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Abstract
In this paper, we study how culture leads to001
differences in common ground and how this002
influences communication. During communi-003
cation, cultural differences in common ground004
during communication may result in pragmatic005
failure and misunderstandings. We develop006
our method Rational Speech Acts for Cross-007
Cultural Communication (RSA+C3) to resolve008
cross-cultural differences in common ground.009
To measure the success of our method, we study010
RSA+C3 in the collaborative referential game011
of Codenames Duet and show that our method012
successfully improves collaboration between013
simulated players of different cultures. Our014
contributions are threefold: (1) creating Code-015
names players using contrastive learning of an016
embedding space and LLM prompting that are017
aligned with human patterns of play, (2) study-018
ing culturally induced differences in common019
ground reflected in our trained models, and (3)020
demonstrating that our method RSA+C3 can021
ease cross-cultural communication in gameplay022
by inferring sociocultural context from interac-023
tion.024

1 Introduction025

An English speaker from the U.K. might refer026

to the storage space at the back of a car as the027

"boot", but an English speaker from the U.S. will028

likely take "boot" to mean a type of shoe. The029

confusion that would arise in communication be-030

tween these speakers is an instance of pragmatic031

failure (Thomas, 1983). When humans communi-032

cate, however, they can often resolve such confu-033

sion by reasoning about the cultural background of034

their conversation partner, and correctly interpret-035

ing "boot" to refer to the appropriate concept. Our036

goal is to develop an AI system capable of prag-037

matic reasoning and able to adapt to new players038

during live interaction.039

Existing research in cross-cultural communi-040

cation focuses on single-turn interactions (Adi-041

lazuarda et al., 2024; Huang and Yang, 2023; He042

et al., 2024) or centers primarily on knowledge 043

of cultural values or norms (Chiu et al., 2024; 044

Huang and Yang, 2023). However, these works 045

miss the central aspect of inferring and adapting 046

to socio-cultural context through interaction (e.g. 047

an American might infer that their conversation 048

partner is British and use this to understand what 049

the British person means when they say "boot"). 050

To fill this gap, we introduce our method of Ra- 051

tional Speech Acts for Cross-Cultural Communi- 052

cation (RSA+C3). We study the effectiveness of 053

our method by creating a test bed for culturally 054

induced differences in common ground using the 055

collaborative reference game Codenames Duet as 056

described in Section 4.1. 057

First, we simulate players of Codenames Duet, 058

using the dataset presented by (Shaikh et al., 2023) 059

as training data for different cultures in Section 5. 060

Then, we show that these simulated players can re- 061

flect the cultural differences present in the dataset 062

in Section 6. Finally, we test how well our simu- 063

lated players of different cultures can play Code- 064

names with each other Section 7. Through these 065

interaction experiments, we show that our method 066

RSA+C3 can significantly improve the win rates 067

of games of Codenames Duet over our baseline, 068

showing that it is inferring socio-cultural context 069

from the interaction. 070

2 Related work 071

We first discuss previous work that has expanded 072

on the Rational Speech Acts framework (Degen, 073

2023; Goodman and Frank, 2016) and language 074

games as a method of analyzing human dialogues, 075

specifically in the context of conveying information 076

concisely based on shared context. 077

Culture in NLP. Much work has been done 078

to model cross-cultural differences using LLMs. 079

State-of-the-art LLMs have been shown to struggle 080

with multi-cultural reasoning (Chiu et al., 2024). 081
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Figure 1: RSA+C3: Rational Speech Acts framework with Cross-Cultural Communication. Here we model interactions
in Codenames Duet between the British clue giver and the American guesser. (1) In regular gameplay, the clue giver selects a
target and generates a clue without considering the guesser’s background. (2) Using RSA+C3, the giver considers what word
the guesser may select based on their demographic background and generates a different clue accordingly. The avoid words will
cause the game to end in an immediate loss and the neutral words have no effect on the success or failure of the game.

Though prompted LLMs might reflect some un-082

derstanding of cultural norms, they fail to apply083

reasoning to downstream inferences (e.g. inferring084

differences in tip culture) (Huang and Yang, 2023)085

often producing toxic or heavily stereotyped text.086

Prompting such as in Niszczota and Janczak (2023)087

is not the only method to personalize LLMs, LLMs088

can be personalized using influence functions (He089

et al., 2024), fine-tuning (Li et al., 2024a). Cul-090

turally personalized LLMs provide a useful tool091

for content moderation (He et al., 2024; Li et al.,092

2024a,b) or sharing multi-cultural knowledge (Li093

et al., 2024b). Moreover, recent dataset and bench-094

mark efforts (Fung et al., 2024) record a wide diver-095

sity of cultural norms. However, these papers focus096

mostly on norms and values (such as cultural tra-097

ditions) rather than on the common ground shared098

between members of a culture. Norms and values099

refer to culturally correlated beliefs, whereas com-100

mon ground refers to the assumed shared knowl-101

edge base. In contrast to the prior work, we seek to102

evaluate our models in their ability to infer socio-103

cultural differences in common ground through104

multi-turn interactions.105

Applications of RSA and Pragmatic Reasoning106

Previous work has incorporated context in the use107

of priors for modeling utterances via RSA, such as108

in using the perspective of a speaker to interpret109

motion verbs (e.g. "come" and "go") (Anderson110

and Dillon, 2019) and modeling connectives in ut- 111

terances (e.g. "but" and "therefore") (Yung et al., 112

2016). RSA has also been studied as a model of 113

human behavior through reference games, such as 114

in differentiating ambiguous images via minimally 115

distinguishing information (Frank, 2016). Beyond 116

reference games and connective utterances, RSA 117

has been used to study discourse, particularly in 118

the use of indirect or polite phrases (Lumer and 119

Buschmeier, 2022). Pragmatic reasoning plays a 120

role in the arguments made during meetings of the 121

UN (Kone, 2020), where the ambassadors reason 122

about the context of the others. The framework 123

of RSA assumes that common ground is shared 124

between parties. Degen et al. (2015) adds an addi- 125

tional component where the probability of common 126

ground not being shared is estimated and use to 127

change predictions. However, they primarily use 128

a high entropy backoff distribution to perturb pre- 129

dictions. For our method RSA+C3 in Section 3.2, 130

we develop a way to utilize prior socio-cultural 131

information (e.g. a person is British) to improve 132

predictions. 133

Language Games for AI Language games have 134

been frequently used as a test-bed for artificial in- 135

telligence and human-AI interaction (Hausknecht 136

et al., 2020; Ammanabrolu et al., 2022; Wang et al., 137

2022). Previous work explored how language mod- 138

els interact in realistic social environments based 139
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on choose-your-own-adventure games, finding that140

agents could be steered towards valuing moral re-141

quirements rather than trading them off for greater142

rewards (Pan et al., 2023). Codenames has been143

studied in the simplified format of "Codenums",144

which replaced words with vectors to study non-145

linguistic attributes of the game via a deductive146

agent hierarchy that tracks the internal models of147

other players (Bills and Archibald, 2023). Clues for148

the game have been generated by ranking based on149

document frequency and existing word embedding150

models (Koyyalagunta et al., 2021). Sociolinguis-151

tic priors have been generated to account for the152

cultural context of the speaker in the simplified153

game "Codenames Duet" (Shaikh et al., 2023). We154

explore incorporating the speaker’s sociocultural155

attributes across a varying set of games to explore156

how transferable these priors are and when this157

additional context could be clarifying versus super-158

fluous.159

3 Pragmatic Reasoning with the RSA160

Framework and RSA+C3161

We formalize and describe the RSA framework162

as articulated in Degen (2023) and an extension163

to RSA used to represent differences in common164

ground. RSA formulates communication as a con-165

versation between a listener and a speaker. For166

Codenames Duet, we treat the literal listener as the167

guesser and the pragmatic giver as the clue giver.168

3.1 RSA: Rational Speech Acts Framework169

In RSA formulations, the (abstract) literal listener170

L0 interprets meaning based on literal semantics.171

In the context of Codenames Duet, this is equiv-172

alent to a guesser guessing to optimize semantic173

similarity. The pragmatic speaker or clue giver S1174

reasons about the literal listener by175

PS1(c|g) ∝ exp(α · T (c|g))176

T (c|g) represents the utility of c for communi-177

cating target concepts g. T is a trade-off between178

the cost of an utterance and the informativeness of179

c.180

U(c, g) = ln
(
PL0(g|c)− cost(c)

)
181

We will take the cost of the clue to be equivalent182

to the possibility of the guesser, or literal listener,183

choosing an avoid word (a word that will end the184

game) or a neutral word (a word that doesn’t belong185

to any player’s team).186

3.2 RSA+C3: Rational Speech Acts for 187

Cross-Cultural Communication 188

The RSA framework in Section 3.1 formalizes ef- 189

ficient communication, but does not account for 190

instances where common ground is not shared. We 191

introduce RSA+C3, a method that assumes that 192

common ground is not shared and learns to interact 193

with an interlocutor of a different culture through 194

live interaction. To accomplish this, we provide 195

the RSA+C3 pragmatic speaker S1 with n different 196

models representing literal listeners Li of n differ- 197

ent cultures. For each culture, we store a random 198

variable wi where P (wi) reflects the probability 199

that the interlocutor shares the same culture, taking 200

inspiration from (Degen et al., 2015). We estimate 201

the probability P (wi) by calculating the probabil- 202

ity that utterance g would have been chosen if the 203

interlocutor shares the same culture and clue c was 204

given. Let g be the utterance observed then we 205

estimate: 206

P (wi) = PLi(g|c, wi) 207

Then, we select a literal listener Li or guesser 208

from the possible n cultures by finding the culture 209

that maximizes P (wi) and estimate 210

PS1(c|g) ∝ exp(α · ln(PLi(g|c)− cost (c))) 211

Thereby selecting a clue c to maximize informa- 212

tiveness to a listener belonging to a culture i. 213

4 Task Data and Metrics 214

We introduce the dataset, game, and metrics we 215

utilize in this paper to model cross-cultural com- 216

munication. 217

4.1 Codenames Duet 218

Codenames Duet is a complex referential collab- 219

orative game featuring a clue giver and a guesser 220

where the clues and guesses given are based on an 221

assumption of common ground. The board con- 222

sists of 25 words, nine goal words, three avoid 223

words, and 13 neutral words. To win the game, the 224

guesser must guess all goal words without guessing 225

any avoid words. In a single turn, the clue giver 226

chooses a subset of the goal words as their targets 227

and provide a one-word clue that the guesser uses 228

to guess the target words. 229
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4.2 Dataset230

To run our experiments, we utilize Codenames231

Duet and the Cultural Codes 1 dataset, which con-232

tains 794 Codenames Duet games across 153 play-233

ers, along with survey results containing demo-234

graphic information about each player (Shaikh235

et al., 2023).236

4.3 Metrics237

As we use LLMs and the word embedding space to238

simulate interactions in Codenames, we explore our239

modeled givers and guessers’ alignments with hu-240

man data from the dataset described in Section 4.2.241

Giver metrics. In a single round, the clue giver242

must (1) select a set of target words from the goal243

words and (2) generate a clue to distinguish the244

intended targets from other words on the board.245

We define metrics for these two tasks:246

• Giver target accuracy is the proportion of247

the human giver’s target words that are also248

generated by the simulated giver.249

# giver-aligned simulated targets
# human giver targets

250

• Clue accuracy is the proportion of the human251

giver’s clues that are also generated by the252

simulated giver.253

# giver-aligned simulated clues
# human giver clues

254

We sum the number of targets and clues across255

multiple rounds.256

Guesser metrics. In a single round, the guesser257

selects words from the board that they believe cor-258

respond best to a given clue. We define metrics to259

study how well our simulated guesser aligns with260

both the behavior of the human guesser and the261

intentions of the human giver:262

• Guess accuracy is the proportion of human263

guesses that are also generated by the simu-264

lated guesser.265

# guesser-aligned simulated guesses
# human guesser guesses

266

• Guesser target accuracy is the proportion of267

targets intended by the human giver that are268

guessed by the simulated guesser.269

# giver-aligned simulated guesses
# human giver targets

270

1https://github.com/SALT-NLP/codenames

As with the giver metrics, we sum the number 271

of guesses and targets across rounds. 272

4.4 Interactive Evaluation 273

In our paper, our goal is to evaluate how simulated 274

players of different cultures interact and collaborate 275

to play Codenames Duet. Since Codenames Duet is 276

a collaborative game, the main metric for whether 277

two players are effectively communicating is the 278

win rate. To ensure that a method does not increase 279

the win rate simply by being evaluated on easier 280

boards, we generated a fixed set of 100 boards and 281

play a game on each board. We explain this further 282

in Appendix E. 283

5 Modeling Codenames Players with 284

Word Embeddings and LLMs 285

We explore two approaches to modeling our giver 286

and guesser; trained word embeddings and prompt- 287

ing LLMs. We find that our giver and guesser 288

based on word embeddings consistently outperform 289

the few-shot prompted LLMs in accuracy on the 290

human-selected guesses and targets, as illustrated 291

in Figure 2. 292

5.1 Modelling the Guesser and Giver using 293

Word Embeddings 294

The embeddings-based literal guesser selects the 295

most likely words based on cosine similarity be- 296

tween the given clue c and the set of unseleted 297

words U . For each unselected word u in U , the 298

cosine similarity is given by 299

sim(c, u) =
c · u
|c||u|

300

Then for the literal guesser, we estimate 301

PL0(g|c) =
exp(sim(c, g))∑

u∈U exp(sim(c, u))
302

and we select the g to be such that it max- 303

imizes PL0(g|c). Similarly, we implement the 304

embeddings-based literal giver by finding the clue 305

c for target g such that the similarity between c and 306

g is maximized. 307

c = argmax
c

sim(c, g) 308

Finally, we select the target concept g by select- 309

ing 310

g = argmax
g

argmax
c

sim(c, g) 311
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Figure 2: Player modeling using LLM-prompting and
trained word embeddings. The efficacy of the Llama2 chat
models at simulating human players, including both the giver
and guesser, varied across model size and task. Trained word
embeddings consistently outperformed untrained word embed-
dings and generally outperformed LLM-prompting with the
exception of the giver clue selection task.

5.2 Training Word Embeddings312

To train our word embeddings we use a linear layer
fθ on top of the GloVe model (Pennington et al.,
2014) and compute the embedding of a word x as

E(x) = fθ(GloVe(x))

During training, we aim to model the lexicon of313

human players by increasing the similarity between314

the clue and the words selected by the humans315

while decreasing the similarity with other words on316

the board.317

We formalize each turn as consisting of a clue
c, a set of available words {w1, . . . , wn}, and a set
of selected words S ⊆ {1, . . . , n}. The training
objective is then defined as

loss = − 1

|S|

n∑
i=1

log
exp(ui)∑n
j=1 exp(uj)

1{i ∈ S}

where ui is the cosine similarity between wi and c,
scaled by temperature t:

ui =
E(wi) · E(c)
|E(wi)||E(c)|

× exp(t)

This objective is equivalent to a cross-entropy318

loss with equal probabilities across each selected319

word, and is modeled after the contrastive loss used320

in Radford et al. 2021.321

5.3 Guesser and Giver Prompting322

We chose to model the giver and guesser in Code-323

names using the Llama2 family of text and chat324

models (Touvron et al., 2023) due to these models 325

being open-source. 326

We explore their models’ accuracy across the 327

metrics defined in Section 4.3 with few-shot 328

prompts. 329

Giver. We first query the Llama2 chat models 330

to generate a clue using a few-shot prompt as de- 331

scribed in Appendix A.1. To allow for a diverse set 332

of potential clues, we generated 5 clues per prompt, 333

allowing for repeats. The clue giver then selects a 334

target word for the guesser to select conditioned on 335

the board state, as described in Appendix A.2. 336

Guesser. Using a provided clue, we model the 337

codenames guesser by prompting a Llama2 chat 338

model with: 339

You are playing Codenames and are the 340
clue guesser. You need to select one 341
word from {all words}. Given the 342

clue {clue}, the most likely word is 343

We calculate the probability of a target word 344

being generated from the list of possible target 345

words as described in Appendix A.2. 346

6 Incorporating Cultural Context into 347

Player Models 348

To model cross-cultural communication in Code- 349

names Duet, we must first train models to reflect 350

the cultural background of human players. In Sec- 351

tion 6.1, we do this by training word embeddings 352

using the technique described in Section 5.2 on 353

data representing a specific demographic attribute 354

(e.g. education). In addition, we demonstrate how 355

few-shot prompting with cultural context can lead 356

to higher performance - highlighting the influence 357

of cultural priors on codenames play. 358

6.1 Training embedding spaces with cultural 359

splits 360

To model players with different cultural back- 361

grounds, we contrastively train embeddings using 362

the technique in Section 5.2 on subsets of the Cul- 363

tural Codes dataset. We split the dataset into sub- 364

sets based on various demographic and cultural 365

attributes. We split the dataset along the axes of 366

education (high school & associate, bachelor, grad- 367

uate), country (United States, foreign), native (true, 368

false), political (liberal, conservative), age (under 369

30, over 30), and religion (Catholic, not Catholic). 370

For some subsets of the dataset, we group the val- 371

ues of the cultural variables to obtain subsets with 372

roughly equal amounts of data. We follow the pro- 373
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Figure 3: Comparison of guess accuracy using embeddings trained on cultural splits against baseline GloVe
embeddings and embeddings trained on different splits. The large difference of 9% on the data of Mas-
ter+Doctorate cultural split, between the GloVe trained on Master+Doctorate and GloVe trained on the remaining
data (i.e. the difference between the orange and green bars) indicates that there are cultural patterns found in the
Graduate+Bachelor data that do not occur in the remaining data. There are similar large differences in accuracy
between GloVe trained on split and GloVe trained on the other split in the cultural splits on country and politics.

cedure described in Appendix D, training for 25374

epochs.375

After training our embeddings, we evaluate the376

alignment of a literal guesser using these embed-377

dings with the human guesses found in the hold-out378

validation set. The humans in the validation set are379

not the same humans in the training set, indicating380

that our predictions are extendable to other humans381

of a similar cultural background. Our results are382

displayed in Figure 3, with additional results in383

Appendix D.384

6.2 Few-shot prompting with cultural context385

We study how different axes of demographics in-386

cluded in the Cultural Codes dataset could inform387

alignment to the human guesser and the giver, with388

the LLM simulating the player. In both paradigms,389

we prompt the Llama2 chat models (Touvron et al.,390

2023) with a list of unselected words and a pro-391

vided clue, asking the model to output the most392

likely target word. We provide information about393

the clue giver, as described in Appendix A.3, and394

study how often the model’s giver alignment and395

guesser alignment. As illustrated in Figure 4, we396

find that including any demographic information397

improved alignment with the human guesser for398

the Llama-2-7B-Text model. Results vary for giver399

alignment and the 13B-Text model. Moreover,400

when studying the inclusion of cultural context401

in clue generation, we find that inclusion of all402

demographics increased performance in the 13B403
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Figure 4: Target guessing with cultural context. Reranking
potential target words based on the probabilities output by
the Llama2 model simulating the clue giver and word guesser
led to varying levels of guesser-aligned target word selections.
Inclusion of cultural context (e.g. political leaning, personal-
ity) sometimes improved alignment with the guesser based on
model size and selected demographic.
model while "leaning" (the political leaning and 404

personality scores of the human players) increased 405

performance for the 7B model, as shown in Fig- 406

ure 5. The increased performance under different 407

cultural prompts underlines how cultural context 408

influences the choices of the human guessers and 409

givers in the dataset. 410

7 Cross-cultural Pragmatic Reasoning in 411

Interaction 412

In Section 5 we demonstrated that a learned embed- 413

ding space can accurately reflect human guesses 414

from the Shaikh et al. (2023) dataset. In Section 6 415

we demonstrated how these models can reflect the 416

preferences of different cultures. In this section, we 417

aim to show how the RSA and RSA+C3 methods 418

can improve performance for codenames players 419
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Figure 5: Clue generation with cultural context. Leaning
notably led to an increase in accuracy for giver alignment for
the 7B model while including all demographics for the 13B
model led to more accurate giver-aligned generations.
of different cultures over our baseline literal player.420

7.1 Clue Givers421

To highlight the necessity of pragmatic reasoning,422

we introduce our three techniques for modeling the423

clue giver - the literal, RSA, and RSA+C3 clue424

givers.425

Literal Clue Giver. We evaluate the literal clue426

giver as described in Section 5.1 that selects the427

clue c that is most similar in semantic similarity to428

the target g.429

RSA Clue Giver. Recall from Section 3.1 how430

we defined PS1 to be the probability distribution431

governing the actions of the pragmatic speaker. In432

Codenames Duet, the pragmatic speaker is the prag-433

matic clue giver. The clue giver must select the best434

clue c for the target concept g. The cost of the clue435

c is the probability that the guesser will instead436

guess avoid words a ∈ A or neutral words n ∈ N .437

Therefore using PL0 to refer to the probability dis-438

tribution of the literal guesser we use439

PS1 ∝ exp(α · (lnPL0(g|c)− cost(c))) (1)440

where441

cost (c) = max
a∈A

PL0(a|c)− δmax
n∈N

PL0(n|c) (2)442

where we introduce a neutral constant δ that443

governs how much to penalize the neutral words.444

RSA+C3 Clue Giver. As we discuss in Sec-445

tion 3.2, the RSA method described does not ac-446

count for differences in common ground, or in447

other words, culturally introduced differences in448

PL0(g|c). As a result, we provide n word embed-449

ding models to model n distributions PLi(g|c). We450

select culture Li such that it maximizes P (wi) the451

posterior probability of the observed interactions if452

culture i is shared.453

P (wi) = PLi(g|c, wi) (3) 454

However, a critical component of modeling this 455

for Codenames Duet, is that there must be mem- 456

ory of previous interactions. Therefore wi is a 457

smoothed average with smoothing constant β of 458

the estimates P (wi) after each literal guesser Li 459

utterance. Therefore we update 460

P (winew) = β · P (wiold) + (1− β)PLi(g|c, wi) 461

We then estimate PS1 the same way as in eq. (1) 462

but using PLi so 463

PS1(c|g) ∝ exp(α · (lnPLi(g|c)− cost(c))) 464

Then we select our clue to be 465

c = argmax
c

PS1(c|g) 466

7.2 Interactive Evaluation Results 467

As described in Section 4.4, we evaluate the perfor- 468

mance of two players of different cultures during 469

interaction. To do this, we select the demographic 470

in the dataset such that simulated players have the 471

largest cultural difference as observed in Figure 3 - 472

education. 473

We evaluate our literal, RSA, and RSA+C3 clue 474

givers against two different guessers: a guesser 475

trained to reflect a player with a high school or as- 476

sociates degree and llama-7b-chat prompted as de- 477

scribed in Section 5.3. We evaluate with the llama- 478

7b-chat-based guesser to simulate an unknown cul- 479

ture that the clue giver must adapt to. To ensure 480

that players reflect different cultures we evaluate 481

simulated players with a graduate or undergraduate 482

degree when playing against the player with high 483

school degree. 484

While the inclusion of the traditional RSA frame- 485

work leads to significant improvements in contrast 486

to the literal giver, our results demonstrate that 487

including pragmatic reasoning and cross-cultural 488

communication via RSA+C3 leads to a greater win 489

rate regardless of whether the guesser is trained 490

word embeddings or a prompted LLM. 491

8 Discussion 492

Using Codenames Duet as a testbed for studying 493

cross-cultural communication, we demonstrated 494
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Figure 6: Interactive Evaluation across RSA, Literal, and RSA+C3 Guessers. We evaluate RSA, Literal, and RSA+C3
givers across guessers simulated by word embeddings trainings and LLM prompting. In Figure 6a, we study interactions with a
word embeddings guesser trained on data belonging to players whose highest level of education completed was high school. The
"graduate, bachelor" RSA+C3 giver achieved the highest win rate, greater than RSA givers initialized on either "graduate" or
"bachelor" alone. We used an LLM-prompted guesser in Figure 6b and found that the RSA+C3 giver initialized with all provided
education options ("graduate, bachelor, HS") achieved the highest win rate, outperforming all RSA and Literal givers.

that our simulated players are capable of reflecting495

human gameplay and their sociocultural patterns.496

We utilize our player models reflecting different497

sociocultural backgrounds to emulate pragmatic498

failure in live gameplay. This enables us and future499

researchers to measure the collaborative ability be-500

tween agents of different backgrounds - if the win501

rate of Codenames Duet is higher, then the differ-502

ence in common ground is more easily overcome.503

As the full complexity of cross-cultural com-504

munication cannot only be captured through Co-505

denames Duet, directions for future work include506

applying these techniques to more complex utter-507

ances with more nuanced cultural differences and508

studying the resulting interactive gameplay.509

Overall, we find that introducing cultural context510

as a way for givers and guessers to communicate511

in Codenames Duet gameplay increases alignment512

with human data based on the subset of culture513

involved. Our results across various methods of514

simulating players and different cross-sections of515

demographics demonstrate the significance of con-516

tinuing to study the impact of cultural context in517

speaker and listener communication.518

9 Limitations519

In our paper, we train models to reflect various cul-520

tural attributes as shown in fig. 3 and evaluate our521

method RSA+C3 to resolve pragmatic failure due522

to cultural differences such as education level in523

fig. 6. However, the cultures are not equally repre-524

sented in the cross-cultural codes dataset (Shaikh525

et al., 2023) we used with the participants being526

majority White (78%) and liberal (58%). Therefore527

some cultural differences are not as pronounced as528

they would be in a more balanced dataset.529

10 Broader impacts statement 530

While cultural context can be a useful tool in in- 531

forming clue generation and target selection in 532

games like Codenames, we caution against leaning 533

heavily on these demographics due to the potential 534

for stereotype-based associations. Previous work 535

has demonstrated the propensity for language mod- 536

els to incorporate biases into generations (Kotek 537

et al., 2023). Although we are interested in see- 538

ing future work explore how culture can inform 539

communication, allowing for both speakers and lis- 540

teners to update their mental models of the other 541

conversational participant, we acknowledge that 542

leaning too heavily on these demographics can lead 543

to potentially harmful assumptions. 544
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A Experiment details for simulating671

givers and guessers using LLMs672

Here we elaborate on the framework for our experi-673

ments in clue and target selection using the Llama2674

family of LLMs, as described in Section 5. For675

all of the following experiments, we used default676

hyperparameters as provided in the open-source677

Llama2 code 2 and model sizes of 7B and 13B.678

The following experiments were conducted over679

the validation set of the Cultural Codes dataset.680

A.1 Clue generation681

We prompted the 7B and 13B Llama2-Chat mod-682

els to generate clues using the following few-shot683

prompt, allowing for a flexible free-form text gener-684

ation informed by prior examples of a Codenames-685

style clue:686

You are playing Codenames. You can only687
give clues which are one word. One688
clue will apply to multiple targets.689
Words to avoid are {avoid words}.690

Neutral words are {neutral words}.691
For the group of target words ['fall692
', 'spring ', and 'leaf '] the best693
clue is 'season '. For the group of694
target words ['round ', 'cylinder ']695
the best clue is 'circle '. For the696
target words {target words} the best697
clue is '698

The target words were preselected from the Cul-699

tural Context dataset, allowing us to study the700

LLM’s alignment with a human clue giver.701

A.2 Target selection702

Using the Llama2 Text models, we used the follow-703

ing prompt to extract potential target words.704

You are playing Codenames and need to705
select a target word for your706
partner to guess. Words to avoid are707
{avoid words}. Neutral words are {708

neutral words}. Goal words are {goal709
words}. The best target word for710

your partner to guess is '711

As the game is constrained to selecting target712

words from the set of goal words, we calculated713

the probability of the model generating each of714

the goal words as the completion to the prompt,715

then identified the most probable generations as the716

selected target words.717

A.3 Target word selection under cultural718

context719

We prompted the Llama2 Text models with the fol-720

lowing prompt, optionally including the giver’s de-721

2https://github.com/meta-llama/llama

mographics. Similar to our experiment with target 722

selection in Appendix A.2, we selected the gen- 723

eration under the set of possible target words (i.e. 724

restricted to the set of goal words) that had the 725

highest probability. 726

You are playing Codenames. The possible 727
words are {words}. Here is some 728
information about the clue giver: { 729
cultural context }. For the hint { 730
clue}, the most likely target word 731
is 732

As demographics were verbose, we provided 733

them as a comma-separated list of values. For 734

example, one possible prompt addition could be: 735

Here is some information about the clue 736
giver: age: 29, gender: female , 737
country: united states , native: true 738
. 739

The demographics we used in Figure 4 consist 740

of the demographic questions in the Cultural Codes 741

dataset in Appendix D.2. We additionally extracted 742

the political context from the broader political lean- 743

ing category (abbreviated in the figure as “lean- 744

ing"). 745

Notably, we calculated accuracy for giver align- 746

ment versus guesser alignment with separate tar- 747

get words. Alignment with the giver meant select- 748

ing target words that were intended by the human 749

giver for the guesser to select. Alignment with 750

the guesser meant selecting target words that the 751

human guesser selected given a similar set of infor- 752

mation as provided in the prompt above, regardless 753

of the giver’s original intentions. As multiple target 754

words could be selected per round, we computed 755

the accuracy as the total number of correct target 756

words divided by the total number of intended tar- 757

get words. Full results for both giver and guesser 758

alignment can be found in Figure 7. 759

A.4 Clue generation under cultural context 760

We iterated on our clue generation experiments 761

from Appendix A.1 by using a similar approach to 762

Appendix A.3, drawing pre-specified demograph- 763

ics for the guesser to inform the giver’s clues. We 764

generated prompts of the following format: 765

You are playing Codenames. You can only 766
give clues which are one word. One 767
clue will apply to multiple targets. 768
Words to avoid are {avoid words}. 769

Neutral words are {neutral words}. 770
Here is some information about the 771
clue guesser: {cultural context }. 772
For the group of target words ['fall 773
', 'spring ', and 'leaf '] the best 774
clue is 'season '. For the group of 775
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Figure 7: Giver and guesser alignment for target selection. RSA resulted in greater accuracy across both model sizes while
model effectiveness varied across the cultural demographic that was included. Definitions of each cultural split can be found in
Appendix D.2 of Shaikh et al. (2023).

target words ['round ', 'cylinder ']776
the best clue is 'circle '. For the777
target words {target words} the best778
clue is '779

A.5 Rational speech acts framework780

In our extension of the RSA framework, we first781

queried the Llama2 chat models to generate a clue782

using the same clue generation prompt from Ap-783

pendix A.1. To allow for a diverse set of potential784

clues, we generated 5 clues per prompt, allowing785

for repeat clues.786

Using these clues, we then queried the model to787

select a target word using the following prompt:788

You are playing Codenames and are the789
clue guesser. You need to select one790
word from {all words}. Given the791

clue {clue}, the most likely word is792

We calculated the probability of a target word793

being generated from the list of possible target794

words as described in Appendix A.2. Following795

both queries, we calculated the probability of the796

guesser’s target word generation under a given clue797

as the sum of the individual probabilities of the798

target word being generated by the LlamaGuesser799

and the clue being generated by the LlamaGiver.800

Comparing these cumulative probabilities across801

all target word and clue pairs allowed us to rerank802

the probability of a given utterance.803

As every prompt in the Cultural Codes dataset804

had the human giver’s intended target words (some-805

times multiple), we selected the top unique target806

words and calculated the accuracy of our Llama-807

Giver and LlamaGuesser together. Here, accuracy808

is based on alignment with the human giver. For809

clue selection, we selected the corresponding clue810

paired with the most probable target word.811

B Additional embedding training results 812

B.1 Target accuracy 813

We evaluate the performance of trained embed- 814

dings in selecting correct targets, with results 815

shown in Figure 8. Our method for training embed- 816

dings generally does not result in improved target 817

accuracy. In fact, since the untrained GloVe em- 818

beddings perform better than human guessers in 819

selecting the intended targets, training on human 820

data decreases the target accuracy in many cases. 821

B.2 Improvement over baselines 822

We include our numerical results in Tables 1, 2, & 3, 823

showing accuracy of trained embeddings compared 824

to that of baselines. 825

C RSA Extensions 826

In a dialogue, there is both a speaker and a lis- 827

tener. The goal of the speaker is to communicate 828

concepts that the listener aims to interpret. The 829

standard RSA framework assumes that the speaker 830

and listener share common ground (Degen, 2023). 831

In cross-cultural communication, this assumption 832

is false. We propose a method for modeling the 833

repair process (Pickering and Garrod, 2004) of two 834

speakers aiming to find common ground. 835

In RSA formulations, the (abstract) literal lis- 836

tener L0 interprets meaning based on literal se- 837

mantics. The pragmatic speaker S1 reasons about 838

the literal listener and chooses utterances to opti- 839

mize informativeness while minimizing the cost 840

(e.g. length). Formally, let w represent an abstract 841

variable referred to as world in Degen (2023) and 842

m stand for the meaning that the speaker wants 843

to convey with their utterance u. Importantly, w 844

can be instantiated by different situations or con- 845

texts in which the interlocutors find themselves. 846
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Figure 8: Comparison of target accuracy using embeddings trained on cultural splits against baseline GloVe
embeddings. Target accuracy measures the performance of embeddings in correctly selecting the intended target
words chosen by the clue giver. In green is the performance of the human guessers in the dataset.

Group GloVe baseline
guess acc.

GloVe trained
guess acc.

% improvement

Education: high school,
associate

48.86 57.95 49.13

Education: bachelor 42.21 60.55 18.6
Education: graduate 40.14 59.86 40.16
Gender: female 38.97 56.34 45.07
Gender: male 45.42 63.09 43.03
Country: united states 42.99 61.49 38.90
Country: foreign 42.39 59.24 43.45
Native: true 42.90 61.08 39.75
Native: false 42.51 56.89 42.38
Political: liberal 41.36 60.00 34.35
Political: conservative 43.81 58.86 33.83
Age: under 30 41.49 57.45 57.45
Age: over 30 43.50 59.82 59.82
Religion: catholic 43.08 60.38 60.38
Religion: not catholic 42.29 56.72 56.72
All 43.16 60.50 40.18

Table 1: Guess accuracy of trained embeddings across dataset splits.
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Group Same split
guess acc.

Other split
guess acc.

% improvement

Education: high school,
associate

57.95 51.14 13.32

Education: bachelor 60.55 56.06 8.01
Education: graduate 59.86 50.70 18.07
Gender: female 56.34 56.81 —
Gender: male 63.09 58.50 7.85
Country: united states 61.49 56.12 9.57
Country: foreign 59.24 55.43 6.87
Native: true 61.08 58.81 3.86
Native: false 56.89 56.29 1.07
Political: liberal 60.00 54.55 9.99
Political: conservative 58.86 57.86 1.73
Age: under 30 57.45 58.51 —
Age: over 30 59.82 60.42 —
Religion: catholic 60.38 54.40 10.99
Religion: not catholic 56.72 58.21 —

Table 2: Comparison of guess accuracy when embeddings are trained on data from the same culture vs. data from
different cultures.

Group Human
target acc.

GloVe baseline
guess acc.

GloVe trained
guess acc.

% improvement

Education: high school,
associate

1.41 4.23 0.00 —

Education: bachelor 7.78 3.11 2.72 —
Education: graduate 7.76 6.03 7.76 28.6
Gender: female 1.12 4.47 2.80 —
Gender: male 3.77 3.77 3.77 0.00
Country: united states 3.51 5.26 5.26 0.00
Country: foreign 1.26 1.89 0.00 —
Native: true 3.33 5.33 4.67 —
Native: false 1.39 1.39 0.69 —
Political: liberal 1.21 3.01 1.81 —
Political: conservative 3.60 4.05 5.04 24.22
Age: under 30 4.42 4.97 4.97 0.00
Age: over 30 1.52 3.42 2.28 —
Religion: catholic 3.17 5.28 4.93 —
Religion: not catholic 1.88 1.88 0.63 —
All 2.70 4.05 3.60 —

Table 3: Target accuracy of trained embeddings across dataset splits.
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The joint probability distribution of these variables,847

conditioned on w, factorizes as848

P (m,u|w) = P (m|w)PS1(u|w,m), (4)849

where PS1 is governed by speaker S1. The goal of850

pragmatic listener L1 is to comprehend the mean-851

ing m and infer meaning m given w and S1’s ut-852

terance u. Using Bayes’s rule, this probability is853

proportional to854

PL1(m|w, u) ∝ P (m|w)PL1(u|w,m). (5)855

The subtle assumption made by this equation is that856

the probability over meanings, given world, is in-857

dependent of the interlocutor, and thus L1 reasons858

about it the same way the speaker does. We believe859

that this is not true. The response, and therefore a860

meaning to communicate, to a situation depends861

tightly on the speaker, and can be shaped by fac-862

tors such as cultural or demographic background.863

Hence, in the context of cross-cultural communica-864

tion, Eq. (4) should be written as865

P (m,u|w) = PS1(m|w)PS1(u|w,m),866

and Eq. (5) would read867

PL1(m|w, u) ∝ PL1(m|w)PL1(u|w,m).868

In this paper, we will model two different literal869

listeners and respective pragmatic speakers with870

overlapping but not identical prior beliefs. We will871

model the different literal listeners and pragmatic872

speakers using prompting and/or training. There-873

fore these pragmatic speakers will have different874

subjective prior beliefs, reflecting the scenario of875

cross-cultural communication. We then seek to876

learn a pragmatic listener with incorrect or without877

access to the prior beliefs of the pragmatic speaker.878

PL1(m,w|u) = PS1(u|m,w) · P (m|w) · P (w)879

Where the variable captures whether the world880

is normal or wonky such that:881

P (m|w) ∝

{
Pusual(m) if not w,
Pbackoff (m) if w

882

In this case, Pusual is the prior probability in the883

scenario where the world is "normal" and Pbackoff884

is the prior probability where the world is "wonky".885

This backoff probability is a uniform distribution.886

The value of w is inferred from the utterances u of887

the pragmatic speaker S1 by the pragmatic listener 888

L1 based on how unlikely the utterances u are in 889

the context of the pragmatic listener’s prior beliefs. 890

To calculate the posterior beliefs of the pragmatic 891

listener about the meaning w 892

PL1(m|w) ∝
∑
w

PL1(m,w|u) 893

The pragmatic listener’s posterior probabilities 894

are a mixture of the computation and a backoff 895

prior based on how likely it is that w is true and the 896

world is "wonky". In cross-cultural communica- 897

tion, the "wonky" world represents the case where 898

the assumed common ground does not exist or is 899

different in some way. In this paper, we hypothe- 900

size that RSA and the concept of wonky world can 901

assist in understanding cross-cultural communica- 902

tion in the context of Codenames Duet and predict 903

when common ground is not held between agents. 904

D Data analysis across clue giver 905

attributes 906

We attempt to see if the obtained clusters align with 907

existing classes of clue givers that are recorded 908

in the data set. We consider the following la- 909

bels: nativeness - (whether one is an English na- 910

tive speaker or not), political leaning (conservative, 911

moderate conservatism, libertarian, moderate lib- 912

eral, liberal), race (Asian, Black, Native American, 913

Hispanic/Latino, White), conscientious (a score in 914

range 1-4), and gender (male or female). Unfor- 915

tunately, as we illustrate in Figure 9 for political 916

leaning and gender, we haven’t found classes that 917

significantly align with any of the K-Mean clus- 918

ters. While it is possible that we have not run these 919

tests with classes that would display such an align- 920

ment, it is also possible that the clusters are formed 921

by features that involve non-trivial interactions be- 922

tween the socio-cultural background information 923

variables. It is also possible that this misalignment 924

is driven by class imbalances within the dataset. 925

For example, we found that approximately 70% of 926

the contributors were White, leaving little room 927

for the other races. In this case, the contribution 928

to the total variance of the dataset coming from 929

the minorities may be insignificant, and thus lost 930

in PCA projections. This is further confirmed by 931

our linear probing experiments (see Table 4); here, 932

using the representations projected onto the first 5 933

PCA dimensions, we train logistic-regression (lin- 934

ear) classifiers and contrast them with the fraction 935
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Figure 9: Scatter-plots of target-hint difference from
GPT after PCA transformation with the first 2 prin-
cipal components. Here, we attempt to align with the
political leaning and gender labels.

of the data occupied by the majority class. We find936

that the accuracies at convergence follow closely937

simply that of the fixed majority vote.938

GloVE_t-h GPT_t-h GPT_r Majority

nativeness 0.766 0.759 0.762 0.765
political 0.38 0.397 0.387 0.386
race 0.676 0.692 0.667 0.685
consc. 0.353 0.336 0.356 0.356
gender 0.518 0.556 0.525 0.551

Table 4: Accuracy scores of a logistic regression (linear)
classifier, averaged over 5 random seeds, together with
the proportion of the data occupied by the majority of
a considered class. The features were derived from
GloVE target-hint, GPT target-hint, and GPT rationale.

E Interactive Evaluation Experiments939

We run experiments with 1 target, because of higher940

win rates. We ran the experiments for Llama2-7B-941

Text for 100 games and the one for the High School942

guesser for 1000 games. We ran less games under943

Llama due to time restrictions.944

To make sure that the games all occur on the945

same set of boards, we generate a fixed set of946

boards to be used for each experiment. We do this947

by generating a set of n board each with a unique948

seed and hold the seeds constant. This allows us to949

easily scale up a number of boards while ensuring950

that the boards are the same for each run and each951

experiment.952
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