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Abstract

Diffusion models have achieved remarkable success in image generation and editing
tasks. Inversion within these models aims to recover the latent noise represen-
tation for a real or generated image, enabling reconstruction, editing, and other
downstream tasks. However, to date, most inversion approaches suffer from an
intrinsic trade-off between reconstruction accuracy and editing flexibility. This
limitation arises from the difficulty of maintaining both semantic alignment and
structural consistency during the inversion process. In this work, we introduce
Dual-Conditional Inversion (DCI), a novel framework that jointly conditions on
the source prompt and reference image to guide the inversion process. Specifically,
DCI formulates the inversion process as a dual-condition fixed-point optimization
problem, minimizing both the latent noise gap and the reconstruction error under
the joint guidance. This design anchors the inversion trajectory in both semantic
and visual space, leading to more accurate and editable latent representations.
Our novel setup brings new understanding to the inversion process. Extensive
experiments demonstrate that DCI achieves state-of-the-art performance across
multiple editing tasks, significantly improving both reconstruction quality and edit-
ing precision. Furthermore, we also demonstrate that our method achieves strong
results in reconstruction tasks, implying a degree of robustness and generalizability
approaching the ultimate goal of the inversion process. Our codes are available at:
https://github.com/Lzxhh/Dual-Conditional-Inversion

1 Introduction

Diffusion models have made significant progress in the field of generative artificial intelligence.
Among them, latent Diffusion Models (LDMs) [41] perform the diffusion process in a compressed
latent space rather than the pixel space, enabling more efficient and high-quality image generation and
editing. This architectural design has made LDMs a powerful and flexible backbone for a wide range
of downstream tasks, such as text-to-image generation [36, 40, 43]], image editing [31} 4,48} 3], image
restoration [29,151}154], style transfer [52,150L7]], etc. In the image editing tasks, the editing is achieved
by manipulating the diffusion latent representations. However, in most cases, the corresponding latent
representation for a given image is not directly available, which means that we must first perform an
inversion process to obtain their latent representations.

The earliest inversion method is DDPM [16]], and it has inspired the development of numerous
related methods [47, 2, [19]. DDPMs add random noise at each timestep, which leads to the loss
of information contained in the original image, resulting in poor reconstruction and editing effects.
DDIM inversion [45} [10] reformulates the diffusion process to be deterministic as solving an implicit
equation under the assumption that consecutive points along the denoising trajectory remain close.
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Figure 1: Pipelines of different inversion methods in diffusion-based image editing. Each
sub-figure illustrates the specific process: (a) DDIM inversion; (b) NTI and NPI; (c) Directlnv; (d)
SPDInv; (e) our Dual-Conditional Inversion(DCI). Obviously, DCI significantly reduces both latent
noise gap(D,,,;) and reconstruction error( D).

However, in practice, especially when using a limited number of denoising steps, this assumption
often breaks down, leading to significant inaccuracies in the inversion results. In order to improve
the reconstruction effect of DDIM inversion, multiple works have proposed effective optimization
methods, such as null-text embedding(NTI) [33] and negative prompt(NPI) [32]] in the inversion
process. As illustrated in figure[T] both NTI and NPI attempt to reduce the reconstruction gap(D-.)
by optimizing the text embeddings. In the meanwhile, the researchers have proposed some alternative
solutions from a non-optimization perspective. For instance, Directlnv [20] introduces a target-aware
branch to correct the source branch trajectory, improving reconstruction quality. It performs well
especially in terms of content preservation, and it is faster than optimization-based inversion methods.
Renoise [[13]] is based on the linear assumption that the direction from z; to z;4; can be approximated
by the reverse direction from z; to z;_;. By calculating the direction from z; to z;4; multiple times
and taking the average, a more accurate direction from z; to z;41 could be obtained. SPDInv [25]]
uses an optimization method to bridge the latent gap on each timestep, but the improvement of
reconstruction gap (D,.¢.) is limited. Although these methods have achieved certain success, they
still face an intrinsic trade-off between reconstruction accuracy and editing flexibility. As illustrated
in figure [T} such approaches struggle to reconcile semantic precision with structural consistency,
particularly when textual supervision is sparse or ambiguous.

In this work, we present Dual-Conditional Inversion (DCI), a new perspective on diffusion-based
image editing that unifies text and image conditioned inversion within a fixed-point optimization
framework. DCI addresses this limitation by introducing a dual-conditioning mechanism: it jointly
leverages the source prompt p, and the reference image x( to guide the inversion process. At
the core of our formulation is a two-stage iterative procedure. The first stage, reference-guided
noise correction, refines the predicted noise at each timestep by anchoring it to a visually grounded
reference derived from the source image. The second stage, fixed-point latent refinement, imposes self-
consistency by optimizing each latent variable z, as a fixed point of the generative trajectory defined
by DDIM dynamics. Formally, we cast inversion as a dual-conditioned fixed-point optimization
problem that minimizes two objectives: (1) the discrepancy between the predicted and reference
noise vectors across timesteps, and (2) the reconstruction error between the generated image and
the original reference. This formulation not only improves inversion stability but also yields latent
representations that are inherently editable and semantically aligned.

To sum up, our framework enables a plug-and-play integration with a variety of existing diffusion
models, requiring neither retraining nor any modification to the original model. Through extensive
experiments across multiple editing tasks, DCI achieves superior reconstruction quality and editing



fidelity when compared to prior inversion baselines. Moreover, we demonstrate that the proposed
dual-conditional fixed-point formulation facilitates stable convergence and generalizes well across a
wide range of editing scenarios, highlighting the robustness and scalability of the proposed approach.

2 Related Work

2.1 Image Editing with Diffusion Models

In recent years, a large number of works based on diffusion models in the field of image editing
demonstrate significant potential and adaptability across diverse tasks. These methods utilize diverse
forms of guidance, such as text prompts, image references and segmentation maps to achieve editing
objectives. (24,122} [8,[17, 27] These advances better enable the ability to maintain editing precision
and semantic consistency. The rapid development of diffusion models has significantly improved
image generation capabilities. Among them, the widespread use of models such as GLIDE [36]],
Imagen [43], DALL-E2 [40], and Stable Diffusion(SD) [41] has gradually expanded downstream tasks
based on image generation. Prompt-to-Prompt(P2P) [[15] modifies cross-attention maps in diffusion
models to enable text-driven image editing while preserving spatial structure through localized
prompt adjustments. Pix2pix-zero [38] achieves zero-shot image-to-image translation by aligning
latent features with text guidance. Plug-and-Play [48]] integrates task-specific modules into pretrained
diffusion backbones without retraining. MasaCtrl [4] enhances real-time spatial control in diffusion
models by injecting mask-guided attention constraints for precise region-specific manipulation. IP-
Adapter [56] injects visual features into the attention mechanism, enabling personalized generation
without fine-tuning. ControlNet [57] introduces an auxiliary network to condition diffusion models
on structural inputs like edges or poses. Some recent efforts have proposed different approaches
to improve the precise of image editing from various perspectives [53| 34, 142/ [21]]. Despite these
methods have shown promising results, they often suffer from editing failures due to inversion
methods. Our DCI improves upstream inversion to enhance downstream editing fidelity.

2.2 Inversion methods of diffusion models

The earliest inversion methods include DDPM [19]] and DDIM [45]]. DDPM generates high-quality
images by progressively adding noise in a forward process and learning the reverse denoising
process. [9,146] Building on this foundation, DDIM introduces a deterministic sampling mechanism.
Its near-invertible properties provide a crucial foundation for subsequent image inversion and editing
techniques. Researchers have conducted in-depth and extensive studies on the inversion process of
diffusion models to achieve both efficiency and precision. Some methods focus on optimizing text
embedding [33} 132} [14]. Null-Text Inversion (NTI) [33]] adjusts latent encodings and text embeddings
to reconstruct the original image. To improve efficiency, Negative-Prompt Inversion (NPI) [32] and
its enhancements, including Proximal Guidance [[14], have emerged to reduce the reliance on time-
consuming optimization processes. EDICT [49]], for example, achieves exact invertibility through
coupling transformations, while methods like Direct Inversion [20] and Fixed-Point Inversion [30]]
focus on simplifying the inversion process. The former decouples the diffusion branches, while
the latter utilizes fixed-point iteration theory to ensure high reconstruction quality while reducing
computational overhead. Many inversion techniques also particularly focus on improving downstream
editing tasks [25,[11]]. For example, Source Prompt Disentangled Inversion (SPDInv) [25] aims to
decouple image content from the original text prompt, enhancing editing flexibility and accuracy.
Specialized inversion and editing frameworks have been developed for specific editing needs [26, 44].
Additionally, the concept of inversion has been extended to broader domains [12, [18} |11} 16} 159].
Textual Inversion proposes learning new text embeddings to represent user-specific concepts for
personalized image generation [12f]. ReVersion [18]] further explores learning and inverting relational
concepts from images. Meanwhile, works like Aligning Diffusion Inversion Chain [59] focus on
generating high-quality image variants by aligning inversion chains.

Although the above methods have solved the reconstruction problem to a certain extent, they may
bring artifacts and inconsistent details when applied to editing tasks. Most of the time, they only
focus on the text prompt or the original image, but do not integrate them. In our work, we propose
a simple but effective method to fuse the text prompt and source image in the form of fixed-point
iteration. Our method improves the editing fidelity a lot and shows inspiring results.
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Figure 2: Inversion process of DCI. The green box on the left illustrates DCI, which use dual-
conditional guidance to reduce the latent gap. The right describes how DCI modifies the inversion
process and generate the latent noise code. It also shows our method can improve the editing method.

3 Dual-Conditional Inversion

3.1 Motivation and Problem Formulation

In most diffusion-based image editing frameworks, the inversion process plays a foundational role: it
converts an image to the latent noise representation from which the image can be reconstructed and
edited. However, diffusion models inherently lack an explicit and exact inverse process to convert an
image back to its corresponding latent noise representation. Ideally, a successful inversion would
yield a latent code zp that faithfully preserves both the semantic content and structural details of the
input image, thereby enabling accurate reconstruction and precise downstream editing. However,
the information loss caused by repeated noise injection in inversion process makes perfect inversion
unattainable, even when auxiliary constraints such as text prompts or reference images are employed.

To analyze the limitations of current inversion strategies, we begin with DDIM (Denoising Diffusion
Implicit Models) [45]], a deterministic variant of DDPM [16]. DDIM defines a closed-form sampling
process that generates a latent image zo from Gaussian noise z7 ~ N (0, I) as follows:

1 1
—1—4/— —1]e€a(2s,t,0), (D
Q1 Qi

Where «; denotes the cumulative noise schedule, and €y represents the noise predicted by a U-Net,
conditioned on the current timestep ¢ and a control input c (e.g. , a text prompt). However, using only
a text prompt as c is insufficient for accurately reconstructing the original image. Recent methods
such as ControlNet [57]] and IP-Adapter [S6] enrich the conditioning input ¢ with visual features
from the original image, thereby improving generation quality. Nevertheless, these methods are often
computationally expensive and difficult to integrate into the inversion process. Ideally, inversion
requires recovering z; from a known z;_1, which leads to the following “ideal inversion” formula:

2zt = Cp1 - 21+ Cr2 - €0(2, L, Cideal ) (2)

. . _ o _ 1 1
where the coefficients are defined as: Cy 1 = Ja Cio =/ ( a 1-— \/at—l — 1) .
However, in practice, this expected inversion is not feasible because the ideal latent z; is not available
when performing the inversion step from z;_;. Thus, the DDIM inversion process approximates
this update by feeding (z;_1,¢ — 1, ¢) into the inversion process instead of (z, ¢, ¢), leading to the
practical inversion formula:

2t =Cp1- 21+ Cro-€9(z—1,t — 1,¢). 3)

This approximation breaks the strict reversibility of the ODE-based formulation and introduces
temporal mismatch error between the predicted noise and the actual generative trajectory. Since the
diffusion model assumes infinitesimal step size for reversibility (akin to a continuous ODE), using
coarse discrete steps and mismatched inputs (i.e., €p(2:—1,t — 1, ¢) instead of the ideal €y (z¢, ¢, ¢))
induces systematic error at each timestep.

If a real image and its corresponding text prompt are given, the image generated directly using the
text prompt will be very different from the real image. The reason arises from the inaccuracy of text



prompt and randomness in the generation process. From this perspective, there are also errors in
the use of ey(z,t, ¢)) for the inversion process. This error is also accumulated over time, resulting
in the final z; not being well applied to reconstruction and editing. In previous work, SPDInv [25]
transforms the inversion process into a search problem that satisfies fixed-point constraints. The
pre-trained diffusion model is used to make the inversion process as independent of the source prompt
as possible, thereby reducing the gap between eg(z, ¢, ¢)) and eg(z;—1,t — 1, ¢). Although SPDInv
narrows the gap between eg(z¢,¢,¢)) and €g(z:—1,t — 1,¢). However, in the previous analysis,
€9(zt,t,c)) is not an ideal noise. The ideal noise should not only be separated from the source
prompt, but also retain more information of the original image. What needs to be reduced is the
difference between €g(2¢, t, Cidear) and €p(2z¢—1,t — 1, ¢), and this difference will appear in each
inversion process and accumulate in the final output.

To achieve high-fidelity inversion, it is essential to minimize the discrepancy between the predicted
noise and the ideal generative direction at each timestep. This requires not only disentangling
the inversion process from the source prompt(mentioned in [25]), but also preserving as much
information from the original image as possible. Addressing both aspects simultaneously is key to
reducing cumulative errors and improving the reconstruction and editability of the inverted latent
noise representations in diffusion-based image editing.

3.2 Dual-Conditional Inversion (DCI)

To address the limitations of existing inversion methods, we propose Dual-Conditional Inversion
(DCI), a novel framework that enhances the latent noise representations in diffusion models. DCI
leverages both the original image and text prompt to guide the inversion process, ensuring high-
fidelity reconstruction and improved editability. Unlike prior approaches, DCI integrates these
into a dual-conditional fixed-point optimization pipeline. The method consists of two key stages:
reference-guided noise correction that anchors the inversion to the source image, and fixed-point
latent refinement that ensures self-consistency with the generative process.

3.2.1 Reference-Guided Noise Correction

The first stage of DCI introduces a reference-based constraint to align the predicted noise with the
source image. At each DDIM timestep ¢, we compute an initial noise estimate conditioned on the
source prompt ps:

€raw = €0 (Zt7 taps)' 4)

where €y is the noise prediction model (e.g., a U-Net) and z; is the current latent. However, €.,
often deviates from the ideal noise due to the coarse constraint of ps. While this prediction reflects
prompt-level semantics, it often deviates from the actual noise corresponding to the input image due
to limited grounding provided by textual information alone. To address this, we introduce a visual
reference signal by extracting a reference noise vector e..¢ from the source image latent zg, which is
obtained via a pretrained VAE encoder E. The reference noise is defined as:

€ref — E(ZO) (5)

The €. serves as an anchor to guide the correction of prompt-based noise estimation. To enforce
alignment between the prompt-predicted noise and the image-derived reference, we define a reference
alignment loss:

Lret = ||éraw - 6ref||2 . (6)

Equation [6] penalizes the discrepancy between the two noise vectors. A one-step gradient-based
correction is then applied to refine the noise prediction:

€ =€aw — A~ vém

Lret. (N

W

where ) is a hyperparameter that controls the correction strength. This update adjusts the predicted
noise in a direction that reduces its divergence from the reference signal, effectively grounding the
inversion in visual structure. As a result, this correction improves reconstruction fidelity and ensures
that the denoising trajectory remains semantically and perceptually consistent with the original image,
particularly in scenarios where the prompt is ambiguous or underspecified.



3.2.2 Fixed-Point Latent Refinement

After correcting the noise estimate, we proceed to update the latent variable z; using the DDIM
inversion formula. This step changes the inversion trajectory from timestep ¢t — 1 to ¢, based on the
corrected noise €:

2t =01 2-1 +Cpa- ¢, ®)

where Cy ;1 = % and Cyo = /oy (\/a% —1- \/ail - 1), and a is the noise schedule.
While this deterministic update follows the DDIM trajectory, it remains sensitive to error accumulation
during the inversion process. As such, it may introduce perturbations into the latent dynamics,
ultimately affecting reconstruction and editing fidelity. To improve stability and enforce consistency
with the forward generative process, DCI introduces a fixed-point refinement step that iteratively
corrects the latent by treating it as a fixed-point problem of the DDIM inversion at each timestep.

Specifically, we define the latent update function:

fo(ze) = Cia-ze—1+ Cra - €924, t, ps). )
The objective is to find a latent z; such that:

Zt = f()(zt). (10)
To achieve this, we minimize the following fixed-point self-consistency loss:

Lix = || fo(2ze) — 2l (11

We iteratively refine z; using gradient descent:
2zt =2zt — 1 Vs, Leix, (12)

where 7 is the learning rate of refinement process. This fixed-point update step is repeated for up to
K iterations or until the convergence criterion Lgx < ¢ is satisfied. In practice, our method converges
rapidly within a few iterations(usually no more than 10 iterations), which ensures computational
efficiency without compromising reconstruction quality. By explicitly enforcing this self-consistency
constraint, DCI stabilizes the inversion trajectory and reduces artifacts that arise from misaligned
latents. This refinement step not only enhances reconstruction quality but also improves the reliability
and flexibility of downstream editing operations.

Algorithm 1 Dual-Conditional Inversion (DCI)

Input: Source image latent zy, DDIM steps 7', source prompt p,, maximal optimization rounds K,
threshold §, image guidance strength )\, fixed-point learning rate 7), reference noise €t

Output: Inversion noise zp

1: fort =1toT do

2: fori=1to K do

3 Get z; from z;_1 based on (3)

4: Predict noise é,y based on (@)
5: Compute Lrer = ||éraw — €ref[5
6.
7
8

Apply correction: € = €y — A Ve Lier
Update z; using €

Calculate Lsx = || fo(2e) — 2¢|l5

€raw

9: Update z; = 2 — 1 - V4, Lax
10: if Lsy < 0 then break end if
11:  end for
12: end for

3.2.3 Algorithm Summary

The complete Dual-Conditional Inversion (DCI) process is summarized in Algorithm[I] At each
DDIM timestep, DCI first performs Reference-Guided Noise Correction to obtain a visually grounded
noise estimate € by combining prompt-based prediction and reference-derived supervision. Then
it is followed by Fixed-Point Latent Refinement, which iteratively updates the latent z; to satisfy a
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Figure 3: Visual results of different inversion methods with P2P on PIE-Bench. Each method is
identified at the top of its respective column, while detailed editing information appears beneath each
corresponding row. DCI(ours) demonstrates significant enhancements over existing methods.

a girl with ... is holding a phone — a girl with ... is holding a coffee

self-consistency condition defined by the DDIM inversion dynamics. The dual conditioning on both
the source prompt ps and the reference image (via €.f) ensures that the final inverted latent z closely
approximates the ideal generative noise z7., which leads to reliable reconstruction and high-fidelity,
better structure-preserving editing.

4 Experiments

We conduct extensive experiments to evaluate the effectiveness of Dual-Conditional Inversion (DCI).
This section is organized as follows. In Section@ we introduce the datasets, evaluation metrics
and experimental settings. Section[#.2]compares DCI with representative inversion methods across
multiple aspects quantitatively and qualitatively. In Section[d.3] we investigate how DCI reduces both
the latent noise gap and the reconstruction error. Finally, Section [4.4] presents an ablation study to
assess the impact of key hyperparameters and design choices.

4.1 Experimental Setups

Evaluation Metrics. We mainly use DINO score [3]], Peak Signal-to-Noise Ratio (PSNR), Mean
Squared Error (MSE), Structural Similarity Index (SSIM), and Learned Perceptual Image Patch
Similarity (LPIPS) [58]] to evaluate the performance of DCI from multiple perspectives. We use the
DINO score to evaluate the overall structural similarity of the generated images, while the CLIP
score [39] is employed to quantify the alignment between the generated image and the given prompt.
For background preservation and image fidelity, we report PSNR, MSE, SSIM, and LPIPS, with all
metrics computed specifically over the annotated regions in the dataset from DirecInv [20]. Both the
DINO and CLIP scores are calculated over the entire image to capture global consistency, whereas
the remaining metrics focus on local quality within specified regions.



Table 1: Performance comparison of inversion-based methods under the Prompt-to-Prompt (P2P)
editing engine [[11] on PIE-Bench. Metrics include DINO ({), PSNR (1), LPIPS ({), MSE ({), SSIM
(1), and CLIP (7). Best and second-best results are highlighted in red and blue, respectively. DCI
(ours) achieves the best performance across all metrics.

Inversion Editing Engine Dilf(?gi' PSNR? Lzlllzgi l\figj S:?(\)/IJ CLIPt
DDIM [45]] pP2P 69.43 17.87 208.80 | 219.88 | 71.14 | 25.01
NTI [133] P2P 13.44 27.03 60.67 35.86 84.11 24.75
NPI [32] p2p 16.17 26.21 69.01 39.73 83.40 | 24.61
AIDI [37]] P2P 12.16 27.01 56.39 36.90 84.27 | 24.92
NMG [6] P2P 23.50 25.83 81.58 | 107.95 | 82.31 24.05
DirectINV [20] pP2P 11.65 27.22 54.55 32.86 84.76 | 25.02
ProxEdit [[14] P2P 11.87 27.12 45.70 32.16 84.80 | 24.28
SPDInv [25] pP2P 8.81 28.60 36.01 24.54 86.23 | 25.26
h-Edit [35]] P2P 11.17 27.87 48.50 85.40 84.80 | 25.30
DCl(ours) \ P2P | 6.07 | 2938 | 3301 | 21.28 | 87.14 | 25.52

Datasets. We verifies the effectiveness of our proposed DCI method mainly on the PIE-Bench [20],
which comprises 700 images featuring 10 distinct editing types. It provides five annotations on each
image: source image prompt, target image prompt, editing instruction, main editing body, and the
editing mask. The calculation of region-specific metrics heavily relies on the editing mask, as the
editing is expected to occur only within the annotated region. We also use the COCO2017 [28]] to
test the application of our method in a wider range of scenarios.

Other Settings. In our experiments, we utilize Stable Diffusion v1.4 as the base model with DDIM
sampling steps of 50 and a Classifier-Free Guidance (CFG) scale of 7.5. These settings are the same
as those used in the baselines. For DCI, we set the hyper-parameters to KX = 5, A = 2, and n = 0.001.
All experiments and validations are conducted on a single NVIDIA RTX 4090 GPU.

4.2 Comparisons with Inversion-Based Editing Methods

We compare DCI with several inversion-based methods quantitatively and qualitatively. These
methods includes DDIM inversion [45]], Null-text inversion (NTI) [33]], Negative prompt inversion
(NPD) [32]], AIDI [37], Noise Map Guidance (NMG) [6]], Direct Inversion (DirectINV) [20], Prox-
Edit [[14]], SPDInv [25] and A-Edit [35]. We mainly evaluate under the Prompt-to-Prompt (P2P)
editing engine on PIE-Bench. As Table ] shows, DCI (ours) outperforms all methods across DINO,
PSNR, LPIPS, MSE, SSIM, and CLIP metrics. Compared to the second-best method, SPDInv,
DCT achieves significant improvements, including a 31.1% reduction in DINO (6.07vs.8.81), 8.3%
reduction in LPIPS (33.01vs.36.01), and 13.3% reduction in MSE (21.28vs.24.54). At the same time,
It is also higher than SPDInv in other metrics(PSNR,SSIM,CLIP). Compared with other methods
listed in Table[d] our method has a greater improvement. These results underscore DCI’s superior
accuracy and robustness for high-fidelity image editing.

Figure [3] presents a visual comparison with the P2P engine. The first row presents cake images
frequently used for comparative analysis in existing methods. Most approaches show satisfactory
results. In contrast, the second row demonstrates that our method enhances detail representation
in salmon. The third row illustrates when modifying features such as hands or mouth, previous
methods will fail. However, our DCI achieves this task while maintaining high-quality output. In
the fourth row, our method achieves better background color fidelity and reduces lighting artifacts
compared to others. The fifth row highlights our method’s robust performance in local part editing
while preserving overall consistency across other image regions.

Human Preference Results For image editing task, human preference is an important part of
evaluation metrics. We provide table 2] detailing both user study and human preferences metrics to
demonstrate the effectiveness of our approach. For the user study, we collect 40 comparisons from 25
participants (aged 19 to 50). The table shows the mean scores for each participant (min:1, max:5).
For human preferences metrics, ImageReward [S5]] and PickScore [23]] are human preference—based



reward models to quantitatively evaluate the quality of image generation and editing. Both of them
are higher metrics that represent better performance.

Table 2: Human preference results
| DDIM | SPDInv | DCI

Pickscore [23]] 0.4416 | 0.4954 | 0.5547
ImageReward [55] | -0.0120 | 0.1564 | 0.3674
User 2.14 3.48 4.10

Time Consumption The running time of DCI is tied to the number of optimization iterations and the
error threshold. However, since our method primarily focuses on nudging the inversion process back
onto the correct path, we’ve empirically found that often only a few optimization steps at specific
timesteps are needed to achieve significant improvements. As a result, the additional computational
overhead compared with DDIM remains minimal.

Table 3: Comparison of inversion times (in seconds) across different methods.

DDIM NTI NPI | AIDI | DirectINV | SPDInv | DCI(ours)
Time(s) | 11.55 | 137.54 | 11.75 | 87.21 19.94 27.04 12.13

Results under different editing engines and base models. Other editing engines and other architec-
tures of diffusion models can also be adopted for our DCI. We use LEDITS++ [2] as the multi-subject
editing model and apply it with both DDIM and our DCI method for fair comparison. In our paper,
the reported MSE is calculated for non-edited regions, thanks to the availability of appropriate mask
annotations within the dataset. However, for multi-subject editing, we could only calculate the MSE
between the edited image and the entire original image. Under these conditions, the MSE metric is
not always an accurate reflection of editing quality, as DDIM frequently fails to produce any changes
or only generates very minor alterations. Beyond multi-subject editing, we also test our method with
Stable-Flow, a flow-based diffusion image editing method. The experimental results clearly indicate
that our approach significantly enhances performance in flow-based methods as well.

Table 4: Performance under different editing engines and base models.

DINO. LPIPS| | MSE| | SSIMt
x103 %103 x10% x 102

DDIM [45] | LEDITS++ [2] 21.20 21.18 136.3 76.00 83.95 19.01
DClI(ours) LEDITS++ [2] 12.10 21.19 127.5 125.00 | 84.41 21.62

DDIM [45] | Stable-Flow [1]] 19.00 24.30 91.70 37.00 91.60 | 23.29
DCl(ours) Stable-Flow [1]] 4.40 24.32 68.40 37.00 92.75 23.64

Inversion Editing Engine PSNR? CLIPt

Due to the page limit, we provide more visual and quantitative results under different editing engines
in the supplementary material. We can draw similar conclusions to the above.

4.3 Reduction of Noise and Reconstruction Gap by DCI

We conduct experiments and confirm that our method can 020] . ba Latent Gap N
reduce the gap between noise and reconstruction (D,,; 018] + SPDInv ;
and D, .. as depicted in Figure [). We randomly select o * " :
100 captions from the PIE-Bench and use Stable Diffusion = w®*

V1.4 to generate images. = gz

We initialize zp with a fixed random seed, treating it as 0.08

the ideal noise input for every image at the initial timestep 0.06

of the diffusion process. The final generated image serves %% 0 4o 60 g 100

Index sorted by MSE

as a reference for reconstruction accuracy assessment. We
visualize and evaluate the performance of our method with
DDIM [45] and SPDInv [23]]. Figure 4: Illustration of Latent Gap.



Table 5: Ablation study on the hyper-parameters of DCI with PIE-Bench.

Hyper-parameter | DINO,g: | | PSNRT | LPIPS, 1os | | MSE,jq: | | SSIM ;02 1 | CLIP}

K=2 6.13 29.32 33.10 21.50 87.11 25.49
K=5 6.07 29.38 33.01 21.28 87.14 25.52
K =10 6.17 29.29 33.17 21.56 87.12 25.51
A=1 6.19 29.29 33.12 21.62 87.12 25.53
A=2 6.07 29.38 33.01 21.28 87.14 25.52
A=5 9.29 28.25 41.05 26.18 86.26 25.38
n = 0.0001 6.72 28.80 35.93 23.72 86.70 25.50
n = 0.001 6.07 29.38 33.01 21.28 87.14 25.52
n =0.01 35.29 23.05 88.90 83.84 81.18 25.02
Default 6.07 29.38 33.01 21.28 87.14 ‘ 25.52

For latent gap analysis, we visualize the zy gap obtained by these methods in figure @ The con-
centration of the data shows that our method is closer to the ideal noise. For reconstruction gap
evaluation, we use both MSE and CLIP scores. DDIM yields an MSE of 1.32 x 10—%, SPDInv
achieves 1.21 x 10~*, while DCI obtains the lowest error at 1.12 x 10~%. The CLIP Scores are
26.91 for DDIM, 26.92 for SPDInv, and 26.94 for DCI. Comparatively, our technique demonstrates
superior performance over DDIM and SPDInv based on these metrics.

4.4 Ablation Study

Table 5| presents an ablation study on three key hyper-parameters of DCI: the number of optimization
rounds (K € {2,5,10}), the reference-guided noise correction weight (A € {1,2,5}), and the
learning rate (n € {0.0001,0.001,0.01}). The method converges quickly, as even a small number of
rounds (K = 2) shows competitive results, and performance saturates by K = 5. A = 2 achieves the
best trade-off, while higher values such as A = 5 lead to significant degradation across all metrics,
indicating over-dependence on inversion constraints. The learning rate = 0.001 provides the
most stable and effective optimization; both smaller and larger values reduce reconstruction quality,
with 7 = 0.01 causing severe performance collapse. These results support the choice of the default
configuration (K = 5, A = 2, n = 0.001) as optimal for fidelity and stability.

5 Conclusion

In this paper, we introduce Dual-Conditional Inversion (DCI), a novel method that combines both
the source prompt and the reference image to guide the inversion process. By formulating inversion
as a dual-conditioned fixed-point optimization problem, DCI reduces both latent noise gap and
reconstruction errors in diffusion models. Notably, DCI exhibits strong plug-and-play capability: it
can be seamlessly integrated into existing diffusion-based editing pipelines without requiring model
retraining or architecture modification. Extensive experiments demonstrate that our method achieves
superior edit quality on benchmark datasets. Overall, DCI provides a robust, flexible, and easily
deployable foundation for future research in diffusion-based tasks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction summarize the core contributions behind Dual-
Conditional Inversion (DCI), the methodological innovation of incorporating both source
prompt and image reference as dual conditions, and the demonstrated improvements in both
reconstruction and editing performance. They accurately reflect the paper’s described scope
and contributions.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:
Justification: Due to page limit, we present this part in supplementary materials.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The cited literature and experimental results fully confirm our theoretical
hypothesis and proof.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We disclosed all of the main experimental results in the part of the experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and code of our paper are convenient for reproducing the experimental
results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We demonstrated all the training and test details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the resource limitation, we do not report error bars. Our experiments
on models and hyperparameters are so numerous that they are impossible to repeat.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In the experimental section, we declare the setups.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: All experiments comply with ethical standards.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Our work already discusses the impacts of society.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work carries no risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Our work is based on public datasets and code.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

19


paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: We have an human-preference experiment.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: We have no crowdsourcing or research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: In this study, the LLM is not the target of this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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In this supplementary file, we provide the following materials:

* Proof of Dual-Conditional Inversion

¢ Experimental Results on Different Datasets and Editing Engines
 Inversion Time Comparison

* Failure Cases

e Limitations and Future Work

A Proof of Dual-Conditional Inversion

A.1 Stage-Wise Convergence Analysis

The Dual-Conditional Inversion (DCI) algorithm operates in two alternating stages: (1) reference-
guided noise correction and (2) fixed-point latent refinement. Since these two stages target separate
objective functions and update different variables (€, and z;, respectively), their convergence must
be analyzed independently.

A.1.1 Stage 1: Reference-Guided Noise Correction

This stage minimizes the noise alignment loss:

Eref(éraw) = ngaw - 6ref”g 5 (13)
via a one-step gradient descent update:
€= Eaw — A~ vémwﬁref = (1 - )\)graw + Aéref- (14)

This is equivalent to a convex interpolation between €, and €., and always satisfies:

Acref(é) S Lref(éraw)a VA S (Oa 1] (15)

Hence, the correction step is guaranteed to reduce noise misalignment in a single iteration, and can
be seen as a contractive projection in noise space.

A.1.2 Stage 2: Fixed-Point Latent Refinement

Given the corrected noise ¢, we update the latent z; using the DDIM inversion formula:

Zgo) =Cp12i-1 +Cyo- € (16)
Then, we refine z; by minimizing the self-consistency fixed-point loss:
Lix(z) = || fo(2¢) — Zt||§ . where  fg(z) :=Cr12e—1 + Cra - €9(24, 1, ps). (17
We apply gradient descent:
2 = 20 L (2. (18)

Assume:
* ¢g(z) is L-Lipschitz smooth;
* fo(2) is locally contractive near the solution;
* Ly is bounded below.
Then from smooth non-convex optimization theory:
Theorem A.1 (Local Convergence of Fixed-Point Refinement). The sequence {z,gk)} satisfies:

£ﬁX<Z§0)) — Lrin)
nk ’

min ‘Vﬁﬁx(zﬁ’“))HQ <X (19)

0<k<K

and converges to a stationary point z; as K — oo.
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A.1.3 Alternating Convergence

In DCI, the noise correction step anchors the predicted noise toward a semantically and visually
meaningful reference, ensuring that the initialization for the latent refinement step falls within the
contraction region of fy(z). Thus, the two-stage alternating optimization benefits from mutual
regularization:

 Stage 1 reduces semantic deviation from image-derived noise;

* Stage 2 reduces structural inconsistency via fixed-point updates;

This design avoids the need to jointly optimize a non-separable loss and enables fast convergence
with high reconstruction fidelity.

A.1.4 Additional Analysis

Beyond convergence guarantees, we analyze several critical properties of the two-stage optimization
process to better understand the behavior of DCI in practice.

Stability of the Correction Step. The reference-guided noise correction step performs a convex
interpolation between €, and €, ensuring that the corrected noise € remains within the convex hull
of the input and the reference:

€ € ConvV (€aw, €ref) - (20)

This guarantees bounded updates and avoids divergence, even when €, contains large errors.
Moreover, by interpreting A as a soft trust coefficient, we can view the update as a controllable
balance between prompt semantics and visual fidelity.

Propagation of Residual Noise Error. Let d; := € — €; denote the residual noise error at timestep
t with respect to the ideal generative noise €;. The DDIM update propagates this noise error linearly
into the latent space:

2zt =2 + Cra - O, 210

where 2} denotes the latent corresponding to ideal inversion. Hence, even if L is not minimized to
zero, the resulting latent perturbation is bounded and scales linearly with ||, ||, which DCI attempts
to iteratively reduce via fixed-point refinement.

Editability Preservation. Unlike optimization methods that overly constrain z; toward recon-
struction, DCI balances reconstruction and generative semantics. The fixed-point loss Lgx enforces
consistency with the model’s forward trajectory rather than a hard projection to a reconstruction
target, which helps preserve the generative flexibility required for downstream editing. Formally, if
fo(z) approximates the forward generative trajectory, minimizing || fo(z¢) — z:|| ensures that z; lies
on a semantically meaningful denoising path, rather than collapsing to a static reconstruction point.

Numerical Robustness. Empirically, the fixed-point refinement converges within 3—10 iterations
under a moderate learning rate € [10~%,1072]. As V Ly, involves only first-order derivatives of
the denoiser ey, the update is numerically stable under automatic differentiation and does not amplify
high-frequency errors.

Impact of \ and 1 on Optimization Dynamics. DCI offers explicit knobs to trade off visual
grounding () and convergence aggressiveness (7). Large A may overfit to the reference signal and
degrade semantic consistency; large n may induce oscillation or overshoot in latent updates. As
shown in the ablation (Table 2), default values A = 2 and = 0.001 yield a stable equilibrium across
editing tasks.

B Experimental Results on Different Datasets and Editing Engines

We first present additional results of our method on the PIE-Bench benchmark. As shown in Figure[6]
our approach clearly outperforms existing baselines. The red circles highlight undesirable artifacts
and imprecise edits introduced by other methods, while our method achieves target edits with high
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fidelity. These results demonstrate that our approach excels in terms of editing precision, artifact
suppression, and background consistency.

We then evaluate our method on a broader dataset, specifically in COC02017 [28], to assess general-
ization to open-world scenarios. We employ our Dual-Conditional Inversion (DCI) for the inversion
stage and adopt P2P [15]] as the editing engine. The text prompts are generated by a large language
model, with only the desired editing attribute manually modified. As shown in Figure|7| our method
maintains strong editing performance even in diverse and unconstrained real-world contexts.

Finally, we examine the compatibility of our inversion method with alternative downstream editing
engines. We use the popular Masactrl [4] framework as a representative case. As shown in Fig-
ure[8] the results demonstrate that our method performs robustly across different editing pipelines,
highlighting its generalizability and adaptability.

C Inversion Time Comparison

Despite involving an iterative optimization procedure, our DCI method maintains competitive runtime
performance. On a single NVIDIA RTX 4090 GPU, a full DCI inversion-editing cycle takes only
average 12.1 seconds per image, which is comparable to the baseline DDIM inversion method [45]].
This efficiency is largely due to the lightweight design of our fixed-point refinement and the use
of one-step noise correction per iteration. Compared to other methods that involve intensive text

Table 6: Comparison of inversion times (in seconds) across different methods.

Inversion Method ‘ Inversion Time (s)

DDIM 11.55
NTI 137.54
NPI 11.75
AIDI 87.21
NMG 16.71
DirectINV 19.94
ProxEdit 11.75
SPDInv 27.04
DCl(ours) 12.13

embedding optimization or complex auxiliary modules, such as Null-text inversion (NTI) [33]],
Negative prompt inversion (NPI) [32]], AIDI [37], Noise Map Guidance (NMG) [6]], Direct Inversion
(DirectINV) [20], ProxEdit [14], and SPDInv [25]—our method achieves a favorable balance between
quality and speed. Some of these baselines require additional optimization rounds or rely on extra
network branches. DCI requires only a small number of optimization steps and converges quickly,
while still avoiding heavy architectural changes, making it more practical for real-world deployment.

D Failure Cases

While DCI significantly improves inversion quality and editing controllability, it still exhibits limita-
tions in certain scenarios. Since our method is designed for an independent optimization method of
inversion process without being aligned with downstream editing objectives. Its performance can
be adversely affected by the characteristics and limitations of the editing engine itself. In particular,
failure cases may arise when the editing model lacks sufficient semantic alignment or spatial precision,
resulting in incomplete edits or distorted outputs.

As shown in Figure [5] one failure example occurs when the target edit conflicts with the original
content. In this case, the edited image either fails to reflect the desired changes or introduces
unwanted artifacts. Such outcomes highlight the dependency of DCI on the quality and specificity of
downstream editing models.
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a spring field with trees and a blue sky — a autumn ... woman with brown hair — ... blue hair

a lion in the sky with a blue a monkey wearing colorful goggles and
background — ... red background a colorful scarf— ..aman ...

a vase with sunflowers and pears on an orange cat play with a black and white
a table — ... bananas ... cat in the — ... a big pink yarn ball ...

a blue and white bird sits on a branch — ... butterfly ... a bird is standing on top of a rock — a leopard ...

Figure 5: Failure cases

E Limitations and Future Work

Limitations.While our proposed Dual-Conditional Inversion (DCI) framework demonstrates superior
performance in diffusion-based image editing, several limitations remain.

First, DCI introduces additional computational overhead due to its dual-stage optimization process,
including reference-guided noise correction and fixed-point refinement. Although this leads to
increased inference time compared to purely feed-forward inversion methods, we find the overhead to
be acceptable in most practical applications, especially those prioritizing editing fidelity over real-time
speed. Second, the effectiveness of DCI depends on the quality and semantic alignment of both the
source prompt and the reference image. In cases where the prompt is overly ambiguous or poorly
aligned with the image content, the dual-conditioning mechanism may lead to suboptimal inversion
performance or conflicting guidance signals. Lastly, the extension of DCI to other modalities such as
video, 3D scenes, or multi-view data remains unexplored.

Applicability Conditions

» Editing with ambiguous or weak prompts. The incorporation of reference images enables
stable inversion when text prompts alone are insufficient for guiding precise edits.

* Applications requiring high reconstruction fidelity. Tasks such as identity preservation,
localized image edits, or photo-realistic retouching benefit from the semantic and structural
anchoring provided by DCI.

* DDIM-based architectures. DCI is currently implemented and evaluated with DDIM.
Compatibility with other samplers (e.g., DPM-Solver) may require re-derivation or empirical
verification.

Future Work. We plan to explore several promising directions: (1) improving computational
efficiency through adaptive early stopping or learned refinement modules; (2) extending DCI to higher-
resolution pipelines and multi-modal inputs such as text-image-mask triplets; and (3) evaluating the
applicability of DCI in diverse generative backbones, including DiT and other transformer-based
diffusion models. We also aim to conduct user studies in practical editing tools to assess robustness,
usability, and real-world performance.
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..acat is playing with..— ..a dog is playmg with...
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., laughing haplly —... boy ..., crying sadly

oy ..

a white bulldog is walking on... — a white rat is walking on...

Figure 6: More visual results in PIE-Bench with P2P
26



A white vase holds a colorful bouquet of
flowers on a sunlit railing — A grey ...

A smiling woman in a swimsuit holds a
pink umbrella by the lakeside — A sad ...

r

A zebra grazes on green grass under the

bright daylight in the open field— A horse ...

A white dog sleeps peacefully on a quiet
street beside a bicycle— A yellow ...

A black bear walks through dry grass and
rocky terrain in the wild— A brown ...

s

A playful cat bites a brown shoe while
lying on green grass— A playful dog ...

Figure 7: Visual results on COCO2017 dataset

a monkey wearing colorful goggles
and a colorful scarf— ..a man ...

a house in the woods —
a monster in the woods

a painting of a rat with
red eyes — ..a pig ...

a squirrel is sitting on top of a
wooden fence— a rabbit ...

a poster of a bus driving down a road
with mountains in the background —

a poster of aroad ...

a brownish grey knitted bunny
with three painted eggs— a
brownish grey knitted bunny

Figure 8: Visual results of DCI with Masactr]
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