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Abstract

Entity Recognition and Relation Extraction001
are essential components in extracting struc-002
tured information from text. Recent advances003
for both tasks generate a structured represen-004
tation of the information in an autoregressive005
fashion, a time-intensive and computationally006
expensive approach. This raises the natural007
question whether autoregressive methods are008
necessary in order to achieve comparable re-009
sults. In this work, we propose ITER, a func-010
tionally more expressive, non-autoregressive011
model, that unifies several improvements to a012
recent language modeling approach: ITER im-013
proves inference throughput by up to 23×, is014
capable of handling nested entities and effec-015
tively halves the number of required parame-016
ters in comparison. Furthermore, we achieve a017
SOTA result of 84.30 F1 for the relation extrac-018
tion dataset ADE and demonstrate competitive019
performances for both named entity recogni-020
tion with GENIA and CoNLL03 as well as for021
relation extraction with CoNLL04 and NYT.022

1 Introduction023

In recent years, there has been a shift towards us-024

ing autoregressive methods in many common NLP025

tasks. Parallel to this development is an increasing026

focus on approaching NLP tasks such as relation027

extraction or (nested) named entity recognition as028

structured prediction problems. Given a sequence029

of text input, a given model autoregressively gen-030

erates outputs that encode the structure contained031

within the input, which offers flexibility since the032

source and target vocabulary must not share any033

commonalities.034

Flattening the output structure into a single035

string, preserving the information about the struc-036

ture(s) in the input and using an autoregressive037

model to learn to generate this adapted target lan-038

guage (Cabot and Navigli, 2021; Paolini et al.,039

2021), is an implicit approach known to work well040

across task boundaries (Raffel et al., 2020). In041

this case, the target vocabulary typically contains 042

the whole source language vocabulary. However, 043

representing the structured output as a string intro- 044

duces additional complexity when modeling intra- 045

structure dependencies (Liu et al., 2022). More 046

recently, Liu et al. proposed constraining the au- 047

toregressive model to explicit generation of the 048

output structure. They define three types of basic 049

actions to be performed at each generation step 050

and use the T5 (Raffel et al., 2020) transformer to 051

autoregressively generate the structure induced by 052

said basic actions. 053

With this trend of using autoregressive methods 054

for tasks such as relation extraction come however 055

also several problems: As inference time scales 056

linearly with the output sequence length, language 057

modeling approaches are prone to low inference 058

speed1 especially with increasing model parame- 059

ters (Pope et al., 2022). While scaling the model 060

size from hundreds of millions of parameters to bil- 061

lions of parameters yields performance increments 062

for Liu et al., this scaling can become infeasible, 063

both in terms of compute required and the environ- 064

mental impact when using those large scale models 065

in production. 066

This raises the natural question whether a non- 067

autoregressive process capable of generating such 068

an output structure can achieve similar performance 069

whilst addressing the aforementioned limitations of 070

language modeling approaches. In this paper, we 071

present ITER, an encoder-only transformer-based 072

relation extraction model that addresses the limi- 073

tations of state-of-the-art architectures and show 074

that the structured prediction problem can be ap- 075

proached without a language modeling objective in 076

mind. 077

To summarize, our key contributions are the fol- 078

lowing: 079

1. We present ITER, a transformer-based encoder- 080

1In terms of samples/second
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only relation extraction model that addresses081

the limitations of autoregressive architectures.082

Instead of employing a language modeling ob-083

jective, our model generates the structured084

output in three basic steps. We show that085

this encoder-based approach achieves perfor-086

mance similar to language modeling architec-087

tures whilst retaining only half of the number088

of parameters and increasing the inference089

throughput by a factor of up to 23×.090

2. We identify several drawbacks with the state-091

of-the-art architecture ASP (Liu et al., 2022),092

which limit the model’s expressivity for nested093

structures and generalization to test data. In094

our work, we address those limitations and095

translate the autoregressive approach into a096

three-stage process.097

3. In our experiments, we observe that training098

ITER on NYT, CoNLL04, ADE (RE), or GE-099

NIA, CoNLL03 (NER) results in competitive100

performance across all datasets, while main-101

taining a significantly smaller size compared102

to SOTA models. We observe small average103

improvements of 0.5 F1 points on the ADE104

dataset.105

4. We publish our implementation and check-106

points at GITHUB.COM/ANONYMOUS.107

2 Related Work108

The goal of relation extraction, sometimes also re-109

ferred to as end-to-end relation extraction or joint110

entity and relation extraction, is to identify the111

names and types of named entities, inside a given112

text, as well as classify the relationships amongst113

these entities. (Grishman and Sundheim, 1996;114

Zhao and Grishman, 2005).115

First approaches to relation extraction were to de-116

compose the task into named entity recognition and117

relation classification, where the named entities118

are identified first, while the relationships between119

the found named entities are then classified in a120

second, separate stage that is being learned inde-121

pendently. This pipeline-based approach is known122

to be prone to error propagation (Zhong and Chen,123

2021; Sui et al., 2020). Because of this known limi-124

tation, joint approaches modeling both tasks simul-125

taneously have been introduced and have shown126

promising results (Gupta et al., 2016; Wang and127

Lu, 2020).128

2.1 Span-based Techniques 129

Table-filling or span-based strategies were and still 130

are viable approaches to modeling relation extrac- 131

tion and related tasks (Gupta et al., 2016; Wang and 132

Lu, 2020; Joshi et al., 2020; Tang et al., 2022). Re- 133

cent examples of this include DiffusionNER (Shen 134

et al., 2023) and UniRel (Tang et al., 2022), both are 135

models that do not emit a time complexity scaling 136

linearly with the output size, which in turn enables 137

fast inference. Instead, a constant time-complexity 138

is achieved in both cases, as a diffusion based ap- 139

proach solely depends on the number of diffusion 140

steps and a single forward-pass is required to de- 141

tect relationships in UniRel. This strongly differs 142

from autoregressive techniques, where the infer- 143

ence time is scaling linearly with the length of the 144

output sequence (Shen et al., 2023). 145

2.2 Autoregressive Techniques 146

Modeling the task as a seq2seq problem has es- 147

tablished itself as the state-of-the-art for relation 148

extraction in the last couple of years (Cabot and 149

Navigli, 2021; Wang et al., 2022; Paolini et al., 150

2021; Liu et al., 2022). Enabled by the Trans- 151

former (Vaswani et al., 2017), the task is then for- 152

mulated as a translation objective: Given an exam- 153

ple sentence, the model translates the input into 154

a flattened string that encodes the structural infor- 155

mation contained within the source text (Liu et al., 156

2022). 157

Both (m)REBEL (Cabot and Navigli, 2021; 158

Cabot et al., 2023) and TANL (Paolini et al., 2021) 159

translate the input sequence into a flattened out- 160

put string, that, in the (m)REBEL case, also no 161

longer resembles natural language. Paolini et al. 162

augment the target output with information about 163

entity types and relations to other named entities. 164

Both models are finetuned to produce a target lan- 165

guage specific to the task. A comparison of differ- 166

ent model outputs is available in Table 1. Either 167

model can also deal with nested entities, which 168

is crucial when dealing with real-world data, as 169

for example data from the biomedical domain is 170

known to often contain nested entities (Finkel and 171

Manning, 2009). 172

2.3 Limitations of Autoregressive Structured 173

Prediction (ASP) 174

ASP (Liu et al., 2022) has shown that autoregres- 175

sively generating a sequence of actions instead of 176

generating (augmented) natural language yields 177
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Model Output

REBEL <triplet> Barack Obama <subj> Honolulu, Hawaii <obj> place of birth

TANL [ Barack Obama | person | place of birth = Honolulu, Hawaii ] was born in [ Honolulu, Hawaii | location ]

ASP [∗ Barack Obama ] was born in [∗ Honolulu, Hawaii ]

ITER (ours)
Barack

[
Obama

]
was born in Honolulu

[
, Hawaii

]

Table 1: Comparison of different (autoregressive) relation extraction system outputs: REBEL (Cabot and Navigli,
2021), TANL (Paolini et al., 2021) and ASP (Liu et al., 2022). Input into all models was the sentence "Barack
Obama was born in Honolulu, Hawaii". Comparing ASP and our method, one can observe that ASP requires [∗

and ] actions to be placed alongside the input to model the same structure of the input.

model performance benefits not only for relation178

extraction, but for named entity recognition and179

co-reference resolution as well. At every gen-180

eration step, their model can perform three dis-181

tinct types of actions, structure-building actions,182

bracket-pairing and span-labeling actions. For the183

structure-building actions (Eq. 1), the model can184

either perform [∗ or ] actions at the current gen-185

eration position or copy the next token from the186

input into the output.187

AASP = { [∗ , ] , copy } (1)188

The generation completes when all input tokens189

have been copied into the output. Bracket-pairing190

actions (Eq. 2) aim to connect the current position191

with a previously performed [∗ action, resulting192

in a span.193

BASP = {m | m < n ∧ am = [∗ } (2)194

Span-labeling actions allow both the labeling of195

individual spans and the linking of the current196

formed span to an earlier found span in the output197

sequence, modeling relationships between named198

entities (Eq. 3). For relation extraction, L is instan-199

tiated as the cartesian product of the named entity200

and relation types: L = TE ×TR.201

Zn = {m | m < n ∧ am = ] } × L (3)202

The authors of ASP employ a conditional language203

model to learn to produce the optimal output struc-204

ture. At every time-step their model will perform205

three basic actions sourced from their respective de-206

fined sets for structure-building actions A, bracket-207

pairing actions Bn and span-labeling actions Zn.208

Said approach however is not capable of captur-209

ing nested entities. At every time-step, ASP can210

only complete one span with one preceding [∗211

action due to the definition of Bn.212

We also hypothesize that the structured predic- 213

tion process for ASP suffers from suboptimal train- 214

ing due to the nature of the span-labeling actions 215

Zn. Linking the span formed at the current posi- 216

tion to another span in the sequence is constrained 217

by the fact that only links to spans that have been 218

completed in the past (i.e. earlier in the sequence) 219

are valid. As it is impossible to link to spans that 220

will be found in the future (i.e. spans that come 221

after the span ending at the current position), the 222

authors of ASP introduce a directionality param- 223

eter to counteract the asymmetric property of the 224

relations in the dataset. 225

This prevents the two tuples (Barack Obama, 226

work_for, the american people) and (the amer- 227

ican people, work_for, Barack Obama) from 228

being indistinguishable. 229

This is important as those two examples encode 230

drastically different information. The directionality 231

parameter however effectively doubles the number 232

of relations (T′
R = TR×B), leading to fewer train- 233

ing examples per relation type, and we hypothesize 234

that this yields subpar training results. 235

Aside from those architectural issues, ASP and 236

similar seq2seq Transformer models such as TANL 237

or REBEL all suffer from the linearly scaling 238

time-complexity of generative architectures, sig- 239

nificantly impacting their inference speed (Paolini 240

et al., 2021). This raises the question whether elim- 241

inating the requirement for a conditional language 242

model from ASP can retain the same model per- 243

formance whilst crucially reducing inference time, 244

allowing for the identification of nested entities and 245

addressing the generalization issues. 246

3 Approach 247

We base our approach for ITER on the work(s) of 248

Liu et al.. In order to translate their autoregressive 249

approach into a constant-in-time approach, several 250
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adjustments to the structured prediction process are251

necessary.252

The overall objective remains the same: produc-253

ing a sequence of structured actions y ∈ Y1 ×254

· · · × YN that encodes the named entities and their255

relations between each other, given a sequence of256

N tokens x = ⟨x1, x2, . . . , xN ⟩ ∈ VN from the257

vocabulary V . However, as we restrain from the258

autoregressive approach, we require |x| = |y|, i.e.259

the length of the structured actions sequence must260

match the length of the input, such that there ex-261

ists exactly one structured action yn for each in-262

put token xn. This restriction allows to use non-263

autoregressive Transformer approaches, because264

we no longer have to deal with output sequences265

y longer than the input x, on the contrary to ASP266

(Theorem 1).267

The first necessary change is to transition to a268

smaller subset of the structure-building actions A269

(Eq. 4).270

A = { [ , ] } (4)271

Our model must be allowed to perform both [272

and ] actions at the same time, to not lose model273

expressiveness, otherwise it will not be able to cor-274

rectly classify single-token spans2. Therefore, the275

structure-building actions An performed at every276

position n must now be a subset of A, to allow for277

this (behavior|functionality). This is reflected in278

the definition for our structured output y (Eq. 5)3.279

∀n : yn ∈ ℘(A)× ℘(B) (5)280

optional: The changes for (the structure-building281

actions/A) have another simplifying consequence:282

we must no longer copy tokens from the input,283

as every token has its own corresponding set of284

actions An ⊆ A/ as the original inputs x can be285

maintained for decoding.286

To be able to properly handle nested entities, or,287

more specifically, two or more entities ending at the288

same position, the bracket-pairing actions are also289

present in Yn, as a subset Bn of all possible such290

actions Bn. This change comes in combination291

with two adjustments to the definition of Bn itself.292

For position n, ITER will be allowed to pair with293

[ actions up until that position n, circumventing294

single-token named entity issues (1, Eq. 6) and each295

2Think of a single-token named entity xi = BERLIN: the
model must be able to determine the span of this entity ends
at the same position it started., so ai must now be a set: ai =

{ [ , ] }.
3Here, ℘ defines the powerset operation

pairing is allowed to hold its own named entity type 296

t ∈ TE (2, Eq. 6). 297

B = {m | m
(1)
≤ n ∧ [ ∈ Am}

(2)
×TE (6) 298

3.1 Identifying Named Entities 299

Remember that the predicate for relation extraction 300

is the necessity to locate the named entities in the 301

input, before relationships amongst those can be 302

determined. Spans can be uniquely identified by 303

their starting and end positions in combination with 304

the type of the named entity in the input sequence. 305

3.1.1 Determining Starting Positions of 306

Named Entities 307

To identify said spans, as a first step, the model 308

learns to predict the positions where the spans of 309

named entities in the input x are beginning. This 310

task is modeled by the function is_left (Eq. 7), 311

which receives a sequence of tokens x as input 312

and outputs an equally sized sequence of Boolean 313

values ⟨b1 . . . bN ⟩ ∈ BN : 314

is_left : VN → BN . (7) 315

At all positions where bn = ⊤ holds true, ITER 316

performs the left bracket action [ , and as such 317

the corresponding action is included in the set of 318

actions performed at position n: is_left(x)n = 319

⊤ =⇒ [ ∈ An. 320

3.1.2 Pairing Left and Right Brackets 321

After determining where spans of named entities 322

start in the input x, the next step is to identify which 323

positions xm (m ≥ n) following xn in the input 324

form a span of named entity type t ∈ TE , for any 325

n,m where bn = ⊤ and m > n. 326

is_span : VN × BN → ℘(N×TE)
N (8) 327

The model learns a projection is_span , that 328

maps the input x and positions m (where [ ∈ 329

Am =⇒ bm = ✓) to a sequence of tuples of 330

indices and entity types (m, t). For each position 331

n, the output of Bn = is_span(x,b)n determines 332

whether or not the respective positions ⟨xm . . . xn⟩ 333

form a span of type t with a preceding left bracket 334

[ at position m iff. the left bracket at position m 335

is paired with the right bracket at position n and 336

with type t ∈ TE , i.e. (m, t) ∈ Bn. If |Bn| > 0, 337

then ITER performs action ] at position n, i.e. 338

] ∈ An. A visualization of the first two stages is 339

shown in Figure 1. 340
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INPUT Barack Obama was born in Honolulu , Hawaii

POSITION 1 2 3 4 5 6 7 8

(1) is_left(x) = b ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓w� y

y

y
(2) is_span(x,b) = Bn {(1,PER)}

{ (6,LOC),
(8,STATE)

}ww� y y
An ⊆ A [ ←[ ] [ ←[ ]

[←[ ]

Figure 1: Visualization of stages one (is_left) and two (is_span) of the model. is_left yields three positions where
spans are beginning: 1,6 and 8 (Stage 1). is_span then creates pairings of types person between position 2 and 1,
location between position 8 and 6 and state for position 8, a 1-token span (indicated by [←[ ] ).

3.2 Identifying Relationships amongst Named341

Entities342

While the first two steps are concerned/dealing with343

identifying named entities in the input x, the third344

step now tests pairs of identified named entities345

for their relationship with each other. For the non-346

nested case, is_link projects the input x alongside347

two indices n1, n2, where two spans in the input x348

are ending, i.e. ] ∈ An1 , An2 , to a vector of non-349

normalized logits, resembling probabilities after350

applying the sigmoid function (Eq. 9).351

is_link : VN × N× N→ R|TR| (9)352

This now allows to test for relationships between353

pairs of named entities, identified in steps one and354

two: is_link(x, n1, n2) = (t1 . . . tρ)
T = t ∈ Rρ355

where ρ = |TR|. For all ti where σ(ti) > 0.5,356

the named entity ending at n1 (also referred to as357

head entity) stands in relationship TR,i with the358

named entity (tail entity) ending at position n2.359

Note that this relationship is not symmetric, i.e.360

the ordering of head and tail entity is important:361

is_link(x, n1, n2) ̸= is_link(x, n2, n1)362

When dealing with more complex inputs,363

is_link must incorporate information about the po-364

sitions of the left brackets as well, as spans are no365

longer uniquely determined by their ending posi-366

tion. The updated signature is shown in Eq. 10 This367

final step is visualized in Figure 2.368

is_link : VN × N2 × N2 → TR (10)369

3.3 Training 370

The model of choice for this paper is the T5 (Raf- 371

fel et al., 2020) Transformer architecture, which 372

can also be used as an encoder, albeit primarily 373

trained for autoregressive applications (Raffel et al., 374

2020). In order to circumvent error propagation 375

between the three stages of ITER, training will 376

include all three task functions simultaneously: 377

is_left , is_span and is_link . ITER receives as in- 378

put a sequence of hidden representations (hidden 379

states) h = ⟨h1, h2, . . . , hN ⟩, produced by the 380

base transformer encoder (T5 in our case), instead 381

of the raw sequence of tokens x ∈ VN . The se- 382

quence of representations is shared across all three 383

tasks. During training, the model will learn to min- 384

imize the following loss function: 385

LITER =

 N∑
i=1

3∑
j=1

 Lis_left(i)
Lis_span(i)
Lis_link (i)


j

 , 386

a combination of the loss terms for the three individ- 387

ual tasks: Lis_left , Lis_span and Lis_link (Appendix, 388

Eq. 12,13 and 14). In a nutshell, in order to mini- 389

mize the training loss, the model learns to assign 390

weights greater than zero to the respective correct 391

decisions in all three cases. 392

4 Experimental Results 393

In this section, we give an overview over the 394

datasets used in our experiments (Section 4.1), fol- 395

lowed by details about the hyperparameter search 396

we performed (Section 4.2) and we conclude with 397

our interpretation of the results from said experi- 398

ments (Section 4.3). 399
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FUNCTION HEAD ENTITY TAIL ENTITY OUTPUT

is_link(x, (1, 2), (6, 8))
Barack Obama

(1, 2)
Honolulu, Hawaii

(6, 8) (
live_in
0.05 ,

born_in
0.98 ,

work_in
0.01 )

is_link(x, (1, 2), (8, 8))
Barack Obama

(1, 2)
Hawaii
(8, 8) (

live_in
0.17 ,

born_in
0.45 ,

work_in
0.02 )

...
...

...

is_link(x, (6, 8), (8, 8))
Honolulu, Hawaii

(6, 8)
Hawaii
(8, 8) (

live_in
0.03 ,

born_in
0.07 ,

work_in
0.1 )

Figure 2: Visualization of the third stage of the model. The output is already sigmoid-normalized. For illustration
purposes, there are three relation types: TR = ⟨live_in, born_in,work_in⟩. The named entity "Barack Obama"
stands in relationship "born_in" with "Honolulu, Hawaii", as 0.98 > 0.5, which is the criterion defined for this
model.

4.1 Data400

To experimentally verify that our model can401

achieve performances on par or even higher than402

the baseline from ASP, we used 5 datasets from403

two different domains and tasks: CoNLL03 (Sang404

and Meulder, 2003, NER) (NER), CoNLL04 (Roth405

and Yih, 2004, RE) and NYT (Riedel et al., 2010,406

RE) were all annotated from news articles while407

ADE (Gurulingappa et al., 2012, RE) and GE-408

NIA (Kim et al., 2003, NER) contain training exam-409

ples with biomedical context. Of those five datasets,410

three contain nested entities (NYT, ADE and GE-411

NIA), something that ASP cannot properly model,412

as shown in Section 2.3, which was another factor413

for our selection. This portfolio of datasets allows414

us to verify our claims across a wide range of ap-415

plications and different levels of data complexity.416

An overview regarding the datasets can be obtained417

in Table 8. Following Li et al.; Eberts and Ulges418

and Cabot and Navigli, we evaluate our model in419

a strict setting: A predicted relation between two420

entities is only considered correct, if both the span421

and type of the entity match the gold standard. We422

report micro F1 scores, unless stated otherwise.423

4.2 Hyperparameter search424

Before training all of our models, we perform a hy-425

perparameter search for all datasets using SMAC3426

(Lindauer et al., 2022). For all datasets, we search427

for 8 hours, optimizing for high RE+ or NER F1,428

depending on the task. The search space con-429

sists of learning rates lr ∈ [1e−3, 2e−5], learn-430

ing rate schedules (constant or linear), warmup431

ratio r ∈ {0.0, 0.05, 0.1, 0.2} and weight decay432

rate wd ∈ [0, 0.1] for both the parameters of the433

base model (T5 in our case) and the parameters on434

top that are responsible for modeling the functions435

is_left , is_span and is_link , combined with batch 436

size bs ∈ {8, 16, 32, 64} and choice of activation 437

function act ∈ {GELU,ReLU, tanh}. The re- 438

sults of the hyperparameter search can be obtained 439

in Table 7 in the Appendix. 440

4.3 Results 441

With the encoder of the FLAN-T5-large model as 442

a base, ITER achieves state-of-the-art results on 443

ADE with on average 0.5 F1 points of improve- 444

ment (Table 3). Furthermore, it reaches compet- 445

itive results to most generative approaches while 446

the number of parameters is significantly smaller 447

(Table 2, 4, 6). Specifically, its performance closely 448

aligns with that of ASP+FLAN T5 base and ASP+FLAN 449

T5 large, both of which possess a similar parameter 450

count, with the latter having twice the parameters 451

and only being slightly better. Table 5 answers 452

another research question, which was to demon- 453

strate that a higher inference speed can be obtained 454

with a smaller model while reaching comparable 455

results. Especially compared with DeepStruct our 456

model performs well, considering its size and train- 457

ing time. DIFFUSIONNER performs exceptionally 458

well, and we are not able to match its performance 459

on the NER task, only coming close on CoNLL03. 460

Again, supporting our hypothesis that encoder-only 461

models —like DIFFUSIONNER—can outperform 462

generative models like DeepStruct on structure pre- 463

diction tasks. 464

To further improve our understanding of ITER 465

and its shortcomings, we analyse ADE using confu- 466

sion matrices. Figure 3 shows that our model does 467

not struggle with the span-prediction task. The 468

model also learned to predict the actions [ and ] 469

at the same step where appropriate. The main chal- 470

lenge seems to be the named entity type Adverse- 471
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Effekt, which is falsely predicted and missed several472

times.473

Architecture Size NER F1
(strict)

RE F1
(strict)

ITER + FLAN T5 large 374 M 89.770
± 0.51

75.175
± 0.39

ASP + FLAN T5 base 247 M 89.4 73.8
ASP + FLAN T5 large 783 M 90.5 76.2
TANL 222 M 89.8 72.6
REBEL (pretrained) 406 M - 75.4
DeepStruct 10 B 88.4 72.8
DeepStruct (finetuned) 10 B 90.70 78.3

DiffusionNER 381M 92.78

Table 2: Final training results for CoNLL04, averaged
across five runs for each configuration.

Architecture NER F1
(strict)

RE F1
(strict)

ITER + FLAN T5 large 91.907
± 0.72

84.300
± 1.52

TANL (multi-task) 91.2 83.8
REBEL (pretrained) - 82.2
DeepStruct (finetuned) 91.1 83.8

Table 3: Final training results for ADE with 10-fold
cross-validation. F1 metrics are macro-averaged.

Architecture NER F1
(strict)

RE F1
(strict)

ITER + FLAN T5 large 94.726 ± 0.16 90.707 ± 0.34

TANL (multi-task) 94.7 90.7
REBEL - 92.0
DeepStruct (multi-task) 95.4 93.7

Table 4: Final training results for NYT.

Transformer ASP ITER Speedup
base model examples/s examples/s over ASP

T5 (small) 44.459 1040.55 ×23.41
T5 (large) 27.177 605.398 ×22.28
T5 (3b) 29.427 334.843 ×11.38

Table 5: Comparing the inference throughput (as sam-
ples per second) of ITER versus the autoregressive ap-
proach ASP (Liu et al., 2022) on the test set of CoNLL04.
Computations were run on a single NVIDIA H100 GPU,
a batch size of 64 combined with 10 epochs of training
beforehand. Speedups of up to ×23.41 (×18.6 on avg.)
are achieved when using ITER instead of ASP.

Architecture Dataset F1 (strict)

ITER + FLAN T5large

CoNLL03

91.593 ± 0.39
ASP + T5base 91.8
DeepStruct (multi-task) 93.10
DiffusionNER 92.78

ITER + FLAN T5large

GENIA

80.153 ± 0.25
TANL (multi-task) 76.4
DeepStruct (finetuned) 80.8
DiffusionNER 81.53

Table 6: Final training results for CoNLL03 and GENIA.
For CoNLL03, we trained ITER with a linear learning
rate schedule, instead of the SMAC3 prediction to use a
constant schedule, as the final performance did signifi-
cantly degrade using a constant schedule.

∅ [∗ ] [←[ ]
iter Output

∅

[∗

]

[← [ ]

T
ru

e
la

b
el

10K+ 82 58 5

58 1015 1 0

35 0 1049 2

6 0 2 32

Actions - FLAN T5 (large)

Figure 3: Confusion matrix for actions A and NER on
ADE.

5 Limitations 474

One of ITER’s limitations are named entities that 475

are not directly contained in the input text. This 476

7



issue can arise when combining the NER stage of477

ITER with tasks such as entity linking, where the478

task is then to not only identify the named entity479

and its type, but also to link said entity to a knowl-480

edge base entity, something particularly interesting481

when using a relation extraction pipeline to create482

knowledge graphs. The severity of this limitation483

strongly depends on the datasets used, we focussed484

on experiments with datasets where this issue can-485

not surface.486

If it is the case that the input has not been pre-487

processed, our model also requires a very tedious488

preprocessing-step that requires the programmer to489

correctly align the input string with the tokens that490

the model will be trained on. This is a limitation of491

the sentencepiece (Kudo and Richardson, 2018) to-492

kenizer used in our experiments, as the tokenization493

process does not guarantee entity-level boundaries494

being respected during tokenization, meaning that495

a token spanning the characters i to j might con-496

tain the beginning of a span k (i < k < j). While497

generative approaches can circumvent this prob-498

lem by introducing additional tokens into the target499

language text, encoder-based approaches such as500

our work are limited to dealing with this issue pre-501

tokenization.502

Another limitation of ITER would be the503

strong task-dependent design of the functions504

is_left , is_span and is_link . This prevents a few-505

shot task transfer without finetuning for new rela-506

tions or entity types.507

6 Conclusion508

In this paper, we identified several key drawbacks509

in a fairly recent state-of-the-art method for rela-510

tion extraction, ASP, and proposed several improve-511

ments to counteract those issues. We investigated512

whether it is possible to translate the autoregres-513

sive process into a constant-in-time-complexity ap-514

proach, whilst maintaining an equal level of perfor-515

mance.516

We unify the aforementioned proposed improve-517

ments together with a new three-stage process in518

ITER, an encoder-based non-autoregressive rela-519

tion extraction model. Our model achieves perfor-520

mances on par with state-of-the-art methods on all521

datasets and sets a new state-of-the-art on ADE of522

84.3 F1, whilst being functionally more expressive523

and reducing inference time significantly, when524

compared to ASP. In our experiments, we highlight525

the time saving benefits of encoder-based models526

over autoregressive seq2seq approaches, suggest- 527

ing that they are just as viable in a structure predic- 528

tion task. 529

7 Future Work 530

While our model is currently built on top of a T5 531

encoder stack, it might be insightful to explore the 532

performance of this architecture with other pre- 533

trained (encoder-only) language models such as 534

BERT (Devlin et al., 2019), RoBERTa (Liu et al., 535

2019) or the Nyströmformer (Xiong et al., 2021) 536

One area of future work might be exploring an 537

even larger set of datasets. Unfortunately, there 538

exist no benchmark suites for relation extraction, 539

which itself might be an area of future work. While 540

most datasets are open-source, there exist propri- 541

etary datasets, preventing the democratization of 542

research in NLP and in machine learning in gen- 543

eral. Evaluating architectures on a diverse portfolio 544

of datasets instead of a limited amount of selected 545

or hand-picked datasets should also allow to gain 546

more significant insights into the performance, ca- 547

pabilities and limitations of relation extraction sys- 548

tems in general. 549
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A Appendix 752

Definitions. Let x ∈ RN be a vector of reals. 753

Then the LSE operation is defined the following 754

way: 755

LSEN
n=1(x) = log

N∑
n=1

exp (xn) (11) 756

The loss function Lis_left is defined as: 757

Lleft(n) = LSE 2
j=1γ − LSE 2

j=1Γ (12) 758

where hn = is_left(x)n ∈ R is the real-valued 759

output of is_left , 760

γ =

[
hn

0

]
,Γ =

[
hn + (1− α) ∗ (−∞)

α ∗ (−∞)

]
761

and 762

α =

{
1 iff. [ ∈ An

0 otherwise
763

equals to one if the model should perform a [ ac- 764

tion at time-step n. Accordingly, we define Lis_left : 765

Llr(n) = LSE 2
j=1π − LSE 2

j=1Π (13) 766

where 767

π =

[
(LSE η

i=1 hn,m,i)
0

]
768

769

Π =
[
(LSE η

i=1 hn,m,i +∆n,m,i) + (1− β) ∗ (−∞)
0 + β ∗ (−∞)

]
770

η = |TE | is the number of entity types and hn,m = 771

is_span(x, n,m) ∈ Rη is a vector containing one 772

logit per such entity type. 773

β =

{
1 iff. ] ∈ An

0 otherwise
774

equals one iff. the performing ] is a correct action 775

at time-step n. We also define m = max{m | m ≤ 776

n ∧ [ ∈ Am},m ≤ n, the largest index of the 777

preceeding positions where [ ∈ Am. Finally, we 778

define 779

∆n,m,i =

{
0 iff. (m, ti) ∈ Bn, ti ∈ TE

−∞ otherwise
780
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Dataset Learning Rate -Schedule Warmup Weight Decay Batch Activation
T5 ITER T5 ITER T5 ITER T5 ITER -size -function

CoNLL04 1e−4 4e−4 linear
with warmup

constant
with warmup

0.2 0.01 0.070 0.133 8 GELU

ADE 2e−4 2.8e−4 constant
with warmup

linear
with warmup

0.1 0.01 0.028 0.027 32 ReLU

NYT 2.5e−4 1e−4 linear
with warmup

linear 0.2 0 0.016 0.07 8 ReLU

GENIA 2.6e−4 8e−4 linear
with warmup

linear
with warmup

0.2 0.1 0.045 0.056 16 ReLU

CoNLL03 2e−4 9.7e−5 constant constant 0 0 0.096 0.0098 8 ReLU

Table 7: Hyperparameter search results obtained using SMAC3 (Lindauer et al., 2022). For all datasets, the
search was performed for 8 GPU hours using a single NVIDIA H100 GPU per dataset. The single best incumbent
configuration has been selected for final training on the respective datasets.

to equal zero iff. there is a bracket pairing between781

the positions m and n of type ti ∈ TE , and nega-782

tive infinity otherwise. Lastly, Lis_link is defined783

as the binary cross entropy loss function:784

Lis_link (n) =
∑
m

|TR|∑
i=1

{
µ iff. ] ∈ An,m

0 otherwise
(14)785

where786

µ =
∑[

θn,m,i ∗ log (hn,m,i)
(1− θn,m,i) ∗ log (1− hn,m,i)

]
787

with788

hn,m,i = is_link(x, n,m)789

and θn,m,i = 1 iff. the spans ending at positions n790

and m are in relationship i, θn,m,i = 0 otherwise.791

B Dataset Statistics792

Dataset TRAIN DEV TEST Nested Entities

ADE 4,272 10%* 10%* ✓
NYT 56,196 5,000 5,000 ✓
CONLL03 954 216 231 ✗
CONLL04 922 231 288 ✗
GENIA 16,692 † 1,854 ✓

Table 8: Number of samples per dataset split. * No
official dataset split exists for ADE so we employ 10-
fold cross-validation with 10% of the total examples
following . † GENIA comes with only two files.

C Proofs793

Theorem 1. Let x ∈ VN be a sequence of tokens794

with xN = EOS. If y ∈ Y1×. . .YM is the decoded795

sequence of actions, then M ≥ N holds for all796

x ∈ VN.797

Proof. Let am be the action chosen at step m, 798

# copy (m) =
∑m

i=1 1
[
ai= copy

] be the number 799

of tokens xn that have been copied until generation 800

step m. Recall: generation completes at step m 801

when x# copy (m) = EOS ∧ am = copy (1), i.e. 802

the EOS token has been copied into the output. 803

Let #A(m) = m be the number of actions per- 804

formed up until a certain point m in the output 805

sequence y of length M . It holds that 806

#A(m) =
∑m

i=1 1ai= copy
≥ 0

+
∑m

i=1 1ai ̸= copy
≥ 0

. 807

With that, it follows that # copy (m) ≤ #A(m) 808

(2). Using (1) we get # copy (M) = N and with 809

(2) we then get N ≤ #A(M) = M =⇒ N ≤ 810

M ⇔M ≥ N 811

11


