
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LLM-GUIDED COMMUNICATION FOR COOPERATIVE
MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Communication can be essential in cooperative multi-agent reinforcement learn-
ing (MARL), where agents may need to overcome partial observability by ex-
changing information to accomplish tasks. However, prior methods often rely
on messages that are uninterpretable or contain irrelevant information. To over-
come this issue, we propose LLM-driven Multi-Agent Communication (LMAC),
a novel MARL framework that combines LLM-based communication protocol de-
sign with a meta-cognitive latent representation module. LMAC employs iterative
refinement with phase-specific feedback to produce interpretable protocols that
enhance state recovery and shared understanding, while its latent module incorpo-
rates reliability signals with cycle consistency to ensure compact and trustworthy
representations. Experiments across diverse MARL benchmarks demonstrate that
LMAC consistently improves performance over other communication baselines.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has emerged as a key paradigm for solving
tasks where multiple agents must collaborate, such as autonomous driving (Chen et al., 2023a), net-
work management, and strategic games (Nguyen et al., 2020; Orr & Dutta, 2023). In such environ-
ments, each agent learns from its own local observations, and partial observability prevents any sin-
gle agent from fully reconstructing the global state required for effective decision-making (Zhu et al.,
2024b). To address this, the centralized training with decentralized execution (CTDE) paradigm
(Oliehoek et al., 2008) has been widely adopted, where centralized training leverages global infor-
mation but execution remains decentralized. Within CTDE, value decomposition methods have been
extensively studied to ensure proper credit assignment from the global value to individual utilities.
Representative approaches include VDN (Sunehag et al., 2017), which expresses the joint value as a
weighted sum of individual values, and QMIX (Rashid et al., 2018), which enforces the individual-
global-max (IGM) condition through a mixing network.

Communication-based MARL allows agents to exchange information beyond their limited observa-
tions (Zhu et al., 2024a). Prior methods include sharing raw or compressed observations (Sukhbaatar
et al., 2016; Das et al., 2019b; Li et al., 2022b) or exchanging structured representations such as
agent influence, external knowledge, or global summaries (Wang et al., 2020; Du et al., 2022; Liu
et al., 2024). However, latent-based messages in existing MARL approaches are often hard to in-
terpret and may include redundant or missing task-critical information. Recent work has explored
natural language mapping (Li et al., 2024), but this remains confined to simple tasks and largely
imitates LLM agents rather than ensuring balanced situation awareness. Consequently, the same
message may still be understood differently by agents, causing cooperation failures. For instance,
in soccer, one player’s call to “pass back!” may be understood differently by teammates, leading to
miscoordination. Likewise, in MARL, inconsistent interpretation of the same message undermines
cooperation, highlighting the need for protocols that are both interpretable and ensure consistent
state understanding.

To overcome these limitations, we present LLM-driven Multi-Agent Communication (LMAC), a
communication-based MARL framework that (i) designs interpretable protocols through LLM rea-
soning and (ii) learns compact meta-cognitive latent representations that exploit these messages. For
protocol design, we leverage large language models such as GPT (OpenAI, 2023), Gemini (Gemini
Team & Google, 2023), and Claude (Anthropic, 2024), which provide general-purpose and strong

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(b)(a) (c)

Communication
Protocol

Protocol Initialization

Reasoning

Essential

Information to
solve task

LLM

Recognition Enhancement

Communication
Protocol

LLM

z

Sharing Enhancement

Communication
Protocol

Discriminator!

Refine protocol for better recovery

Discriminator!

Refine protocol for better balance

Embed task-related Information Improve reconstruction accuracy

FeedbackLLM

Ensure agent consistency

LLM

FeedbackLLM

Figure 1: Illustration of protocol refinement in LMAC: (a) Protocol Initialization (k = 0) gen-
erates an initial protocol for sharing task-relevant information using their local observations, (b)
Recognition Enhancement (k = 1) improves the accuracy of information recovery, and (c) Sharing
Enhancement (k = 2) reduces inter-agent inconsistencies to ensure consistent understanding. Each
stage refines the protocol under a distinct objective guided by discriminator feedback.

reasoning capabilities well-suited for developing communication protocols. Building on the Reflex-
ion mechanism(Shinn et al., 2023), originally proposed for iterative self-refinement, we introduce
phase-specific objectives where discriminators provide targeted feedback using real transitions. As
shown in Fig. 1, refinement proceeds in three stages: (a) Protocol Initialization, where the LLM pro-
poses a preliminary protocol; (b) Recognition Enhancement, where feedback improves information
recovery; and (c) Sharing Enhancement, where feedback reduces inter-agent inconsistencies. This
iterative, phase-specific process, with each stage concentrating on its own objective, yields protocols
that capture task-relevant information, strengthen global awareness, and provide a shared cognitive
basis for cooperation, enabling more interpretable and effective MARL.

To integrate these protocols into MARL training, we introduce a meta-cognitive latent module that
reconstructs states with dimension-wise recovery signals and applies cycle-consistency to retain only
task-relevant information. Combined with protocol design, this yields interpretable and consistent
communication for effective cooperation. We validate our approach on multiple MARL benchmarks
and show that it outperforms existing methods. Our contributions are summarized as follows:

• LLM-based communication protocol design: We propose an iterative Reflexion-inspired frame-
work with phase-specific feedback and discriminators, yielding interpretable protocols that pro-
gressively enhance state recovery and mitigate imbalance.

• Meta-cognitive representation learning: We embed the designed protocols into MARL frame-
work via a latent module that reconstructs states with dimension-wise recovery signals and en-
forces cycle consistency, ensuring messages are compact and reliably utilized.

• Empirical evaluation and analysis: We validate LMAC across diverse MARL benchmarks and
provide in-depth trajectory analyses, showing how the designed protocols yield interpretable mes-
sages that directly enhance information recovery, consistency, and cooperative performance.

2 BACKGROUND

2.1 DEC-POMDPS WITH COMMUNICATION UNDER THE CTDE PARADIGM

Cooperative multi-agent reinforcement learning (MARL) with communication can be formalized
as a decentralized partially observable Markov decision process with communication (Comm-Dec-
POMDP), G = ⟨S,A, P,R,O,O, I, n, γ,M⟩. Here, S is the global state space, A the joint action
space, P the transition dynamics, R the reward function, O the observation function with observa-
tion space O, I the set of n agents, γ the discount factor, and M the message space. At timestep
t, agent i receives an observation oit = Oi(st) and selects an action ait through a decentralized

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

policy πi(· | τ it) based on its trajectory τ it := (oi0, a
i
0, . . . , o

i
t). The objective is to maximize the

expected cumulative reward E[
∑T−1
t=0 rt], typically trained under the CTDE paradigm, where global

information is available during training but only local observations are used at execution. As a base-
line, QMIX (Rashid et al., 2018) learns a global action-value function Qtot(τt,at) under the IGM
condition, ensuring consistency between global maximization and individual action-value function
Qi(τ it , a

i
t). A key challenge in MARL is partial observability, since each agent only perceives a

limited and noisy view of the environment.

To mitigate this issue, recent communication-based MARL methods (Goldman & Zilberstein, 2008;
Foerster et al., 2016) are often equipped with a communication mechanism that allows them to
exchange messages mi

t ∈ M at each timestep. When such messages are incorporated, the value
functions and policies are extended as Qi(τ it ,m

i
t, a

i
t) and πi(· | τ it ,mi

t). This formulation enables
agents to leverage shared information to improve coordination and reduce uncertainty, ultimately
enhancing cooperative performance in decentralized environments.

2.2 LARGE LANGUAGE MODELS FOR REASONING

Large language models (LLMs) such as GPT (OpenAI, 2023), Gemini (Gemini Team & Google,
2023), LLaMA (Touvron et al., 2023), and Claude (Anthropic, 2024) have rapidly expanded beyond
natural language processing to domains requiring complex reasoning. Built on the Transformer ar-
chitecture (Vaswani et al., 2017) with billions of parameters and trained on terabytes of text, these
models exhibit strong capabilities in generation, contextual understanding, and abstract inference.
To strengthen reasoning, methods such as Chain-of-Thought (CoT)(Wei et al., 2022) and Reflex-
ion(Shinn et al., 2023) introduce intermediate steps and iterative refinement. In CoT, the model
first produces reasoning tokens z ∼ fLLMθ (x) from input prompt x and then generates the final
answer y ∼ fLLMθ (x, z), where fLLMθ denotes an LLM with parameters θ. Reflexion extends this
process with feedback-driven updates: at step k, the model outputs y(k) ∼ fLLMθ (x, z(k)), derives
a feedback sentence c(k+1) ∼ fLLMθ (x, x̃, z(k), y(k)) where x̃ is the feedback instruction, and then
refines the reasoning as z(k+1) ∼ fLLMθ (x, c(k+1)), leading to y(k+1) ∼ fLLMθ (x, z(k+1)). This
iterative procedure enables LLMs to revise their reasoning sequences based on prior errors and
self-generated feedback, thereby achieving more consistent and robust performance in long-horizon
problem solving. In this work, we leverage LLMs for communication protocol design in MARL,
where Reflexion-based refinement is employed to progressively enhance the protocols.

3 RELATED WORKS

Communication for MARL In communication-based MARL, extensive studies have explored
how agents can cooperate under partial observability through learned communication proto-
cols (Sukhbaatar et al., 2016; Foerster et al., 2016). Research on what to communicate ranges from
continuous messages in CommNet to efficient variants such as TMC (Das et al., 2019a), NDQ (Wang
et al., 2020), and MAIC (Du et al., 2022), with later work addressing robustness to noisy chan-
nels (Zhang et al., 2019; Freed et al., 2020). Studies on when and with whom to communicate
introduce gating and scheduling strategies (Singh et al., 2019; Karten et al., 2022; Niu et al., 2021;
Xue et al., 2022; Yuan et al., 2023b; Hu et al., 2024). Finally, how to use messages has been studied
through integration mechanisms such as attention in TarMAC (Das et al., 2019b) and representation
learning in MASIA (Li et al., 2022b). While these methods improve coordination, the exchanged
signals are typically uninterpretable and may not guarantee consistent recovery of task-relevant in-
formation across agents.

Large Language Models for Reasoning LLMs, pretrained on massive corpora, have demonstrated
strong reasoning abilities beyond language generation. Chain-of-Thought prompting (Wei et al.,
2022) has been extended into more structured reasoning formats (Zhou et al., 2022; Yao et al., 2023;
Besta et al., 2023; Sel et al., 2023; Zhou et al., 2024), while zero-shot reasoning (Kojima et al.,
2022) and instruction tuning with self-generated data (Wang et al., 2022) highlight the versatility of
prompting. ReAct (Yao et al., 2022) integrates reasoning traces with environment interactions, and
iterative refinement methods such as Reflexion (Shinn et al., 2023), Retroformer (Chen et al., 2024),
and Expel (Zhao et al., 2024) enable continual self-correction. These advances establish LLMs as
higher-level reasoning engines capable of stepwise abstraction and iterative improvement.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(b)

Input Prompt Template 𝒙 Communication Protocol 𝒇𝒄
𝒌

Feedback 𝒄(𝒌+𝟏)txt

def communication(o):
Sender: Overseer
Receivers: Banelings

Extract required information
overseer_obs = o[:, 10, :]
relative_x = overseer_obs[:, 6]
relative_y = overseer_obs[:, 7]
is_visible = overseer_obs[:, 4]

overseer_message = torch.cat([
relative_x, relative_y, is_visible

])

Broadcast message to all agents
messages[:, 0:10, :] = \

overseer_message
return message

Evaluation:Most Banelings can’t predict
an enemy Roach’s absolute coordinates...

Meta Information 𝝌𝒍,𝒅,𝒕
𝒊,(𝒌)

Agent 𝟏

Agent 𝟐

Agent 𝑵

⋮

𝒔𝟏,𝒕 𝒔𝟐,𝒕 𝒔𝒅,𝒕⋯

1

0

0

0

0

1

1

1

0

⋮⋮

⋯

⋯

(a) (c)

Your goal is to design a task-specific
communication protocol.

Communication Design Principles:
1. Task-Oriented Communication
2. Contextual and Interaction-Aware
...
You are required to create a function:
"communication(o)":
- Input : Observation "o"
- Output: Enhanced observation with

integrated task-specific msg

⋮

Missing Hypothesis:The Overseer lacks
self-localization...

Improvement Suggestions: Share banelings
relative positions to a common reference
(like nearest ally)...𝑃

Task Description: 10 Banelings try to
kill a Roach assisted by ...

Observation Description: Each dim...

𝑇

⋮

⋯

: Task & Observation Description

: Instruction for protocol generation

Figure 2: Elements of the LLM-based communication protocol refinement process: (a) Input prompt
x with task description IT and design instruction IP , (b) generated protocol f (k)C that maps local
observations to agent-specific messages, and (c) meta-information data with phase-specific feedback
instructions, which guide refinement by analyzing recovery accuracy and inter-agent imbalance.

Large Language Models for Reinforcement Learning Recent studies have applied LLMs to var-
ious aspects of reinforcement learning (Cao et al., 2025). Applications include reward design (Yu
et al., 2024; Adeniji et al., 2023; Chu et al., 2023; Nair et al., 2022; Ma et al., 2024), trajectory
summarization and task transformation (Du et al., 2023; Yuan et al., 2023a; Qiu et al., 2024), and
state representation (Chen et al., 2023b; Wang et al., 2024; Da et al., 2024). LLMs have also been
used directly as policy networks (Li et al., 2022a; Zitkovich et al., 2023; Shi et al., 2024), or for
grounding actions into affordances and coordination policies (Ahn et al., 2022; Hu & Sadigh, 2023).
More recently, their role in multi-agent cooperation has begun to be explored (Li et al., 2024; 2025;
Agashe et al., 2025), though challenges remain in ensuring interpretable and consistent communi-
cation across agents.

Distinct from prior studies, our work leverages LLMs to design and refine communication protocols,
explicitly aiming for interpretability, consistent state recovery, and stable cooperation in MARL.

4 METHODOLOGY

In this section, we provide the detailed description of our approach, expanding on the LLM-based
communication protocol design and meta-cognitive representation learning introduced in Section 1.

4.1 LLM-GUIDED MULTI-PHASE COMMUNICATION PROTOCOL DESIGN

We now present a detailed description of our communication design. At each phase k, the LLM
generates a communication protocol f (k)C using the task prompt x and reasoning tokens z(k), i.e.,

f
(k)
C ∼ fLLMθ (x, z(k)), k ∈ {0, 1, 2} (1)

where f
(k)
C maps the agents’ observation histories (τ0t , . . . , τ

n−1
t) to interpretable messages

(m
0,(k)
t , . . . ,m

n−1,(k)
t) for all agents. In other words, f (k)C is designed to generate messages that

explicitly correspond to and compose from dimensions of the agents’ observations described in x,
so that both agents and human can interpret what information is being exchanged and how it con-
tributes to reconstructing task-relevant states. The refinement process at phase k is then guided by
feedback c(k+1), discriminatorD(k), and feedback instruction x̃(k+1), which determine how the next
protocol f (k+1)

C is constructed. Specifically, the update process is given by

c(k+1) ∼ fLLMθ (x, x̃(k+1), D(k), f
(k)
C , z(k)) → z(k+1) ∼ fLLMθ (x, c(k+1)) → f

(k+1)
C ∼ fLLMθ (x, z(k+1)).

(2)

Here, x̃(k+1) is the phase-specific feedback instruction, D(k) is the discriminator evaluating how
well f (k)C meets the refinement goal, and c(k+1) is the feedback sentence used to update reason-
ing tokens. Unlike Reflexion, which applies a fixed feedback signal at every step, our framework

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

adaptively updates x̃ as objectives evolve across phases. Protocol design therefore proceeds in three
stages, each with a distinct refinement goal:

Protocol Initialization (k = 0): The goal is to generate an initial communication protocol that
enables agents to encode and exchange task-relevant information provided in the global state, re-
constructing it as accurately as possible from their local observations and messages. To this end, we
construct the task prompt x = (IT , IP), where IT specifies the task objectives and environment
characteristics (state, observation, and action spaces), and IP provides instructions ensuring that
each agent i, given its history and message, can better infer the global state. The initial protocol f (0)C
is then generated accordingly.

The initial protocol f (0)C is designed to embed task-relevant information for approximate state recov-
ery, but it must be validated against actual environment trajectories. To this end, we employ a dataset
B of sampled trajectories and define meta-information that measures how accurately each agent can
recover state dimensions. Specifically, for agent i, state dimension d, and timestep t, we denote by
χ
i,(k)
l,d,t the binary indicator of whether sd,t can be successfully reconstructed, where l = 1 represents

the case with the message mi,(k)
t and l = 0 represents the case without it. Formally,

χ
i,(k)
l,d,t = I

[
∥ŝil,d,t − sd,t∥2 ≤ α

]
, (3)

where I is the indicator function, ŝi1,d,t = D
(k)
ϕ (τ it ,m

i,(k)
t , i)

∣∣
d

(with message), and ŝi0,d,t =

D
(k)
ϕ (τ it ,0, i)

∣∣
d

(without message). Here, D(k)
ϕ is the discriminator parameterized by ϕ and trained

to reconstruct the state using B, while α denotes the reconstruction threshold. The temporal average
Et[χi,(k)l,d,t] then measures how well agent i recovers dimension d with or without messages, and the

variance Vari[χ
i,(k)
l,d,t] quantifies how unevenly this recovery is distributed across agents, serving as

an indicator of information imbalance.

We then use these statistics to drive the refinement process in the subsequent phases as follows:

Recognition Enhancement Phase (k = 1): The goal of this phase is to improve recovery accuracy
for each agent. To this end, the temporal average Et[χi,(0)l,d,t] is obtained to identify cases where
messages fail to support accurate recovery. Based on this data, the feedback instruction x̃(1) specifies
why accuracy is lacking and how the protocol should be revised, guiding the LLM to refine f (1)C
toward encoding more task-relevant information.

Sharing Enhancement Phase (k = 2): Although f
(1)
C improves recovery, inconsistencies may

remain across agents. This phase exploits the variance Vari[χ
i,(1)
l,d,t] to analyze why imbalance arises,

such as when certain agents cannot identify specific state dimensions. From this data, the feedback
instruction x̃(2) proposes concrete modifications to reduce heterogeneity, enabling the LLM to refine
f
(2)
C so that all agents consistently interpret shared information.

Through this process, we obtain the final communication protocol fC = (f
(0)
C , f

(1)
C , f

(2)
C) that first

initializes a protocol, then improves recognition, and finally reduces imbalance across agents. To
illustrate the process, Fig.2 shows the overall refinement pipeline, including the task prompt, an ex-
ample of the generated protocol, and the meta-information with feedback used for updating. Fig.3
presents phase-wise evaluation results, where the average meta-information Et[χi,(k)1,d,t] increases

steadily, indicating improved information recovery, while the variance across agents Vari[χ
i,(k)
1,d,t] de-

creases, reflecting reduced information imbalance. These trends show that as refinement progresses,
the designed protocol enhances information recognition, alleviates information imbalance among
agents, confirming that the framework achieves its intended design. Additional details on prompt
construction, discriminator training, and trajectory dataset preparation are provided in Appendix B.

4.2 META-COGNITIVE REPRESENTATION LEARNING FOR MARL FRAMEWORK

Based on the final communication protocol fC , we define each agent’s aggregated message asmi
t =(

m
i,(0)
t ,m

i,(1)
t ,m

i,(2)
t

)
= fC(τt). Using these messages, we propose LMAC, a MARL framework

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.12

(b)

Av
g.

 m
et

a-
in

fo 0.8

0

0.4

0.2

0.6

1.0

Va
ria

nc
e 0.08

0

0.04

0.02

0.06

0.10

(a)

Figure 3: Phase-wise evaluation of meta-information:
(a) Average values and (b) variance across agents

𝑄𝑄𝑖𝑖 𝑄𝑄𝑗𝑗

. . .

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡
Mixing Network

Communication
Protocol
𝜏𝜏𝑡𝑡

𝑚𝑚𝑡𝑡
𝑗𝑗𝑚𝑚𝑡𝑡

𝑖𝑖 𝜏𝜏𝑡𝑡𝑖𝑖 𝜏𝜏𝑡𝑡
𝑗𝑗

𝜏𝜏𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡
𝑖𝑖

𝒛𝒛𝒕𝒕𝒊𝒊

Enc𝜓𝜓

Dec𝜓𝜓
𝑠̂𝑠𝑑𝑑,𝑡𝑡
𝑖𝑖𝜉𝜉𝑑𝑑,𝑡𝑡

𝑖𝑖

Encc,𝜓𝜓

𝑧̂𝑧𝑡𝑡𝑖𝑖

MLP

LLM

MLP

Figure 4: Overall framework of the proposed
LMAC

(a) (b) (c)

Figure 5: MALR Benchmarks used in our experiments: (a) SMAC-Comm, (b) LBF, and (c) GRF

that integrates LLM-driven communication into CTDE training. We adopt QMIX (Rashid et al.,
2018) as the baseline, aiming to provide each individual Qi with informative representations of the
global state, though the approach can also generalize to general CTDE methods such as VDN (Sune-
hag et al., 2017) and QPLEX (Wang et al., 2021). Rather than feeding raw messages, we employ
an encoder–decoder (Encψ,Decψ) with parameter ψ to compress and reconstruct information, ad-
dressing the inefficiency of high-dimensional states and the redundancy of raw messages. The latent
representation is defined as zit = Encψ(τ

i
t ,m

i
t), and the encoder–decoder is trained to reconstruct

both the state st and auxiliary meta-information ξ,id,t = I[∥ŝid,t − sd,t∥2 ≤ α], where ŝid,t is the
reconstructed d-th state dimension. Here, ξ reuses the meta-information idea from protocol design,
allowing agents to identify which state dimensions are accurately captured and which remain uncer-
tain.

In addition, to prevent irrelevant information from being encoded, we adopt a cycle-consistency loss
inspired by Zhu et al. (2017). Specifically, the latent zt is decoded and then re-encoded using an
auxiliary encoder Encc,ψ , enforcing ẑt ∼ Encc,ψ

(
Decψ(zt)

)
so that Encc,ψ is trained to recon-

struct zt. The key intuition is that any redundant information in zt is discarded during decoding and
thus cannot be recovered by Encc,ψ . As a result, the model learns to encode only reconstructable,
task-relevant features while suppressing noise. Finally, the learned latent zit is incorporated into the
individual utilities Qi(τ it , z

i
t), and the joint action-value Qtot is optimized via TD-learning. The

overall framework is shown in Fig.4, and further details, including algorithm, loss functions, and
training procedures, are provided in AppendixB.

5 EXPERIMENTS

In this section, we evaluate the proposed method on three benchmark environments shown in Fig.5:
StarCraft Multi-Agent Challenge with Communication (SMAC-Comm) (Samvelyan et al., 2019),
a communication-intensive variant of StarCraft II evaluated on bane vs hM, 1o 10b vs 1r,
2o 20b vs 2r, and 5z vs 1ul; Level-Based Foraging (LBF) Papoudakis et al. (2021a), a co-
operative foraging task with settings 8x8-2p-2f-s1-coop and 11x11-6p-4f-s1-coop,
(n × n: grid size, p: agents, f : fruits, s: sight range); and Google Research Football (GRF)
(Kurach et al., 2020), a cooperative soccer game with scenarios 3 vs 1 with keeper and
run pass and shoot. We first compare performance against other communication baselines,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

GRF: 3_vs_1_with_keeperLBF: 11x11_6p_4f_s1_coop

SMAC: 5z_vs_1ul

LMAC (Ours) QMIX QMIX + STATE Full-comm MASIA NDQ MAIC COLA T2MAC

GRF: Run_pass_and_shoot

SMAC: 1o_10b_vs_1r SMAC: 2o_20b_vs_2r

LBF: 8x8_2p_2f_s1_coop

SMAC: bane_vs_hM

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

60

40

20

0

80

60

40

20

0

80

60

40

20

0

100

80

60

40

20

0

60

40

20

0

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0 0 0.5 2.51.0 1.5 2.0 3.0 3.5 4.0 4.5 5.0 0 0.5 2.51.0 1.5 2.0 3.0 3.5 4.0 4.5 5.0

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0 0 0.5 2.51.0 1.5 2.0 3.0 0 0.5 2.51.0 1.5 2.0 3.0 3.5 4.0 4.5 5.0

Te
st

 W
in

 R
at

e
(%

)
Te

st
 N

or
m

al
iz

ed
 R

et
ur

n

Te
st

 W
in

 R
at

e
(%

)

Timesteps (M) Timesteps (M) Timesteps (M) Timesteps (M)

Timesteps (M) Timesteps (M) Timesteps (M) Timesteps (M)

Figure 6: Performance comparison in various MARL benchmarks

then analyze how phase-specific protocols contribute to cooperation. Unless otherwise specified,
experiments use gpt-4.1-2025-04-14 as the backbone LLM, with other variants included in
ablation studies. All results are averaged over 5 random seeds with standard deviations, and more
experimental details are provided in Appendix C.

5.1 PERFORMANCE COMPARISON

To validate our approach, we compare LMAC against a broad set of communication-based MARL
methods. The comparison includes our baseline QMIX(Rashid et al., 2018), FullComm, where
agents broadcast full observations to all teammates, and QMIX+State, where each agent is provided
with the global state as an upper-bound reference. We further evaluate against NDQ(Wang et al.,
2020), which reduces communication cost via decomposable value functions; MASIA(Li et al.,
2022b), which aggregates information through self-supervised representation learning; MAIC(Du
et al., 2022), which generates incentive messages to bias teammates’ utilities; COLA(Monda et al.,
2023), which improves coordination through inter-agent consensus; and T2MAC(Liu et al., 2024),
which enables selective communication via evidence-driven integration. All baselines are evalu-
ated using author-released implementations. For our method, results are reported with the best-
performing threshold α, while full hyperparameter settings and further details of competing algo-
rithms are provided in Appendix C.

Fig. 6 reports success rates across the three benchmark environments. On SMAC-Comm, our method
achieves faster convergence and higher final success rates across all four scenarios, with particularly
large gains on bane vs hM and the large-scale 2o 20b vs 2r, showing strong scalability when
state recovery is difficult or agent numbers grow. Notably, our results nearly match the upper-bound
QMIX+State, indicating that the designed protocols effectively capture the most critical state infor-
mation. On LBF, similar trends appear: our method learns faster and consistently reaches higher final
performance, again approaching QMIX+State. This confirms that interpretable and refined commu-
nication enables sufficient state reconstruction for coordinated behavior. On GRF, our method not
only surpasses all baselines but even outperforms QMIX+State in final success rates. Since GRF
involves high-dimensional observations, simply giving all agents the full state leads to excessive
dimensionality and slow convergence. By contrast, our latent learning compresses messages into
compact task-relevant features, enabling faster convergence and stronger cooperative strategies. This
directly demonstrates the efficiency of our latent representation design. Overall, these results high-
light that our framework consistently improves learning speed and final performance, while allowing
agents to exploit information more effectively across diverse MARL settings. In addition, to verify

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Interpretable Messages (𝒌 = 𝟎)

(b)(a)

Interpretable Messages (𝒌 = 𝟏)

Feedback (𝒌 = 𝟎)
Issue

Overseer sends “Roach at

(Δ𝑥, Δy) from me" but some

Banelings can't locate it

Solution

Feedback (𝒌 = 𝟏)
Issue

Some Banelings cannot identify

which teammates they observe,

causing high variance.

Solution

Interpretable Messages(𝒌 = 𝟐)

Env: 1o_10b_vs_1r

?

?

?

(d)

(c)

LLM

"To solve the task,

Overseer must tell

all Banelings

the Roach's position."

!

A
v
g
.
m

e
ta

-i
n
fo

V
a
ri
a
n
c
e

𝑘 = 0 𝑘 = 1 𝑘 = 2
70

75

80

85

90

95

100

W
in

 R
a
te

 (
%

)

Overseer Banelings

2. Overseer’s (𝜟𝒙, 𝚫𝐲) to each

Baneling

Add Overseer’s history and its

relative position to each

Baneling to give localization

hints.

Generate a fixed anchor

coordinate and explicitly

specify which Banelings are

visible to the Overseer.

2. Explicit ID of observed Banelings

1. Anchor coordinates centered on

Overseer

1. Overseer’s recent history

1. Roach’s (𝜟𝒙, 𝜟𝒚) from Overseer

Send

to Banelings

Timesteps (𝑡)

0.0

0.6

0.8

1.0

0.00

0.05

0.10

0.15

0 20 40

0 20 40

0.4

0.2

Send

to Banelings

Send

to Banelings
BanelingRoach

Overseer Sight Range

Figure 7: Protocol refinement analysis on SMAC 1o 10b vs 1r: (a) Task scenario with Overseer,
Roach and Banelings under partial observability, (b) protocol messages and corresponding feedback
at each phase k, (c) trajectory-level averages and variances of meta-information with (k = 0, 1, 2)
or without messages (No-comm), and (d) average win rates across phases.

the generality of our approach, we also apply LMAC to VDN Sunehag et al. (2017) and QPLEX
Wang et al. (2021) in Appendix E and observe similarly significant performance gains.

5.2 TRAJECTORY ANALYSIS

To analyze how our framework yields interpretable communication protocols that improve infor-
mation recovery and balance, we conduct a trajectory analysis on the SMAC 1o 10b vs 1r map,
summarized in Fig.7. In (a), the task requires 10 Banelings (10b) to quickly converge on a Roach
(1r), with the Overseer (1o) providing positional cues. Because absolute positions are not included
in raw observations, the LLM reasons that agents must infer both the Roach’s location and each
Baneling’s absolute position; otherwise, delays occur and less damage is dealt. In (b), protocol evo-
lution is shown: at k = 0, the Overseer broadcasts “the Roach is ∆x,∆y (relative position) away
from the Overseer,” enabling partial localization but failing without knowledge of the Overseer’s
position. At k = 1, feedback notes that “the Overseer’s position is difficult to identify,” so the pro-
tocol is refined to include the Overseer’s relative position and recent history as localization hints. At
k = 2, variance-based feedback highlights that “some Banelings still cannot identify which team-
mates they observe,” prompting the use of a fixed anchor coordinate centered on the Overseer with
explicit IDs of observed agents. The final protocol thus shares the Roach’s relative position, the
anchor, and teammate IDs, allowing consistent absolute recovery. In (c), average meta-information
increases in phase 1, while its variance across agents drops in phase 2. In (d), learning performance
improves across phases as agents achieve shared localization and coordinate attacks. These results
confirm that our method yields interpretable messages whose refinements directly enhance recovery
and eliminate imbalance, validating the intended protocol design. Similar patterns are observed in
other environments, with additional analyses provided in Appendix E.

5.3 ABLATION STUDY

We conduct three ablation studies in the SMAC-Comm environment to validate the contributions
of our framework: (a) component evaluation, (b) comparison of different LLM variants, and (c)
the effect of the reconstruction threshold α.We additionally conducted experiments on the effect of
the number of update phases, the impact of reduced communication capacity, and computational
complexity, which can be found in Appendix E, F.

Component Evaluation: To analyze the effect of each component, we compare the performance
of protocols obtained at different refinement stages (k = 0, 1, 2), as well as two variants of our
framework: one without the consistency loss (’w/o Consistency’) and one without meta-information

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Ablation study on SMAC-Comm: (a) Component evaluation (b) LLM variants (c) Compar-
ison across reconstruction threshold α

Setting Avg. Win Rate(%)

w/o Consistency 66.5 ± 2.1
w/o Meta 76.6 ± 5.6
k = 0 68.5 ± 3.8
k = 1 77.8 ± 2.2
k = 2 (Ours) 82.9 ± 1.9

(a) Component evaluation

LLM Avg. Win Rate(%)

GPT 82.9 ± 1.9
GPT-mini 79.8 ± 1.5
GPT-o1-mini 81.8 ± 2.9
Claude 81.9 ± 2.6
Gemini 80.8 ± 1.6

(b) LLM variants

α Avg. Win Rate(%)

0.0005 77.2± 2.1
0.002 79.3 ± 2.8
0.005 80.5 ± 1.7
0.05 82.9 ± 1.9
0.5 80.2 ± 3.2

(c) α comparison

reconstruction (’w/o Meta’). As shown in Table 1(a), performance steadily improves as the refine-
ment phase progresses, consistent with our earlier findings that state recovery and balance improve
with each stage. Removing the consistency loss causes a clear drop in performance, demonstrat-
ing that eliminating redundant information in messages is crucial for learning. Similarly, removing
meta-information also degrades performance, confirming that knowing not only the recovered state
but also its reliability is essential for effective cooperation. Overall, these results show that every
component of our framework contributes substantially to performance.

LLM Variants: Table 1(b) evaluates our method with different LLMs, including GPT-4.1, GPT-
4.1-mini, o1-mini, Gemini-2.5-Flash, and Claude-Opus. Results show that all recent LLMs achieve
strong performance, with GPT providing the highest success rates. However, smaller and more ef-
ficient models (e.g., GPT-4.1-mini, o1-mini) still perform competitively, demonstrating that the key
driver of performance is the multi-phase refinement process rather than reliance on a particular
model. This refinement procedure further encourages consistency in the resulting communication
protocols, ensuring that our framework remains broadly applicable across different LLMs.

Reconstruction Threshold α: Finally, Table 1(c) analyzes the effect of the reconstruction threshold
α used in constructing meta-information. A too small α makes the criterion overly strict, causing
most dimensions to be judged unrecoverable and leading to excessive message generation. While
performance is maximized at α = 0.05, results remain stable for larger values, suggesting that our
method is not highly sensitive to this parameter. This robustness indicates that our framework can
be applied without heavy hyperparameter tuning.

6 LIMITATION

While our framework performs well and behaves as we intended, there remain a few limitations.
First, the approach introduces some overhead from training the discriminator and interacting with
LLMs during protocol refinement. However, as shown in the computational complexity analysis
in Appendix F, the discriminator contributes only a small fraction to the total training cost, and
the limited number of LLM queries per refinement phase keeps the overhead modest. Second, the
protocol design partially depends on the reasoning ability of the chosen LLM. Nevertheless, as
shown in our ablation study, the method achieves consistent performance across different LLM
variants, and with the rapid progress in LLM reasoning, this dependency is unlikely to pose a major
obstacle going forward.

7 CONCLUSION

In this work, we introduced LMAC, a new communication-based MARL framework that com-
bines LLM-guided protocol refinement and meta-cognitive latent learning. Our method designs in-
terpretable communication protocols through multi-phase refinement with discriminator feedback,
ensuring that agents recover task-relevant information consistently and alleviate information im-
balance. The refined messages are then integrated into MARL framework via a latent module that
reconstructs states with reliability-aware meta-information, while cycle consistency enforces com-
pactness. Through this design, LMAC provides communication that is both interpretable and ef-
fective, enabling agents to achieve shared cognition and more stable cooperation. Empirical results
on SMAC-Comm, LBF, and GRF benchmarks show that our approach consistently achieves faster
convergence and higher final performance than strong communication baselines.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses exclusively on algorithmic contributions in cooperative multi-agent reinforce-
ment learning (MARL) under the CTDE paradigm. All experiments were conducted using publicly
available simulation environments, including SMAC-Comm (Samvelyan et al., 2019; Wang et al.,
2020), LBF (Papoudakis et al., 2021a), and GRF (Kurach et al., 2020). These benchmarks do not in-
volve human subjects, personal data, or sensitive information. LLMs were used only for generating
and refining communication protocols within our proposed framework and for minor editorial pol-
ishing, without influencing research ideation, problem formulation, or analysis. We do not foresee
harmful applications beyond the intended scope of cooperative agent research. All work was con-
ducted in compliance with the ICLR Code of Ethics, with careful attention to fairness, transparency,
and research integrity.

REPRODUCIBILITY STATEMENT

We have made substantial efforts to ensure reproducibility of our results. Section 4 provides the de-
tailed description of our proposed framework, and Appendix C includes the implementation details.
The benchmarks used in our experiments are all publicly available, and code links are provided in
Appendix C. An anonymized code repository containing our implementation and experiment scripts
is submitted as supplementary material, with further explanations included in the implementation
details. The baselines and their official code repositories are listed in Appendix C.2, ensuring that
all results reported in this paper can be independently reproduced.

REFERENCES

Adebola Adeniji, Annie Xie, Cristian Sferrazza, Younggyo Seo, Stephen James, and Pieter
Abbeel. Language reward modulation for pretraining reinforcement learning. arXiv preprint
arXiv:2308.12270, 2023. URL https://arxiv.org/abs/2308.12270.

Saaket Agashe, Yue Fan, Anthony Reyna, and Xin Eric Wang. LLM-coordination: Evaluating and
analyzing multi-agent coordination abilities in large language models. In Luis Chiruzzo, Alan
Ritter, and Lu Wang (eds.), Findings of the Association for Computational Linguistics: NAACL
2025, pp. 8038–8057, Albuquerque, New Mexico, April 2025. Association for Computational
Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.448.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Brian David, Chelsea
Finn, Cheng Fu, et al. Do as i can, not as i say: Grounding language in robotic affordances. arXiv
preprint arXiv:2204.01691, 2022. URL https://arxiv.org/abs/2204.01691.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. https://www.anthropic.com/
news/claude-3-family, 2024.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Kubik, Michal Niewiadomski, Piotr Tora, Paweł
an, and Marc Gerstenberger. Graph of thoughts: Solving elaborate problems with large language
models. arXiv preprint arXiv:2308.09687, 2023.

Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua
Zhao, Jinyue Yan, and Yun Li. Survey on large language model-enhanced reinforcement learning:
Concept, taxonomy, and methods. IEEE Transactions on Neural Networks and Learning Systems,
36(6):9737–9757, June 2025. ISSN 2162-2388. doi: 10.1109/tnnls.2024.3497992. URL http:
//dx.doi.org/10.1109/TNNLS.2024.3497992.

Jingyu Chen, Ruidong Ma, and John Oyekan. A deep multi-agent reinforcement learning framework
for autonomous aerial navigation to grasping points on loads. Robotics and Autonomous Systems,
167:104489, 2023a.

Siwei Chen, Anxing Xiao, and David Hsu. Llm-state: Open world state representation for long-
horizon task planning with large language model. arXiv preprint arXiv:2311.17406, 2023b.

10

https://arxiv.org/abs/2308.12270
https://arxiv.org/abs/2204.01691
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
http://dx.doi.org/10.1109/TNNLS.2024.3497992
http://dx.doi.org/10.1109/TNNLS.2024.3497992

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yifan Chen, Weiming Dong, Zhitong Han, Yali Zhang, Si Liu, Zhaofei Chang, Lin Zhou, and Tong
Chen. Retroformer: Retrospective large language agents with policy gradient. In The Twelfth
International Conference on Learning Representations (ICLR), 2024.

Kai Chu, Xin Zhao, Cornelius Weber, Ming Li, and Stefan Wermter. Accelerating reinforcement
learning of robotic manipulations via feedback from large language models. arXiv preprint
arXiv:2311.02379, 2023. URL https://arxiv.org/abs/2311.02379.

Longchao Da, Minquan Gao, Hao Mei, and Hua Wei. Prompt to transfer: Sim-to-real transfer for
traffic signal control with prompt learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 82–90, 2024.

Abhishek Das, Theo Gervet, Joel Romoff, Dhruv Batra, Devi Parikh, Marc’aurelio Ranzato, and
Arthur Szlam. TMC: Targeted multi-agent communication. In International Conference on Ma-
chine Learning (ICML), 2019a.

Abhishek Das, Théophile Gervet, Jiasen Romoff, Dhruv Batra, Devi Parikh, Mike Rabbat, and Joelle
Pineau. Tarmac: Targeted multi-agent communication. In Proceedings of the International Con-
ference on Machine Learning (ICML), 2019b.

Yuchen Du, Sheng Han, Jia Zhang, Meng-Feng Wang, and Zongqing Lu. Multi-agent incentive com-
munication via decentralized teammate modeling. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In Proceedings of the 40th International Conference on Machine Learning (ICML),
2023.

Jakob N Foerster, Yannis M Assael, Nando de Freitas, and Shimon Whiteson. Learning to communi-
cate with deep multi-agent reinforcement learning. In Advances in neural information processing
systems (NIPS), pp. 2137–2145, 2016.

Benjamin Freed, Guillaume Sartoretti, Jiaheng Hu, and Howie Choset. Communication learning via
backpropagation in discrete channels with unknown noise. In Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 7160–7167, 2020. URL https://ojs.aaai.org/index.
php/AAAI/article/view/6205.

Gemini Team and Google. Gemini: A family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023. URL https://arxiv.org/abs/2312.11805.

C. V. Goldman and S. Zilberstein. Communication-based decomposition mechanisms for decentral-
ized mdps. Journal of Artificial Intelligence Research, 32:169–202, May 2008. ISSN 1076-9757.
doi: 10.1613/jair.2466. URL http://dx.doi.org/10.1613/jair.2466.

Hongxin Hu and Dorsa Sadigh. Language instructed reinforcement learning for human-ai coordina-
tion. In International Conference on Machine Learning, pp. 13697–13712. PMLR, 2023. URL
https://proceedings.mlr.press/v202/hu23e.html.

Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Learning multi-agent communication from
graph modeling perspective. In International Conference on Learning Representations (ICLR),
2024.

Seth Karten, Mycal Tucker, Siva Kailas, and Katia Sycara. Towards true lossless sparse communi-
cation in multi-agent systems. arXiv preprint arXiv:2212.00115, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
sawa. Large language models are zero-shot reasoners. In Advances in Neu-
ral Information Processing Systems, volume 35, pp. 22199–22213, 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf.

11

https://arxiv.org/abs/2311.02379
https://ojs.aaai.org/index.php/AAAI/article/view/6205
https://ojs.aaai.org/index.php/AAAI/article/view/6205
https://arxiv.org/abs/2312.11805
http://dx.doi.org/10.1613/jair.2466
https://proceedings.mlr.press/v202/hu23e.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Karol Kurach, Antonin Roux, Arthur Mensch, Szymon Sidor, Suzy Zoghbi, Eric Song, Corentin
Tallec, Marcin Andrychowicz, Wojciech Zaremba, Nicolas Heess, and Olivier Pietquin. Google
research football: A novel reinforcement learning environment. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, 2020.

Huao Li, Hossein Nourkhiz Mahjoub, Behdad Chalaki, Vaishnav Tadiparthi, Kwonjoon Lee, Ehsan
Moradi-Pari, Charles Michael Lewis, and Katia P Sycara. Language grounded multi-agent
communication for ad-hoc teamwork. In Advances in Neural Information Processing Systems
(NeurIPS), 2024.

Lihe Li, Lei Yuan, Pengsen Liu, Tao Jiang, and Yang Yu. LLM-assisted semantically diverse team-
mate generation for efficient multi-agent coordination. In Proceedings of the 42nd International
Conference on Machine Learning (ICML), 2025.

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An Huang,
Ekin Akyürek, Anima Anandkumar, Jacob Andreas, Igor Mordatch, Antonio Torralba, and Yuke
Zhu. Pre-trained language models for interactive decision-making. In Advances in Neural Infor-
mation Processing Systems, volume 35 of NeurIPS, pp. 31199–31212, 2022a.

Shun-Fei Li, Yu-An Liu, Cheng-Lin Wu, Ziyuan Luo, and Kai-Yi. Efficient multi-agent communica-
tion via self-supervised information aggregation. In Advances in Neural Information Processing
Systems (NeurIPS), 2022b.

Yiqin Liu, Hao Sun, Jianing Pang, Zhaowei Wang, Yuzheng Zhang, and Guodong Li. T2mac:
Targeted and trusted multi-agent communication through selective engagement and evidence-
driven integration. In Proceedings of the International Conference on Learning Representations
(ICLR), 2024.

Yecheng Jason Ma, Jacky Collins, Lily Wong, Yuqing Du, Pieter Abbeel, and Abhishek Gupta. Eu-
reka: Human-level reward design via coding large language models. In The Twelfth International
Conference on Learning Representations (ICLR), 2024.

Gianmarco Paolo La Monda, Salvatore D’Oro, Alberto Garcia-Saez, and Albert L. Simeone. Cola:
Consensus learning for cooperative multi-agent reinforcement learning. In Proceedings of the
International Conference on Learning Representations (ICLR), 2023.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A univer-
sal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022. URL
https://arxiv.org/abs/2203.12601.

Tri-Cong Nguyen, Ngoc-Duy Nguyen, and Saeid Nahavandi. Deep reinforcement learning for multi-
agent systems: A review of challenges, solutions and applications. IEEE Transactions on Cyber-
netics, 50(9):3826–3842, 2020.

Yuan Niu, Rohan R. Paleja, and Matthew C. Gombolay. Multi-agent graph-attention communica-
tion and teaming. In Proceedings of the 20th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pp. 964–973, 2021. URL https://www.yaruniu.com/
pubs/aamas21_magic.pdf.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value func-
tions for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353, 2008.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.
org/abs/2303.08774.

James Orr and Ayan Dutta. Multi-agent deep reinforcement learning for multi-robot applications: A
survey. Sensors, 23(7):3625, 2023.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmarking
multi-agent deep reinforcement learning algorithms in cooperative tasks. In Proceedings of the
Neural Information Processing Systems Track on Datasets and Benchmarks, 2021a.

12

https://arxiv.org/abs/2203.12601
https://www.yaruniu.com/pubs/aamas21_magic.pdf
https://www.yaruniu.com/pubs/aamas21_magic.pdf
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Benchmarking
multi-agent deep reinforcement learning algorithms in cooperative tasks, 2021b. URL https:
//arxiv.org/abs/2006.07869.

Jielin Qiu, Mengdi Xu, William Han, Seungwhan Moon, and Ding Zhao. Embodied executable pol-
icy learning with language-based scene summarization. In Kevin Duh, Helena Gomez, and Steven
Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers),
pp. 1896–1913, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.naacl-long.105.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob N. Foer-
ster, and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In Proceedings of the International Conference on Machine Learning
(ICML), 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob N. Foerster, and Shimon
Whiteson. The starcraft multi-agent challenge, 2019.

Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar, Ruoxi Jia, and Ming Jin. Algorithm of thoughts:
Enhancing exploration of ideas in large language models. arXiv preprint arXiv:2308.10379, 2023.
URL https://arxiv.org/abs/2308.10379.

Ruizhe Shi, Yuyao Liu, Yanjie Ze, Simon S. Du, and Huazhe Xu. Unleashing the power of pre-
trained language models for offline reinforcement learning. In International Conference on
Learning Representations (ICLR), 2024. URL https://openreview.net/forum?id=
AY6aM13gGF. Poster.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: Language agents with verbal rein-
forcement learning. In Advances in Neural Information Processing Systems (NeurIPS), 2023.

Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. Learning when to communicate at scale
in multiagent cooperative and competitive tasks. In Proceedings of the 36th International Confer-
ence on Machine Learning (ICML), 2019. URL http://arxiv.org/abs/1812.09755.

Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent communication with
backpropagation. In Advances in Neural Information Processing Systems (NIPS), 2016.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel. Value-
decomposition networks for cooperative multi-agent learning, 2017. URL https://arxiv.
org/abs/1706.05296.

Hugo Touvron, Thibaut Lavril, Guillaume Izacard, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023. URL https://arxiv.org/abs/
2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

Boyuan Wang, Yun Qu, Yuhang Jiang, Jianzhun Shao, Chang Liu, Wenming Yang, and Xiangyang
Ji. LLM-empowered state representation for reinforcement learning. In Proceedings of the 41st
International Conference on Machine Learning (ICML), 2024.

Jianhao Wang, Zhizhou Ren, Terrence Sun, Yanguang Yu, and Chongjie Zhang. Learning nearly
decomposable value functions via communication minimization. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2020.

Jianhao Wang, Zongqi Ren, Teng Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling multi-
agent q-learning. In International Conference on Learning Representations (ICLR), 2021.

13

https://arxiv.org/abs/2006.07869
https://arxiv.org/abs/2006.07869
https://arxiv.org/abs/2308.10379
https://openreview.net/forum?id=AY6aM13gGF
https://openreview.net/forum?id=AY6aM13gGF
http://arxiv.org/abs/1812.09755
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022. URL https://arxiv.org/abs/2212.10560.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems (NeurIPS), 2022.

Di Xue, Lei Yuan, Zongzhang Zhang, and Yang Yu. Efficient multi-agent communication via shap-
ley message value. In IJCAI, pp. 578–584, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022. URL https://par.nsf.gov/servlets/purl/10451467.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Sha, Silvio Savarese, Tao an, and Ruslan R-
Salakhutdinov. Tree of thoughts: Deliberate problem solving with large language models. In
Advances in Neural Information Processing Systems (NeurIPS), 2023.

Tianbao Yu, Yihua Li, Jiaming Fu, Kun Zhou, Yuan Wang, Chao Chen, Yi Yang, Lizhen Liu, and
Fan Yang. Text2Reward: Reward shaping with language models for reinforcement learning. In
The Twelfth International Conference on Learning Representations (ICLR), 2024.

Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing
Lu. Skill reinforcement learning and planning for open-world long-horizon tasks. arXiv preprint
arXiv:2303.16563, 2023a. doi: 10.48550/arXiv.2303.16563.

Tingting Yuan, Hwei-Ming Chung, Jie Yuan, and Xiaoming Fu. Dacom: Learning delay-aware com-
munication for multi-agent reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 11763–11772, 2023b. URL https://ojs.aaai.org/index.
php/AAAI/article/view/26389.

Sai Qian Zhang, Qi Zhang, and Jieyu Lin. Efficient communication in multi-agent reinforcement
learning via variance based control, 2019. URL https://arxiv.org/abs/1909.02682.

Boyuan Zhao, Tsu-Jui Chang, Kuang-Huei Lee Liu, Andy Zeng, Chuyun Zhang, and S-Liang an.
Expel: Lifelong language agents with experiential learning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 38, pp. 155–164, 2024.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022. URL https:
//arxiv.org/abs/2205.10625.

Zexiong Zhou, Yigang Chen, Jiacheng Li, Xin Wang, hang Yan, and Dahua Lin. Buffer of thoughts:
Thought-augmented reasoning with large language models. In Thirty-eighth Conference on Neu-
ral Information Processing Systems (NeurIPS), 2024.

Changxi Zhu, Mehdi Dastani, and Shihan Wang. A survey of multi-agent deep reinforcement learn-
ing with communication. In Mehdi Dastani, Jaime Simão Sichman, Natasha Alechina, and Vir-
ginia Dignum (eds.), Proceedings of the 23rd International Conference on Autonomous Agents
and MultiAgent Systems, pp. 2845–2847, 2024a.

Changxi Zhu, Mehdi Dastani, and Shihan Wang. A survey of multi-agent deep reinforcement learn-
ing with communication, 2024b. URL https://arxiv.org/abs/2203.08975.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), pp. 2223–2232, 2017. doi: 10.1109/ICCV.2017.244.

Boris Zitkovich, Tianhe Yu, Sherry Xu, Peng Xu, Tete Xiao, Fei Xia, Jiajun Wu, Paul Wohlhart,
et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control. In Con-
ference on Robot Learning, pp. 2165–2183. PMLR, 2023. URL https://proceedings.
mlr.press/v229/zitkovich23a.html.

14

https://arxiv.org/abs/2212.10560
https://par.nsf.gov/servlets/purl/10451467
https://ojs.aaai.org/index.php/AAAI/article/view/26389
https://ojs.aaai.org/index.php/AAAI/article/view/26389
https://arxiv.org/abs/1909.02682
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2203.08975
https://proceedings.mlr.press/v229/zitkovich23a.html
https://proceedings.mlr.press/v229/zitkovich23a.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

In this work, LLMs were employed only for two purposes: (i) as part of our proposed framework,
where API-based models (e.g., GPT-4.1-2025-04-14 and variants) were used to generate and iter-
atively refine communication protocols, and (ii) for polishing grammar and improving the clarity
of our writing. LLMs were not involved in research ideation, problem formulation, method design,
experimentation, analysis, or interpretation, and all scientific content and decisions were made by
the authors.

B IMPLEMENTATION DETAILS

This section provides the implementation details of our refinement process. B.1 describes the con-
struction of prompts used in different refinement phases. B.2 presents examples of LLM outputs
for both protocol generation and feedback. Finally, B.3 details the training objectives of LMAC,
including the reconstruction, meta, and consistency losses.

B.1 PROMPT CONSTRUCTION FOR REFINEMENT PROCESS

Task prompt x: Here, x is the phase-specific prompt designed to guide the generation of commu-
nication protocols, and the LLM outputs a Python code based implementation of the protocol. For
each environment, we construct task descriptions based on the original scenarios defined by their
respective authors, including SMAC-Comm (Samvelyan et al., 2019; Wang et al., 2020), LBF (Du
et al., 2022), and GRF (Kurach et al., 2020). Furthermore, the mapping of each observation and state
dimension into natural language is guided by Wang et al. (2024), and representative examples are
illustrated below.

Environment Observation Structure:

- Observation tensor shape: (32, 11, 103)

- 32: Number of scenarios simultaneously processed.

- 11: Number of agents.

- 103: Number of observation dimensions per agent.

- Each dimension meaning:

`o[batch][agent_id][0]`: Can move North at the current timestep

`o[batch][agent_id][1]`: Can move South at the current timestep

`o[batch][agent_id][2]`: Can move East at the current timestep

`o[batch][agent_id][3]`: Can move West at the current timestep

`o[batch][agent_id][4]`: Is enemy visible

`o[batch][agent_id][5]`: Normalized distance to enemy

…

Observation description in natural language State description in natural language

Task description is:

In a map full of cliffs, both the Overseer and the Roach spawn together at the

same random location, while 10 Banelings spawn separately at random

points across the map. The Overseer is able to detect the exact position of the

Roach (an enemy unit), …

The explanation of each state dimension is provided here:

- `s[0]`: Agent 0 health

- `s[1]`: Agent 0 weapon_cooldown,

- s[2]`: Agent 0 absolute X coordination

- `s[3]`: Agent 0 absolute Y coordination

- `s[4]`: Agent 0 shield, continuous[0,1] value.

- `s[5]`: Agent 0 unit type …

(a) (b)

Figure B.1: (a) Example of observation description , (b) Example of state description

The task prompt is defined as x = (IT , IP), where IT specifies the task objectives and environ-
ment characteristics, and IP provides explicit instructions for protocol generation. Before directly
instructing the LLM to design a protocol, we first guide it through CoT (Wei et al., 2022) reason-
ing to identify task-critical state dimensions. This reasoning step filters out irrelevant dimensions
in high-dimensional states and ensures that the protocol concentrates on essential information. In
particular, IT is constructed as a prompt describing the task and environment properties, while IP
provides detailed instructions for communication protocol design. Their respective templates are
presented below.

Task Description Template(IT)

Task Context - Task Objectives and Environment Characteristics:
Task Description:
{task description}
Environment Observation Structure:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

- Observation tensor shape: {obs shape}
- {obs dim desc}
- Each dimension meaning: {detail content}
Environment Characteristics:
- Multi-agent partially observable environment
- Agents must coordinate under incomplete information
- Communication enables sharing of non-locally observable information

Protocol Generation Template(IP)

Communication Design Key Principles:

1. Task-Oriented Communication:
- Explicitly identify observation dimensions crucial to solving the task.
- Messages must clearly relate these dimensions to task objectives.

2. Uniqueness, Sufficiency & Compactness:
- Each agent should communicate information that others do not already possess or cannot
easily infer based on their own observations.
- Communication should ensure sufficiency, meaning that agents exchange enough
information to enable effective inference and coordination under partial observability.
- At the same time, messages should maintain compactness, minimizing redundancy and
avoiding the transmission of unnecessary or easily inferable data.

3. Contextual and Interaction-Aware:
- Communication should be based on the agent’s own observations, actively leveraging
behavior-relevant information derived from its ”perceived possibilities and recent behavior
patterns”.
- In environments where direct observation of allies and enemies is severely limited, agents
should emphasize sharing self-perceived behavioral information, such as movement
possibilities and recent actions, if available.

4. Explicitness and Clarity:
- Avoid overly abstract messages. All information critical for solving the task must be
included explicitly, in a clear and interpretable form.

5. Structured Output:
- The final output should be a tensor of shape ({batch, agents, obs dim} + message dim).

6. Communication Protocol:
- Specify whether information is exchanged via peer-to-peer (agent-specific) or broadcast
(global).
- Each agent should customize received messages based on the context and utility.
- Messages produced by an agent must be distributed and concatenated into the observations
of other agents, never into only its own.
- Each message must include a sender identity field (one-hot encoded vector).

7. Computational Efficiency:
- No trainable components (e.g., neural networks) in the communication function.

Observation Access Pattern:
For example:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

- o[2, 0, :] = observation vector of agent 0 in the 2nd batch
- o[2, 2, :] = observation vector of agent 2 in the 2nd batch

Protocol Requirements:
Using the important state dimensions reasoning Tokens above, design a communication
protocol that enables agents to share information about these critical dimensions to improve
coordination.
You are required to create two Python functions:
1. message design instruction():
- Clearly describes how the message content is constructed based on the important state
dimensions and observation context
2. communication(o):
- Input: Observation tensor o
- Output: Enhanced observation tensor with integrated task-specific messages
- Focus on communicating information related to the important dimensions identified above
Both functions must be executable and ready for direct integration with MARL algorithms.
Caution!: Create two Python functions that minimizes the use of ”for loops” when handling
batch processing to optimize computational efficiency.
Let’s think step by step. Below is an illustrative example of the expected output:

”’python
import torch as th
def message design instruction():
#Explain how this protocol helps agents coordinate using these critical dimensions
return message description
def communication(o):
#Your communication implementation focusing on important dimensions
#You should design the communication protocol based on the message design instruction
#use same device as input to avoid CUDA/CPU mismatch
return messages o
”’

Feedback instruction: x̃ is a prompt designed to generate natural language feedback by analyzing
the limitations of the current protocol through meta-information derived from the discriminator’s
evaluation and by suggesting directions for improvement. The Feedback Prompt Template follows a
fixed structure with the phase index, objectives, phase instruction, and discriminator results. Among
these, the phase instruction provides the phase index with a clear goal and concise guidance on how
the protocol should be refined. In the Recognition Enhancement phase it emphasizes improving re-
construction of critical state dimensions and addressing uneven prediction across agents, while in the
Sharing Enhancement phase it focuses on reducing cross-agent imbalance and ensuring consistent
state recovery through coordination cues and temporal signals.

Feedback Prompt Template

You are an analysis agent tasked with improving communication strategies in a multi-agent
reinforcement learning (MARL) system.
{x}
===
{phase instruction}
===
Previous Protocol Under Analysis:
{cur communication method}
===
DISCRIMINATOR EVALUATION RESULTS:
{meta information}
===

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Analysis Context:
- Each agent combines its own local observation with received messages to infer important
state dimensions
- You are analyzing predictability results showing how accurately each agent can infer critical
dimensions
- Performance differences across agents indicate areas where communication protocol needs
improvement
===
Expected Output Format (JSON):
{
"Evaluation": "...",
"Missing Information Hypothesis": "...",
"Improvement Suggestions": "..."
}

To update the protocol with the generated feedback, the following additional context template is
appended to the protocol generation prompt.

Additional context Template

Here is the feedback from the previous communication protocol evaluation:

{feedback}
Reflect the feedback by designing messages from each agent’s own observations, prioritizing
information that enables all agents to achieve consistent state prediction and shared
understanding.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.2 DETAILS OF LLM OUTPUTS FOR PROTOCOL AND FEEDBACK

Communication Protocol Since protocol generation relies on high-dimensional tensors, the LLM
may not align dimensions correctly in one attempt. We therefore adopt a Reflexion-based mecha-
nism, where error messages are fed back for iterative correction. Expressing the protocol in code
allows direct verification of transmitted information, while the accompanying message design in-
struction makes the communication process interpretable even to non-experts. Here is the example
of the communication protocol.

Example of Generated Protocol

import torch as th

def message_design_instruction():
"""
Message Design Instruction:

- **Sender**: Only the Overseer (agent at index 10) sends
messages.

- **Receivers**: All Banelings (agent indices 0˜9) receive the
message.

The Overseer does not receive any messages.
- **Message Content**:

- `relative_x`: Overseer's observed relative X position of
the enemy

Roach (`o[..., 6]`).
...

- **Why**: Only the Overseer can observe the Roach; Banelings
need this

precise and actionable info to coordinate and attack.
Including sender

identity ensures explicit grounding and prevents ambiguity.
...

"""
return (

"Message Structure: [relative_x, relative_y, is_visible, "
...

)

def communication(o):
device = o.device
batch_size, n_agents, obs_dim = o.shape
message_dim = 14

1. Get Overseer's observation (agent index 10)
overseer_obs = o[:, 10, :] # (batch, 103)

2. Extract required info from Overseer
relative_x = overseer_obs[:, 6].unsqueeze(1) # (batch, 1)
relative_y = overseer_obs[:, 7].unsqueeze(1) # (batch, 1)
is_visible = overseer_obs[:, 4].unsqueeze(1) # (batch, 1)
...
5. Broadcast message to all agents
messages = th.zeros(batch_size, n_agents, message_dim,

device=device)
messages[:, 0:10, :] = overseer_message.unsqueeze(1).expand(-1,

10, -1)

6. Concatenate messages to observations
messages_o = th.cat([o, messages], dim=2) # (batch, 11, 117)
return messages_o

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Meta-information: Meta-information serves as a quantitative indicator of how communication
improves state prediction compared to the no-message baseline. In the Recognition Enhancement
phase, it measures the average success rate of reconstructing state dimensions, as can be seen in Fig-
ure B.2.(a), which shows the overall improvement achieved through communication. In the Sharing
Enhancement phase, it captures the variance of prediction performance across agents over time, as
illustrated in Figure B.2.(b), enabling a more fine-grained analysis of consistency.

"dimension": "s[62] - Agent 10 absolute X coordination",
"with_communication": {

"agent_success_rates": [0.64, 0.56, … , 0.65, 0.95]
},
"without_communication": {

"agent_success_rates": [0.52, 0.47, … , 0.39, 0.94]

…
"dimension": "s[63] Agent 10 absolute Y coordination",

"with_communication": {
"agent_success_rates": [0.98, 0.98, … , 0.97, 1.0]

},
"without_communication": {

"agent_success_rates": [0.38, 0.37, … , 0.39, 1.0]
…

Meta-information 𝑬𝒕 𝝌𝒍,𝒅,𝒕
𝒊,(𝒌)

Meta-information 𝑽𝒂𝒓𝒊 𝝌𝒍,𝒅,𝒕
𝒊,(𝒌)

"dimensions":"s[62] - Agent 10 absolute X coordination",
"with_communication": {

"early": [0.407, … , 0.775], variance: [0.033],
…

"mid": [0.791, … , 0.978], variance: [0.013]
…

"late": [0.766, … ,1.0], variance: [0.015]
},

"without_communication": {
"early": [0.219, … , 0.769], variance: [0.363],

…
"mid": [0.575, … , 0.981], variance: [0.243],

…
"late": [0.716, … , 1.0], variance: [0.143]

(a) (b)

Figure B.2: (a) Example of temporal average Et[χi,(k)l,d,t] based on meta-information , (b) Example of

variance Vari[χ
i,(k)
l,d,t] based on meta-information

Natural Language based Feedback: The natural language feedback c(k+1) transforms the quan-
titative meta-information into actionable and interpretable guidance that directly supports protocol
refinement. It consists of three parts: (i) evaluation of the current protocol, (ii) hypotheses about
missing information, and (iii) concrete suggestions for improvement. An example can be found be-
low, which illustrates how quantitative results are translated into actionable refinements.

Example natural language feedback c(k+1)

Evaluation : The current communication protocol enables the Banelings (agents 0–9) to
receive Overseer’s (agent 10) relative enemy position ... This significantly improves prediction
accuracy of critical state dimensions ... compared to no communication. However, the success
rates across Banelings are uneven and notably lower than the Overseer’s own high accuracy,
indicating inconsistent inference ...

Missing information hypothesis : The protocol currently misses explicit indicators of
agent-specific observation reliability or visibility, which would clarify which agents have
direct knowledge of the enemy or Overseer positions and which rely solely on
communication. It also omits behavioral or temporal context that could help agents
disambiguate relative positioning over time. ...

Improvement suggestions :
1. Include an explicit visibility or reliability flag per agent in the message to indicate whether
the Overseer currently has direct, reliable observation of the enemy and itself, enabling agents
to weigh communicated information appropriately.
2. Augment the message with behavioral cues such as a timestamp or sequence number to
help agents track message freshness and temporal consistency.
...

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.3 TRAINING LOSSES OF LMAC

Discriminator Training: The training dataset B consists of 5000 trajectories per environment,
collected at 200k training steps under ϵ-greedy exploration with the initial protocol fixed across five
seeds to avoid bias and capture its limitations as a basis for refinement. Based on this dataset, the
discriminator D(k) evaluates how well a candidate communication protocol f (k)C contributes to state
reconstruction: for each agent i, it takes the local observation oit and the message mi,(k)

t as input and
reconstructs the global state st. The training objective is defined as

ϕ∗(k) = argmin
ϕ

E(o,m(k),s)∼B∥D
(k)
ϕ (oit,m

i,(k)
t)− st∥22, (B.1)

where D(k) is implemented as an autoencoder that compresses the input into a latent representation
and reconstructs it to estimate the global state. Training is conducted with B using MSE loss and
mini-batch SGD in a supervised learning setup. The reconstructed outputs are further used to com-
pute the meta-information χi,(k)l,d,t , which provides recognition accuracy and imbalance indicators.

Table B.1: Hyperparameters used for training the discriminator D(k).

Parameter Value

Batch size 32
Dropout rate 0.1
Epochs 1000
Iterations per epoch 10
Hidden dimension 64
Latent dimension 20
Learning rate 0.0005
Optimizer Adam

Representation and Policy Training: The Meta-Cognitive Representation Learning module is im-
plemented as an autoencoder architecture. The encoder Encψ incorporates an attention mechanism,
where the query is formed from the current observation and received messages, while the key and
value are derived from the trajectory τ it . This allows the latent representation zit to capture how the
current observation and message attend to τ it . The decoder Decψ takes the latent representation as
input and produces two outputs: (i) an estimate of the global state ŝit, and (ii) the meta informa-
tion ξ̂id,t. The meta information is defined as ξid,t = I

[(
ŝid,t − sd,t

)2 ≤ α
]
, which indicates whether

agent i, given its messages and trajectory, can accurately reconstruct a particular state dimension.
The training objective for these outputs is

Lrecon = E(τ,s)∼B

[
1

ND

N∑
i=1

D∑
d=1

(
∥ŝ id,t − sd,t∥22 + λmeta CE(ξ̂ id,t, ξ

i
d,t)

)]
, (B.2)

where CE denotes the cross-entropy loss and λmeta balances state reconstruction with meta-
awareness in the latent representation.

To prevent unnecessary information from being encoded in the latent space, we introduce a cycle-
consistency constraint. Specifically, the latent representation zit is reconstructed through the decoder
and re-encoded using an auxiliary encoder Encc,ψ , ensuring that only essential state-related features
remain in the latent representation. The corresponding loss is

Lcons = E(τ,s)∼B

[
1
N

N∑
i=1

(
∥ẑ it − z it ∥22

)]
. (B.3)

In parallel, policy learning is guided by the temporal-difference (TD) error, computed using the
current network parameters θ and the target network parameters θ−.

LTD = Es,a,r,s′
[(
rt + γmax

a′
Qtot
θ− (st+1, a

′)−Qtot
θ (st, at)

)2]
. (B.4)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 1 LLM-driven Multi Agent Communication (LMAC)

1: Initialize: task prompt x = (IT , IP), reasoning tokens z(0) (via CoT essential state selection),
ϕ, ψ, Q network

2: for k = 0, 1, 2 do
3: Generate communication protocol f (k)C ∼ fLLMθ (x, z(k))
4: if k = 0 then
5: Collect trajectory dataset B
6: end if
7: Train discriminator D(k)

ϕ on B by minimizing equation B.1

8: Compute meta-information χi,(k)l,d,t

9: Derive feedback instruction x̃(k+1) and generate feedback c(k+1)

10: Update tokens z(k+1) ∼ fLLMθ (x, c(k+1))
11: end for
12: Final protocol fC = (f

(0)
C , f

(1)
C , f

(2)
C)

13: for each training episode do
14: Obtain messages mi

t = fC(τt)
15: Encode latent zit = Encψ(τ

i
t ,m

i
t)

16: Decode to predict state ŝit and meta-info ξ̂id,t
17: Compute Lrecon using Equation B.2
18: Compute Lcons by Equation B.3
19: Update parameters ψ and by minimizing the overall objective with TD-loss for QMIX
20: end for

Finally, representation learning is jointly optimized with the TD error, and the complete objective is
defined as

L = LTD + Lrecon + λcons Lcons. (B.5)

The overall training procedure of LMAC is summarized in Algorithm 1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS

All baseline algorithms are evaluated using the official implementations and default settings released
by their respective authors. The implementation of LMAC is based on EPyMARL1 (Papoudakis
et al., 2021b) , and all experiments in SMAC were conducted using StarCraft II version 2.4.10. Our
method and comparisons are trained on an NVIDIA RTX 4090 GPU with an AMD EPYC 9334
CPU (Ubuntu 20.04). In the following sections, we provide details of the environments, baseline
algorithms, reconstruction threshold settings, and hyper-parameter configurations used in our exper-
iments. In particular, C.1 outlines the environment settings, C.2 describes the baseline algorithms,
and C.3 summarizes the hyper-parameter configurations of our implementation.

C.1 ENVIRONMENT DETAILS

C.1.1 STARCRAFT MULTI-AGENT CHALLENGE WITH COMMUNICATION

Ally

Enemy

(a) bane vs hM (b) 1o 10b vs 1r (c) 2o 20b vs 2r (d) 5z vs 1ul

Figure C.1: SMAC-comm scenarios: (a) bane vs hM, (b) 1o 10b vs 1r, (c) 2o 20b vs 2r,
(d) 5z vs 1ul.

We evaluate our method on four scenarios from the StarCraft Multi-Agent Challenge with com-
munication (SMAC-Comm). Among them, bane vs hM, 1o 10b vs 1r, and 5z vs 1ul are
introduced by Wang et al. (2020), while 2o 20b vs 2r is a new map we propose based on
1o 10b vs 1r. The illustrations of these scenarios are shown in Figure C.1, and their detailed
configurations are summarized in Table C.1.

In SMAC-Comm, the state space contains absolute information of all units, including their posi-
tions, health, shields, energies, cooldowns, unit types, and most recent actions, while each agent’s
observation space is restricted to local information within its sight range, capturing relative posi-
tions, health, shield status, and unit types of nearby allies and enemies. The action space is defined
as a set of discrete actions, including movement in four directions, attacks on visible enemies, special
unit abilities, as well as stop and no-op commands, where no-op is used exclusively by eliminated
units. The reward function is shaped by damage dealt to enemies, elimination of enemy units, and
winning the scenario, and is formally defined as

R =
∑

e∈enemies

∆Health(e) +
∑

e∈enemies

I(Health(e) = 0) · Rewarddeath + I(win) · Rewardwin (C.1)

where ∆Health(e) denotes the health reduction of enemy unit e during a timestep, I(·) is an indi-
cator function, and Rewarddeath and Rewardwin are set to 10 and 200, respectively. A more detailed
description of each scenario is provided below.

bane vs hM: Three Banelings attempt to take down a Hydralisk supported by a Medivac. Only
when all three explode together can the Hydralisk be defeated, as any delay allows the Medivac to
restore its health. To succeed, the Banelings must strike in perfect unison at the central junction of
the T-shaped map, where the Hydralisk is positioned. This scenario requires agents to accurately
perceive their positions and execute attacks simultaneously in order to succeed.

1o 10b vs 1r: On a cliff-dense map, an Overseer locates a Roach that must be eliminated by its 10
Baneling allies to secure victory. While the Overseer and Roach appear together at a random spot, the
Banelings spawn separately across the map. Under a minimal communication scheme, the Banelings
remain silent, leaving the Overseer responsible for encoding its own position and transmitting it to
guide the team.

1https://github.com/uoe-agents/epymarl

23

https://github.com/uoe-agents/epymarl

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

2o 20b vs 2r:. This map is an extension of 1o 10b vs 1r that we propose. Similar to the original
setting, the scenario is played on a cliff-dense map where 20 Banelings must eliminate 2 Roaches.
Both Roaches and Banelings spawn at random locations across the map. This environment is de-
signed to evaluate whether our proposed communication method remains effective in more complex
scenarios with a larger number of agents.

5z vs 1ul: This map features five Zealots controlled by the agents against one Ultralisk as the enemy.
The Ultralisk has high health and strong melee attacks, requiring coordinated micro-management
from the Zealots to win. The challenge emphasizes some tactics such as kiting strategies, positioning,
and focus fire to maximize damage while minimizing losses.

Table C.1: Detailed description of SMAC-Comm scenarios

Map Ally Units Enemy Units State Dimension Obs Dimension Num. of Actions
bane vs hM 3 Banelings 1 Hydralisk, 52 31 8

1 Medivac

1o 10b vs 1r 1 Overseer, 1 Roach 148 85 7
10 Banelings

2o 20r vs 2r 2 Overseers, 2 Roaches 296 171 7
20 Banelings

5z vs 1ul 5 Zealots 1 Ultralisk 63 36 7

C.1.2 LEVEL-BASED FORAGING

1

2

3

3

3

3

(a) 8x8 2p 2f s1 coop

1

2

3

3

3

3

1

2

2

3

(b) 11x11 6p 4f s1 coop

Figure C.2: LBF scenarios: (a) 8x8 2p 2f s1 coop, (b) 11x11 6p 4f s1 coop.

We adopt the Level-Based Foraging (LBF) variant introduced by Li et al. (2022b). The state space
is represented as a structured grid encoding the positions and levels of all agents along with the
locations and required levels of food items, rather than by concatenating individual observations.
With the cooperation option enabled, each food item requires the joint effort of multiple agents,
with its level set equal to the sum of the three lowest agent levels, ensuring that no agent can collect
food alone and that every successful loading demands coordination. The observation space for
each agent is limited to a 3 × 3 local field centered on itself, capturing relative information about
nearby agents and food. The action space consists of six discrete actions: moving north, south,
east, or west, attempting to load adjacent food, and the idle action (none). The reward function is
cooperative and normalized by the total potential food value, granting positive returns only when
the combined levels of participating agents meet or exceed the requirement of the targeted food. We
evaluate two cooperative configurations as illustrated in Figure C.2.

8x8 2p 2f s1 coop: A compact 8 × 8 grid with 2 agents and 2 food items, where cooperation is
strictly enforced for every collection attempt.

11x11 6p 4f s1 coop: A larger 11× 11 grid with 6 agents and 4 food items under the same cooper-
ative setting, introducing greater complexity through increased agent interactions and map size.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C.1.3 GOOGLE FOOTBALL RESEARCH

Ally

Opponent

Ball

(a) run pass and shoot (b) 3 vs 1 with keeper

Figure C.3: GRF scenarios: (a) Run pass and shoot, (b) 3 vs 1 with keeper.

We use the Google Research Football (GRF) environment (Kurach et al., 2020), a
physics-based soccer simulator that incorporates core mechanics such as ball control, pass-
ing, shooting, tackling, and player movement. In this environment, each agent controls
an individual player and must cooperate with teammates to score goals against scripted
opponents. From the GRF scenarios, we consider academy 3 vs 1 with keeper and
academy run pass and shoot with keeper, which we refer to as 3 vs 1 with keeper
and run pass and shoot for brevity. The illustrations of the GRF scenarios are shown in Fig-
ure C.3, and their detailed configurations are summarized in Table C.2.

In GRF, the state space contains the positions and velocities of all players as well as the ball, with
ally and opponent features represented in the same format. Each agent’s observation space con-
sists of local information about itself, nearby teammates, opponents, and ball-related features, all
expressed relative to the agent’s frame. The action space is discrete and includes movement in eight
directions, sliding, passing, shooting, sprinting, and standing still, which together enable the agents
to create scoring opportunities. The reward function is provided under two schemes: Scoring and
Checkpoint. The Scoring function gives +1 for scoring a goal and -1 for conceding, while the Check-
point function provides additional intermediate rewards such as for successful passes or defensive
actions. In our experiments, we adopt the sparse Scoring function to increase the difficulty of the
scenarios. A more detailed description of each scenario is provided below.

3 vs 1 with keeper: Three attackers operate from the edge of the box: one on each wing and one
in the center. The central player begins with the ball while directly confronted by a defender, and
an opposing goalkeeper guards the net. The scenario emphasizes teamwork through passing and
positioning to create scoring opportunities.

run pass and shoot: Two attackers are positioned near the edge of the penalty area. One player
starts wide with possession and is unmarked, while the other is placed centrally, marked by a de-
fender, and facing the goalkeeper. The setup encourages passing and coordinated shooting to over-
come the defense.

Table C.2: Detailed description of GRF scenarios

Scenario Ally Opponent State Dim Obs Dim Action Dim

3 vs 1 with keeper 3 central midfield
1 goalkeeper,
1 center back 26 26 19

Run pass and shoot 2 central back
1 goalkeeper,
1 center back 22 22 19

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C.2 DETAILED DESCRIPTION OF BASELINE ALGORITHMS

QMIX (Rashid et al., 2018) QMIX factorizes the joint action-value function into individual util-
ities using a monotonic mixing network. It provides a strong baseline for cooperative MARL un-
der centralized training with decentralized execution, but does not involve explicit communica-
tion between agents. We base our implementation of QMIX on the following repository: https:
//github.com/hijkzzz/pymarl2

FullComm A variant of QMIX where each agent broadcasts its full local observation to all others at
every timestep. This represents an upper-bound setting with maximal communication capacity but
incurs heavy redundancy and communication cost.

QMIX+State An oracle-like upper bound where each agent is directly given the global state in
addition to its local observation. This allows agents to make fully informed decisions and serves as
a reference for the maximum achievable performance.

NDQ (Wang et al., 2020) Neural Decomposable Q-learning introduces nearly decomposable Q-
functions that minimize communication overhead. Agents act independently most of the time,
but exchange messages guided by information-theoretic regularizers that maximize mutual in-
formation while minimizing entropy. This approach achieves strong coordination while reduc-
ing communication by over 80% compared to full exchange. The official code can be found at:
https://github.com/TonghanWang/NDQ

MASIA (Li et al., 2022b) Multi-Agent Self-supervised Information Aggregation enables agents to
aggregate received raw messages into compact, permutation-invariant representations. These em-
beddings are optimized through self-supervised objectives such as reconstruction and prediction,
allowing agents to extract the most relevant information for decision-making and significantly im-
prove coordination. The official code can be found at: https://github.com/chenf-ai/
Multi-Agent-Communication-Considering-Representation-Learning

MAIC (Du et al., 2022) Multi-Agent Incentive Communication allows each agent to generate in-
centive messages that directly bias teammates’ value functions, promoting explicit coordination. By
learning targeted teammate models and applying sparsity regularization, MAIC improves efficiency
and achieves strong performance across diverse cooperative MARL benchmarks. The official code
can be found at: https://github.com/mansicer/MAIC

COLA (Monda et al., 2023) Consensus Learning for Agents enables cooperative behavior by al-
lowing agents to infer a shared consensus representation from their local observations. Even without
direct access to the global state, agents learn viewpoint-invariant representations that converge to
the same discrete consensus, which is then used as an additional input for decentralized decision-
making. The official code can be found at: https://github.com/deligentfool/COLA

T2MAC (Liu et al., 2024) Targeted and Trusted Multi-Agent Communication equips agents with
mechanisms for selective engagement and evidence-driven message integration. Agents decide when
and with whom to communicate, exchange individualized messages, and integrate received informa-
tion at the evidence level, leading to more efficient and reliable cooperation. The official code can
be found at: https://github.com/ZangZehua/T2MAC

C.3 HYPER-PARAMETER SETUP

We calibrated the reconstruction threshold α according to the spatial structure and visibility con-
ditions of each environment: 0.05 for SMAC-Comm where normalized coordinates directly reflect
spatial error, a stricter 0.005 for the more challenging bane vs hM scenario, 0.002 for GRF with
absolute field coordinates and weaker observability limits, and 0.1 for the grid-based LBF where
prediction depends on cell occupancy. Beyond these thresholds, default hyper-parameters were used
as the baseline configuration. For each scenario, we primarily followed the settings provided by the
original authors; when such specifications were unavailable, the default parameters were applied.
The full set of hyper-parameters used in our experiments is summarized in Table C.3.

26

https://github.com/hijkzzz/pymarl2
https://github.com/hijkzzz/pymarl2
https://github.com/TonghanWang/NDQ
https://github.com/chenf-ai/Multi-Agent-Communication-Considering-Representation-Learning
https://github.com/chenf-ai/Multi-Agent-Communication-Considering-Representation-Learning
https://github.com/mansicer/MAIC
https://github.com/deligentfool/COLA
https://github.com/ZangZehua/T2MAC

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table C.3: Common hyper-parameter setting of LMAC

Parameter Value

Hidden dimension for self-attention module 64
Latent dimension 20
Dropout rate 0.1
Optimizer Adam
ϵ anneal step 50000
ϵ Decay Value 1.0 → 0.05
Replay buffer size 5000
Target update interval 200
Mini-batch size 32
Mixing network dimension 32
Discount factor γ 0.99
Learning rate 0.0005
Coefficient of meta-information loss λmeta 0.1
Coefficient of consistency loss λcons 1
temperature(LLM generation) 0.6

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

D ADDITIONAL TRAJECTORY ANALYSIS

In addition to the main trajectory analysis presented in the paper, we further examine protocol re-
finement in other SMAC-Comm scenarios and GRF tasks. These supplementary cases demonstrate
that the framework yields interpretable communication protocols whose iterative refinements adapt
to scenario-specific challenges. The following analyses provide examples from different environ-
ments, illustrating how the protocol evolves beyond the scenarios presented in Section 5.2.

SMAC-comm: bane vs hM

Interpretable Messages (𝒌 = 𝟎)

(b)(a)

Interpretable Messages(𝒌 = 𝟏)

Feedback (𝒌 = 𝟎)

Issue
Banelings 0 and 1 absolute coordinates

are predicted inconsistently, often with

success rates below 0.8.

Solution

Feedback (𝒌 = 𝟏)
Issue

Prediction variance for Banelings 0 and 1

absolute X/Y remained due to missing

temporal and behavioral context.

Solution

Interpretable Messages (𝒌 = 𝟐)

Env: bane_vs_hM

LLM

"To solve the task,

Banelings must know

the positions of all the others"

!

Banelings Banelings

1. Hydralisk’s (𝜟𝒙, 𝚫𝐲) from each Banelings

2. Own health ratio.

Send

to Banelings

to Banelings

Send

to Banelings

BanelingHydralisk

Medivac Sight Range

? ?

?

1. Visibility of Hydralisk

2. Visibility of Ally Banelings

3. Movement possibility

4. Recent history

Send

1. Aggregated movement history about

last 10 steps

2. (𝚫𝒙, 𝚫𝐲)of an ally that the Banelings

can currently see

Add visibility flags and movement

possibility so receivers can judge both the

reliability of shared positions and the

sender’s mobility constraints.

Provide temporal action history and

the (Δ𝑥, Δy) of a visible ally to stabilize

absolute coordinate prediction and reduce

variance across agents.

Figure D.1: Protocol refinement analysis on SMAC bane vs hM: (a) Task scenario with Banelings,
Hydralisk and Medivac under partial observability, (b) protocol messages and corresponding feed-
back at each phase k

As a complementary case, we analyze protocol refinement in the SMAC bane vs hM map, sum-
marized in Fig. D.1. In (a), three Banelings must coordinate a simultaneous detonation against a
Hydralisk supported by a Medivac, where precise synchronization is critical. Because absolute coor-
dinates are absent from local observations and the long vertical corridor makes y-position inference
particularly difficult, agents struggle to align their attacks without additional cues. In (b), protocol
evolution is shown: at k = 0, Banelings broadcast the Hydralisk’s relative position (∆x,∆y) and
their own health ratio, which provides partial but unreliable signals, resulting in inconsistent ab-
solute localization. Feedback highlights this instability and suggests including visibility indicators,
movement possibilities, and recent history. At k = 1, these additions improve the interpretability
of shared information, but prediction variance remains high for certain coordinates due to missing
temporal and behavioral context. At k = 2, variance-based feedback leads to incorporating aggre-
gated movement history over the last 10 steps together with the relative position of currently visible
allies, allowing agents to stabilize absolute predictions and achieve consistent coordination. These
results show that refining protocols to generate and share structured temporal-behavioral features,
rather than only raw observations, is key to enabling consistent absolute localization under partial
observability.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

GRF: Run pass and shoot

Interpretable Messages (𝒌 = 𝟎)

(b)(a)

Interpretable Messages

Interpretable Messages (𝒌 = 𝟐)

Env: Run_pass_and_shoot

LLM

"To solve the task,
players must have an
accurate knowledge

of all other players’ positions."

!

Player Player

1. Own position & (𝜟𝒙, 𝜟𝒚) of ball

2. Opponent GK/CB (𝜟𝒙, 𝜟𝒚) & directions

1. Behavior cues from recent action history

2. Confidence Scores: distance-based

reliability of GK, ball

1. Acceleration & heading change made using

consecutive position/direction differences.

2. Behavioral cues pooled over last 10 steps

Ally Opponent

(𝒌 = 𝟏)

(c)

Send

to Ally

Send

to Ally

Send

to Ally

Figure D.2: Protocol refinement analysis on GRF Run pass and shoot: (a) Task scenario with
two attackers, a defender, and goalkeeper near the penalty area, (b) protocol messages at each phase
k, (c) t-SNE of predicted states and meta-information showing convergence across agents after com-
munication.

As a complementary case, we analyze protocol refinement in the GRF Run pass and shoot
scenario, summarized in Fig. D.2. In (a), two attackers must cooperate near the penalty area against
a central defender and a goalkeeper. Although the state space in GRF is structurally simpler than in
SMAC, it remains important that agents infer states from shared messages and incorporate them into
policy decisions, a pattern that is also observed in LBF. (b) shows the protocol evolution. At k = 0,
each agent shares its own position, the relative displacement of the ball, and the positions of the
central defender and goalkeeper, but such information alone is limited for predicting other aspects
of the state. Accordingly, at k = 1, behavioral cues such as pass/shoot readiness and sprinting,
together with confidence scores regarding the goalkeeper and ball, are added. At k = 2, dynamic
features such as acceleration and heading changes, along with aggregated behavioral histories over
the last 10 steps, are incorporated, stabilizing predictions and enabling cooperative play in which
the wide attacker penetrates open space while the central striker draws defensive pressure. In (c),
the t-SNE visualization shows that the predicted states ŝti and the meta-information ξ̂d, ti converge
across agents after communication. This indicates that through message exchange, all agents come
to predict state dimensions at a similar level and, moreover, share a common recognizability of
which dimensions are reliably captured.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E ADDITIONAL EXPERIMENTAL ANALYSES

In this section, we present additional experimental analyses to further examine LMAC. We first
assess the generality of LMAC by combining it with different value decomposition methods and
scaling to larger environments with more agents, as shown in E.1. We then explore how performance
changes when the feedback-based refinement is applied multiple times, as detailed in E.2. Lastly,
we study the influence of restricting the message dimension on protocol design and communication
efficiency, which is discussed in E.3.

E.1 GENERALITY OF LMAC

QMIX QPLEX VDN0

20

40

60

80

100

W
in

 R
at

e(
%

)

w/ LMAC
w/o LMAC

(a) 1o 10b vs 1r

QMIX QPLEX VDN0

20

40

60

80

100

W
in

 R
at

e(
%

)

w/ LMAC
w/o LMAC

(b) 2o 20b vs 2r

Figure E.1: Generality of LMAC across different value decomposition methods (VDN, QMIX,
QPLEX) and larger environments with more agents

We further evaluate the generality of LMAC by combining it with different value decomposition
algorithms (VDN, QMIX, QPLEX). As shown in Figure E.1, LMAC provides a consistent per-
formance boost across all methods, not only when paired with QMIX. In addition, this benefit is
preserved in more complex environments with larger numbers of agents, such as 2o 20b vs 2r,
demonstrating that the effectiveness of LMAC scales beyond simple scenarios. These results confirm
that the proposed communication framework generalizes well across both algorithmic backbones
and environmental complexities.

E.2 EFFECT OF THE NUMBER OF UPDATE PHASES

0 1 2 4 6 9
Protocol update iteration

60

70

80

90

100

W
in

 R
at

e
(%

)

(a) 1o 10b vs 1r

0 1 2 4 6 9
Protocol update iteration

40

50

60

70

80

W
in

 R
at

e
(%

)

(b) bane vs hM

Figure E.2: Performance comparison when the communication protocol is iteratively updated across
different numbers of update phases in (a) 1o 10b vs 1r and (b) bane vs hM.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

We analyze the effect of repeatedly applying feedback-based protocol refinement using the Sharing
Enhancement update scheme. As shown in Figure E.2, performance improves as the number of up-
date phases k increases, but the marginal gain quickly saturates around k = 3. In fact, even k = 2 is
sufficient to capture most important state dimensions that can be inferred from observations, while
larger k mainly increases message size and introduces redundant information, reducing efficiency.
Nevertheless, in environments that demand more sophisticated reasoning, employing more refine-
ment phases may still offer benefits.

E.3 EFFECT OF REDUCED COMMUNICATION CAPACITY UNDER CONSTRAINTS

(a) 1o 10b vs 1r

0.0 0.5 1.0 1.5 2.0
Timesteps (M)

0

20

40

60

80

100

W
in

 R
at

e
(%

)

5
10
20
30
w/o limit

(b) bane vs hM

Figure E.3: Performance comparison under message dimension constraints in (a) 1o 10b vs 1r
and (b) bane vs hM.

We further investigated how performance changes when message dimensionality is constrained,
since larger message sizes naturally lead to higher communication overhead. Here, we use com-
munication capacity to denote the effective amount of information that agents can transmit through
messages, which is directly determined by message dimensionality. Thus, restricting the number of
message dimensions can be regarded as limiting the communication capacity of agents. As shown
in Fig. E.3, our method remains robust under such conditions: even with reduced message sizes,
performance is largely preserved. In particular, the LLM reduced overhead by designing protocols
that avoid unnecessary all-to-all communication through one-way broadcast structures, or by com-
pactly encoding key features such as movement possibility, last action, and sender ID into only a
few bits. However, in more challenging scenarios such as bane vs hM, where state inference is in-
herently more difficult, excessive compression slowed convergence, indicating that a moderate level
of communication capacity is still necessary for effective learning.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

F COMPARISON OF COMPUTATIONAL COMPLEXITY

In the SMAC communication experiments, we measured the total training time for 2M steps on
the bane vs hM and 1o 10b vs 1r maps, as reported in Table F.1. On average, LMAC requires
about 15% more training time than strong baselines such as MASIA and MAIC. This overhead
mainly comes from training the discriminator and collecting additional trajectory data for it, but it is
a necessary cost that allows the model to diagnose weaknesses in the communication protocol and
iteratively refine it. As a result, LMAC consistently achieves higher performance than all baselines,
demonstrating that the improvement in coordination quality outweighs the extra computation.

Table F.1: Total training time (hours) for 2M steps in SMAC communication settings.

Algorithm bane vs hM 1o 10b vs 1r

QMIX 4h 12m 5h 42m
NDQ 5h 17m 6h 33m
T2MAC 5h 34m 7h 28m
MASIA 7h 13m 8h 13m
MAIC 7h 45m 8h 32m
COLA 7h 54m 8h 24m
LMAC(Ours) 8h 26m 9h 47m

32

	Introduction
	Background
	Dec-POMDPs with Communication under the CTDE Paradigm
	Large Language Models for Reasoning

	Related Works
	Methodology
	LLM-Guided Multi-Phase Communication Protocol Design
	Meta-Cognitive Representation Learning for MARL Framework

	Experiments
	Performance Comparison
	Trajectory Analysis
	Ablation Study

	Limitation
	Conclusion
	The Use of Large Language Models
	Implementation Details
	Prompt Construction for Refinement Process
	Details of LLM Outputs for Protocol and Feedback
	Training Losses of LMAC

	Experimental Details
	Environment Details
	StarCraft Multi-Agent Challenge with communication
	Level-Based Foraging
	Google Football Research

	Detailed Description of Baseline Algorithms
	Hyper-parameter Setup

	Additional Trajectory Analysis
	Additional Experimental Analyses
	Generality of LMAC
	Effect of the Number of Update Phases
	Effect of Reduced Communication Capacity under Constraints

	Comparison of Computational Complexity

