Under review as a conference paper at ICLR 2026

LLM-GUIDED COMMUNICATION FOR COOPERATIVE
MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Communication can be essential in cooperative multi-agent reinforcement learn-
ing (MARL), where agents may need to overcome partial observability by ex-
changing information to accomplish tasks. However, prior methods often rely
on messages that are uninterpretable or contain irrelevant information. To over-
come this issue, we propose LLM-driven Multi-Agent Communication (LMAC),
anovel MARL framework that combines LLM-based communication protocol de-
sign with a meta-cognitive latent representation module. LMAC employs iterative
refinement with phase-specific feedback to produce interpretable protocols that
enhance state recovery and shared understanding, while its latent module incorpo-
rates reliability signals with cycle consistency to ensure compact and trustworthy
representations. Experiments across diverse MARL benchmarks demonstrate that
LMAC consistently improves performance over other communication baselines.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has emerged as a key paradigm for solving
tasks where multiple agents must collaborate, such as autonomous driving (Chen et al.|[2023a)), net-
work management, and strategic games (Nguyen et al., 2020; |Orr & Duttal [2023). In such environ-
ments, each agent learns from its own local observations, and partial observability prevents any sin-
gle agent from fully reconstructing the global state required for effective decision-making (Zhu et al.,
2024b). To address this, the centralized training with decentralized execution (CTDE) paradigm
(Oliehoek et al., [2008) has been widely adopted, where centralized training leverages global infor-
mation but execution remains decentralized. Within CTDE, value decomposition methods have been
extensively studied to ensure proper credit assignment from the global value to individual utilities.
Representative approaches include VDN (Sunehag et al.,[2017), which expresses the joint value as a
weighted sum of individual values, and QMIX (Rashid et al.| 2018])), which enforces the individual-
global-max (IGM) condition through a mixing network.

Communication-based MARL allows agents to exchange information beyond their limited observa-
tions (Zhu et al.}[20244). Prior methods include sharing raw or compressed observations (Sukhbaatar
et al., 2016} |Das et al., [2019b; [Li et al., [2022b) or exchanging structured representations such as
agent influence, external knowledge, or global summaries (Wang et al., [2020; |Du et al., 2022; |Liu
et al., |2024). However, latent-based messages in existing MARL approaches are often hard to in-
terpret and may include redundant or missing task-critical information. Recent work has explored
natural language mapping (Li et al., 2024), but this remains confined to simple tasks and largely
imitates LLM agents rather than ensuring balanced situation awareness. Consequently, the same
message may still be understood differently by agents, causing cooperation failures. For instance,
in soccer, one player’s call to “pass back!” may be understood differently by teammates, leading to
miscoordination. Likewise, in MARL, inconsistent interpretation of the same message undermines
cooperation, highlighting the need for protocols that are both interpretable and ensure consistent
state understanding.

To overcome these limitations, we present LLM-driven Multi-Agent Communication (LMAC), a
communication-based MARL framework that (i) designs interpretable protocols through LLM rea-
soning and (ii) learns compact meta-cognitive latent representations that exploit these messages. For
protocol design, we leverage large language models such as GPT (OpenAll [2023), Gemini (Gemini
Team & Google, 2023), and Claude (Anthropic| [2024), which provide general-purpose and strong

Under review as a conference paper at ICLR 2026

Embed task-related Information Improve reconstruction accuracy Ensure agent consistency
Y O
B=0 B=0 A B=0 A
Ea Ea B

1+ * *

T sk

@:Feedback] 4 §:Feedback] 4

Essential

,I: Li\/l: InfSOJIT:tti;snkto Refine protocol for better recovery Refine protocol for better balance
S =
—— |—E;’D Discriminator —— FE?’D Discriminator
@) (b) (©

Figure 1: Illustration of protocol refinement in LMAC: (a) Protocol Initialization (¢ = 0) gen-
erates an initial protocol for sharing task-relevant information using their local observations, (b)
Recognition Enhancement (k = 1) improves the accuracy of information recovery, and (c) Sharing
Enhancement (£ = 2) reduces inter-agent inconsistencies to ensure consistent understanding. Each
stage refines the protocol under a distinct objective guided by discriminator feedback.

reasoning capabilities well-suited for developing communication protocols. Building on the Reflex-
ion mechanism(Shinn et al.| 2023), originally proposed for iterative self-refinement, we introduce
phase-specific objectives where discriminators provide targeted feedback using real transitions. As
shown in Fig.[T] refinement proceeds in three stages: (a) Protocol Initialization, where the LLM pro-
poses a preliminary protocol; (b) Recognition Enhancement, where feedback improves information
recovery; and (c) Sharing Enhancement, where feedback reduces inter-agent inconsistencies. This
iterative, phase-specific process, with each stage concentrating on its own objective, yields protocols
that capture task-relevant information, strengthen global awareness, and provide a shared cognitive
basis for cooperation, enabling more interpretable and effective MARL.

To integrate these protocols into MARL training, we introduce a meta-cognitive latent module that
reconstructs states with dimension-wise recovery signals and applies cycle-consistency to retain only
task-relevant information. Combined with protocol design, this yields interpretable and consistent
communication for effective cooperation. We validate our approach on multiple MARL benchmarks
and show that it outperforms existing methods. Our contributions are summarized as follows:

* LLM-based communication protocol design: We propose an iterative Reflexion-inspired frame-
work with phase-specific feedback and discriminators, yielding interpretable protocols that pro-
gressively enhance state recovery and mitigate imbalance.

* Meta-cognitive representation learning: We embed the designed protocols into MARL frame-
work via a latent module that reconstructs states with dimension-wise recovery signals and en-
forces cycle consistency, ensuring messages are compact and reliably utilized.

* Empirical evaluation and analysis: We validate LMAC across diverse MARL benchmarks and
provide in-depth trajectory analyses, showing how the designed protocols yield interpretable mes-
sages that directly enhance information recovery, consistency, and cooperative performance.

2 BACKGROUND

2.1 DEcC-POMDPs wiTH COMMUNICATION UNDER THE CTDE PARADIGM

Cooperative multi-agent reinforcement learning (MARL) with communication can be formalized
as a decentralized partially observable Markov decision process with communication (Comm-Dec-
POMDP), G = (S, A, P,R,0,0,I,n,v, M). Here, S is the global state space, A the joint action
space, P the transition dynamics, R the reward function, O the observation function with observa-
tion space O, I the set of n agents, v the discount factor, and M the message space. At timestep
t, agent i receives an observation 0! = O;(s;) and selects an action a! through a decentralized

Under review as a conference paper at ICLR 2026

policy (- | 7}) based on its trajectory 7/ = (o}, al,...,o0!). The objective is to maximize the
expected cumulative reward E[ZtTZBl r¢], typically trained under the CTDE paradigm, where global
information is available during training but only local observations are used at execution. As a base-
line, QMIX (Rashid et al.,|2018) learns a global action-value function Qyot(7¢,a;) under the IGM
condition, ensuring consistency between global maximization and individual action-value function
Q'(7},al). A key challenge in MARL is partial observability, since each agent only perceives a
limited and noisy view of the environment.

To mitigate this issue, recent communication-based MARL methods (Goldman & Zilberstein, 2008;
Foerster et al., 2016) are often equipped with a communication mechanism that allows them to
exchange messages m: € M at each timestep. When such messages are incorporated, the value
functions and policies are extended as Q*(7¢, mi, al) and (- | 7, m?). This formulation enables
agents to leverage shared information to improve coordination and reduce uncertainty, ultimately
enhancing cooperative performance in decentralized environments.

2.2 LARGE LANGUAGE MODELS FOR REASONING

Large language models (LLMs) such as GPT (OpenAll 2023)), Gemini (Gemini Team & Google}
2023)), LLaMA (Touvron et al.}|2023)), and Claude (Anthropicl [2024) have rapidly expanded beyond
natural language processing to domains requiring complex reasoning. Built on the Transformer ar-
chitecture (Vaswanti et al., [2017)) with billions of parameters and trained on terabytes of text, these
models exhibit strong capabilities in generation, contextual understanding, and abstract inference.
To strengthen reasoning, methods such as Chain-of-Thought (CoT)(Wei et al.| [2022)) and Reflex-
ion(Shinn et al.l [2023)) introduce intermediate steps and iterative refinement. In CoT, the model
first produces reasoning tokens z ~ f3™M(z) from input prompt x and then generates the final
answer y ~ fyM(z, 2), where fi*™ denotes an LLM with parameters 6. Reflexion extends this
process with feedback-driven updates: at step k, the model outputs y*) ~ fFEM(z, 2(K)) derives
a feedback sentence c(*t1) ~ f}LM(:c, &, 20, y(k)) where 7 is the feedback instruction, and then
refines the reasoning as z(F*1) ~ fEIM (3 c(h+1)) leading to yF 1) ~ fFEM (2, 2(F+1)) This
iterative procedure enables LLMs to revise their reasoning sequences based on prior errors and
self-generated feedback, thereby achieving more consistent and robust performance in long-horizon
problem solving. In this work, we leverage LLMs for communication protocol design in MARL,
where Reflexion-based refinement is employed to progressively enhance the protocols.

3 RELATED WORKS

Communication for MARL In communication-based MARL, extensive studies have explored
how agents can cooperate under partial observability through learned communication proto-
cols (Sukhbaatar et al., 2016; [Foerster et al., [2016)). Research on what to communicate ranges from
continuous messages in CommNet to efficient variants such as TMC (Das et al.,|2019a), NDQ (Wang
et al. 2020), and MAIC (Du et al. |2022), with later work addressing robustness to noisy chan-
nels (Zhang et al., 2019; |Freed et al., 2020). Studies on when and with whom to communicate
introduce gating and scheduling strategies (Singh et al.l 2019} |Karten et al.l 2022; Niu et al.| 2021}
Xue et al., [2022; |Yuan et al.} 2023b; |Hu et al.| 2024)). Finally, how to use messages has been studied
through integration mechanisms such as attention in TarMAC (Das et al., 2019b) and representation
learning in MASIA (L1 et al., [2022b). While these methods improve coordination, the exchanged
signals are typically uninterpretable and may not guarantee consistent recovery of task-relevant in-
formation across agents.

Large Language Models for Reasoning LLMs, pretrained on massive corpora, have demonstrated
strong reasoning abilities beyond language generation. Chain-of-Thought prompting (Wei et al.
2022)) has been extended into more structured reasoning formats (Zhou et al., 2022;|Yao et al., 2023;
Besta et al.l 2023} [Sel et al.l 2023} |Zhou et al. 2024), while zero-shot reasoning (Kojima et al.,
2022) and instruction tuning with self-generated data (Wang et al.,2022) highlight the versatility of
prompting. ReAct (Yao et al.| 2022)) integrates reasoning traces with environment interactions, and
iterative refinement methods such as Reflexion (Shinn et al.|[2023)), Retroformer (Chen et al., [2024),
and Expel (Zhao et al., 2024) enable continual self-correction. These advances establish LLMs as
higher-level reasoning engines capable of stepwise abstraction and iterative improvement.

Under review as a conference paper at ICLR 2026

@ Input Prompt Template x @ Communication Protocol f% {= Feedback ¢+
ZZF : Task & Observation Description def communication(o): Evaluation:Most Banelings can’t predict
..................................... # Sender: Overseer an enemy Roach’s absolute coordinates...

Task Description: 10 Banelings try to
g kill a Roach assisted by ...

kobservation Description: Each dim...

Receivers: Banelings Missing Hypothesis:The Overseer lacks

self-localization...

N !

Extract required information

""""""""""""""""""" overseer_obs = o[:, 10, :] Improvement Suggestions: Share banelings
ZIp : Instruction for protocol generation relative x = overseer_obs[:, 6] FEllEERE [PESIEIENG & & CiEn Fefaraise
e -Gy et ~aa iy~ i relative_y = overseer_obs[:, 7] (like nearest ally)...

Your goal is to design a task-specific
| communication protocol.

SCommunication Design Principles:

11. Task-Oriented Communication

is_visible = overseer_obs[:, 4] . i,(k
& Meta Information x;)

overseer_message = torch.cat([
relative_x, relative_y, is_visible

s s (00 S
12. Contextual and Interaction-Aware 1)) g a2 e
Hooc q . Agent 1 1 0 e 1
1You are required to create a function: o
! "communication(o)": # Broadcast message to all agents Agent 2 0 0 . 1

1- Input : Observation "o" messages[:, 0:10, :] =\

- Output: Enhanced observation with overseer_message

return message Agent N 0

N
1
'
'
1
'
'
'
'
]
'
'
'
]
'
'
'
]
'
'

i

\ ’ 0

1
(@) (b) (©

Figure 2: Elements of the LLM-based communication protocol refinement process: (a) Input prompt

x with task description Zp and design instruction Zp, (b) generated protocol fék) that maps local
observations to agent-specific messages, and (c) meta-information data with phase-specific feedback
instructions, which guide refinement by analyzing recovery accuracy and inter-agent imbalance.

Large Language Models for Reinforcement Learning Recent studies have applied LLMs to var-
ious aspects of reinforcement learning (Cao et al.l [2025). Applications include reward design (Yu
et al., 2024; |Adeniji et al. 2023} |Chu et al.l 2023; [Nair et al., 2022} [Ma et al., [2024)), trajectory
summarization and task transformation (Du et al.| [2023}; [Yuan et al., [2023a}; |Qiu et al., 2024}, and
state representation (Chen et al., 2023b; Wang et al., 2024; Da et al.| [2024). LLMs have also been
used directly as policy networks (Li et al., [2022a} [Zitkovich et al.l 2023} |Shi et al., [2024)), or for
grounding actions into affordances and coordination policies (Ahn et al.| 2022} Hu & Sadighl [2023).
More recently, their role in multi-agent cooperation has begun to be explored (L1 et al.,[2024;2025;
Agashe et al. [2025), though challenges remain in ensuring interpretable and consistent communi-
cation across agents.

Distinct from prior studies, our work leverages LLMs to design and refine communication protocols,
explicitly aiming for interpretability, consistent state recovery, and stable cooperation in MARL.

4 METHODOLOGY

In this section, we provide the detailed description of our approach, expanding on the LLM-based
communication protocol design and meta-cognitive representation learning introduced in Section I}

4.1 LLM-GUIDED MULTI-PHASE COMMUNICATION PROTOCOL DESIGN

We now present a detailed description of our communication design. At each phase &, the LLM

k)

generates a communication protocol fék) using the task prompt x and reasoning tokens z(*), i.e.,

F M (g) k€ {0, 1,2} (1)

where fék) maps the agents’ observation histories (70,...,7" ') to interpretable messages

(m?’(k)7 . ,mffl’(k)) for all agents. In other words, fék) is designed to generate messages that

explicitly correspond to and compose from dimensions of the agents’ observations described in z,

so that both agents and human can interpret what information is being exchanged and how it con-

tributes to reconstructing task-relevant states. The refinement process at phase & is then guided by

feedback c*t1)_ discriminator D(¥), and feedback instruction #(**1), which determine how the next

protocol ékH) is constructed. Specifically, the update process is given by

k1) f}LI\I(x’i,(kJrl)?D(k)?fék)’z(k)) o D) o fLIM (g (D)) fék+1) ~ fEIM (g 2 (B0

2

Here, #(*t1) is the phase-specific feedback instruction, D(*) is the discriminator evaluating how

well fék) meets the refinement goal, and (1) is the feedback sentence used to update reason-
ing tokens. Unlike Reflexion, which applies a fixed feedback signal at every step, our framework

Under review as a conference paper at ICLR 2026

adaptively updates Z as objectives evolve across phases. Protocol design therefore proceeds in three
stages, each with a distinct refinement goal:

Protocol Initialization (¢ = 0): The goal is to generate an initial communication protocol that
enables agents to encode and exchange task-relevant information provided in the global state, re-
constructing it as accurately as possible from their local observations and messages. To this end, we
construct the task prompt x = (Zr,Zp), where Zp specifies the task objectives and environment
characteristics (state, observation, and action spaces), and Zp provides instructions ensuring that
each agent 7, given its history and message, can better infer the global state. The initial protocol éo)
is then generated accordingly.

The initial protocol féo) is designed to embed task-relevant information for approximate state recov-
ery, but it must be validated against actual environment trajectories. To this end, we employ a dataset
B of sampled trajectories and define meta-information that measures how accurately each agent can

recover state dimensions. Specifically, for agent 4, state dimension d, and timestep ¢, we denote by

xf’((ikt) the binary indicator of whether sg; can be successfully reconstructed, where [= 1 represents

(k)

the case with the message mi’ and [= 0 represents the case without it. Formally,

i,(k) _ ai 2
Xz = lI8ae = saell® < o] 3)
where 1 is the indicator function, 8 ,, = Dfﬁk)(fg,mi’(k),i)‘d (with message), and &) ,, =

Dgg) (77,0,14) | 4 (without message). Here, Dgc) is the discriminator parameterized by ¢ and trained
to reconstruct the state using 3, while « denotes the reconstruction threshold. The temporal average
E, [X;’g? | then measures how well agent ¢ recovers dimension d with or without messages, and the

variance Var; [X;’((i t)] quantifies how unevenly this recovery is distributed across agents, serving as

an indicator of information imbalance.
We then use these statistics to drive the refinement process in the subsequent phases as follows:

Recognition Enhancement Phase (¥ = 1): The goal of this phase is to improve recovery accuracy

for each agent. To this end, the temporal average [, [xz((iot)] is obtained to identify cases where

messages fail to support accurate recovery. Based on this data, the feedback instruction Z(1) specifies

why accuracy is lacking and how the protocol should be revised, guiding the LLM to refine fél)
toward encoding more task-relevant information.

Sharing Enhancement Phase (¢ = 2): Although fg) improves recovery, inconsistencies may
remain across agents. This phase exploits the variance Var; [X;’Ellz] to analyze why imbalance arises,
such as when certain agents cannot identify specific state dimensions. From this data, the feedback

instruction Z(2) proposes concrete modifications to reduce heterogeneity, enabling the LLM to refine
fé?) so that all agents consistently interpret shared information.

Through this process, we obtain the final communication protocol fo = (é0)7 él), g)) that first
initializes a protocol, then improves recognition, and finally reduces imbalance across agents. To
illustrate the process, Fig[2] shows the overall refinement pipeline, including the task prompt, an ex-
ample of the generated protocol, and the meta-information with feedback used for updating. Fig[3]
presents phase-wise evaluation results, where the average meta-information E, [le(ﬁ] increases
steadily, indicating improved information recovery, while the variance across agents Var; [le(dkz] de-
creases, reflecting reduced information imbalance. These trends show that as refinement progresses,
the designed protocol enhances information recognition, alleviates information imbalance among
agents, confirming that the framework achieves its intended design. Additional details on prompt
construction, discriminator training, and trajectory dataset preparation are provided in Appendix

4.2 META-COGNITIVE REPRESENTATION LEARNING FOR MARL FRAMEWORK

Based on the final communication protocol fc, we define each agent’s aggregated message as m! =
(mi’(o), mb®, mi’@)) = fo(Tt). Using these messages, we propose LMAC, a MARL framework

Under review as a conference paper at ICLR 2026

Qtot1
1.01 0.12{ Mixing Network)
o I
‘€ 0.8 0.104 ! j
e @ |
£ 061 © 0.084 i
o S 0.061 |
E w2 0. |
0.44 = 1
S L 0.041 :
> 0.24 1
< 0.024 / X
oLL S cal ml] <1
NI « N s
TN WP w? CN? wZ w7 t Communication
SO WA R TR ! Protocol)
(@ (b) TtI
Figure 3: Phase-wise evaluation of meta-information: Figure 4: Overall framework of the proposed
(a) Average values and (b) variance across agents LMAC

(a) (b)
Figure 5: MALR Benchmarks used in our experiments: (a) SMAC-Comm, (b) LBF, and (c) GRF

that integrates LLM-driven communication into CTDE training. We adopt QMIX
as the baseline, aiming to provide each individual Q* with informative representations of the
global state, though the approach can also generalize to general CTDE methods such as VDN
and QPLEX (Wang et all, 2021)). Rather than feeding raw messages, we employ
an encoder—decoder (Enc,,, Decy,) with parameter 1) to compress and reconstruct information, ad-
dressing the inefficiency of high-dimensional states and the redundancy of raw messages. The latent
representation is defined as z; = Ency (7/, m}), and the encoder—decoder is trained to reconstruct

both the state s; and auxiliary meta-information fjt = 1[||8}, — sa.l|* < o], where 8, is the
reconstructed d-th state dimension. Here, £ reuses the meta-information idea from protocol design,
allowing agents to identify which state dimensions are accurately captured and which remain uncer-
tain.

In addition, to prevent irrelevant information from being encoded, we adopt a cycle-consistency loss
inspired by (2017). Specifically, the latent z; is decoded and then re-encoded using an
auxiliary encoder Enc, y, enforcing 2, ~ Encc y(Decy(z)) so that Enc y is trained to recon-
struct z;. The key intuition is that any redundant information in z; is discarded during decoding and
thus cannot be recovered by Enc, . As a result, the model learns to encode only reconstructable,
task-relevant features while suppressing noise. Finally, the learned latent 2} is incorporated into the
individual utilities Q%(7}, 2}), and the joint action-value Q" is optimized via TD-learning. The
overall framework is shown in FigEL and further details, including algorithm, loss functions, and
training procedures, are provided in AppendixB]

5 EXPERIMENTS

In this section, we evaluate the proposed method on three benchmark environments shown in Fig[3}
StarCraft Multi-Agent Challenge with Communication (SMAC-Comm) (Samvelyan et al.l 2019),
a communication-intensive variant of StarCraft II evaluated on bane_vs_hM, 1o_10b_vs_1r,
20.20b_vs_2r, and 5z _vs_lul; Level-Based Foraging (LBF) [Papoudakis et al.| (202T4), a co-
operative foraging task with settings 8x8-2p-2f-sl-coop and 11x11-6p-4f-sl-coop,
(n x n: grid size, p: agents, f: fruits, s: sight range); and Google Research Football (GRF)
(Kurach et al 2020), a cooperative soccer game with scenarios 3_vs_1_with _keeper and
run_pass_and_shoot. We first compare performance against other communication baselines,

Under review as a conference paper at ICLR 2026

Test Win Rate (%)

0 0.5 1.0 15 2.0 0) 0.5 1.0 15 2.0 00 05 10 15 20 25 3.0 3.5 4.0 45 50 00 05 1.0 15 20 25 3.0 35 4.0 45 5.0
Timesteps (M) Timesteps (M) Timesteps (M) Timesteps (M)
SMAC: bane_vs_hM SMAC: lo_10b_vs_1r SMAC: 20 _20b_vs_2r SMAC: 5z_vs_lul

601

401

201

Test Win Rate (%)

Test Normalized Return

0 0.5 1.0 15 20 0 05 10 1.5 2.0 0 0.5 1.0 15 2.0 25 3.0 00 0.57;.0 1.; 2.0 25 3.0 35 4.0 45 50
Timesteps (M) Timesteps (M) Timesteps (M) Timesteps (M)
LBF: 8x8_2p_2f sl_coop LBF: 11x11_6p_4f sl_coop GRF: 3_vs_1_with_keeper GREF: Run_pass_and_shoot

{ == LMAC (Ours) QMIX === QMIX + STATE == Full-comm MASIA == NDQ MAIC == COLA T2MAC }

Figure 6: Performance comparison in various MARL benchmarks

then analyze how phase-specific protocols contribute to cooperation. Unless otherwise specified,
experiments use gpt—4.1-2025-04-14 as the backbone LLM, with other variants included in
ablation studies. All results are averaged over 5 random seeds with standard deviations, and more
experimental details are provided in Appendix [C]

5.1 PERFORMANCE COMPARISON

To validate our approach, we compare LMAC against a broad set of communication-based MARL
methods. The comparison includes our baseline QMIX(Rashid et al., [2018), FullComm, where
agents broadcast full observations to all teammates, and QMIX+State, where each agent is provided
with the global state as an upper-bound reference. We further evaluate against NDQ(Wang et al.,
2020), which reduces communication cost via decomposable value functions; MASIA(L1 et al.,
2022b), which aggregates information through self-supervised representation learning; MAIC(Du
et al.| 2022)), which generates incentive messages to bias teammates’ utilities; COLA(Monda et al.,
2023)), which improves coordination through inter-agent consensus; and T2MAC(L1u et al.| |[2024),
which enables selective communication via evidence-driven integration. All baselines are evalu-
ated using author-released implementations. For our method, results are reported with the best-
performing threshold «, while full hyperparameter settings and further details of competing algo-
rithms are provided in Appendix [C|

Fig.[6|reports success rates across the three benchmark environments. On SMAC-Comm, our method
achieves faster convergence and higher final success rates across all four scenarios, with particularly
large gains on bane_vs_hM and the large-scale 20_20b_vs_2r, showing strong scalability when
state recovery is difficult or agent numbers grow. Notably, our results nearly match the upper-bound
QMIX+State, indicating that the designed protocols effectively capture the most critical state infor-
mation. On LBF, similar trends appear: our method learns faster and consistently reaches higher final
performance, again approaching QMIX+State. This confirms that interpretable and refined commu-
nication enables sufficient state reconstruction for coordinated behavior. On GRF, our method not
only surpasses all baselines but even outperforms QMIX+State in final success rates. Since GRF
involves high-dimensional observations, simply giving all agents the full state leads to excessive
dimensionality and slow convergence. By contrast, our latent learning compresses messages into
compact task-relevant features, enabling faster convergence and stronger cooperative strategies. This
directly demonstrates the efficiency of our latent representation design. Overall, these results high-
light that our framework consistently improves learning speed and final performance, while allowing
agents to exploit information more effectively across diverse MARL settings. In addition, to verify

Under review as a conference paper at ICLR 2026

"To solve the task, |(## Overseer = #% Banelings) (Feedback (k = 0) o
Overseer must tell P N =T 2 08
all Banelings Interpretable Messages (k = 0) Overseer sends “Roach at G 06
the Roach's position.” Send - (Ax, Ay) from me" but some 3 .,
1. Roach’s (4x, Ay) from Overseer Banelings can't locate it E E:n;omm
T @ to Banelings ¥ 9 L k=1
3 L= ~ - Solution < 00 2
LLMe < - ~ Add Overseer’s history and its 015 2 20
> l ©° Interpretable Messages (k = 1) relative position to each }
Send P Baneling to give localization o0
- N 1. Overseer’s recent history hints. % }
Env: 1o_10b_vs_1r 2. g;ﬁr;?:és (4x, Ay) to each (Feedback (k = 1) § 005
to Banelin Issue
o Some Banelings cannot identify o007 P o
~ which teammates they observe, Timesteps (t)
Interpretable Messages (k = 2) causing high variance. 0 (c)
Send $ s 195 1
1. Anchor coordinates centered on Solution \o\i %0 |
Overseer Py Generate a fixed anchor 2 s l
2. Explicit ID of observed Banelings coordinate and explicitly T g
' Roach @ Baneling -) specify which Banelings are § 75
Overseer © , sight Range || \L) visible to the Overseer. 7
AN J - o k=0 k=1 k=2

(a) (b) (d)

Figure 7: Protocol refinement analysis on SMAC 10_10b_vs_1r: (a) Task scenario with Overseer,
Roach and Banelings under partial observability, (b) protocol messages and corresponding feedback
at each phase k, (c) trajectory-level averages and variances of meta-information with (k = 0,1, 2)
or without messages (No-comm), and (d) average win rates across phases.

the generality of our approach, we also apply LMAC to VDN [Sunehag et al.| (2017) and QPLEX
Wang et al| (2021) in Appendix [E|and observe similarly significant performance gains.

5.2 TRAJECTORY ANALYSIS

To analyze how our framework yields interpretable communication protocols that improve infor-
mation recovery and balance, we conduct a trajectory analysis on the SMAC 10_10b_vs_1r map,
summarized in Fig[7] In (a), the task requires 10 Banelings (10b) to quickly converge on a Roach
(1r), with the Overseer (10) providing positional cues. Because absolute positions are not included
in raw observations, the LLM reasons that agents must infer both the Roach’s location and each
Baneling’s absolute position; otherwise, delays occur and less damage is dealt. In (b), protocol evo-
lution is shown: at k& = 0, the Overseer broadcasts “the Roach is Az, Ay (relative position) away
from the Overseer,” enabling partial localization but failing without knowledge of the Overseer’s
position. At k = 1, feedback notes that “the Overseer’s position is difficult to identify,” so the pro-
tocol is refined to include the Overseer’s relative position and recent history as localization hints. At
k = 2, variance-based feedback highlights that “some Banelings still cannot identify which team-
mates they observe,” prompting the use of a fixed anchor coordinate centered on the Overseer with
explicit IDs of observed agents. The final protocol thus shares the Roach’s relative position, the
anchor, and teammate IDs, allowing consistent absolute recovery. In (c), average meta-information
increases in phase 1, while its variance across agents drops in phase 2. In (d), learning performance
improves across phases as agents achieve shared localization and coordinate attacks. These results
confirm that our method yields interpretable messages whose refinements directly enhance recovery
and eliminate imbalance, validating the intended protocol design. Similar patterns are observed in
other environments, with additional analyses provided in Appendix

5.3 ABLATION STUDY

We conduct three ablation studies in the SMAC-Comm environment to validate the contributions
of our framework: (a) component evaluation, (b) comparison of different LLM variants, and (c)
the effect of the reconstruction threshold «.We additionally conducted experiments on the effect of
the number of update phases, the impact of reduced communication capacity, and computational
complexity, which can be found in Appendix [E] [f|

Component Evaluation: To analyze the effect of each component, we compare the performance
of protocols obtained at different refinement stages (k = 0,1, 2), as well as two variants of our
framework: one without the consistency loss (’w/o Consistency’) and one without meta-information

Under review as a conference paper at ICLR 2026

Table 1: Ablation study on SMAC-Comm: (a) Component evaluation (b) LLM variants (c) Compar-
ison across reconstruction threshold «

Setting Avg. Win Rate(%) LLM Avg. Win Rate(%) « Avg. Win Rate(%)
w/o Consistency 66.5 + 2.1 GPT 829+ 1.9 0.0005 77.2+ 2.1
w/o Meta 76.6 £ 5.6 GPT-mini 79.8 £ 1.5 0.002 79.3+28
k=0 68.5+3.8 GPT-01-mini 81.8 £2.9 0.005 80.5+ 1.7
k=1 77.8 £2.2 Claude 81.9+2.6 0.05 829+ 19
k =2 (Ours) 829+19 Gemini 80.8 £ 1.6 0.5 80.2+3.2

(a) Component evaluation (b) LLM variants (c) o comparison

reconstruction ("w/o Meta’). As shown in Table a), performance steadily improves as the refine-
ment phase progresses, consistent with our earlier findings that state recovery and balance improve
with each stage. Removing the consistency loss causes a clear drop in performance, demonstrat-
ing that eliminating redundant information in messages is crucial for learning. Similarly, removing
meta-information also degrades performance, confirming that knowing not only the recovered state
but also its reliability is essential for effective cooperation. Overall, these results show that every
component of our framework contributes substantially to performance.

LLM Variants: Table b) evaluates our method with different LLMs, including GPT-4.1, GPT-
4.1-mini, o1-mini, Gemini-2.5-Flash, and Claude-Opus. Results show that all recent LLMs achieve
strong performance, with GPT providing the highest success rates. However, smaller and more ef-
ficient models (e.g., GPT-4.1-mini, o1-mini) still perform competitively, demonstrating that the key
driver of performance is the multi-phase refinement process rather than reliance on a particular
model. This refinement procedure further encourages consistency in the resulting communication
protocols, ensuring that our framework remains broadly applicable across different LLMs.

Reconstruction Threshold o: Finally, Table[I|c) analyzes the effect of the reconstruction threshold
« used in constructing meta-information. A too small « makes the criterion overly strict, causing
most dimensions to be judged unrecoverable and leading to excessive message generation. While
performance is maximized at = 0.05, results remain stable for larger values, suggesting that our
method is not highly sensitive to this parameter. This robustness indicates that our framework can
be applied without heavy hyperparameter tuning.

6 LIMITATION

While our framework performs well and behaves as we intended, there remain a few limitations.
First, the approach introduces some overhead from training the discriminator and interacting with
LLMs during protocol refinement. However, as shown in the computational complexity analysis
in Appendix [F] the discriminator contributes only a small fraction to the total training cost, and
the limited number of LLM queries per refinement phase keeps the overhead modest. Second, the
protocol design partially depends on the reasoning ability of the chosen LLM. Nevertheless, as
shown in our ablation study, the method achieves consistent performance across different LLM
variants, and with the rapid progress in LLM reasoning, this dependency is unlikely to pose a major
obstacle going forward.

7 CONCLUSION

In this work, we introduced LMAC, a new communication-based MARL framework that com-
bines LLM-guided protocol refinement and meta-cognitive latent learning. Our method designs in-
terpretable communication protocols through multi-phase refinement with discriminator feedback,
ensuring that agents recover task-relevant information consistently and alleviate information im-
balance. The refined messages are then integrated into MARL framework via a latent module that
reconstructs states with reliability-aware meta-information, while cycle consistency enforces com-
pactness. Through this design, LMAC provides communication that is both interpretable and ef-
fective, enabling agents to achieve shared cognition and more stable cooperation. Empirical results
on SMAC-Comm, LBF, and GRF benchmarks show that our approach consistently achieves faster
convergence and higher final performance than strong communication baselines.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses exclusively on algorithmic contributions in cooperative multi-agent reinforce-
ment learning (MARL) under the CTDE paradigm. All experiments were conducted using publicly
available simulation environments, including SMAC-Comm (Samvelyan et al.| [2019; [Wang et al.,
2020), LBF (Papoudakis et al.,[2021a), and GRF (Kurach et al.,2020). These benchmarks do not in-
volve human subjects, personal data, or sensitive information. LLMs were used only for generating
and refining communication protocols within our proposed framework and for minor editorial pol-
ishing, without influencing research ideation, problem formulation, or analysis. We do not foresee
harmful applications beyond the intended scope of cooperative agent research. All work was con-
ducted in compliance with the ICLR Code of Ethics, with careful attention to fairness, transparency,
and research integrity.

REPRODUCIBILITY STATEMENT

We have made substantial efforts to ensure reproducibility of our results. Section] provides the de-
tailed description of our proposed framework, and Appendix [C|includes the implementation details.
The benchmarks used in our experiments are all publicly available, and code links are provided in
Appendix [C} An anonymized code repository containing our implementation and experiment scripts
is submitted as supplementary material, with further explanations included in the implementation
details. The baselines and their official code repositories are listed in Appendix ensuring that
all results reported in this paper can be independently reproduced.

REFERENCES

Adebola Adeniji, Annie Xie, Cristian Sferrazza, Younggyo Seo, Stephen James, and Pieter
Abbeel. Language reward modulation for pretraining reinforcement learning. arXiv preprint
arXiv:2308.12270,2023. URL https://arxiv.org/abs/2308.12270.

Saaket Agashe, Yue Fan, Anthony Reyna, and Xin Eric Wang. LLM-coordination: Evaluating and
analyzing multi-agent coordination abilities in large language models. In Luis Chiruzzo, Alan
Ritter, and Lu Wang (eds.), Findings of the Association for Computational Linguistics: NAACL
2025, pp. 8038-8057, Albuquerque, New Mexico, April 2025. Association for Computational
Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025 .findings-naacl.448.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Brian David, Chelsea
Finn, Cheng Fu, et al. Do as i can, not as i say: Grounding language in robotic affordances. arXiv
preprint arXiv:2204.01691,2022. URL https://arxiv.org/abs/2204.01691,

Anthropic. The claude 3 model family: Opus, sonnet, haiku. https://www.anthropic.com/
news/claude—3—-family, 2024.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Kubik, Michal Niewiadomski, Piotr Tora, Pawet
an, and Marc Gerstenberger. Graph of thoughts: Solving elaborate problems with large language
models. arXiv preprint arXiv:2308.09687, 2023.

Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua
Zhao, Jinyue Yan, and Yun Li. Survey on large language model-enhanced reinforcement learning:
Concept, taxonomy, and methods. IEEE Transactions on Neural Networks and Learning Systems,
36(6):9737-9757, June 2025. ISSN 2162-2388. doi: 10.1109/tnnls.2024.3497992. URL http:
//dx.doi.org/10.1109/TNNLS.2024.3497992.

Jingyu Chen, Ruidong Ma, and John Oyekan. A deep multi-agent reinforcement learning framework
for autonomous aerial navigation to grasping points on loads. Robotics and Autonomous Systems,
167:104489, 2023a.

Siwei Chen, Anxing Xiao, and David Hsu. Llm-state: Open world state representation for long-
horizon task planning with large language model. arXiv preprint arXiv:2311.17406, 2023b.

10

https://arxiv.org/abs/2308.12270
https://arxiv.org/abs/2204.01691
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
http://dx.doi.org/10.1109/TNNLS.2024.3497992
http://dx.doi.org/10.1109/TNNLS.2024.3497992

Under review as a conference paper at ICLR 2026

Yifan Chen, Weiming Dong, Zhitong Han, Yali Zhang, Si Liu, Zhaofei Chang, Lin Zhou, and Tong
Chen. Retroformer: Retrospective large language agents with policy gradient. In The Twelfth
International Conference on Learning Representations (ICLR), 2024.

Kai Chu, Xin Zhao, Cornelius Weber, Ming Li, and Stefan Wermter. Accelerating reinforcement
learning of robotic manipulations via feedback from large language models. arXiv preprint
arXiv:2311.02379,2023. URL https://arxiv.org/abs/2311.02379.

Longchao Da, Minquan Gao, Hao Mei, and Hua Wei. Prompt to transfer: Sim-to-real transfer for
traffic signal control with prompt learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 82-90, 2024.

Abhishek Das, Theo Gervet, Joel Romoff, Dhruv Batra, Devi Parikh, Marc’aurelio Ranzato, and
Arthur Szlam. TMC: Targeted multi-agent communication. In International Conference on Ma-
chine Learning (ICML), 2019a.

Abhishek Das, Théophile Gervet, Jiasen Romoff, Dhruv Batra, Devi Parikh, Mike Rabbat, and Joelle
Pineau. Tarmac: Targeted multi-agent communication. In Proceedings of the International Con-
ference on Machine Learning (ICML), 2019b.

Yuchen Du, Sheng Han, Jia Zhang, Meng-Feng Wang, and Zongqing Lu. Multi-agent incentive com-
munication via decentralized teammate modeling. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In Proceedings of the 40th International Conference on Machine Learning (ICML),
2023.

Jakob N Foerster, Yannis M Assael, Nando de Freitas, and Shimon Whiteson. Learning to communi-

cate with deep multi-agent reinforcement learning. In Advances in neural information processing
systems (NIPS), pp. 2137-2145, 2016.

Benjamin Freed, Guillaume Sartoretti, Jiaheng Hu, and Howie Choset. Communication learning via
backpropagation in discrete channels with unknown noise. In Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 7160-7167, 2020. URL https://ojs.aaai.org/index.
php/AAAT/article/view/6205.

Gemini Team and Google. Gemini: A family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805,2023. URL https://arxiv.org/abs/2312.11805.

C. V. Goldman and S. Zilberstein. Communication-based decomposition mechanisms for decentral-
ized mdps. Journal of Artificial Intelligence Research, 32:169-202, May 2008. ISSN 1076-9757.
doi: 10.1613/jair.2466. URL http://dx.doi.org/10.1613/jair.2466.

Hongxin Hu and Dorsa Sadigh. Language instructed reinforcement learning for human-ai coordina-
tion. In International Conference on Machine Learning, pp. 13697-13712. PMLR, 2023. URL
https://proceedings.mlr.press/v202/hu23e.html.

Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Learning multi-agent communication from
graph modeling perspective. In International Conference on Learning Representations (ICLR),
2024.

Seth Karten, Mycal Tucker, Siva Kailas, and Katia Sycara. Towards true lossless sparse communi-
cation in multi-agent systems. arXiv preprint arXiv:2212.00115, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
sawa. Large language models are zero-shot reasoners. In Advances in Neu-
ral Information Processing Systems, volume 35, pp. 22199-22213, 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
8bb0d29lacd4acf06ef112099clof326-Paper—-Conference.pdfl

11

https://arxiv.org/abs/2311.02379
https://ojs.aaai.org/index.php/AAAI/article/view/6205
https://ojs.aaai.org/index.php/AAAI/article/view/6205
https://arxiv.org/abs/2312.11805
http://dx.doi.org/10.1613/jair.2466
https://proceedings.mlr.press/v202/hu23e.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

Karol Kurach, Antonin Roux, Arthur Mensch, Szymon Sidor, Suzy Zoghbi, Eric Song, Corentin
Tallec, Marcin Andrychowicz, Wojciech Zaremba, Nicolas Heess, and Olivier Pietquin. Google
research football: A novel reinforcement learning environment. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, 2020.

Huao Li, Hossein Nourkhiz Mahjoub, Behdad Chalaki, Vaishnav Tadiparthi, Kwonjoon Lee, Ehsan
Moradi-Pari, Charles Michael Lewis, and Katia P Sycara. Language grounded multi-agent
communication for ad-hoc teamwork. In Advances in Neural Information Processing Systems
(NeurlIPS), 2024.

Lihe Li, Lei Yuan, Pengsen Liu, Tao Jiang, and Yang Yu. LLM-assisted semantically diverse team-
mate generation for efficient multi-agent coordination. In Proceedings of the 42nd International
Conference on Machine Learning (ICML), 2025.

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An Huang,
Ekin Akyiirek, Anima Anandkumar, Jacob Andreas, Igor Mordatch, Antonio Torralba, and Yuke
Zhu. Pre-trained language models for interactive decision-making. In Advances in Neural Infor-
mation Processing Systems, volume 35 of NeurIPS, pp. 31199-31212, 2022a.

Shun-Fei Li, Yu-An Liu, Cheng-Lin Wu, Ziyuan Luo, and Kai-Yi. Efficient multi-agent communica-
tion via self-supervised information aggregation. In Advances in Neural Information Processing
Systems (NeurlIPS), 2022b.

Yiqin Liu, Hao Sun, Jianing Pang, Zhaowei Wang, Yuzheng Zhang, and Guodong Li. T2mac:
Targeted and trusted multi-agent communication through selective engagement and evidence-
driven integration. In Proceedings of the International Conference on Learning Representations
(ICLR), 2024.

Yecheng Jason Ma, Jacky Collins, Lily Wong, Yuqing Du, Pieter Abbeel, and Abhishek Gupta. Eu-
reka: Human-level reward design via coding large language models. In The Twelfth International
Conference on Learning Representations (ICLR), 2024.

Gianmarco Paolo La Monda, Salvatore D’Oro, Alberto Garcia-Saez, and Albert L. Simeone. Cola:
Consensus learning for cooperative multi-agent reinforcement learning. In Proceedings of the
International Conference on Learning Representations (ICLR), 2023.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A univer-
sal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022. URL
https://arxiv.org/abs/2203.12601.

Tri-Cong Nguyen, Ngoc-Duy Nguyen, and Saeid Nahavandi. Deep reinforcement learning for multi-
agent systems: A review of challenges, solutions and applications. IEEE Transactions on Cyber-
netics, 50(9):3826-3842, 2020.

Yuan Niu, Rohan R. Paleja, and Matthew C. Gombolay. Multi-agent graph-attention communica-
tion and teaming. In Proceedings of the 20th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pp. 964-973, 2021. URL https://www.yaruniu.com/
pubs/aamas2]1_magic.pdf.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value func-
tions for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289-353, 2008.

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774,2023. URL https://arxiv.
org/abs/2303.08774.

James Orr and Ayan Dutta. Multi-agent deep reinforcement learning for multi-robot applications: A
survey. Sensors, 23(7):3625, 2023.

Georgios Papoudakis, Filippos Christianos, Lukas Schifer, and Stefano V Albrecht. Benchmarking

multi-agent deep reinforcement learning algorithms in cooperative tasks. In Proceedings of the
Neural Information Processing Systems Track on Datasets and Benchmarks, 2021a.

12

https://arxiv.org/abs/2203.12601
https://www.yaruniu.com/pubs/aamas21_magic.pdf
https://www.yaruniu.com/pubs/aamas21_magic.pdf
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774

Under review as a conference paper at ICLR 2026

Georgios Papoudakis, Filippos Christianos, Lukas Schéfer, and Stefano V. Albrecht. Benchmarking
multi-agent deep reinforcement learning algorithms in cooperative tasks, 2021b. URL https:
//arxiv.org/abs/2006.078609.

Jielin Qiu, Mengdi Xu, William Han, Seungwhan Moon, and Ding Zhao. Embodied executable pol-
icy learning with language-based scene summarization. In Kevin Duh, Helena Gomez, and Steven
Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers),
pp. 1896-1913, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024 .naacl-long.105.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob N. Foer-
ster, and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In Proceedings of the International Conference on Machine Learning
(ICML), 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob N. Foerster, and Shimon
Whiteson. The starcraft multi-agent challenge, 2019.

Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar, Ruoxi Jia, and Ming Jin. Algorithm of thoughts:
Enhancing exploration of ideas in large language models. arXiv preprint arXiv:2308.10379, 2023.
URL https://arxiv.org/abs/2308.103709.

Ruizhe Shi, Yuyao Liu, Yanjie Ze, Simon S. Du, and Huazhe Xu. Unleashing the power of pre-
trained language models for offline reinforcement learning. In International Conference on
Learning Representations (ICLR), 2024. URL https://openreview.net/forum?id=
AY6aM13gGF. Poster.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: Language agents with verbal rein-
forcement learning. In Advances in Neural Information Processing Systems (NeurIPS), 2023.

Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. Learning when to communicate at scale
in multiagent cooperative and competitive tasks. In Proceedings of the 36th International Confer-
ence on Machine Learning (ICML), 2019. URL http://arxiv.org/abs/1812.09755.

Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent communication with
backpropagation. In Advances in Neural Information Processing Systems (NIPS), 2016.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel. Value-
decomposition networks for cooperative multi-agent learning, 2017. URL https://arxiv.
org/abs/1706.05296.

Hugo Touvron, Thibaut Lavril, Guillaume Izacard, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971,2023. URL https://arxiv.org/abs/
2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

Boyuan Wang, Yun Qu, Yuhang Jiang, Jianzhun Shao, Chang Liu, Wenming Yang, and Xiangyang
Ji. LLM-empowered state representation for reinforcement learning. In Proceedings of the 41st
International Conference on Machine Learning (ICML), 2024.

Jianhao Wang, Zhizhou Ren, Terrence Sun, Yanguang Yu, and Chongjie Zhang. Learning nearly
decomposable value functions via communication minimization. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2020.

Jianhao Wang, Zongqi Ren, Teng Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling multi-
agent q-learning. In International Conference on Learning Representations (ICLR), 2021.

13

https://arxiv.org/abs/2006.07869
https://arxiv.org/abs/2006.07869
https://arxiv.org/abs/2308.10379
https://openreview.net/forum?id=AY6aM13gGF
https://openreview.net/forum?id=AY6aM13gGF
http://arxiv.org/abs/1812.09755
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971

Under review as a conference paper at ICLR 2026

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022. URL https://arxiv.org/abs/2212.10560.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems (NeurIPS), 2022.

Di Xue, Lei Yuan, Zongzhang Zhang, and Yang Yu. Efficient multi-agent communication via shap-
ley message value. In IJCAI, pp. 578-584, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022. URL https://par.nsf.gov/servlets/purl/10451467.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Sha, Silvio Savarese, Tao an, and Ruslan R-
Salakhutdinov. Tree of thoughts: Deliberate problem solving with large language models. In
Advances in Neural Information Processing Systems (NeurIPS), 2023.

Tianbao Yu, Yihua Li, Jiaming Fu, Kun Zhou, Yuan Wang, Chao Chen, Yi Yang, Lizhen Liu, and
Fan Yang. Text2Reward: Reward shaping with language models for reinforcement learning. In
The Twelfth International Conference on Learning Representations (ICLR), 2024.

Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing
Lu. Skill reinforcement learning and planning for open-world long-horizon tasks. arXiv preprint
arXiv:2303.16563, 2023a. doi: 10.48550/arXiv.2303.16563.

Tingting Yuan, Hwei-Ming Chung, Jie Yuan, and Xiaoming Fu. Dacom: Learning delay-aware com-
munication for multi-agent reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 11763-11772, 2023b. URL https://oJjs.aaai.org/index.
php/AAAT/article/view/26389.

Sai Qian Zhang, Qi Zhang, and Jieyu Lin. Efficient communication in multi-agent reinforcement
learning via variance based control, 2019. URL https://arxiv.org/abs/1909.02682.

Boyuan Zhao, Tsu-Jui Chang, Kuang-Huei Lee Liu, Andy Zeng, Chuyun Zhang, and S-Liang an.
Expel: Lifelong language agents with experiential learning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 38, pp. 155-164, 2024.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022. URL https:
//arxiv.org/abs/2205.10625.

Zexiong Zhou, Yigang Chen, Jiacheng Li, Xin Wang, hang Yan, and Dahua Lin. Buffer of thoughts:
Thought-augmented reasoning with large language models. In Thirty-eighth Conference on Neu-
ral Information Processing Systems (NeurIPS), 2024.

Changxi Zhu, Mehdi Dastani, and Shihan Wang. A survey of multi-agent deep reinforcement learn-
ing with communication. In Mehdi Dastani, Jaime Simao Sichman, Natasha Alechina, and Vir-
ginia Dignum (eds.), Proceedings of the 23rd International Conference on Autonomous Agents
and MultiAgent Systems, pp. 2845-2847, 2024a.

Changxi Zhu, Mehdi Dastani, and Shihan Wang. A survey of multi-agent deep reinforcement learn-
ing with communication, 2024b. URL https://arxiv.org/abs/2203.08975.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), pp. 2223-2232, 2017. doi: 10.1109/ICCV.2017.244.

Boris Zitkovich, Tianhe Yu, Sherry Xu, Peng Xu, Tete Xiao, Fei Xia, Jiajun Wu, Paul Wohlhart,
et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control. In Con-
ference on Robot Learning, pp. 2165-2183. PMLR, 2023. URL https://proceedings.
mlr.press/v229/zitkovich23a.htmll

14

https://arxiv.org/abs/2212.10560
https://par.nsf.gov/servlets/purl/10451467
https://ojs.aaai.org/index.php/AAAI/article/view/26389
https://ojs.aaai.org/index.php/AAAI/article/view/26389
https://arxiv.org/abs/1909.02682
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2203.08975
https://proceedings.mlr.press/v229/zitkovich23a.html
https://proceedings.mlr.press/v229/zitkovich23a.html

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

In this work, LLMs were employed only for two purposes: (i) as part of our proposed framework,
where API-based models (e.g., GPT-4.1-2025-04-14 and variants) were used to generate and iter-
atively refine communication protocols, and (ii) for polishing grammar and improving the clarity
of our writing. LLMs were not involved in research ideation, problem formulation, method design,
experimentation, analysis, or interpretation, and all scientific content and decisions were made by
the authors.

B IMPLEMENTATION DETAILS

This section provides the implementation details of our refinement process. [B.T]describes the con-
struction of prompts used in different refinement phases. presents examples of LLM outputs
for both protocol generation and feedback. Finally, details the training objectives of LMAC,
including the reconstruction, meta, and consistency losses.

B.1 PROMPT CONSTRUCTION FOR REFINEMENT PROCESS

Task prompt x: Here, x is the phase-specific prompt designed to guide the generation of commu-
nication protocols, and the LLM outputs a Python code based implementation of the protocol. For
each environment, we construct task descriptions based on the original scenarios defined by their
respective authors, including SMAC-Comm (Samvelyan et al., 2019 [Wang et al.| |2020), LBF (Du
et al.;|2022)), and GRF (Kurach et al.|[2020). Furthermore, the mapping of each observation and state
dimension into natural language is guided by Wang et al.|(2024), and representative examples are
illustrated below.

Observation description in natural language State description in natural language

Environment Observation Structure: Task description is:

- Observation tensor shape: (32, 11, 103) In a map full of cliffs, both the Overseer and the Roach spawn together at the
- 32: Number of scenarios simultaneously processed. same random location, while 10 Banelings spawn separately at random
- 11: Number of agents. points across the map. The Overseer is able to detect the exact position of the
- 103: Number of observation dimensions per agent. Roach (an enemy unit), ...

- Each dimension meaning:

“o[batch][agent_id][0]": Can move North at the current timestep The explanation of each state dimension is provided here:

“o[batch][agent_id][1]": Can move South at the current timestep - 's[0]': Agent 0 health

“o[batch][agent_id][2] : Can move East at the current timestep - 's[1]": Agent 0 weapon_cooldown,

“o[batch][agent_id][3] : Can move West at the current timestep - s[2]": Agent 0 absolute X coordination

“o[batch][agent_id][4] : Is enemy visible - s[3]: Agent 0 absolute Y coordination

“o[batch][agent_id][5] : Normalized distance to enemy - 's[4] : Agent 0 shield, continuous[0,1] value.

. - 's[5]": Agent 0 unit type ...
@ (b)

Figure B.1: (a) Example of observation description , (b) Example of state description

The task prompt is defined as « = (Zr,Zp), where I specifies the task objectives and environ-
ment characteristics, and Zp provides explicit instructions for protocol generation. Before directly
instructing the LLM to design a protocol, we first guide it through CoT (Wei et al.| 2022) reason-
ing to identify task-critical state dimensions. This reasoning step filters out irrelevant dimensions
in high-dimensional states and ensures that the protocol concentrates on essential information. In
particular, Z7 is constructed as a prompt describing the task and environment properties, while Zp
provides detailed instructions for communication protocol design. Their respective templates are
presented below.

Task Description Template(/)

Task Context - Task Objectives and Environment Characteristics:
Task Description:

{task_description}

Environment Observation Structure:

15

Under review as a conference paper at ICLR 2026

- Observation tensor shape: {obs_shape }

- {obs_dim_desc}

- Each dimension meaning: {detail content}

Environment Characteristics:

- Multi-agent partially observable environment

- Agents must coordinate under incomplete information

- Communication enables sharing of non-locally observable information

Protocol Generation Template(/p)

Communication Design Key Principles:

1. Task-Oriented Communication:
- Explicitly identify observation dimensions crucial to solving the task.
- Messages must clearly relate these dimensions to task objectives.

2. Uniqueness, Sufficiency & Compactness:

- Each agent should communicate information that others do not already possess or cannot
easily infer based on their own observations.

- Communication should ensure sufficiency, meaning that agents exchange enough
information to enable effective inference and coordination under partial observability.

- At the same time, messages should maintain compactness, minimizing redundancy and
avoiding the transmission of unnecessary or easily inferable data.

3. Contextual and Interaction-Aware:

- Communication should be based on the agent’s own observations, actively leveraging
behavior-relevant information derived from its ”perceived possibilities and recent behavior
patterns”.

- In environments where direct observation of allies and enemies is severely limited, agents
should emphasize sharing self-perceived behavioral information, such as movement
possibilities and recent actions, if available.

4. Explicitness and Clarity:
- Avoid overly abstract messages. All information critical for solving the task must be
included explicitly, in a clear and interpretable form.

5. Structured Output:
- The final output should be a tensor of shape ({batch, agents, obs_dim} + message_dim).

6. Communication Protocol:

- Specify whether information is exchanged via peer-to-peer (agent-specific) or broadcast
(global).

- Each agent should customize received messages based on the context and utility.

- Messages produced by an agent must be distributed and concatenated into the observations
of other agents, never into only its own.

- Each message must include a sender identity field (one-hot encoded vector).

7. Computational Efficiency:
- No trainable components (e.g., neural networks) in the communication function.

Observation Access Pattern:
For example:

16

Under review as a conference paper at ICLR 2026

- 0[2, 0, :] = observation vector of agent O in the 2nd batch
- 0[2, 2, :] = observation vector of agent 2 in the 2nd batch

Protocol Requirements:

Using the important state dimensions reasoning Tokens above, design a communication
protocol that enables agents to share information about these critical dimensions to improve
coordination.

You are required to create two Python functions:

1. message_design_instruction():

- Clearly describes how the message content is constructed based on the important state
dimensions and observation context

2. communication (o) :

- Input: Observation tensor o

- Output: Enhanced observation tensor with integrated task-specific messages

- Focus on communicating information related to the important dimensions identified above
Both functions must be executable and ready for direct integration with MARL algorithms.
Caution!: Create two Python functions that minimizes the use of “’for loops” when handling
batch processing to optimize computational efficiency.

Let’s think step by step. Below is an illustrative example of the expected output:

”’python

import torch as th

def message_design_instruction():

#Explain how this protocol helps agents coordinate using these critical dimensions

return message_description

def communication(0):

#Your communication implementation focusing on important dimensions

#You should design the communication protocol based on the message design instruction
#use same device as input to avoid CUDA/CPU mismatch

return messages_o

999

Feedback instruction: 7 is a prompt designed to generate natural language feedback by analyzing
the limitations of the current protocol through meta-information derived from the discriminator’s
evaluation and by suggesting directions for improvement. The Feedback Prompt Template follows a
fixed structure with the phase index, objectives, phase instruction, and discriminator results. Among
these, the phase instruction provides the phase index with a clear goal and concise guidance on how
the protocol should be refined. In the Recognition Enhancement phase it emphasizes improving re-
construction of critical state dimensions and addressing uneven prediction across agents, while in the
Sharing Enhancement phase it focuses on reducing cross-agent imbalance and ensuring consistent
state recovery through coordination cues and temporal signals.

Feedback Prompt Template

You are an analysis agent tasked with improving communication strategies in a multi-agent
reinforcement learning (MARL) system.

{x}

{phase_instruction}

Previous Protocol Under Analysis:
{cur_communication_method}

DISCRIMINATOR EVALUATION RESULTS:
{meta_information}

17

Under review as a conference paper at ICLR 2026

Analysis Context:

- Each agent combines its own local observation with received messages to infer important
state dimensions

- You are analyzing predictability results showing how accurately each agent can infer critical
dimensions

- Performance differences across agents indicate areas where communication protocol needs
improvement

Expected Output Format (JSON):

{

"Evaluation": "...",
"Missing.Information Hypothesis": "...",
"Improvement_Suggestions": "..."

}

To update the protocol with the generated feedback, the following additional context template is
appended to the protocol generation prompt.

Additional context Template

Here is the feedback from the previous communication protocol evaluation:
{feedback }

Reflect the feedback by designing messages from each agent’s own observations, prioritizing
information that enables all agents to achieve consistent state prediction and shared
understanding.

18

Under review as a conference paper at ICLR 2026

B.2 DETAILS OF LLM OUTPUTS FOR PROTOCOL AND FEEDBACK

Communication Protocol Since protocol generation relies on high-dimensional tensors, the LLM
may not align dimensions correctly in one attempt. We therefore adopt a Reflexion-based mecha-
nism, where error messages are fed back for iterative correction. Expressing the protocol in code
allows direct verification of transmitted information, while the accompanying message design in-
struction makes the communication process interpretable even to non-experts. Here is the example
of the communication protocol.

Example of Generated Protocol

import torch as th

def message_design_instruction() :

nmwn

Message Design Instruction:

**Senderxx: Only the Overseer (agent at index 10) sends
messages.
— xxReceivers*x: All Banelings (agent indices 079) receive the
message.
The Overseer does not receive any messages.
- *xMessage Contentxx:

— “relative_x": Overseer's observed relative X position of
the enemy
Roach (Tof[..., 6]17).

— xxWhyx+*: Only the Overseer can observe the Roach; Banelings
need this
precise and actionable info to coordinate and attack.
Including sender
identity ensures explicit grounding and prevents ambiguity.

nwn

return (

def communication (o) :
device = o.device
batch_size, n_agents, obs_dim = o.shape
message_dim = 14

1. Get Overseer's observation (agent index 10)
overseer_obs = of[:, 10, :] # (batch, 103)

2. Extract required info from Overseer

relative_x = overseer_obs[:, 6].unsqueeze(l) # (batch, 1)
relative_y = overseer_obs[:, 7].unsqueeze(l) # (batch, 1)
is_visible = overseer_obs[:, 4].unsqueeze (1) # (batch, 1)

5. Broadcast message to all agents

messages = th.zeros(batch_size, n_agents, message_dim,
device=device)

messages|[:, 0:10, :] = overseer_message.unsqueeze (1) .expand (-1,
10, -1)

6. Concatenate messages to observations
messages_o = th.cat ([o, messages], dim=2) # (batch, 11, 117)
return messages_o

19

Under review as a conference paper at ICLR 2026

Meta-information: Meta-information serves as a quantitative indicator of how communication
improves state prediction compared to the no-message baseline. In the Recognition Enhancement
phase, it measures the average success rate of reconstructing state dimensions, as can be seen in Fig-
ure[B.2](a), which shows the overall improvement achieved through communication. In the Sharing
Enhancement phase, it captures the variance of prediction performance across agents over time, as
illustrated in Figure[B.2}(b), enabling a more fine-grained analysis of consistency.

Meta-information E; [x;,(ikt) Meta-information Var; [){;(dkt)
"dimension": "s[62] - Agent 10 absolute X coordination", "dimensions":"s[62] - Agent 10 absolute X coordination",
"with_communication": { "with_communication": {
"agent_success_rates": [0.64, 0.56, .. , 0.65, 0.95] "early": [0.407, .. , 0.775], variance: [0.033],
"without_communication®: { "mid": [0.791, .. , 0.978], variance: [0.013]
"agent_success_rates": [0.52, 0.47, .. , 0.39, 0.94] @
"late": [0.766, .. ,1.0], variance: [0.015]
"dimension": "s[63] Agent 10 absolute Y coordination",
"with_communication": { "without_communication": {
"agent_success_rates": [0.98, 0.98, .. , 0.97, 1.0] "early": [0.219, .. , 0.769], variance: [0.363]
"ﬁithout_communication": { "mid": [0.575, .. , 0.981], variance: [0.243],
"agent_success_rates": [0.38, 0.37, .. , ©0.39, 1.0] @
"late": [0.716, .. , 1.0], variance: [0.143]
(@) (b)
: i, (k . .
Figure B.2: (a) Example of temporal average [E, [Xl’gz t)] based on meta-information , (b) Example of

2y

. i (k . .
variance Var; [X;fl(i t)] based on meta-information

Natural Language based Feedback: The natural language feedback ¢(**+1) transforms the quan-
titative meta-information into actionable and interpretable guidance that directly supports protocol
refinement. It consists of three parts: (i) evaluation of the current protocol, (ii) hypotheses about
missing information, and (iii) concrete suggestions for improvement. An example can be found be-
low, which illustrates how quantitative results are translated into actionable refinements.

Example natural language feedback c(*+1)

Evaluation : The current communication protocol enables the Banelings (agents 0-9) to
receive Overseer’s (agent 10) relative enemy position ... This significantly improves prediction
accuracy of critical state dimensions ... compared to no communication. However, the success
rates across Banelings are uneven and notably lower than the Overseer’s own high accuracy,
indicating inconsistent inference ...

Missing information hypothesis : The protocol currently misses explicit indicators of
agent-specific observation reliability or visibility, which would clarify which agents have
direct knowledge of the enemy or Overseer positions and which rely solely on
communication. It also omits behavioral or temporal context that could help agents
disambiguate relative positioning over time. ...

Improvement suggestions :

1. Include an explicit visibility or reliability flag per agent in the message to indicate whether
the Overseer currently has direct, reliable observation of the enemy and itself, enabling agents
to weigh communicated information appropriately.

2. Augment the message with behavioral cues such as a timestamp or sequence number to
help agents track message freshness and temporal consistency.

20

Under review as a conference paper at ICLR 2026

B.3 TRAINING LOSSES OF LMAC

Discriminator Training: The training dataset B consists of 5000 trajectories per environment,
collected at 200k training steps under e-greedy exploration with the initial protocol fixed across five
seeds to avoid bias and capture its limitations as a basis for refinement. Based on this dataset, the

discriminator D(¥) evaluates how well a candidate communication protocol f((jk) contributes to state

reconstruction: for each agent 4, it takes the local observation o} and the message mi’(k) as input and

reconstructs the global state s;. The training objective is defined as

¢ = argminE o 1,0 6105 (0, mi ™) — sl (B.1)

where D) is implemented as an autoencoder that compresses the input into a latent representation
and reconstructs it to estimate the global state. Training is conducted with 53 using MSE loss and
mini-batch SGD in a supervised learning setup. The reconstructed outputs are further used to com-

pute the meta-information X;((ikt) , which provides recognition accuracy and imbalance indicators.

Table B.1: Hyperparameters used for training the discriminator D).

Parameter Value
Batch size 32
Dropout rate 0.1
Epochs 1000
Iterations per epoch 10
Hidden dimension 64
Latent dimension 20
Learning rate 0.0005
Optimizer Adam

Representation and Policy Training: The Meta-Cognitive Representation Learning module is im-
plemented as an autoencoder architecture. The encoder Enc,, incorporates an attention mechanism,
where the query is formed from the current observation and received messages, while the key and
value are derived from the trajectory 7;. This allows the latent representation 2 to capture how the
current observation and message attend to 7;. The decoder Decy, takes the latent representation as
input and produces two outputs: (i) an estimate of the global state §§, and (ii) the meta informa-

L . oo ; A 2 o
tion £ ,. The meta information is defined as £, , = I [(32 ¢ —Sa) < a} , which indicates whether

agent 7, given its messages and trajectory, can accurately reconstruct a particular state dimension.
The training objective for these outputs is

N D
1 Ad £i i
ﬁrecon = IE(‘r,s)~B []VD Z Z (”Sd,t - Sd,t”§ + /\meta CE(Ed,tv gd,t)>‘|) (Bz)

i=1 d=1

where CE denotes the cross-entropy loss and Ayt balances state reconstruction with meta-
awareness in the latent representation.

To prevent unnecessary information from being encoded in the latent space, we introduce a cycle-
consistency constraint. Specifically, the latent representation 2! is reconstructed through the decoder
and re-encoded using an auxiliary encoder Enc, ,;, ensuring that only essential state-related features
remain in the latent representation. The corresponding loss is

N
ﬁcons = E(T,S)NB % Z (Hétl - ZtZ”g) . (B3)
i=1

In parallel, policy learning is guided by the temporal-difference (TD) error, computed using the
current network parameters 6 and the target network parameters 6.

LTD - Es,a,r,s’ |:(Tt + ’YInaE}X ng—t(st-‘rla a/> - QtQOt(St, at))z] . (B4)

21

Under review as a conference paper at ICLR 2026

Algorithm 1 LLM-driven Multi Agent Communication (LMAC)

1: Initialize: task prompt = = (Z7, Zp), reasoning tokens z(?) (via CoT essential state selection),

o, ¥, Q network
2: for k=0,1,2do

3: Generate communication protocol fék) ~ fEEM(z, 2(R)

4: if £ = 0 then

5: Collect trajectory dataset 3

6: end if

7: Train discriminator D((bk) on B by minimizing equation

8: Compute meta-information X?((ikt)

9: Derive feedback instruction Z(**1) and generate feedback ¢(¥+1)
10: Update tokens 2(Ft1) ~ fLIM (g c(k+1))
11: end for

12: Final protocol fo = (éo), él), g))

13: for each training episode do

14: Obtain messages m} = fo(7y)
15: Encode latent z; = Ency, (77, m})
16: Decode to predict state 5; and meta-info £},

17: Compute L,econ using Equation

18: Compute Lons by Equation [B.3|

19: Update parameters ¢ and by minimizing the overall objective with TD-loss for QMIX
20: end for

Finally, representation learning is jointly optimized with the TD error, and the complete objective is
defined as
L= ETD + Erecon + >\COHS Econs- (BS)

The overall training procedure of LMAC is summarized in Algorithm

22

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS

All baseline algorithms are evaluated using the official implementations and default settings released
by their respective authors. The implementation of LMAC is based on EPyMARLEl (Papoudakis

, and all experiments in SMAC were conducted using StarCraft IT version 2.4.10. Our
method and comparisons are trained on an NVIDIA RTX 4090 GPU with an AMD EPYC 9334
CPU (Ubuntu 20.04). In the following sections, we provide details of the environments, baseline
algorithms, reconstruction threshold settings, and hyper-parameter configurations used in our exper-
iments. In particular, [C.T]outlines the environment settings, [C.2]describes the baseline algorithms,
and [C.3|summarizes the hyper-parameter configurations of our implementation.

C.1 ENVIRONMENT DETAILS

C.1.1 STARCRAFT MULTI-AGENT CHALLENGE WITH COMMUNICATION

(a) bane_vs_hM (b) 1o_10b_vs_1r (c) 20.20b_vs_2r (d) 5z_vs_1ul

Figure C.1: SMAC-comm scenarios: (a) bane_vs_hM, (b) 10.10b_vs_1r, (¢) 20.20b_vs_2r,
(d) 5z_vs_1ul.

We evaluate our method on four scenarios from the StarCraft Multi-Agent Challenge with com-
munication (SMAC-Comm). Among them, bane_vs_hM, 10_.10b_vs_1r, and 5z_vs_lul are
introduced by |[Wang et al.| (2020), while 20_20b_vs_2r is a new map we propose based on
lo_10b_vs_1r. The illustrations of these scenarios are shown in Figure and their detailed
configurations are summarized in Table [C.1]

In SMAC-Comm, the state space contains absolute information of all units, including their posi-
tions, health, shields, energies, cooldowns, unit types, and most recent actions, while each agent’s
observation space is restricted to local information within its sight range, capturing relative posi-
tions, health, shield status, and unit types of nearby allies and enemies. The action space is defined
as a set of discrete actions, including movement in four directions, attacks on visible enemies, special
unit abilities, as well as stop and no-op commands, where no-op is used exclusively by eliminated
units. The reward function is shaped by damage dealt to enemies, elimination of enemy units, and
winning the scenario, and is formally defined as

R = Z AHealth(e) + Z I(Health(e) = 0) - Rewardgeamn + I(win) - Rewardy;, (C.1)

ecenemies ecenemies

where AHealth(e) denotes the health reduction of enemy unit e during a timestep, I(-) is an indi-
cator function, and Rewardge,, and Rewardy;, are set to 10 and 200, respectively. A more detailed
description of each scenario is provided below.

bane_vs_hM: Three Banelings attempt to take down a Hydralisk supported by a Medivac. Only
when all three explode together can the Hydralisk be defeated, as any delay allows the Medivac to
restore its health. To succeed, the Banelings must strike in perfect unison at the central junction of
the T-shaped map, where the Hydralisk is positioned. This scenario requires agents to accurately
perceive their positions and execute attacks simultaneously in order to succeed.

10_10b_vs_1r: On a cliff-dense map, an Overseer locates a Roach that must be eliminated by its 10
Baneling allies to secure victory. While the Overseer and Roach appear together at a random spot, the
Banelings spawn separately across the map. Under a minimal communication scheme, the Banelings
remain silent, leaving the Overseer responsible for encoding its own position and transmitting it to
guide the team.

'https://github.com/uoce-agents/epymarl

23

https://github.com/uoe-agents/epymarl

Under review as a conference paper at ICLR 2026

20-20b_vs_2r:. This map is an extension of 10_10b_vs_1r that we propose. Similar to the original
setting, the scenario is played on a cliff-dense map where 20 Banelings must eliminate 2 Roaches.
Both Roaches and Banelings spawn at random locations across the map. This environment is de-
signed to evaluate whether our proposed communication method remains effective in more complex
scenarios with a larger number of agents.

5z_vs_lul: This map features five Zealots controlled by the agents against one Ultralisk as the enemy.
The Ultralisk has high health and strong melee attacks, requiring coordinated micro-management
from the Zealots to win. The challenge emphasizes some tactics such as kiting strategies, positioning,
and focus fire to maximize damage while minimizing losses.

Table C.1: Detailed description of SMAC-Comm scenarios

Map Ally Units Enemy Units State Dimension Obs Dimension Num. of Actions
bane_vs_hM 3 Banelings 1 Hydralisk, 52 31 8
1 Medivac

lo_10b_vs_1r 1 Overseer, 1 Roach 148 85 7

10 Banelings
20 20r_vs_2r 2 Overseers, 2 Roaches 296 171 7

20 Banelings
5z_vs_lul 5 Zealots 1 Ultralisk 63 36 7

C.1.2 LEVEL-BASED FORAGING

& BAEuEaEE"
e et
@ N @
G

(a) 8x8_2p_2f_sl_coop (b) 11x11_6p_4f_sl_coop

Figure C.2: LBF scenarios: (a) 8x8_ 2p_2f_s1_coop, (b) 11x11_6p_4f_sl_coop.

We adopt the Level-Based Foraging (LBF) variant introduced by Li et al. (2022b). The state space
is represented as a structured grid encoding the positions and levels of all agents along with the
locations and required levels of food items, rather than by concatenating individual observations.
With the cooperation option enabled, each food item requires the joint effort of multiple agents,
with its level set equal to the sum of the three lowest agent levels, ensuring that no agent can collect
food alone and that every successful loading demands coordination. The observation space for
each agent is limited to a 3 x 3 local field centered on itself, capturing relative information about
nearby agents and food. The action space consists of six discrete actions: moving north, south,
east, or west, attempting to load adjacent food, and the idle action (none). The reward function is
cooperative and normalized by the total potential food value, granting positive returns only when
the combined levels of participating agents meet or exceed the requirement of the targeted food. We
evaluate two cooperative configurations as illustrated in Figure[C.2}

8x8 2p_2f s1_coop: A compact 8 x 8 grid with 2 agents and 2 food items, where cooperation is
strictly enforced for every collection attempt.

11x11_6p_4f_s1_coop: A larger 11 x 11 grid with 6 agents and 4 food items under the same cooper-
ative setting, introducing greater complexity through increased agent interactions and map size.

24

Under review as a conference paper at ICLR 2026

C.1.3 GOOGLE FOOTBALL RESEARCH

® Ally
® Opponent
Ball

7D (g B D 4

(a) run_pass_and_shoot (b) 3_vs_1_with_keeper

Figure C.3: GRF scenarios: (a) Run_pass_and_shoot, (b) 3_.vs_1_ with keeper.

We use the Google Research Football (GRF) environment (Kurach et al) [2020), a
physics-based soccer simulator that incorporates core mechanics such as ball control, pass-
ing, shooting, tackling, and player movement. In this environment, each agent controls
an individual player and must cooperate with teammates to score goals against scripted
opponents. From the GRF scenarios, we consider academy_3_vs_1 with keeper and
academy_run_pass._and_shoot _with keeper, whichwerefertoas 3_vs_1_with keeper
and run_pass_and_shoot for brevity. The illustrations of the GRF scenarios are shown in Fig-
ure [C.3] and their detailed configurations are summarized in Table

In GRE, the state space contains the positions and velocities of all players as well as the ball, with
ally and opponent features represented in the same format. Each agent’s observation space con-
sists of local information about itself, nearby teammates, opponents, and ball-related features, all
expressed relative to the agent’s frame. The action space is discrete and includes movement in eight
directions, sliding, passing, shooting, sprinting, and standing still, which together enable the agents
to create scoring opportunities. The reward function is provided under two schemes: Scoring and
Checkpoint. The Scoring function gives +1 for scoring a goal and -1 for conceding, while the Check-
point function provides additional intermediate rewards such as for successful passes or defensive
actions. In our experiments, we adopt the sparse Scoring function to increase the difficulty of the
scenarios. A more detailed description of each scenario is provided below.

3_vs_1_with _keeper: Three attackers operate from the edge of the box: one on each wing and one
in the center. The central player begins with the ball while directly confronted by a defender, and
an opposing goalkeeper guards the net. The scenario emphasizes teamwork through passing and
positioning to create scoring opportunities.

run_pass_and_shoot: Two attackers are positioned near the edge of the penalty area. One player
starts wide with possession and is unmarked, while the other is placed centrally, marked by a de-
fender, and facing the goalkeeper. The setup encourages passing and coordinated shooting to over-
come the defense.

Table C.2: Detailed description of GRF scenarios

Scenario Ally Opponent State Dim Obs Dim Action Dim

1 goalkeeper,

1 center back 26 26 19

3_vs_1_with keeper 3 central midfield

1 goalkeeper,

1 center back 22 22 19

Run_pass_and_shoot 2 central back

25

Under review as a conference paper at ICLR 2026

C.2 DETAILED DESCRIPTION OF BASELINE ALGORITHMS

QMIX (Rashid et al., 2018) QMIX factorizes the joint action-value function into individual util-
ities using a monotonic mixing network. It provides a strong baseline for cooperative MARL un-
der centralized training with decentralized execution, but does not involve explicit communica-
tion between agents. We base our implementation of QMIX on the following repository: https:
//github.com/hijkzzz/pymarl2

FullComm A variant of QMIX where each agent broadcasts its full local observation to all others at
every timestep. This represents an upper-bound setting with maximal communication capacity but
incurs heavy redundancy and communication cost.

QMIX+State An oracle-like upper bound where each agent is directly given the global state in
addition to its local observation. This allows agents to make fully informed decisions and serves as
a reference for the maximum achievable performance.

NDQ (Wang et al., [2020) Neural Decomposable Q-learning introduces nearly decomposable Q-
functions that minimize communication overhead. Agents act independently most of the time,
but exchange messages guided by information-theoretic regularizers that maximize mutual in-
formation while minimizing entropy. This approach achieves strong coordination while reduc-
ing communication by over 80% compared to full exchange. The official code can be found at:
https://github.com/TonghanWang/NDQ

MASIA (Li et al., 2022b) Multi-Agent Self-supervised Information Aggregation enables agents to
aggregate received raw messages into compact, permutation-invariant representations. These em-
beddings are optimized through self-supervised objectives such as reconstruction and prediction,
allowing agents to extract the most relevant information for decision-making and significantly im-
prove coordination. The official code can be found at: https://github.com/chenf-ai/
Multi-Agent-Communication-Considering—Representation-Learning

MAIC (Du et al., 2022) Multi-Agent Incentive Communication allows each agent to generate in-
centive messages that directly bias teammates’ value functions, promoting explicit coordination. By
learning targeted teammate models and applying sparsity regularization, MAIC improves efficiency
and achieves strong performance across diverse cooperative MARL benchmarks. The official code
can be found at: https://github.com/mansicer/MAIC

COLA (Monda et al., 2023) Consensus Learning for Agents enables cooperative behavior by al-
lowing agents to infer a shared consensus representation from their local observations. Even without
direct access to the global state, agents learn viewpoint-invariant representations that converge to
the same discrete consensus, which is then used as an additional input for decentralized decision-
making. The official code can be found at: https://github.com/deligentfool/COLA

T2MAC (Liu et al), 2024) Targeted and Trusted Multi-Agent Communication equips agents with
mechanisms for selective engagement and evidence-driven message integration. Agents decide when
and with whom to communicate, exchange individualized messages, and integrate received informa-
tion at the evidence level, leading to more efficient and reliable cooperation. The official code can
be found at: https://github.com/ZangZehua/T2MAC

C.3 HYPER-PARAMETER SETUP

We calibrated the reconstruction threshold « according to the spatial structure and visibility con-
ditions of each environment: 0.05 for SMAC-Comm where normalized coordinates directly reflect
spatial error, a stricter 0.005 for the more challenging bane_vs_hM scenario, 0.002 for GRF with
absolute field coordinates and weaker observability limits, and 0.1 for the grid-based LBF where
prediction depends on cell occupancy. Beyond these thresholds, default hyper-parameters were used
as the baseline configuration. For each scenario, we primarily followed the settings provided by the
original authors; when such specifications were unavailable, the default parameters were applied.
The full set of hyper-parameters used in our experiments is summarized in Table|C.3

26

https://github.com/hijkzzz/pymarl2
https://github.com/hijkzzz/pymarl2
https://github.com/TonghanWang/NDQ
https://github.com/chenf-ai/Multi-Agent-Communication-Considering-Representation-Learning
https://github.com/chenf-ai/Multi-Agent-Communication-Considering-Representation-Learning
https://github.com/mansicer/MAIC
https://github.com/deligentfool/COLA
https://github.com/ZangZehua/T2MAC

Under review as a conference paper at ICLR 2026

Table C.3: Common hyper-parameter setting of LMAC

Parameter Value
Hidden dimension for self-attention module 64
Latent dimension 20
Dropout rate 0.1
Optimizer Adam
€ anneal step 50000
€ Decay Value 1.0 — 0.05
Replay buffer size 5000
Target update interval 200
Mini-batch size 32
Mixing network dimension 32
Discount factor ~y 0.99
Learning rate 0.0005
Coefficient of meta-information 10Ss Apeta 0.1
Coefficient of consistency 108s A¢ons 1
temperature(LLM generation) 0.6

27

Under review as a conference paper at ICLR 2026

D ADDITIONAL TRAJECTORY ANALYSIS

In addition to the main trajectory analysis presented in the paper, we further examine protocol re-
finement in other SMAC-Comm scenarios and GRF tasks. These supplementary cases demonstrate
that the framework yields interpretable communication protocols whose iterative refinements adapt
to scenario-specific challenges. The following analyses provide examples from different environ-
ments, illustrating how the protocol evolves beyond the scenarios presented in Section [5.2]

SMAC-comm: bane_vs_hM

: - s N
"To solve the task, = Banelings 4= &% Banelings) Feedback (k = 0)
Banelings must know (Interpretable Messages (k= 0)) Issue
the positions of all the others" Send Banelings 0 and 1 absolute coordinates
. . ‘ are predicted inconsistently, often with
1. Hydralisk’s (Ax, Ay) from each Banelings S (EES [B
T @ 2. Own health ratio. _ L 4
b 9; L to Banellngs) Solution
LLMe < > ~ Add visibility flags and movement
7 l © Interpretable Messages (k = 1) possibility so receivers can judge both the
Send . ' reliability of shared positions and the
1. Visibility of Hydralisk L sender’s mobility constraints.)
(. N 2. Visibility of Ally Banelings ~ N
R 2= L] - Feedback (k = 1)
3. Movement possibility
: ‘ Issue
| 4. Recent history to Banelings) Prediction variance for Banelings 0 and 1
F N absolute X/Y remained due to missing
Interpretable Messages (k = 2) temporal and behavioral context.
Send '
1. Aggregated movement history about -
' Solution
last 10 steps Provide temporal action history and
)) 2. (Ax, Ay)of an ally that the Banelings the (Ax, Ay) of a visible ally to stabilize
. Hydralisk @ Baneling ; absolute coordinate prediction and reduce
\o Medivac Sight Range) \{ can currently see to Ba"e""gsjj L variance across agents.)
(a) (b)

Figure D.1: Protocol refinement analysis on SMAC bane_vs_hM: (a) Task scenario with Banelings,
Hydralisk and Medivac under partial observability, (b) protocol messages and corresponding feed-
back at each phase k

As a complementary case, we analyze protocol refinement in the SMAC bane_vs_hM map, sum-
marized in Fig. In (a), three Banelings must coordinate a simultaneous detonation against a
Hydralisk supported by a Medivac, where precise synchronization is critical. Because absolute coor-
dinates are absent from local observations and the long vertical corridor makes y-position inference
particularly difficult, agents struggle to align their attacks without additional cues. In (b), protocol
evolution is shown: at k¥ = 0, Banelings broadcast the Hydralisk’s relative position (Az, Ay) and
their own health ratio, which provides partial but unreliable signals, resulting in inconsistent ab-
solute localization. Feedback highlights this instability and suggests including visibility indicators,
movement possibilities, and recent history. At & = 1, these additions improve the interpretability
of shared information, but prediction variance remains high for certain coordinates due to missing
temporal and behavioral context. At k = 2, variance-based feedback leads to incorporating aggre-
gated movement history over the last 10 steps together with the relative position of currently visible
allies, allowing agents to stabilize absolute predictions and achieve consistent coordination. These
results show that refining protocols to generate and share structured temporal-behavioral features,
rather than only raw observations, is key to enabling consistent absolute localization under partial
observability.

28

Under review as a conference paper at ICLR 2026

GRF: Run_pass_and_shoot

"To solve the task, 4 % Player «» & Player N\ Predicted States(}) per Agent
players must have an (k=0) ® Agento
accurate knowledge <o Interpretable Messages () ot 1
of all other players’ positions." .
1. Own position & (4x, Ay) of ball P , o
"‘ °
@ 2. Opponent GK/CB (4x, Ay) & directions ¢)
d T = to Ally & 2 e
pL < _) % ° H
'.' o
LLMo (Interpretable Messages (k=1)) 5 °
& l ° Send .
o
1. Behavior cues from recent action history °
t 2. Confidence Scores: distance-based Meta-lnformation(éﬁ,,f) per Agent
("Env: Run_pass_and_shoot) MR @fF @, el Y
. to Ally e e
R \ _J/ 3 ° o tN
(Interpretable Messages (k = 2) - &
Send o
9 1. Acceleration & heading change made using
{ ; consecutive position/direction differences. 1 ot
PPN
- 2. Behavioral cues pooled over last 10 steps oo _'
iq Ally ” Opponent o &
¢ toAly)] | it
_ J & 7
(a) (b) (©)

Figure D.2: Protocol refinement analysis on GRF Run_pass_and_shoot: (a) Task scenario with
two attackers, a defender, and goalkeeper near the penalty area, (b) protocol messages at each phase
k, (¢) t-SNE of predicted states and meta-information showing convergence across agents after com-
munication.

As a complementary case, we analyze protocol refinement in the GRF Run_pass_and_shoot
scenario, summarized in Fig.[D.2} In (a), two attackers must cooperate near the penalty area against
a central defender and a goalkeeper. Although the state space in GRF is structurally simpler than in
SMAUQ, it remains important that agents infer states from shared messages and incorporate them into
policy decisions, a pattern that is also observed in LBF. (b) shows the protocol evolution. At & = 0,
each agent shares its own position, the relative displacement of the ball, and the positions of the
central defender and goalkeeper, but such information alone is limited for predicting other aspects
of the state. Accordingly, at & = 1, behavioral cues such as pass/shoot readiness and sprinting,
together with confidence scores regarding the goalkeeper and ball, are added. At £k = 2, dynamic
features such as acceleration and heading changes, along with aggregated behavioral histories over
the last 10 steps, are incorporated, stabilizing predictions and enabling cooperative play in which
the wide attacker penetrates open space while the central striker draws defensive pressure. In (c),
the t-SNE visualization shows that the predicted states 5¢° and the meta-information é d,t* converge
across agents after communication. This indicates that through message exchange, all agents come
to predict state dimensions at a similar level and, moreover, share a common recognizability of
which dimensions are reliably captured.

29

Under review as a conference paper at ICLR 2026

E ADDITIONAL EXPERIMENTAL ANALYSES

In this section, we present additional experimental analyses to further examine LMAC. We first
assess the generality of LMAC by combining it with different value decomposition methods and
scaling to larger environments with more agents, as shown in [E.I] We then explore how performance
changes when the feedback-based refinement is applied multiple times, as detailed in [E.2] Lastly,

we study the influence of restricting the message dimension on protocol design and communication
efficiency, which is discussed in [E3]

E.1 GENERALITY OF LMAC

100 100

W/ LMAC W/ LMAC
wj/o LMAC w/o LMAC
80 80
S S
E 60 E 60
© ©
o o
£ 40 I I £ 40
= =
20 1 20 1 I
1
° TQMix QPLEX VDN o TaQMmix QPLEX VDN
(a) 1o_10b_vs_1r (b) 20_20b_vs_2r

Figure E.1: Generality of LMAC across different value decomposition methods (VDN, QMIX,
QPLEX) and larger environments with more agents

We further evaluate the generality of LMAC by combining it with different value decomposition
algorithms (VDN, QMIX, QPLEX). As shown in Figure LMAC provides a consistent per-
formance boost across all methods, not only when paired with QMIX. In addition, this benefit is
preserved in more complex environments with larger numbers of agents, such as 20_20b_vs_2r,
demonstrating that the effectiveness of LMAC scales beyond simple scenarios. These results confirm

that the proposed communication framework generalizes well across both algorithmic backbones
and environmental complexities.

E.2 EFFECT OF THE NUMBER OF UPDATE PHASES

100 80

70 !

Win Rate (%)
[ee]
o
L)
Win Rate (%)
()]
o

70 50

60O 1 2 4 6 9 400 1 2 4 6 9

Protocol update iteration Protocol update iteration
(a) 1o_10b_vs_1r (b) bane_vs_hM

Figure E.2: Performance comparison when the communication protocol is iteratively updated across
different numbers of update phases in (a) 10_10b_vs_1r and (b) bane_vs_hM.

30

Under review as a conference paper at ICLR 2026

We analyze the effect of repeatedly applying feedback-based protocol refinement using the Sharing
Enhancement update scheme. As shown in Figure[E.2] performance improves as the number of up-
date phases k£ increases, but the marginal gain quickly saturates around k = 3. In fact, even k = 2 is
sufficient to capture most important state dimensions that can be inferred from observations, while
larger k£ mainly increases message size and introduces redundant information, reducing efficiency.
Nevertheless, in environments that demand more sophisticated reasoning, employing more refine-
ment phases may still offer benefits.

E.3 EFFECT OF REDUCED COMMUNICATION CAPACITY UNDER CONSTRAINTS

100 100
80
S S
g g
© ©
o o
£ 40 —_5 £
= — 10 =
20 20
= 30
— w/o limit —— wj/o limit
8.0 0.5 1.0 15 2.0 8.0 0.5 1.0 15 2.0
Timesteps (M) Timesteps (M)
(a) 1o_10b_vs_Ir (b) bane_vs_hM

Figure E.3: Performance comparison under message dimension constraints in (a) 1o_.10b_vs_1r
and (b) bane_vs_hM.

We further investigated how performance changes when message dimensionality is constrained,
since larger message sizes naturally lead to higher communication overhead. Here, we use com-
munication capacity to denote the effective amount of information that agents can transmit through
messages, which is directly determined by message dimensionality. Thus, restricting the number of
message dimensions can be regarded as limiting the communication capacity of agents. As shown
in Fig. [E3] our method remains robust under such conditions: even with reduced message sizes,
performance is largely preserved. In particular, the LLM reduced overhead by designing protocols
that avoid unnecessary all-to-all communication through one-way broadcast structures, or by com-
pactly encoding key features such as movement possibility, last action, and sender ID into only a
few bits. However, in more challenging scenarios such as bane_vs_hM, where state inference is in-
herently more difficult, excessive compression slowed convergence, indicating that a moderate level
of communication capacity is still necessary for effective learning.

31

Under review as a conference paper at ICLR 2026

F COMPARISON OF COMPUTATIONAL COMPLEXITY

In the SMAC communication experiments, we measured the total training time for 2M steps on
the bane_vs_hMand 10.10b_vs_1r maps, as reported in Table[F.I] On average, LMAC requires
about 15% more training time than strong baselines such as MASIA and MAIC. This overhead
mainly comes from training the discriminator and collecting additional trajectory data for it, but it is
a necessary cost that allows the model to diagnose weaknesses in the communication protocol and
iteratively refine it. As a result, LMAC consistently achieves higher performance than all baselines,
demonstrating that the improvement in coordination quality outweighs the extra computation.

Table F.1: Total training time (hours) for 2M steps in SMAC communication settings.

Algorithm bane.vs.hM 1lo.10b_vs_lr
QMIX 4h 12m 5h 42m
NDQ 5h 17m 6h 33m
T2MAC 5h 34m 7h 28m
MASIA 7h 13m 8h 13m
MAIC 7h 45m 8h 32m
COLA 7h 54m 8h 24m
LMAC(Ours) 8h 26m %h 47m

32

	Introduction
	Background
	Dec-POMDPs with Communication under the CTDE Paradigm
	Large Language Models for Reasoning

	Related Works
	Methodology
	LLM-Guided Multi-Phase Communication Protocol Design
	Meta-Cognitive Representation Learning for MARL Framework

	Experiments
	Performance Comparison
	Trajectory Analysis
	Ablation Study

	Limitation
	Conclusion
	The Use of Large Language Models
	Implementation Details
	Prompt Construction for Refinement Process
	Details of LLM Outputs for Protocol and Feedback
	Training Losses of LMAC

	Experimental Details
	Environment Details
	StarCraft Multi-Agent Challenge with communication
	Level-Based Foraging
	Google Football Research

	Detailed Description of Baseline Algorithms
	Hyper-parameter Setup

	Additional Trajectory Analysis
	Additional Experimental Analyses
	Generality of LMAC
	Effect of the Number of Update Phases
	Effect of Reduced Communication Capacity under Constraints

	Comparison of Computational Complexity

