open-set feature field. This enables us to handle not

6
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Table 1: Quantitative Comparisons on Rendering Performance (§3.2) with baselines on
Replica (Straub et al., 2019).

Methods Metrics Avg. R0 R1 R2 Of0 Of1 Of2 Of3 Of4

Vox-Fusion [ISMAR22]

(Yang et al., 2022)

PSNR↑ 24.41 22.39 22.36 23.92 27.29 29.83 20.33 23.47 25.21
SSIM↑ 0.801 0.683 0.751 0.798 0.857 0.876 0.794 0.803 0.847
LPIPS↓ 0.236 0.303 0.269 0.234 0.241 0.184 0.243 0.213 0.199

NICE-SLAM [CVPR22]

(Zhu et al., 2022)

PSNR↑ 24.42 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.94
SSIM↑ 0.809 0.689 0.757 0.814 0.874 0.886 0.797 0.801 0.856
LPIPS↓ 0.233 0.330 0.271 0.208 0.229 0.181 0.235 0.209 0.198

ESLAM [CVPR23]

(Johari et al., 2023)

PSNR↑ 29.08 25.32 27.77 29.08 33.71 30.20 28.09 28.77 29.71
SSIM↑ 0.929 0.875 0.902 0.932 0.960 0.923 0.943 0.948 0.945
LPIPS↓ 0.336 0.313 0.298 0.248 0.184 0.228 0.241 0.196 0.204

Co-SLAM [CVPR23]

(Wang et al., 2023)

PSNR↑ 30.24 27.27 28.45 29.06 34.14 34.87 28.43 28.76 30.91
SSIM↑ 0.939 0.910 0.909 0.932 0.961 0.969 0.938 0.941 0.955
LPIPS↓ 0.252 0.324 0.294 0.266 0.209 0.196 0.258 0.229 0.236

Point-SLAM [ICCV23]

(Sandström et al., 2023)

PSNR↑ 35.17 32.40 34.08 35.50 38.26 39.16 33.99 33.48 33.49
SSIM↑ 0.975 0.974 0.977 0.982 0.983 0.986 0.960 0.960 0.979
LPIPS↓ 0.124 0.113 0.116 0.111 0.100 0.118 0.156 0.132 0.142

GS-SLAM [CVPR24]

(Yan et al., 2024)

PSNR↑ 34.27 31.56 32.86 32.59 38.70 41.17 32.36 32.03 32.92
SSIM↑ 0.975 0.968 0.973 0.971 0.986 0.993 0.978 0.970 0.968
LPIPS↓ 0.082 0.094 0.075 0.093 0.050 0.033 0.094 0.110 0.112

SplaTAM [CVPR24]

(Keetha et al., 2024)

PSNR↑ 34.11 32.86 33.89 35.25 38.26 39.17 31.97 29.70 31.81
SSIM↑ 0.970 0.980 0.970 0.980 0.980 0.980 0.970 0.950 0.950
LPIPS↓ 0.100 0.070 0.100 0.080 0.090 0.090 0.100 0.120 0.150

SGS-SLAM [ECCV24]

(Li et al., 2024c)

PSNR↑ 34.66 32.50 34.25 35.10 38.54 39.20 32.90 32.05 32.75
SSIM↑ 0.973 0.976 0.978 0.981 0.984 0.980 0.967 0.966 0.949
LPIPS↓ 0.096 0.070 0.094 0.070 0.086 0.087 0.101 0.115 0.148

Ours
PSNR↑ 35.80 33.16 34.90 35.43 40.20 40.61 33.65 32.59 35.89
SSIM↑ 0.984 0.979 0.986 0.985 0.989 0.989 0.981 0.977 0.984
LPIPS↓ 0.060 0.061 0.043 0.069 0.044 0.046 0.074 0.063 0.076

just closed-set segmentation, but also tasks like 3D scene editing (§3.4). For fair comparison, we
compute mIoU using an additional segmentation head (supp. B.2) on top of the learned semantic
features, supervised by ground-truth labels.

Implementation Details. Our experiments run on a server with a single NVIDIA GeForce RTX
3090 GPU. The dimension of key k̂, the dimension of semantic feature f̂ , and the size M of pools
are set to 3, 16, and 200, respectively. During the SLAM process, tracking is performed for each
frame, while mapping is conducted only at selected mapping frames (supp. B.2). The optimization
involves ten parameters, λT

C = λM
C = 0.5, λT

D = λM
D = 1.0, λT

F = λM
F = 0.05, λc

1 = 0.8, λc
2 = 0.2,

λs
1 = 0.999, and λs

2 = 0.001. During tracking, only the camera parameters are optimized, with
learning rates of 2e-3 for translations of camera poses, and 4e-4 for unnormalized rotations. During
mapping, only Gaussian parameters are optimized, with learning rates of 9e-5 for 3D positions, 2.5e-
3 for colors, 1e-1 for semantic-embedded parameter, 1e-2 for semantic feature pool, 1e-3 for key
pool, 8e-4 for rotations, 4e-2 for opacities, and 8e-4 for scales. Iterations of tracking and mapping
are 40 and 60 for Replica (Straub et al., 2019). The code will be released.

3.2 QUANTITATIVE RESULTS ON TRACKING AND RENDERING

Table 2: Quantitative Comparisons on Camera Pose Estimation (§3.2) with
baselines on Replica (Straub et al., 2019) (ATE RMSE↓ [cm]).

Methods Avg. R0 R1 R2 Of0 Of1 Of2 Of3 Of4

Vox-Fusion (Yang et al., 2022) 3.09 1.37 4.70 1.47 8.48 2.04 2.58 1.11 2.94
NICE-SLAM (Zhu et al., 2022) 1.06 0.97 1.31 1.07 0.88 1.00 1.06 1.10 1.13

ESLAM (Johari et al., 2023) 0.63 0.71 0.70 0.52 0.57 0.55 0.58 0.72 0.63
Co-SLAM (Wang et al., 2023) 0.86 0.65 1.13 1.43 0.55 0.50 0.46 1.40 0.77

Point-SLAM (Sandström et al., 2023) 0.52 0.61 0.41 0.37 0.38 0.48 0.54 0.69 0.72
GS-SLAM (Yan et al., 2024) 0.50 0.48 0.53 0.33 0.52 0.41 0.59 0.46 0.70

SplaTAM (Keetha et al., 2024) 0.36 0.31 0.40 0.29 0.47 0.27 0.29 0.32 0.55
Ours 0.30 0.24 0.39 0.28 0.29 0.18 0.25 0.30 0.46

Comparison of
Camera Pose
Estimation. Ta-
ble 2 illustrates
the improve-
ments achieved
by our method
over previous
NeRF-based and
3DGS-based
approaches on
Replica. The 3DGS field is capable of representing scenes with greater accuracy than the NeRF
field, allowing 3DGS-based methods to estimate camera trajectories more precisely than NeRF-
based methods. Furthermore, the inclusion of semantic information provides the system with
more details about the scene, enabling even more accurate camera pose estimation. This results
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Figure 5: Qualitative Results (§3.4) on Replica (Straub et al., 2019).

in performance improvements over existing 3DGS-based methods without semantic input, such as
GS-SLAM (Yan et al., 2024) and SplaTAM (Keetha et al., 2024).

Quantitative Analysis of Rendering. Table 1 demonstrates that our method consistently outper-
forms a range of NeRF-based approaches, including the state-of-the-art Point-SLAM (Sandström
et al., 2023). Although our PSNR does not surpass Point-SLAM in all scenes, we achieve signif-
icantly higher SSIM and LPIPS scores. Compared to GS-SLAM (Yan et al., 2024) and SplaTAM
(Keetha et al., 2024), the inclusion of semantic input allows our method to better capture scene fea-
tures such as object shapes, further enhancing reconstruction quality. Additionally, the contrastive
learning technique we have developed introduces effective object-level discrimination, providing
richer information to the system. As a result, we also outperform SGS-SLAM (Li et al., 2024c).

Table 3: Quantitative Comparisons on Reconstruction Performance (§3.2) on
Replica (Straub et al., 2019) (Depth L1↓ [cm]).

Methods Avg. R0 R1 R2 Of0 Of1 Of2 Of3 Of4

Vox-Fusion (Yang et al., 2022) 2.46 1.09 1.90 2.21 2.32 3.40 4.19 2.96 1.61
NICE-SLAM (Zhu et al., 2022) 2.97 1.81 1.44 2.04 1.39 1.76 8.33 4.99 2.01

ESLAM (Johari et al., 2023) 1.18 0.97 1.07 1.28 0.86 1.26 1.71 1.43 1.06
Point-SLAM (Sandström et al., 2023) 0.44 0.53 0.22 0.46 0.30 0.57 0.49 0.51 0.46

GS-SLAM (Yan et al., 2024) 1.16 1.31 0.82 1.26 0.81 0.96 1.41 1.53 1.08
Ours 0.43 0.48 0.42 0.43 0.28 0.39 0.43 0.47 0.54

Quantitative
Results on
Depth L1 Er-
ror. To evaluate
the geometric
reconstruction
accuracy, we also
assess the Depth
L1 error, as
shown in Table 3. Our approach outperforms other NeRF-based methods and achieves comparable
results to the state-of-the-art Point-SLAM (Sandström et al., 2023). Furthermore, we surpass the
3DGS-based GS-SLAM (Yan et al., 2024), highlighting the robustness of our method.

3.3 QUANTITATIVE RESULTS ON SEMANTIC RECONSTRUCTION

Table 4: Quantitative Comparisons on Semantic Reconstruction
Accuracy (§3.3) on Replica (Straub et al., 2019) (mIoU ↑ [%]).

Methods Avg. R0 R1 R2 Of0

NIDS-SLAM (Haghighi et al., 2023) 82.37 82.45 84.08 76.99 85.94
DNS-SLAM (Li et al., 2023b) 84.77 88.32 84.90 81.20 84.66
SNI-SLAM (Zhu et al., 2024b) 87.41 88.42 87.43 86.16 87.63
SGS-SLAM (Li et al., 2024c) 92.72 92.95 92.91 92.10 92.90

Ours 94.38 95.14 94.16 93.89 94.32

Table 4 provides a quanti-
tative comparison between
our method and several se-
mantic SLAM frameworks
across four scenes from
Replica (Straub et al., 2019).
The results are obtained
with additional segmenta-
tion head on top of learned semantic feature (supp. B.2). To ensure a fair comparison, we use
ground-truth labels to supervise such head following convensions. As illustrated in Table 4, our
method surpasses existing NeRF-based approaches. Furthermore, the use of Intra-Inter Seman-
tic Consistency Objective and Semantic Stability Guidance enhances our ability to delineate object
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“Turn the cabinet red.”

“Transform the small round stool to appear as if it is made of marble.”

“Make the flower burn.”

Figure 6: Qualitative Results of 3D Editing (§3.4) on Replica (Straub et al., 2019).

boundaries more effectively and track objects consistently across frames. Such improvement enables
us to outperform SGS-SLAM (Li et al., 2024c), resulting in more precise semantic representations.

3.4 QUALITATIVE RESULTS

Qualitative Comparisons on Scene Reconstruction. The visual comparisons on Replica (Straub
et al., 2019), as depicted in Fig. 4, demonstrate the superior performance of our method. Compared
to ESLAM (Johari et al., 2023), our approach produces noticeably clearer reconstructions. When
benchmarked against Point-SLAM (Sandström et al., 2023), our method excels at capturing finer
details, such as patterns, wrinkles, plush textures, and even lighting variations. For more qualitative
comparisons on TUM (Sturm et al., 2012) and ScanNet (Dai et al., 2017), please refer to supp. C.2.

More Qualitative Results. More visual results on Replica (Straub et al., 2019) are presented in
Fig. 5. As seen, we are able to reconstruct high-quality color maps with high geometric reconstruc-
tion accuracy. We are also able to reconstruct a semantic feature field with clear edges, which is
beneficial for downstream tasks such as 3D scene editing. For more comprehensive qualitative re-
sults on Replica (Straub et al., 2019), as well as results on TUM (Sturm et al., 2012) and ScanNet
(Dai et al., 2017), please refer to supp. C.2.

Qualitative Results on 3D Editing. We further explore the impact of our 3D editing capabilities
on the Replica dataset (Straub et al., 2019). To visually demonstrate the effectiveness and accuracy
of our editing mechanism, we present a series of edited scenes that showcase the ability to edit
objects within any given environment. The positive outcomes indirectly affirm our method’s ability
to construct a coherent semantic field throughout the SLAM process.

As illustrated in Fig. 6, our method facilitates precise and effective 3D editing of specific objects
within complex and cluttered scenes, a task that previous methods have found challenging. Our
approach allows for the editing of objects of varying sizes and complexities, ranging from large
items such as cabinets and furniture to smaller, more intricate objects like potted plants on tables.
This versatility is achieved through our flexible camera pose generation strategy (supp. B.3.1), which
allows for the generation of images suitable for diffusion.

Furthermore, rather than relying on 2D masks to identify and segment objects, we utilize open-set
semantic queries to directly target them, resulting in more precise edits (supp. B.3.2). Experimental
results demonstrate that our method can edit the target objects while preserving the integrity and
consistency of the surrounding environment. This approach also highlights that constructing an
open-set semantic field will be advantageous for the execution of downstream tasks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: A set of ablation studies on Replica (Straub et al., 2019) (§3.5).

Dim GPU Memory Usage PSNR↑ mIoU↑

w/o F 3 N GB 32.88 72.56
6 ∼(N + 12.0) GB - -

w/ F

3 (N + 1.5) GB 32.94 74.29
6 (N + 1.7) GB 33.07 87.95
16 (N + 2.4) GB 33.16 95.14
32 (N + 3.7) GB 33.15 95.23

(a) Semantic Feature Dimension

Size mIoU ↑
50 87.34

100 93.62
200 95.14
500 94.96

1000 95.38
(b) Pool Size

Pos-Sample mIoU ↑
w/o LSCO 78.21
intra-frame 85.96
inter-frame 87.83

All 95.14
(c) Inter- and Intra-Frame

Consistency Obj.

3.5 ABLATION STUDY

Ablation studies are conducted on Room 0 of Replica (Straub et al., 2019), following existing efforts.

Table 5: Quantitative Results of Key Com-
ponent Analysis (§3.5) on Replica (Straub
et al., 2019). F , LCO, MSG represent
semantic feature pool, intra-inter semantic
consistency objective and semantic stability
guidance, respectively.

PSNR ↑ ATE RMSE ↓ mIoU ↑
w/o All 32.88 0.30 72.56
+ F 32.98 0.27 83.15
+ LCO 33.05 0.25 88.23
+ MSG 33.16 0.24 95.14

Key Component Analysis. In Table 5, we validate
the importance of our proposed components by at-
taching them one at a time. The 1st row reports the
results of directly assigning a 3-dimensional feature
to each Gaussian. Next, in the 2nd row, we utilize the
semantic feature pool, resulting in complete experi-
ment. Moreover, the 3rd row gives the results when
applying intra-inter semantic consistency objective,
and the objective leads to an improvement on seman-
tic reconstruction. Finally, as shown in the 4th row,
through semantic stability guidance, the biggest im-
provement is achieved, demonstrating the necessity of preventing from wrong features influence.

Semantic Feature Dimension. We examine how the semantic feature dimension affects semantic
reconstruction, both with and without F . As shown in Table 6a, without F , using only 6-dimensional
features leads to experimental failure. We report GPU memory usage across the framework, where N
= 16.0 GB; while with F , we include memory for K and F . Notably, without F , even 6-dimensional
features consume more memory than those with it. Additionally, low-dimensional features are inad-
equate for high-quality reconstruction, while higher dimensions provide diminishing returns.

Semantic Feature Pool Size. Table 6b presents the effect of varying semantic feature pool sizes on
semantic reconstruction quality. The results indicate that an overly small feature pool is insufficient
to represent all the semantic features in the scene, while an overly large pool does not significantly
improve the reconstruction quality. Therefore, the pool size of 200 that we used is sufficient to
represent the entire scene.

Intra- and Inter-Frame Semantic Consistency Objective. We next study the impact of different
intra- and inter-frame objective strategies. In Table 6c, results indicate that both strategies enhance
semantic consistency. Notably, the inter-frame strategy achieves a greater improvement due to its
ability to maintain continuity across frames.

4 CONCLUSION

We propose a novel method for generating a comprehensive metric-semantic 3D virtual world using
multi-view stereo. By integrating 3D Gaussian representations with open-set semantics derived from
2D foundation models, our approach enables the creation of scalable and evolving 3D representa-
tions within a SLAM framework. To address the significant memory and computational challenges,
we introduce Semantic Feature Aggregation. Furthermore, we incorporate the Intra-Inter Semantic
Consistency Objective and Semantic Stability Guidance to ensure that the semantic reconstruction
is both consistent and stable. Our experimental results demonstrate the potential of our open-ended
3D metric-semantic representation, opening up new possibilities for a wide range of downstream
applications. We believe that this work marks a significant step forward in detailed, semantically
rich 3D environments and efficient, expressive virtual world modeling.
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REPRODUCIBILITY STATEMENT

We provide a comprehensive explanation of our method, covering Semantic Feature Aggregation,
Intra-Inter Semantic Consistency Objective, and Semantic Stability Guidance (§2). Details on 3D
scene editing are included in (supp. B), and we outline our implementation details in §3.1 and §C.1.
The licenses for the assets used are reported in (supp. D). We promise code and instructions shall be
made publicly available right after acceptance.
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SUMMARY OF THE APPENDIX

This appendix contains additional details for the ICLR 2025 submission, titled Open-Ended 3D
Metric-Semantic Representation Learning via Semantic-Embedded Gaussian Splatting. The ap-
pendix is organized as follows:

• §A introduces related works to our framework.
• §B provies more details on our method.
• §C presents more experiment results, especially on real-world datasets.
• §D offers the licenses of assets we use.

A RELATED WORK

3D Scene Representation. In recent years, NeRFs (Mildenhall et al., 2020) have emerged as a
pivotal advancement in the fields of 3D reconstruction and open-set semantic segmentation (Kerr
et al., 2023; Kim et al., 2024; Liu et al., 2023; Engelmann et al., 2024), celebrated for their ability to
synthesize high-quality novel views. However, despite these advancements, NeRF-based method-
ologies are inherently constrained by certain limitations. Training times remain relatively slow,
and for open-set semantic segmentation, their implicit representations complicate precise 3D region
identification. In contrast, 3D Gaussian Splatting (Kerbl et al., 2023), an explicit representation
technique, offers a more suitable framework for accurate region identification, while maintaining
reconstruction quality and significantly improving efficiency. Although several concurrent works
(Shi et al., 2024; Qin et al., 2024; Zuo et al., 2024; Zhou et al., 2024; Qiu et al., 2024; Qu et al.,
2024; Dou et al., 2024; Guo et al., 2024; Liao et al., 2024; Wu et al., 2024) have advanced this field,
these methods face challenges when applied to arbitrary scenarios, particularly in large-scale envi-
ronments or tasks requiring continuous scene expansion. In response, our approach leverages SLAM
to achieve the reconstruction of any scene, aiming to achieve fast, efficient, and highly adaptable 3D
reconstruction capabilities, thereby meeting the demands of a wider range of practical applications.

Dense Visual SLAM. A range of works (Sucar et al., 2021; Zhu et al., 2022; Rosinol et al., 2023;
Yang et al., 2022; Zhang et al., 2023; Wang et al., 2023; Kong et al., 2023; Johari et al., 2023; Sand-
ström et al., 2023) have furthered the development of SLAM with NeRFs (Mildenhall et al., 2020)
through innovations like hierarchical multi-feature grids, uncertainty estimation, and improved loss
functions. Nonetheless, these methods continue to grapple with the limitations posed by implicit
representations. The advent of 3D Gaussian Splatting (Kerbl et al., 2023) has spurred a variety
of works (Keetha et al., 2024; Matsuki et al., 2024; Yugay et al., 2023; Yan et al., 2024; Huang
et al., 2024; Deng et al., 2024; Li et al., 2024b; Sandström et al., 2024; Hu et al., 2024; Ha et al.,
2024; Sun et al., 2024b; Peng et al., 2024) that have made substantial strides in SLAM, resulting
in enhanced reconstruction quality and processing speed. However, these works focus primarily on
improving the RGB map, while overlooking the fact that a map with semantic information is more
essential for expanding the applications of SLAM in various downstream tasks. To address this,
both NeRF-based (Haghighi et al., 2023; Li et al., 2023b; Zhu et al., 2024b) and 3DGS-based (Li
et al., 2024c; Ji et al., 2024; Zhu et al., 2024a) approaches have attempted to integrate semantics into
SLAM. However, most of these methods are trained in a highly supervised approach on closed-sets
data. Although they enrich the scene information, they lack the flexibility to continuously adapt to
any scene and more downstream tasks. Our work endeavors to introduce precise open-set semantic
features into SLAM systems, thereby significantly enhancing the system’s ability to comprehend
arbitrary scenes and facilitating more effective downstream tasks.

Contrastive Semantic Learning. To obtain open-set semantic features, we need to process each
frame using a pre-trained model. Although this ensures the simplicity of using only RGB-D im-
ages inputs, the pre-trained model cannot guarantee the consistency of semantic features of the
same object across different frames. Therefore, we introduce the idea of contrastive learning. In
2D self-supervised representation learning, instance discrimination (Dosovitskiy et al., 2014) has
achieved substantial progress as a pre-training task for visual representations. While notable trans-
fer learning performance has been demonstrated for image classification (Chen et al., 2020a;b; He
et al., 2020), instance discrimination treats entire images as holistic entities, overlooking the com-
plex internal structures of natural images. To address this, research has shifted towards pixel-level
(Liu et al., 2020; Wang et al., 2021; Xie et al., 2021b) and object-level (Hénaff et al., 2021; 2022;
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Wei et al., 2021; Wen et al., 2022; Xie et al., 2021a) discrimination, leading to the enhancement
on the intrinsic structure of images and better transfer performance on dense prediction tasks. In
contrast to 2D, self-supervised representation learning in 3D is still emerging. Early works (Has-
sani & Haley, 2019; Sanghi, 2020; Sauder & Sievers, 2019; Wang & Solomon, 2019) focused on
object-centric point cloud data (Chang et al., 2015), but these methods do not facilitate 3D scene
understanding (Xie et al., 2020). More recent studies (Hou et al., 2021; Huang et al., 2021; Wu
et al., 2023; Xie et al., 2020; Yang et al., 2024; Zhang et al., 2021; Zhu et al., 2023) have developed
3D self-supervised representation learning on scene-centric data (Dai et al., 2017), significantly im-
proving performance across a range of 3D scene perception tasks. Inspired by these advancements
in contrastive learning, we introduce the idea of contrastive learning into semantic reconstruction.
By applying 2D pixel-level semantic discrimination, we can reconstruct more accurate 3D semantic
fields, thereby enhancing scene reconstruction quality and improving downstream task performance.

B MORE METHODS

B.1 PREPROCESS WITH SAM AND CLIP

We accurately generate object masks with a state-of-the-art image segmentation model SAM (Kir-
illov et al., 2023). We then extract pixel-aligned CLIP (Radford et al., 2021) features for each
segmented object.

B.2 FRAMEWORK DETAILS

Auxiliary Semantic Head. Given a 2D semantic feature map F rendered from semantic features,
we train an semantic head to perform a classification task. Specifically, for each pixel p in F , we
classify it into one of the annotated categories present in the scene, resulting in a semantic map
S(p):

S(p) = classifier(F (p)). (15)

We implement the classification for the quantitative comparison mentioned in §3.3.

Camera 1 Camera 2

Shared Gaussians

Figure 7: The forgetting problem during
mapping.

Selected Mapping Frames and Keyframes. Instead of
performing mapping at every frame, we adopt a strategy
of mapping only at selected frames. Specifically, since the
optimization of Gaussians tends to prioritize the most re-
cent input frames, this can result in the system forgetting
optimization results from earlier frames. To mitigate this
forgetting issue caused by excessive mapping, we only
initiate mapping when a substantial number of new Gaus-
sians need to be added to the scene in the current frame.
Additionally, if mapping has not occurred for several con-
secutive frames, the current frame is designated as a map-
ping frame to ensure complete scene optimization.

We also maintain a set of keyframes, where every nth frame, along with the current frame, is stored
as a keyframe. During mapping, we assess overlap by analyzing the point cloud of the current
depth map and counting the number of points that fall within each keyframe’s frustum to identify
the keyframes most relevant to the current frame. For optimization, one of these highly relevant
keyframes is randomly selected to optimize the current scene.

B.3 DETAILS ON 3D EDITING

In previous research, the selective editing of individual objects within complex scenes has received
limited attention. On one hand, diffusion-based editing methods often require that the input image
clearly presents the object intended for editing. This poses challenges in images with multiple
objects, where the diffusion process may struggle to accurately identify and isolate the desired object
for modification (§B.3.1). On the other hand, there is a risk that diffusion might inadvertently alter
parts of non-target objects, leading to unwanted changes in expansive open scenes (§B.3.2).
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B.3.1 CAMERA GENERATION

Given a center coordinate o for an object, we can generate a sphere with a radius r, represented in
spherical coordinates (r, θ, φ). Specifying an initial vector v0 and a given direction vector v1, we
can obtain the rotation matrix between them with Rodrigues’ rotation formula. Specifically, we have
v = v0 × v1, c = v0 · v1, and s = ∥v∥. Then we can get

R = I +K +K2 1− c

s2
, (16)

where

K =

[
0 −vz vy

vz 0 −vx

−vy vx 0

]
. (17)

Through this, we can transform any point on the surface of the sphere. We divide the radian values
of the spherical coordinate system θ, φ evenly to generate camera positions on the sphere, and the
transformation from spherical coordinates to Cartesian coordinates is achieved as follows:

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ. (18)

We then generate the camera pose matrix. With the positions of the cameras and the center coordi-
nate o, we have the look direction vector look dir, which indicates the direction the camera is point-
ing. Given an upper vector (such as v0) up, we derive the right vector as right = up× look dir.
To ensure the upper vector is completely orthogonal to both the look direction and right vector, we
compute the cross product of the look direction and the right vector, yielding a corrected upper vec-
tor up′ = look dir × right, which ensures right, up′, look dir form an orthonormal basis,
representing the x, y, z axes of the camera coordinate system respectively.

Then we can construct the view matrix:

V iew Matrix =


rightx up′

x −look dirx −right · camera pos

righty up′
y −look diry −up · camera pos

rightz up′
z −look dirz −look dir · camera pos

0 0 0 1

 . (19)

After this, we utilize the Gaussian differentiable renderer to generate a sequence of cameras posi-
tioned around the target object. This allows us to render images centered on the object, meeting the
requirements for diffusion-based editing.

B.3.2 PRECISE EDITING

Editing specific objects without unintentionally affecting surrounding areas, such as the background,
often involves using masks that restrict loss computation to the desired pixels. However, this ap-
proach faces significant challenges. First, updating masks during the editing process incurs sub-
stantial computational costs. Additionally, as the editing progresses, mask generation may become
inaccurate, leading to cumulative errors. In contrast, static masks might not adequately support
precise edits and could limit modifications that exceed the mask’s boundaries. Second, within the
rendering pipeline, the impact is not confined solely to the NeRF regions or Gaussians covered by
the mask; parts not visible in the current view, which, however, theoretically lie inside the mask
region, can still be inadvertently modified. This interaction complicates the management of error
propagation, particularly when utilizing 2D masks.

To address these challenges, our methodology leverages the embedded semantic information in our
Gaussian representation. This allows us to accurately identify the specific Gaussians that need mod-
ification. Specifically, we employ the CLIP model (Radford et al., 2021) to extract features from the
input text, evaluate their similarity to the semantic features embedded in the Gaussians, and selec-
tively refine the relevant Gaussians for the editing task. This approach effectively improves editing
precision by directly interacting with the scene’s underlying representation.

During the editing process, we randomly select a view obtained from §B.3.1 to render the original
image Iori, and utilize InstructPix2Pix (Brooks et al., 2023) to generate the edited image Iedit. We
then compute the perceptual loss (Johnson et al., 2016) between them:

Lediting = Perceptual Loss(Iori, Iedit). (20)
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At each iteration, views are re-selected and modifications are applied to the previously edited scene.
This iterative approach ensures a seamless editing outcome while preventing discrepancies across
views that could arise from a single editing pass.

C MORE EXPERIMENT RESULTS

C.1 EXPERIMENTAL SETUP

Datasets. The experiment results in this part are conducted on Replica (Straub et al., 2019), TUM-
RGBD (Sturm et al., 2012) and ScanNet (Dai et al., 2017), with evaluations on 8, 5 and 6 scenes.

Metrics, Baselines and Implementation Details. We compare our method with the same baselines
on the same metrics in §3.1. Implemention details are also the same, except that iterations of tracking
and mapping are 100 and 30 for ScanNet, 200 and 30 for TUM.

C.2 EXPERIMENTAL RESULTS ON SLAM

Comparison of Camera Pose Estimation. As shown in Table 8, our method markedly outshines ex-
isting NeRF-based approaches, even in the demanding scenarios characterized by the TUM-RGBD
dataset, where sparse depth information and acute motion blur are prevalent. Despite the challenges
similar to those encountered with TUM-RGBD, our approach still yields competitive results on
ScanNet when assessed against the most advanced methods. The significant advancements under-
scored by our results, particularly in scenarios with low-quality inputs, show the effectiveness and
potential of our method.

Quantitative Analysis of Scene Reconstruction. The rendering results on real-world data are pre-
sented in Table 9. The organized results reinforce the superior performance of our method over
previous approaches, including Point-SLAM (Sandström et al., 2023), which demonstrated compa-
rable results on the synthetic dataset. This robustly showcases the effectiveness of our method in
real-world settings.

Qualitative Comparison. In Fig. 9 we show a comparison of our method with other methods
NICE-SLAM (Zhu et al., 2022) and Point-SLAM (Sandström et al., 2023) on real-world datasets
ScanNet (Dai et al., 2017) and TUM-RGBD (Sturm et al., 2012). This set of visual comparisons
clearly demonstrates the enhancement in reconstruction quality achieved by our method, particularly
since these results are obtained using real-world datasets. Our approach leads to more complete
reconstructions of small objects and significantly reduces blurring and artifacts. The results strongly
indicate the substantial potential of our method when applied in real-world scenarios.

Other Qualitative Results. Fig. 10 provides more results showing the color field and semantic field
reconstruction. As seen, we are able to reconstruct color fields of high quality on Replica (Straub
et al., 2019), which is also reflected in the high-quality geometric appearance. At the same time,
we can reconstruct semantic fields with clear boundaries, which facilitates subsequent downstream
tasks related to editing.

C.3 MORE ABLATION STUDY

Table 7: Quantitative Results of More Ablation Study
(§C.3). MFS represents mapping frame selection.

PSNR ↑ ATE RMSE ↓ mIoU ↑
w/o MFS 32.88 0.29 91.57

Ours 33.16 0.24 95.14

Mapping Frame Selection. We con-
duct an experiment without mapping
frame selection. The results show that
this strategy improves the quality of
scene reconstruction, which is also re-
flected in the accuracy of the semantic
field. Moreover, it aids in the estimation of camera poses.

Ablation Study on Semantic Features for 3D Editing. The experiments are illustrated in Fig. 8.
Without semantic guidance, editing attempts tend to affect the entire scene indiscriminately. This
outcome is particularly problematic in large-scale environments, similar to those in our experiments.
By integrating linguistic data, our technique gains the ability to selectively refine the designated
objects while leaving the surrounding scene intact. This selective precision in editing highlights
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Original Views w/o Semantic Features w/ Semantic Features
Figure 8: Ablation Study on Semantic Features for 3D Editing (§C.3). Prompt: Turn the cabinet
red.

the importance of semantic features in our methodology. The ablation study further demonstrates
the accuracy of the reconstructed semantic information, validating its effectiveness in assisting with
downstream tasks.

D ASSET LICENSE

We conduct our method on three indoor datasets (e.g., Replica (Straub et al., 2019), TUM-
RGBD (Sturm et al., 2012) and ScanNet (Dai et al., 2017)), and two pretrained models (e.g.,
SAM (Kirillov et al., 2023) and CLIP (Radford et al., 2021)), which are all available for academic ac-
cess. Replica (https://github.com/facebookresearch/Replica-Dataset) is re-
leased under this License. TUM-RGBD (https://cvg.cit.tum.de/data/datasets/
rgbd-dataset) is released under this License. ScanNet (http://www.scan-net.org/)
is released under this License. SAM (https://segment-anything.com/) is released un-
der this License. CLIP (https://openai.com/index/clip/) is released under this MIT
License.
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Table 8: Quantitative Results on Camera Pose Estimation (§C.2) with baselines on TUM-
RGBD (Sturm et al., 2012) and ScanNet (Dai et al., 2017) (ATE RMSE↓ [cm]).

TUM-RGBD (Sturm et al., 2012) ScanNet (Dai et al., 2017)
fr1/ fr1/ fr1/ fr2/ fr3/Methods Avg.
desk desk2 room xyz off.

Avg. 0000 0059 0106 0169 0181 0207

Vox-Fusion (Yang et al., 2022) 11.31 3.52 6.00 19.53 1.49 26.01 26.90 68.84 24.18 8.41 27.28 23.30 9.41
NICE-SLAM (Zhu et al., 2022) 15.87 4.26 4.99 34.49 31.73 3.87 10.70 12.00 14.00 7.90 10.90 13.40 6.20

Point-SLAM (Sandström et al., 2023) 8.92 4.34 4.54 30.92 1.31 3.48 12.19 10.24 7.81 8.65 22.16 14.77 9.54
SplaTAM (Keetha et al., 2024) 5.48 3.35 6.54 11.13 1.24 5.16 11.88 12.83 10.10 17.72 12.08 11.10 7.46

Ours 5.25 3.29 5.86 10.95 1.29 4.87 10.23 14.56 9.20 7.82 11.59 11.11 7.12

Table 9: Quantitative Comparison on Rendering Performance (§C.2) with baselines on TUM-
RGBD (Sturm et al., 2012) and ScanNet (Dai et al., 2017).

TUM-RGBD (Sturm et al., 2012) ScanNet (Dai et al., 2017)
fr1/ fr1/ fr1/ fr2/ fr3/Methods Metrics Avg.
desk desk2 room xyz off.

Avg. 0000 0059 0106 0169 0181 0207

Vox-Fusion (Yang et al., 2022)
PSNR↑ 15.54 15.79 14.12 14.20 16.32 17.27 18.17 19.06 16.38 18.46 18.69 16.75 19.66
SSIM↑ 0.632 0.647 0.568 0.566 0.706 0.677 0.673 0.662 0.615 0.753 0.650 0.666 0.696
LPIPS↓ 0.502 0.523 0.541 0.559 0.433 0.456 0.504 0.515 0.528 0.439 0.513 0.532 0.500

NICE-SLAM (Zhu et al., 2022)
PSNR↑ 13.59 13.83 12.00 11.39 17.87 12.89 17.54 18.71 16.55 17.29 18.75 15.56 18.38
SSIM↑ 0.545 0.569 0.514 0.373 0.718 0.554 0.621 0.641 0.605 0.646 0.629 0.562 0.646
LPIPS↓ 0.494 0.482 0.520 0.629 0.344 0.498 0.548 0.561 0.534 0.510 0.534 0.602 0.552

ESLAM (Johari et al., 2023)
PSNR↑ 13.42 11.29 12.30 9.06 17.46 17.02 15.29 15.70 14.48 15.44 14.56 14.22 17.32
SSIM↑ 0.599 0.666 0.634 0.929 0.310 0.457 0.658 0.687 0.632 0.628 0.656 0.696 0.653
LPIPS↓ 0.464 0.358 0.421 0.192 0.698 0.652 0.488 0.449 0.450 0.529 0.486 0.482 0.534

Point-SLAM (Sandström et al., 2023)
PSNR↑ 15.63 13.87 14.12 14.16 17.56 18.43 19.82 21.30 19.48 16.80 18.53 22.27 20.56
SSIM↑ 0.665 0.627 0.592 0.645 0.708 0.754 0.751 0.806 0.765 0.676 0.686 0.823 0.750
LPIPS↓ 0.538 0.544 0.568 0.546 0.585 0.448 0.514 0.485 0.499 0.544 0.542 0.471 0.544

Ours
PSNR↑ 21.76 22.43 19.88 20.26 24.77 21.48 20.13 21.15 19.27 18.46 21.44 18.83 21.63
SSIM↑ 0.881 0.913 0.840 0.833 0.950 0.868 0.776 0.764 0.817 0.711 0.790 0.773 0.798
LPIPS↓ 0.181 0.150 0.226 0.223 0.096 0.210 0.302 0.314 0.252 0.356 0.264 0.375 0.250
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Figure 9: Qualitative Comparisons of Rendering Performance (§C.2) on ScanNet (Dai et al.,
2017) and TUM-RGBD (Sturm et al., 2012).
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Figure 10: Qualitative Results of Rendering Performance (§C.2) of RGB, depth and semantic
features on Replica (Straub et al., 2019).
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