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Mediation analysis usually requires the assumption that there is no unmeasured mediator-
outcome confounder. However, this may not hold in many social and scientific studies. 
Though various parametric and nonparametric mediation methods have been developed, 
this assumption remains instrumental, without which the causal effects are not identifiable 
unless alternative assumptions are imposed. To circumvent this, a multilevel parametric 
structural equation modeling framework is proposed to relax this no unmeasured 
mediator-outcome confounding assumption under a specific data setting inspired by a 
real experiment. Using the proposed framework, it is shown that the causal effects are 
identifiable and consistently estimated. Likelihood-based approaches are proposed with 
efficient optimization algorithms to estimate the parameters, including the unmeasured 
confounding effect, instead of performing sensitivity analysis. The asymptotic consistency 
is established. Using extensive simulations and a functional magnetic resonance imaging 
dataset, the improvement of the approaches over existing methods is demonstrated. The R 
package macc for implementation is available on CRAN.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In diverse fields of empirical research, including many in the biological and social science, scientists are often interested 
in identifying causal mechanisms through which treatment affects an outcome. Mediation analysis is widely used to quantify 
the effect that is mediated by a third variable (called a mediator) in the causal pathways. Structural equation modeling 
(SEM), such as the Baron-Kenny method (Baron and Kenny, 1986) and its extensions (MacKinnon et al., 2007), can be 
implemented for complex data. However, the resulting SEM coefficients do not have causal interpretations unless certain 
causal assumptions are met. A critical and hardly testable assumption is the no unmeasured mediator-outcome confounding 
assumption. Imai et al. (2010) considers this assumption to be “too strong for the typical situations”, which is also unlikely 
to hold in our motivating functional magnetic resonance imaging (fMRI) experiment. In this paper, a novel multilevel SEM 
framework is proposed, which parameterizes and estimates the unmeasured mediator-outcome confounding effect. It will 
then adjust the estimated confounding yielding unbiased and consistent estimate of the causal effects.

The assumptions involved to perform mediation analysis have been widely studied in the literature, usually, for one-
level experimental studies. See Imai et al. (2010) and VanderWeele (2016) for a review and many references therein. Three 
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critical assumptions in mediation analysis are the no unmeasured exposure-outcome confounding, no unmeasured exposure-
mediator confounding, and no unmeasured mediator-outcome confounding assumptions. Existing literature aims to seek 
unbiased estimate of the causal effects by relaxing one or multiple of these assumptions. In a recent study, Fulcher et 
al. (2020) introduced a nonparametric approach for estimating a new type of indirect effect, the population intervention 
indirect effect, that allows the presence of an unmeasured common cause of the exposure and outcome, but still assumes 
no unmeasured confounding between the mediator and outcome. This paper aims to investigate the settings under which 
the causal effects remain identifiable without the no unmeasured mediator-outcome confounding assumption.

The motivating example of the existence of unmeasured mediator-outcome confounding and multilevel data comes from 
an fMRI experiment. Scientists are interested in how the stimulus is processed in the human brain across the population. In 
particular, based on the prior findings (Duann et al., 2009; Obeso et al., 2013), an important scientific question is to quantify 
the mediating role of a brain region called the presupplementary motor area (preSMA) when the final motor responses are 
programmed by another brain region called the primary motor cortex (PMC). In the experiment, the assumption of no 
unmeasured mediator-outcome confounder is violated as the task-unrelated activity poses significant influences on both 
the mediator and outcome regions. To address this complexity, one may adopt the sensitivity analysis (Imai et al., 2010) or 
apply the instrumental variable (IV) approach under additional structural assumptions (Ten Have et al., 2007; Small, 2011). 
Lindquist (2012) applied the IV approach for an fMRI dataset when the outcome variable is outside the brain, where the 
structural assumptions are more likely to hold.

Recently, mediation analysis has been extended to hierarchically organized experiments, partly due to the increasing 
popularity of such experiments. These approaches are generally developed for two-level data in practical settings. The first-
level data are usually modeled following the Baron-Kenny method, and various second-level models are introduced for the 
parameters (see Krull and MacKinnon, 1999; Kenny et al., 2003, for example). It has not been rigorously studied if the 
resulting parameters have causal interpretation and suffers from similar limitations of assuming no unmeasured mediator-
outcome confounding.

In this manuscript, we propose an optimization-based multilevel mediation framework, which we call it Correlated-
error Mediation Analysis (CMA). We make the following specific contributions. First, parametric SEMs are introduced that 
allow modeling the mediator and outcome variables jointly with correlated errors to parameterize the effect of unmea-
sured mediator-outcome confounding. An integrated approach is introduced for modeling two/three-level data. Second, 
causal assumptions are studied. It is proved that parameters associated with causal effects and the unmeasured mediator-
outcome confounding are identifiable from multilevel data, overcoming the nonidentifiability under single-level mediation 
models (Imai et al., 2010). Asymptotic analyses show that the estimators are consistent with the parametric rates. Third, 
efficient computational algorithms are developed to compute for a large number of parameters.

This paper is organized as follows. We introduce the multilevel SEMs for mediation analysis with correlated errors in 
Section 2. In Section 3, we propose likelihood-based methods to estimate the coefficients, study the identifiability of model 
parameters, and the asymptotic properties of the estimators. We compare these methods and demonstrate the improvement 
using extensive simulations in Section 4 (and Section E of the supplementary materials) and compare the analysis results of 
different methods in the fMRI data application in Section 5. Section 6 summarizes the paper with discussions.

2. Model

For simplicity, we refer to the three levels of data in the fMRI experiment by trial, session, and participant. Let Zikl be 
the treatment assignment for the lth trial of the kth session of the ith participant, where i = 1, . . . , N , k = 1, . . . , Ki , and 
l = 1, . . . , nik . Similarly, define Mikl and Rikl for the observed mediator and outcome values from the same multilevel unit. 
In the experiment, Zikl is a binary stimulus assignment; Mikl and Rikl are the preSMA and PMC activations, respectively, of 
the same trial. It is straightforward to adapt the proposed framework for varying Ki , and thus we will focus on Ki = K , as 
in the experiment, to fix the idea. Unless noted otherwise, this three-level notation will also be used for two-level data, by 
setting K = 1.

The proposed multilevel mediation model contains two components. At the first level, the following matrix-format me-
diation model is proposed, for every i and k,(

Mik Rik
) = (

Zik Mik
)(

Aik Cik
0 Bik

)
+ (

E1ik E2ik

)
, (2.1)

and vec
[(

E1ik E2ik

)] ∼ N
(

0,

(
σ 2

1ik
δikσ1ikσ2ik

δikσ1ikσ2ik σ 2
2ik

)
⊗ Inik

)
, (2.2)

where vec[·] is the vectorization operator by stacking columns of a matrix, ⊗ is the Kronecker product operator, and Inik

is the nik-dimensional identity matrix. Aik , Bik , and Cik are the SEM coefficients in session k of participant i. Without loss 
of generality, Rik and Mik are assumed to be centered around 0, and thus no intercepts are included in the model. This 
can be achieved via subtracting the sample means from each variable. The effect of other covariates can be removed using 
regression (Rosenbaum, 2002). Standard parametric mediation models (Baron and Kenny, 1986; Imai et al., 2010) without 
unmeasured mediator-outcome confounding are special cases of models (2.1)-(2.2) by assuming δik = 0 for every i and k, 
see Section 3.1 for a more detailed comparison. In Sections 3.2 and 3.3, an approach to estimate δik will be introduced.
2
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Fig. 1. Conceptual causal diagram of the multilevel model. Zik , Mik and Rik are the randomized treatment, mediator and outcome vectors, respectively, in 
session k of participant i, for i = 1, . . . , N and k = 1, . . . , K . Uik ’s are the unmeasured confounders, and Ẽ1ik and Ẽ2ik are the independent model errors. Aik , 
Bik and Cik ’s are the SEM coefficients.

For higher levels, it is proposed to pool information across the first-level coefficients in (2.1) using the following model,

bik =
⎛⎝ Aik

Bik
Cik

⎞⎠ =
⎛⎝ A

B
C

⎞⎠ +
⎛⎝αi

βi
γi

⎞⎠ +
⎛⎜⎝ε A

ik

εB
ik

εC
ik

⎞⎟⎠ = b + ui + ηik. (2.3)

For three-level data, model (2.3) in essence is a mixed effects model, where A, B and C are the fixed effects; αi , βi , and 
γi are the random effects of Aik , Bik and Cik , respectively. Similar to many mixed effects models (see Penny et al., 2003, 
for a review on mixed effects models in fMRI analysis), it is assumed that the random effect, ui , follows a trivariate normal 
distribution with mean zero and covariance matrix �; and ε A

ik , εB
ik , and εC

ik are the random errors in session k of participant i
following a trivariate normal distribution with mean zero and covariance matrix �. ui and ηik , for all i and k, are mutually 
independent. For simplicity, this paper will focus on diagonal matrices, � = diag{ψ2

α, ψ2
β , ψ2

γ } and � = diag{λ2
α, λ2

β, λ2
γ }, 

in the numerical studies for fast and stable covariance estimation. Though the method can be extended to non-diagonal 
matrices, the computational complexity will increase accordingly. For two-level data or K = 1, one cannot estimate the 
random effects ui . Thus, we set ui = 0 and � = 0 in model (2.3) without changing all other modeling assumptions. This 
essentially reduces to an ANOVA model for the first-level SEM coefficients. Fig. 1 depicts a conceptual diagram of the 
proposed multilevel model and the relationship between the parameters across multiple levels. We next describe in detail 
each modeling component and the causal assumptions.

2.1. First-level model

Keeping the notations uncluttered, when discussing the first-level model in this section, we denote the vector Z =
(Zikj, j = 1, . . . , nik) by omitting the subscripts i and k, and similarly omit the subscripts in M, R, n, and so on. Using the 
simplified notations, the model is written as(

M R
) = (

Z M
)(

A C
0 B

)
+ (

E1 E2
)
, (2.4)

where the errors E1 and E2 have correlation δ as in model (2.2). Baron and Kenny (1986) also considered a third but 
redundant equation

R = ZC ′ + E′, (2.5)

where C ′ is the coefficient of interest and E′ is the noise term. Under model (2.4), the average total effect (C ′) can be 
decomposed into the indirect effect (AB or C ′ − C ) and direct effect (C , see Imai et al., 2010, for a review).

The standard mediation models assume independent E1 and E2, and thus models in (2.4) are fitted separately, or equiv-
alently, setting δ = 0. Because it is expected that δ �= 0 in many practical settings, these standard analyses are usually 
3
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followed by sensitivity analysis, where the users change the δ values (sometimes within a hypothesized range) to check its 
influence on the direct and indirect effect estimates (Imai et al., 2010). We do not impose this assumption on δ, but rather 
treat it as a modeling parameter to be estimated from data. A hypothetical example of the existence of the unmeasured 
mediator-outcome confounding is described as follows. Suppose

M = ZA + g1U + Ẽ1, R = ZC + MB + g2U + Ẽ2,

where U, Ẽ1, and Ẽ2 are mutually independent normal variables, and g1 and g2 are fixed and unknown scalars. U represents 
the overall effect from all unmeasured mediator-outcome confounding factors. Under this model, the errors in (2.4) are 
correlated when g1 g2 �= 0. The proposed approach will remove the influence of U by accounting the estimation bias due to 
δ �= 0.

2.1.1. Assumptions and causal interpretation
We use Rubin’s potential outcome framework (Rubin, 2005) to assess the causal interpretation of model (2.4). As Rubin 

conjectured but not analyzed in Section 7 of his paper, when Z is randomized, a valid approach for mediation analysis is to 
consider “a bivariate outcome variable”, (M, R), in order to infer the direct and indirect effects. We analyze and extend this 
conjecture in this paper. Under the potential outcome framework,(

M(z) R(z,m)
) = (

z M(z)
)(

A C
0 B

)
+ (

E1(z) E2(z)
)
, (2.6)

where all the potential outcomes are vectors of length n. Based on the potential outcomes, the average total effect (ATE) 
can be decomposed as the sum of the average indirect effect (AIE) and average direct effect (ADE):

ATE(zi, z′
i) =E

{
Ri(zi,mi) − Ri(z′

i,m′
i)
}

=E
{

Ri(zi,mi) − Ri(zi,m′
i)
} +E

{
Ri(zi,m′

i) − Ri(z′
i,m′

i)
}

= AIE(zi, z′
i) + ADE(zi, z′

i).

In order to estimate the AIE and ADE from the data, the following assumptions are imposed:

(A1) stable unit treatment value assumption (SUTVA);
(A2) model (2.4) is correctly specified and there is no treatment-mediator interaction;
(A3) the observed bivariate outcome is one realization of the potential outcomes with the observed treatment assignment 

vector Z = z;
(A4) randomized treatment Z with 0 < P (Z = z) < 1 for every z, i.e., Z⊥ 

{
R(z′,m),M(z)

}
for all z and z′; similarly 

Z⊥ 
{

E1(z),E2(z′)
}

;
(A5) the covariance matrix of the Gaussian errors in model (2.4) is not affected by the treatment assignments, that is

Cov
{

E1(z),E2(z′)
} = Cov {E1(z),E2(z)} =

(
σ 2

1 δσ1σ2

δσ1σ2 σ 2
2

)
⊗ In.

Assumptions (A1)-(A3) are standard regularity assumptions in causal inference (see for example Rubin, 1978; Imai et al., 
2010). Petersen et al. (2006) considered a weaker version of the first part of assumption (A4) and these two versions are 
equivalent in randomized experiments. For randomized trials, assumption (A4) is automatically satisfied. Assumption (A5) 
replaces the no unmeasured mediator-outcome confounding assumption with a Gaussian covariance assumption. Under 
Gaussianity, when δ �= 0, it is equivalent to the “cross-world” independence assumption (VanderWeele et al., 2014).

A version of the no unmeasured mediator-outcome confounding assumption is written as,

Ri(z′
i,mi) ⊥ Mi(zi) | Zi = zi, (2.7)

for all z′
i and zi , i = 1, . . . , n. Under the finest fully randomized causally interpreted structured tree graph (FRCISTG) model, 

Robins (2003) assumed the following,

Ri(zi,mi) ⊥ Mi(zi) | Zi = zi, (2.8)

together with the first part of assumption (A4), in order to identify the causal effects. As discussed in Imai et al. (2010), 
assumption (2.8) allows for conditioning on observed post-treatment confounders, but requires an additional no-interaction 
assumption; while assumption (2.7) does not depend on post-treatment confounders and the no-interaction assumption is 
not required. Neither of these two versions holds in (2.6) when there exists unmeasured mediator-outcome confounding 
or when the errors, E1 and E2, are correlated. Instead, assumption (A5) is imposed considering a correlation assumption 
between the Gaussian errors. Setting δ = 0, it implies the so-called “cross-world” independence assumption (VanderWeele 
4
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et al., 2014). Imai et al. (2010) treated δ as a sensitivity parameter. By imposing this assumption, it is assumed that the 
effect of unmeasured mediator-outcome confounding is fully characterized by the error correlation, δ.

Under the proposed parametric model (2.4),

AIE(zi, z′
i) = (zi − z′

i)AB, ADE = (zi − z′
i)C .

As we show in the proof in the supplementary materials (Section A.1), parameters (AB, C) are consistently estimated from 
observed data only if δ is given within an asymptotically shrinking neighborhood near the true value. With single-level data, 
it is impossible to estimate δ as shown in Theorem 3.2. However, one can leverage the existence of higher level data which 
provide additional information about δ. In the next section, we list the assumptions needed to estimate δ consistently, which 
in turn enable consistent estimation of the causal parameters. Thus, multilevel modeling is critical for the identification of 
the unmeasured mediator-outcome confounding effect (δ).

2.2. Higher-level models

Motivated by the fMRI experiment, the primary interest is to infer the population parameters, A, B and C , in model 
(2.3), for either two-level or three-level data. However, these parameters are not causally identifiable if one allows δik to 
vary across i and k. In order to make causal interpretation of the estimates, the following assumption is required for the 
two-level model:

(A6) δik is constant across participants, i.e., δik = δ for all i and k = 1;

or the following for the three-level model:

(A6′) δik is constant across participants and sessions, i.e., δik = δ, for all i and k.

Intuitively, either assumption allows us to pool data across levels to improve the estimation of δik . As it will be proved in 
Section 3.1.1, δik , if allowed to vary with i and k, is not identifiable in the likelihood sense. These assumptions are minimal 
for the purpose of model identifiability. Both assumptions (A6) and (A6′) are weaker than a multilevel mediation model 
proposed by Kenny et al. (2003), where δik = δ = 0 to fit models in (2.4) separately for the first-level data followed by the 
same higher-level model formulation as ours. Their approach thus suffers from the estimation bias due to nonzero δ or 
unmeasured mediator-outcome confounding.

The proposed framework can also address the following relaxed assumption of (A6′):

(A6′′) δik is constant across participants in session k, i.e., δik = δk , for all i and ∀ k ∈ {1, . . . , K }.

This assumption allows δ to vary across sessions and is equivalent to having K versions of (A6). To model three-level data 
under (A6′′), one only needs to fit K two-level models. Using the estimates of δk ’s, one can check empirically if (A6′) holds. 
The validity of (A6′) of the fMRI dataset is illustrated in Section F.6 of the supplementary materials. Since (A6′′) introduces 
a minor modification methodologically, we will focus on assumptions (A6) and (A6′) in this paper.

Under either (A6) or (A6′), it is proved in Sections 3.2 and 3.3, respectively, that δik is identifiable and estimated consis-
tently. The identifiability and estimation consistency of parameters, (Aik, Bik, Cik) and (A, B, C), then follow. Following the 
term “population inference” (Penny et al., 2003), ABd = C ′ − C and C are called the population indirect and direct effects, 
respectively, as they represent the causal effect estimates for a population after accounting for individual variability. The 
proposed method also produces the estimate for AB p = A × B , which is equivalent to ABd under certain conditions (Kenny 
et al., 2003).

3. Method

A multilevel likelihood framework is proposed to estimate the parameters:


 =
N∑

i=1

K∑
k=1

logP
(
Rik,Mik|Zik,bik, δik,σ1ik ,σ2ik

) +
N∑

i=1

logP (bi1, . . . ,biK |b,�,�)

= 
(1) + 
(2), (3.1)

where 
(1) is the log-likelihood of the first-level model and 
(2) is of the higher levels. The specific formulations of 
(1) and 

(2) will be introduced in the following sections.

3.1. Method for the first-level model

Though the integrated method is to maximize 
 (asymptotically), it is worthwhile to discuss the methodological and 
theoretical issues related to maximizing 
(1) . As 
(1) is the sum of the conditional log-likelihood, 
(1) , of model (2.1), we will 
ik
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focus on 
(1)

ik in this section. The likelihood 
(1)

ik has six parameters, (Aik, Bik, Cik, δik, σ1ik , σ2ik ), for each i and k. The exact 
formulation of 
(1)

ik is given in Section A.2 of the supplementary materials. To characterize the changes in the estimates due 
to δ in the model, it is firstly considered the case when the covariance parameters (δik, σ1ik , σ2ik ) are given. The unknown 
covariance case will be discussed in Section 3.1.1.

Theorem 3.1. Given (δik, σ1ik , σ2ik ), the solution that maximizes 
(1)

ik is given by

Âik = (Z

ikZik)

−1Z

ikMik,

Ĉik = (Z

ik H Mik Zik)

−1Z

ik H Mik Rik + δik

σ2ik

σ1ik

(Z

ikZik)

−1Z

ikMik,

B̂ ik = (M

ikMik)

−1M

ik

(
Inik − Zik(Z


ik H Mik Zik)
−1Z


ik H Mik

)
Rik − δik

σ2ik

σ1ik

,

where Inik is the nik-dimensional identity matrix; HMik = Inik − P Mik , and P Mik = Mik(M

ikMik)

−1M

ik is the projection matrix of Mik.

This theorem shows how δik and the variance parameters affect the maximum likelihood estimates (MLEs) of Bik and 
Cik by two different additive terms related to δik . The standard Baron-Kenny estimates (Baron and Kenny, 1986) are special 
cases by setting δik = 0 in Theorem 3.1. The differences between the Baron-Kenny estimates and the proposed are the 
biases due to the unmeasured mediator-outcome confounding, which are corrected in Theorem 3.1. Moreover, the biases of 
the Baron-Kenny estimates increase when δik moves away from 0 and are proportional to the variance ratio σ2ik /σ1ik . The 
biases are asymptotically independent of the Baron-Kenny estimates (see the proof of Theorem 3.3 in Section A.7 of the 
supplementary materials). Finally, the estimate of Aik is the same as the Baron-Kenny estimate since Zik is randomized.

The asymptotic properties are demonstrated in Theorem A.1 (Section A.3 of the supplementary materials). Briefly, the 
estimator is not only consistent but also achieves the Fisher efficiency, and thus those estimators without accounting for 
δik �= 0 are asymptotically biased. By the Delta method (Sobel, 1982), the asymptotic standard errors of the product esti-
mator, ÂB pik = Âik B̂ ik , and the difference estimator, ÂBdik = Ĉ ′

ik − Ĉik , are calculated using the asymptotic distributions of 
( Âik, B̂ ik, Ĉik) and (Ĉik, Ĉ ′

ik), respectively. Importantly, all these asymptotic standard errors depend on δik , see the explicit 
formulas in Section A.3 of the supplementary materials.

3.1.1. Estimation and identifiability under unknown variances
It is known that the parameters in model (2.1) are in general not all identifiable without additional assumptions. The non-

identifiability issue can be verified using either a rank condition (Hausman, 1983) or comparing the numbers of parameters 
and equations (Imai et al., 2010). For completeness, we prove the non-identifiability issue in the first-level model from the 
likelihood perspective.

Theorem 3.2. For every fixed δik ∈ (−1,+1), i = 1, . . . , N and k = 1, . . . , K , 
(1)

ik achieves the same maximum (profile) likelihood 
value 
(1)

ik (δik), where the maximum is taken over all the remaining parameters (Aik, Bik, Cik, σ1ik , σ2ik ). For the variance components, 
with a given δik , the following estimates maximize 
(1)

ik ,

σ̂ 2
1ik

= 1

nik
M


ik(Inik − P Zik )Mik, σ̂ 2
2ik

= 1

nik(1 − δ2
ik)

R

ik(Inik − P MikZik − P Mik )Rik, (3.2)

where P Zik = Zik(Z

ikZik)

−1Z

ik and P MikZik = H Mik Zik(Z


ik H Mik Zik)
−1Z


ik H Mik are projection matrices. The estimate of Aik, Bik, and 
Cik are obtained by plugging in the variance estimates above into Theorem 3.1.

This theorem shows that 
(1)

ik (δik) achieves the same maximum value regardless of δik . It holds for both two-level and 
three-level data. Fig. 2a demonstrates it using a simulated two-level dataset (see Section E.2 for the simulation setup), 
where the computed maximum value is constant over δ. Thus, one cannot estimate δ by maximizing 
(1) . Section B of the 
supplementary materials derives the relationship between the parameters and presents an example where two generative 
models with zero or nonzero indirect effects will yield the same data distribution or likelihood.

Imai et al. (2010) considered only the one-level setting and derived the same estimates as in (3.2) with δik as a sensitivity 
parameter. As shown in Theorem 3.1, the impact of δik on the estimates can be large. Under such a situation, it is challenging 
to employ sensitivity analysis as the resulting estimates depend heavily on the choice of δik . We illustrate this limitation 
using the fMRI dataset in Figure F.16, where opposite conclusions are drawn with a moderate change in δik . The sensitivity 
analysis in Imai et al. (2010) fails to account for individual variability, which is an important issue in datasets with multiple 
nested levels (Kenny et al., 2003).

Theorem 3.2 also suggests that it is not easy to avoid assumption (A6) or (A6′). Suppose δik is different across i and k. For 
any population parameter set (B, C), one can pick different δik such that B̂ ik = B and Ĉik = C yielding the same likelihood 

(1) . The term 
(2) is also the same as it depends on (A, B, C) and their first-level counterparts, (Aik, Bik, Cik). Thus, there 
6
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Fig. 2. The log-likelihood functions of (a) the first-level model (
(1)), (b) the higher-level model (
(2)), and (c) the two-level model (
) of a simulated 
two-level dataset. The true δ value is 0.5. The dashed lines in (b) and (c) are the estimates from the two-stage algorithm and the block coordinate-descent 
algorithm, respectively.

Algorithm 1 Estimating the parameters in the two-level mediation model sequentially.
With a given δ:

1. Estimate (bi , σ1i , σ2i ) for each i using Theorem 3.1 and (3.2).

2. Fit model (2.3) on the estimated b̂i ’s, and estimate b and � via maximum likelihood.
3. Return the maximum log-likelihood value of the regression model.

When δ is unknown, apply an optimization algorithm (e.g., Newton’s method) to maximize over δ using the maximum log-likelihood value at Step 3 
above.

exist multiple estimates such that 
 is the same and the model is not identifiable in the likelihood sense. The next two 
sections prove the identifiability if either (A6) or (A6′) is satisfied.

3.2. Method for the two-level model

For the two-level model, the second term in the likelihood criterion (3.1) becomes


(2) =
N∑

i=1

logP (bi|b,�) , (3.3)

where the above is the log-likelihood of regression model (2.3).
To estimate the parameters, it is proposed to maximize the likelihood via a two-stage algorithm. In the algorithm, the 

first step optimizes (bi, σ1i , σ2i ) in 
(1) for a given δi = δ. The second step optimizes (b, �) in 
(2) by plugging in the 
estimated bi ’s from the first step. Since δ is usually unknown, we further optimize over δ to yield the maximum likelihood. 
This idea is summarized in Algorithm 1. The following theorem demonstrates that this algorithm maximizes 
 and the 
resulting estimate of δ is consistent asymptotically.

Theorem 3.3. Assume assumptions (A1)-(A6) are satisfied. Let Z

i Zi/ni → qi < ∞ as n = mini ni → ∞, for i = 1, . . . , N.

1. If � is known, the two-stage estimator δ̂ maximizes the profile likelihood of model (2.3) asymptotically, and δ̂ is 
√

Nn-consistent.
2. If � is unknown, the profile likelihood of model (2.3) has a unique maximizer δ̂ asymptotically, and δ̂ is 

√
Nn-consistent provided 

that 1/� =Op

(
1/

√
Nn

)
, where � = κ̄2/
2 , κi = σ2i /σ1i , κ̄ = ∑

κi/N, and 
2 = ∑
(κi − κ̄)2/N.

Compared to Theorem 3.2, this theorem shows that δ is identifiable under the multilevel model. The intuition is that 
multilevel observations provide additional information to help avoid the overparameterization issue in the first-level model. 
The likelihood term 
(2) has a unique maximizer converging to the true δ. In practice, the shape of 
 with varying δ
depends on the observed data. We propose to check empirically the maximum log-likelihood value as a function of δ using 
a simulated dataset, see Fig. 2b. In this example, 
(2)(δ) is unimodal achieving its maximum at δ̂ = 0.476 (the truth is 0.5), 
while the first-level likelihood is flat (Fig. 2a).

3.2.1. An alternative coordinate-descent algorithm
In general, it is challenging to find the global optimum of a function like 
, especially when it contains many parameters. 

Though Algorithm 1 is simple and consistent, it may not optimize 
 as a whole in finite samples. To address this issue, we 
propose an alternative algorithm, which draws on the following properties of 
.
7
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Algorithm 2 Estimating the parameters in the two-level mediation model using (3.1).
With a given δ:

1. Estimate (σ1i , σ2i

)
, bi , b, and � by maximizing the log-likelihood function (3.1) over these remaining parameters using block coordinate descent.

2. Return the maximum log-likelihood value.

When δ is unknown, apply an optimization algorithm (e.g., Newton’s method) to maximize over δ using the profile log-likelihood value at Step 2 above.

Theorem 3.4. Assume δik = δ is given. The negative of log-likelihood function (3.1) is conditional convex in the parameter sets 
(σ−1

1i
, σ−1

2i
), (bi), b, �−1 , respectively. The conditional optimizer of each parameter set is given in explicit forms in Section A.6 of 

the supplementary materials.

Based on this theorem, a block coordinate-descent algorithm is proposed (Algorithm 2). Each descent step is computed 
efficiently using explicit updates (see Section A.6). When δ is unknown, it is estimated with the value that yields the highest 
maximum profile likelihood. In practice, this approach yields estimates closer to the truth in the simulation studies (see the 
numerical results in Section 4 and Section E). In the toy example, the numerical value of 
 is a unimodal function of δ
(Fig. 2c). It yields a better estimate (δ̂ = 0.519) with lower bias than Algorithm 1 does.

3.3. Method for the three-level model

For the three-level model, the second term of the likelihood criterion becomes


(2) =
N∑

i=1

logP (bi1, . . . ,biK |b,�,�) , (3.4)

where the above is now the log-likelihood of the mixed effects model (2.3).
A two-stage algorithm is proposed to optimize the likelihood criterion, very similar to Algorithm 1. The first-level term 


(1) is firstly optimized with a given δ and then optimize the mixed effects likelihood 
(2) using the estimated coefficients. 
The modification to Algorithm 1 is to replace the model and likelihood with the mixed effects model and its likelihood, 
respectively. Thus, the description of this algorithm is omitted here. δ is again estimated via maximizing the profile likeli-
hood 
(2) (after maximizing over � and � if unknown). The following two theorems show that this algorithm identifies δ
consistently when � and � are either known or estimated.

Theorem 3.5. Assume (A1)-(A6′) are satisfied. Let Z

ikZik/nik → qik < ∞ as n = mini,k nik → ∞, for ∀ i, k. Suppose � and � in 

model (2.3) are known. For fixed K , the two-stage estimator δ̂ maximizes the profile likelihood of the mixed effects model and δ̂ is √
Nn-consistent.

Theorem 3.6. Assume (A1)-(A6′) are satisfied. Suppose that � and � are estimated via maximizing the likelihood of the mixed model. 
Assume 1/� = Op

(
1/

√
Nn

)
, where � = κ̄2/
2 , κik = σ2ik /σ1ik , κ̄ = (nN)−1 ∑

κik , and 
2 = (nN)−1 ∑
(κik − κ̄)2 . For fixed K , 

the two-stage estimator δ̂ maximizes the profile likelihood of the mixed effects model and δ̂ is 
√

Nn-consistent provided that either one 
of the following conditions holds: (a) λ2

α ≥ ψ2
α , K ≥ 2; or (b) λ2

α < ψ2
α , K ≥

{
(λ2

γ λ2
α)/(ψ2

λ (ψ2
α − λ2

α)) + 1
}

.

These two theorems show that δ is identifiable and estimated consistently under regularity conditions. When the co-
variance matrices are unknown, additional regularity conditions are required, such as the minimal K condition, to estimate 
the variance components well. Theoretically, the minimal K condition holds automatically if one sets K → ∞ in a typical 
asymptotic setting. Here, K is assumed to be fixed because it is less restrictive for practical examples. When K is fixed, the 
convergence rates depend on the number of participants and the number of trials. These rates are consistent with those of 
standard linear mixed effects models (Nie, 2007). In practice, the following approach is suggested to check the condition 
on K . Since λ2

α and ψ2
α depend only on Aik ’s independent of δ as shown by Theorem 3.1, they are estimated unbiasedly 

without knowing δ. If these two estimates satisfy condition (a) in Theorem 3.6, it only needs to verify K > 2. If condition 
(b) is satisfied instead, the lower bounds of K in the theorem are computed by varying δ values in a range and verify if K
is greater than the maximum of the lower bound.

3.3.1. An alternative coordinate-descent algorithm
Similar to Section 3.2.1, an alternative coordinate descent algorithm is proposed to explore its improvement in finite 

samples. Analogous to Theorem 3.4, the resulting likelihood, named as m-likelihood (marginal-likelihood), is shown to be 
conditional convex and the iterative updates are given in explicit forms. As these results are parallel to those in Section 3.2.1, 
we include them in Section A.6.2 of the supplementary materials.
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3.3.2. An alternative likelihood formulation
In the mixed effects modeling, alternative likelihood-based criteria have been proposed to improve finite sample perfor-

mance. Because the framework is flexible enough, various criteria can be incorporated. Following Lee and Nelder (1996), a 
hierarchical-likelihood (h-likelihood) criterion is considered, which replaces 
(2) in (3.4) with


(2) =
N∑

i=1

K∑
k=1

logP (bik|ui,b,�) +
N∑

i=1

logP (ui |�) . (3.5)

This criterion includes the random effects ui . The introduction of the random effects term is sometimes viewed as an com-
putational convenience to simplify the mixed effects likelihood, especially when it is not straightforward to integrate over 
this term explicitly. Lee and Nelder (1996) proved that maximizing the hierarchical likelihood is asymptotically equivalent 
to maximizing the standard likelihood, so it is expected that it will yield estimates close to those from the other two al-
gorithms when the sample size is reasonably large. Since the last term in (3.5) is sometimes viewed as a penalty term to 
stabilize the estimates in finite samples, it may introduce estimation bias, though it is usually negligible in practice (see 
Commenges, 2009, for a review). The hierarchical likelihood is conditional convex and a block coordinate descent algorithm 
is proposed. These results are included in Section A.6.1 of the supplementary materials.

3.4. Inference

Due to the complexity of the multilevel model, the distributions of the estimators, especially the indirect effect and 
δ estimators, may deviate from normal in finite samples. The wild bootstrap (Wu, 1986) is considered to compute the 
confidence intervals.

4. Simulation study

In this section, the proposed estimators are compared with others under the three-level model when δ is unknown. 
The simulation results of the first- and two-level models are presented in Section E of the supplementary materials. The 
methods include the two-stage mixed effects algorithm (CMA-ts) from Section 3.3, the coordinate descent algorithm for the 
marginal likelihood (CMA-m) from Section 3.3.1, the coordinate descent algorithm for the hierarchical likelihood (CMA-h) 
from Section 3.3.2, the first-level method (CMA-δ) from Section 3.1, the linear mixed effects SEM (KKB) method (Kenny et 
al., 2003), and the Baron-Kenny (BK) method (Baron and Kenny, 1986). Neither KKB or BK can estimate δ as no unmeasured 
confounding (or δ = 0) is assumed. Because the CMA-δ method allows δ as input, the true δ value will be used to assess 
the oracle performance of this single level method in multilevel data. Since both BK and CMA-δ are developed for one-level 
data, they are implemented by concatenating the multilevel data from all sessions and all participants. The CMA methods 
are implemented using the developed R package macc, KKB using the lme4 package, and BK via standard regression.

The total number of participants is set to be N = 50 and the number of sessions K = 4. Under each session and for each 
participant, the number of trials is a random draw from the Poisson distribution with mean 100. The main objective is to 
identify the population direct effect (denoted by C ) and the population indirect effect (denoted by C ′ − C or AB). Using 
the product definition of the indirect effect, the null hypothesis is H0 : AB = 0, which includes three scenarios for A and B . 
That is, a) A = 0, B �= 0; b) A �= 0, B = 0; and c) A = B = 0. Since all methods yield unbiased estimate for A (independent 
of δ), only the scenario of b) A �= 0, B = 0 for the null of AB is presented. Under the alternatives, the population level 
parameters are set as A = 0.5, B = −1, and C = 0.5. Both � and � are set to be diagonal, and the variance components 
are ψ2

α = ψ2
β = ψ2

γ = 0.5 and λ2
α = λ2

β = λ2
γ = 0.5. For each participant in each session, the variances of the errors in 

the first level mediation model are σ1ik = 1 and σ2ik = 2, for i = 1, . . . , N and k = 1, . . . , K . The correlation between the 
errors (denoted by δ) is either 0.5 or 0, to simulate the settings with and without unmeasured confounding, respectively. 
Simulations are repeated 200 times.

In Table E.3 of the supplementary materials, the computation time of the CMA approaches is compared. The CMA-h 
approach computes the fastest. Table 1 presents the point estimates from all the methods considered. From the table, CMA-
ts, CMA-h, and CMA-m have small biases in estimating δ. CMA-h has slightly lower biases than CMA-ts and CMA-m on 
average. The KKB, BK and CMA-δ estimates yield large biases in B and C , as well as in the indirect effect when the true δ
is nonzero.

To test whether the methods are robust to the magnitude of unmeasured confounding, the first case in Table 1 is 
simulated with varying δ ∈ (−1, 1). Fig. 3 shows that our methods yield lower estimation biases of δ, and also lower biases 
than other competing methods in terms of estimating AB . Across different δ values, CMA-h has the lowest biases among all 
methods. This is also consistent with the simulation results earlier. The biases in KKB, BK and CMA-δ increase dramatically 
as |δ| approaches to one, while our multilevel methods have numerically negligible biases across all δ values. KKB has the 
largest bias, followed by BK and CMA-δ, and the biases can be as large as 200%. The biases in estimating B , C and AB of BK 
and KKB are approximately a linear function of δ, as predicted by our theory, see Section D of the supplementary materials.

To validate the consistency theory, the simulation of the first case in Table 1 is expanded with N = nik = 50, 200, 500, 1000
and K = 4, 10. Fig. 4 shows that the estimates of δ (from CMA-ts, CMA-h, and CMA-m) approach the true values as the 
number of trials and the number of participants increase. This convergence does not depend on the increase of the number 
Y. Zhao and X. Luo Computational Statistics and Data Analysis 179 (2023) 107623
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Table 1
Average point estimates and empirical standard errors (in brackets) of CMA-ts, CMA-h CMA-m, CMA-δ, 
KKB and BK. δ is estimated in the multilevel CMA methods. It is set to zero in KKB and BK, and set to 
the true δ in CMA-δ.

Method δ C B AB p ABd

True value 0.5 0.5 -1 -0.5 -0.5
CMA-ts 0.476 (0.029) 0.473 (0.121) -0.940 (0.129) -0.455 (0.119) -0.450 (0.147)
CMA-h 0.502 (0.031) 0.504 (0.121) -1.006 (0.136) -0.488 (0.129) -0.482 (0.153)
CMA-m 0.541 (0.037) 0.557 (0.131) -1.117 (0.155) -0.541 (0.143) -0.535 (0.165)
CMA-δ - 0.719 (0.163) -1.436 (0.127) -0.699 (0.174) -0.699 (0.174)
KKB - 0.016 (0.171) 0.000 (0.105) 0.001 (0.053) 0.006 (0.110)
BK - 0.183 (0.173) -0.337 (0.122) -0.163 (0.068) -0.163 (0.068)

True value 0.5 0.5 0 0 0
CMA-ts 0.474 (0.029) 0.474 (0.117) 0.052 (0.132) 0.025 (0.069) 0.021 (0.117)
CMA-h 0.499 (0.030) 0.506 (0.117) -0.014 (0.134) -0.007 (0.070) -0.011 (0.116)
CMA-m 0.538 (0.040) 0.560 (0.129) -0.121 (0.170) -0.062 (0.090) -0.065 (0.132)
CMA-δ - 0.717 (0.160) -0.442 (0.129) -0.221 (0.091) -0.221 (0.091)
KKB - 0.013 (0.155) 0.985 (0.112) 0.485 (0.125) 0.482 (0.155)
BK - 0.174 (0.163) 0.656 (0.124) 0.322 (0.093) 0.322 (0.093)

True value 0 0.5 -1 -0.5 -0.5
CMA-ts -0.001 (0.040) 0.490 (0.125) -0.988 (0.137) -0.485 (0.132) -0.479 (0.158)
CMA-h -0.001 (0.044) 0.490 (0.126) -0.988 (0.141) -0.485 (0.133) -0.478 (0.158)
CMA-m 0.000 (0.086) 0.493 (0.151) -0.991 (0.197) -0.488 (0.154) -0.481 (0.176)
CMA-δ - 0.498 (0.144) -0.991 (0.120) -0.485 (0.126) -0.485 (0.126)
KKB - 0.491 (0.122) -0.991 (0.108) -0.485 (0.119) -0.479 (0.151)
BK - 0.498 (0.144) -0.991 (0.120) -0.485 (0.126) -0.485 (0.126)

Fig. 3. Point estimates of (a) δ and (b) AB , (c) the bias of δ̂, and (d) the relative bias of ÂB p with varying δ. Solid circles are from CMA-h, solid triangles 
are from CMA-m, solid diamonds are from CMA-ts, solid squares are from KKB with δ = 0, triangles are from CMA-δ with the true δ value, and squares are 
from BK with δ = 0. Dashed lines are the true parameter values in (a) and (b), and zeros in (c) and (d).

Fig. 4. (a) Average point estimates of δ and (b) the mean squared errors (MSEs) of δ̂ by CMA-ts, CMA-h and CMA-m. Solid circles are from CMA-h, solid 
triangles are from CMA-m, and solid diamonds are from CMA-ts. Dashed lines show the true value of δ in (a) and zero in (b).
10
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Table 2
Average estimates and 95% confidence intervals from the multilevel CMA methods, CMA-δ method with 
δ estimated from CMA-h, KKB and BK on the fMRI dataset with and without motion correction (MC), 
using 500 bootstrap samples.

Data Method δ C AB p

Without MC CMA-ts -0.127 (-0.201, -0.056) -0.051 (-0.099, -0.002) 0.166 (0.142, 0.191)
CMA-h -0.465 (-0.578, -0.325) -0.177 (-0.247, -0.108) 0.293 (0.237, 0.350)
CMA-m -0.652 (-0.794,-0.456) -0.288 (-0.412, -0.164) 0.406 (0.289, 0.523)
CMA-δ - -0.214 (-0.289, -0.138) 0.295 (0.231, 0.359)
KKB - -0.007 (-0.050, 0.036) 0.123 (0.119, 0.127)
BK - -0.029 (-0.071, 0.012) 0.111 (0.107, 0.115)

With MC CMA-ts -0.149 (-0.212, -0.04) -0.074 (-0.122, -0.025) 0.155 (0.134, 0.176)
CMA-h -0.439 (-0.532, -0.322) -0.178 (-0.239, -0.117) 0.260 (0.215, 0.306)
CMA-m -0.586 (-0.730, -0.410) -0.253 (-0.357, -0.150) 0.336 (0.241, 0.432)
CMA-δ - -0.225 (-0.290, -0.160) 0.261 (0.210, 0.312)
KKB - -0.023 (-0.069, 0.022) 0.106 (0.102, 0.110)
BK - -0.061 (-0.105, 0.017) 0.097 (0.093, 0.101)

of sessions, as predicted by the theory. CMA-h has the lowest bias in finite samples, probably due to the regularization 
term as discussed in Section 3.3.2. Figure E.5 in the supplementary materials compares the biases in estimating the direct 
and indirect effects. CMA-h again achieves the lowest biases. In Section E.4 of the supplementary materials, a scenario of 
σ1ik = 2 and σ2ik = 1 is considered. The performance of the CMA-h and CMA-ts approaches generalizes, while the CMA-m 
approach attains estimates with a slightly greater bias. Section E.5 of the supplementary materials discusses the robustness 
of the proposed approaches under various settings.

5. Application

The proposed model and methods are applied to an fMRI dataset. In the experiment, N = 96 participants consented to 
fMRI scanning while performing a response conflict task, where the conflict occurs between the GO trial (pressing a button 
when seeing a “circle” on the screen) and the STOP trial (withholding the press when seeing a “cross”). Each participant 
i was scanned in Ki = K = 4 sessions. Each session k is about ten minutes in length with nik (median 90) randomized 
STOP/GO trials. For all sessions, with probability 3/4, the jth trial is a GO trial (Zikj = 0); and with probability 1/4, it is 
a STOP trial (Zikj = 1). The experiment paradigm was described in details in Duann et al. (2009) and Luo et al. (2012). 
Prior modeling efforts have identified various brain pathways in this experiment (Duann et al., 2009). In this study, a brain 
pathway from the presupplementary motor area (preSMA) to the primary motor cortex (PMC) is investigated. The latter is 
a region that carries out the primary function of movements and the former is a primary region of motor response prohibi-
tion (Duann et al., 2009). The existence of this pathway has been confirmed using transcranial magnetic stimulation (Obeso 
et al., 2013). Brain activations of preSMA (Mik) and PMC (Rik) in each trial Zikj are extracted through a widely used single 
trial analysis (Lindquist, 2008). More details of data processing are in Section F of the supplementary materials.

Neuroimaging analysis usually concerns about population estimates rather than individual variability. Both the two-
level and three-level models are capable of estimating the population effects. For the sake of space, only the three-level 
model is considered. Additional data analyses and the validation of modeling assumptions are included in Section E. In fMRI 
experiments, the mediator-outcome confounding factor may come from several sources. First, systematic errors, such as head 
motions, influence brain activities in both regions (see the discussion in Sobel and Lindquist, 2014). Second, brain activity 
under a task can be reliably modeled by a linear superposition of task-related activity and (spontaneous) task-unrelated 
activity. The task-unrelated activity is shown to account for a significant fraction of the variation (Cole et al., 2014; Fox 
et al., 2006). Third, other brain regions that are not included in the model may have impact on the two brain regions 
considered, for example, a third region inferior frontal gyrus may influence both preSMA and PMC (Obeso et al., 2013). 
Since head motions are robustly estimated in standard neuroimaging processing pipelines, we will treat head motions as a 
measurable source of confounding. Two analyses, with and without adjusting for head motions, are conducted to assess the 
robustness of the methods.

In the first analysis, head motions are intentionally not adjusted (Rosenbaum, 2002) and thus, contribute to unmeasured 
confounding. All proposed methods (denoted as CMA) yield similar estimates of δ far from zero. The differences between 
them are consistent with the simulation results, where CMA-ts (two-stage approach in Section 3.3) and CMA-m (marginal 
likelihood in Section 3.3.1) slightly underestimate and overestimate δ, respectively. Table 2 (and Table F.5) compares the 
inference results of different one-level and three-level methods. CMA-h (hierarchical likelihood in Section 3.3.2) estimates 
δ = −0.465 (−0.578, −0.325), AB p = 0.293 (0.237, 0.350) (Table F.5), and C = −0.177 (−0.247, −0.108) with 500 wild 
bootstrap samples. Because both KKB (linear mixed effects SEM by Kenny et al., 2003) and BK (Baron and Kenny, 1986) 
ignored the unmeasured confounding effect, the indirect effect estimates are about 50% less. The direct effect estimates of 
CMA-ts, CMA-h, and CMA-m are significant at the 95% level, while the KKB and BK estimates are not. The CMA methods 
lead to important and interpretable scientific conclusions suggesting that the STOP stimulus increases the preSMA activity 
which then increases the PMC activity via the preSMA-PMC pathway, while directly decreases the PMC activity. The indi-
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rect effect estimates are about two folds larger than the direct effect, which quantifies the important role of preSMA in 
motion prohibition. The direct effect estimates are negative and significant, which is consistent with the expectation of the 
participants withholding motor movements during the STOP trials. KKB and BK, without accounting for the unmeasured 
confounding, underestimate the role of preSMA and miss the significant direct prohibition effect.

With the second analysis, the robustness of the methods is validated. Head motions are adjusted in the data processing 
step, which is expected to reduce the magnitude of unmeasured confounding. Both CMA-h and CMA-m yield a slightly 
smaller estimate of δ in magnitude, though this change is not significant. The estimates of other parameters are similar 
(Tables 2 and F.5). This demonstrates that the multilevel method is stable under varying magnitude of confounding. In con-
trast, the indirect effect estimates by KKB and BK are outside the corresponding confidence intervals after motion correction 
suggesting that the estimates are sensitive to confounding.

6. Discussion

In this study, a multilevel mediation modeling framework is proposed for data with a hierarchically nested structure. 
This framework simultaneously addresses the unmeasured mediator-outcome confounding issue and individual variation in 
causal mediation analysis. For the one-, two-, and three-level mediation models, optimization-based methods are introduced 
along with efficient algorithms for computing, especially for a large number of parameters in the multilevel models. We 
prove theoretically these methods consistently estimate the magnitude of unmeasured confounding, which is mathematically 
impossible under single-level mediation models. Using extensive simulations and an fMRI dataset, it is shown that the 
resulting estimates correct for biases effectively in finite samples, and are robust to the magnitude of the unmeasured 
confounding effect. Though the method is motivated by an fMRI experiment, the methodology can be generalized to many 
other studies when the correlated errors are present due to confounding.

The proposed framework can be extended to other types of mixed effects models for multilevel data. One example is that 
the mediator is a constant at the second level and does not change over sessions/time. One can impose the corresponding 
model parameters to be fixed in the estimation. Given that there are many variants in the literature on specifying the 
random effects and covariance structures, we leave to future research the analysis of more complex multilevel SEMs, for 
example, fitting δik in a mixed effects model. Moreover, it is also of interest to test whether the finite sample estimation 
accuracy can be improved by using a global optimization algorithm.

Though the proposed framework is derived under binary treatment assignment, it can be used in other applications when 
the treatment is continuous. For studies with covariates, one can conduct covariate adjustment on both the mediator and 
the outcome before applying the proposed method, similar to what have been done to the fMRI data on motion correction. 
Another option is to include the covariates in the first-level model. However, it makes the computation more challenging 
as the number of parameters increases. The optimization problem becomes more complex when the covariates differ at 
different levels, see a discussion in Section C of the supplementary materials. Both approaches for covariate adjustment can 
be applied to observational studies under certain assumptions (see Rosenbaum, 2002, and Section C of the supplementary 
materials).

For studies with multiple mediators, when the causal ordering of the mediators is known, one can formulate the first-
level SEMs accordingly based on the causal diagram. Hyperparameters at higher levels can be then modeled analogously. 
However, one should note that as the number of mediators increases, the decomposition of the mediation effect becomes 
more complex (Daniel et al., 2015). When the ordering of the mediators is unknown, a marginal SEM can be employed. 
However, the interpretation of the effects may differ (Imai and Yamamoto, 2013; VanderWeele and Vansteelandt, 2014). 
If such a marginal model is considered, similarly, hyperparameters at higher levels can be modeled. Investigation of other 
complex scenarios will be future research.

Via simulation studies, it suggests that a correctly specified model is essential (Section E.5 of the supplementary materi-
als). However, this assumption is intrinsically difficult to examine. For the ordering assumption of the variables, it is mainly 
determined based on domain knowledge or the temporal ordering of the measurements. As our proposed framework ac-
counts for unmeasured confounding, missing measured confounding factors in the model will not impact the estimate of the 
indirect effect, but the estimation of the correlation parameter (as demonstrated in the fMRI data application). The proposed 
estimation approaches are likelihood based, thus one can consider comparing different models using existing tools, such as 
AIC/BIC if models are nested. One may also consider prediction performance on out-of-sample data to compare different 
models and select the best one.

We leave to future work on various extensions of the proposed framework, such as including interactions (MacKinnon et 
al., 2007; Valeri and VanderWeele, 2013). It is also possible to consider mediator and outcome from other distributions, as 
the framework is based on maximum likelihood. However, quantifying the unmeasured confounding effect using correlations 
is not straightforward. It is also of interest to study nonlinear mediation models as well.
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Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csda .2022 .107623.
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