LLM-GUIDED COMMUNICATION FOR COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Communication can be essential in cooperative multi-agent reinforcement learning (MARL), where agents may need to overcome partial observability by exchanging information to accomplish tasks. However, prior methods often rely on messages that are uninterpretable or contain irrelevant information. To overcome this issue, we propose LLM-driven Multi-Agent Communication (LMAC), a novel MARL framework that combines LLM-based communication protocol design with a meta-cognitive latent representation module. LMAC employs iterative refinement with phase-specific feedback to produce interpretable protocols that enhance state recovery and shared understanding, while its latent module incorporates reliability signals with cycle consistency to ensure compact and trustworthy representations. Experiments across diverse MARL benchmarks demonstrate that LMAC consistently improves performance over other communication baselines.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) has emerged as a key paradigm for solving tasks where multiple agents must collaborate, such as autonomous driving (Chen et al., 2023a), network management, and strategic games (Nguyen et al., 2020; Orr & Dutta, 2023). In such environments, each agent learns from its own local observations, and partial observability prevents any single agent from fully reconstructing the global state required for effective decision-making (Zhu et al., 2024b). To address this, the centralized training with decentralized execution (CTDE) paradigm (Oliehoek et al., 2008) has been widely adopted, where centralized training leverages global information but execution remains decentralized. Within CTDE, value decomposition methods have been extensively studied to ensure proper credit assignment from the global value to individual utilities. Representative approaches include VDN (Sunehag et al., 2017), which expresses the joint value as a weighted sum of individual values, and QMIX (Rashid et al., 2018), which enforces the individual-global-max (IGM) condition through a mixing network.

Communication-based MARL allows agents to exchange information beyond their limited observations (Zhu et al., 2024a). Prior methods include sharing raw or compressed observations (Sukhbaatar et al., 2016; Das et al., 2019b; Li et al., 2022b) or exchanging structured representations such as agent influence, external knowledge, or global summaries (Wang et al., 2020; Du et al., 2022; Liu et al., 2024). However, latent-based messages in existing MARL approaches are often hard to interpret and may include redundant or missing task-critical information. Recent work has explored natural language mapping (Li et al., 2024), but this remains confined to simple tasks and largely imitates LLM agents rather than ensuring balanced situation awareness. Consequently, the same message may still be understood differently by agents, causing cooperation failures. For instance, in soccer, one player's call to "pass back!" may be understood differently by teammates, leading to miscoordination. Likewise, in MARL, inconsistent interpretation of the same message undermines cooperation, highlighting the need for protocols that are both interpretable and ensure consistent state understanding.

To overcome these limitations, we present LLM-driven Multi-Agent Communication (LMAC), a communication-based MARL framework that (i) designs interpretable protocols through LLM reasoning and (ii) learns compact meta-cognitive latent representations that exploit these messages. For protocol design, we leverage large language models such as GPT (OpenAI, 2023), Gemini (Gemini Team & Google, 2023), and Claude (Anthropic, 2024), which provide general-purpose and strong

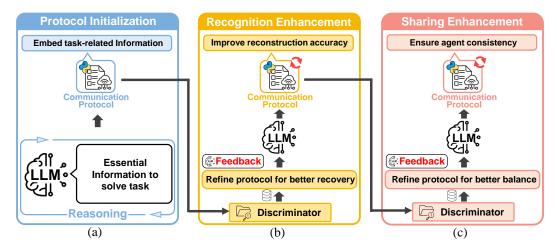


Figure 1: Illustration of protocol refinement in LMAC: (a) Protocol Initialization (k=0) generates an initial protocol for sharing task-relevant information using their local observations, (b) Recognition Enhancement (k=1) improves the accuracy of information recovery, and (c) Sharing Enhancement (k=2) reduces inter-agent inconsistencies to ensure consistent understanding. Each stage refines the protocol under a distinct objective guided by discriminator feedback.

reasoning capabilities well-suited for developing communication protocols. Building on the Reflexion mechanism(Shinn et al., 2023), originally proposed for iterative self-refinement, we introduce phase-specific objectives where discriminators provide targeted feedback using real transitions. As shown in Fig. 1, refinement proceeds in three stages: (a) *Protocol Initialization*, where the LLM proposes a preliminary protocol; (b) *Recognition Enhancement*, where feedback improves information recovery; and (c) *Sharing Enhancement*, where feedback reduces inter-agent inconsistencies. This iterative, phase-specific process, with each stage concentrating on its own objective, yields protocols that capture task-relevant information, strengthen global awareness, and provide a shared cognitive basis for cooperation, enabling more interpretable and effective MARL.

To integrate these protocols into MARL training, we introduce a meta-cognitive latent module that reconstructs states with dimension-wise recovery signals and applies cycle-consistency to retain only task-relevant information. Combined with protocol design, this yields interpretable and consistent communication for effective cooperation. We validate our approach on multiple MARL benchmarks and show that it outperforms existing methods. Our contributions are summarized as follows:

- **LLM-based communication protocol design:** We propose an iterative Reflexion-inspired framework with phase-specific feedback and discriminators, yielding interpretable protocols that progressively enhance state recovery and mitigate imbalance.
- Meta-cognitive representation learning: We embed the designed protocols into MARL framework via a latent module that reconstructs states with dimension-wise recovery signals and enforces cycle consistency, ensuring messages are compact and reliably utilized.
- Empirical evaluation and analysis: We validate LMAC across diverse MARL benchmarks and provide in-depth trajectory analyses, showing how the designed protocols yield interpretable messages that directly enhance information recovery, consistency, and cooperative performance.

2 BACKGROUND

2.1 DEC-POMDPS WITH COMMUNICATION UNDER THE CTDE PARADIGM

Cooperative multi-agent reinforcement learning (MARL) with communication can be formalized as a decentralized partially observable Markov decision process with communication (Comm-Dec-POMDP), $G = \langle S, A, P, R, O, \mathcal{O}, I, n, \gamma, \mathcal{M} \rangle$. Here, S is the global state space, A the joint action space, P the transition dynamics, R the reward function, O the observation function with observation space O, I the set of n agents, γ the discount factor, and \mathcal{M} the message space. At timestep I, agent I receives an observation I and selects an action I through a decentralized

policy $\pi^i(\cdot \mid \tau_t^i)$ based on its trajectory $\tau_t^i := (o_0^i, a_0^i, \dots, o_t^i)$. The objective is to maximize the expected cumulative reward $\mathbb{E}[\sum_{t=0}^{T-1} r_t]$, typically trained under the CTDE paradigm, where global information is available during training but only local observations are used at execution. As a baseline, QMIX (Rashid et al., 2018) learns a global action-value function $Q_{\text{tot}}(\tau_t, \mathbf{a}_t)$ under the IGM condition, ensuring consistency between global maximization and individual action-value function $Q^i(\tau_t^i, a_t^i)$. A key challenge in MARL is partial observability, since each agent only perceives a limited and noisy view of the environment.

To mitigate this issue, recent communication-based MARL methods (Goldman & Zilberstein, 2008; Foerster et al., 2016) are often equipped with a communication mechanism that allows them to exchange messages $m_t^i \in \mathcal{M}$ at each timestep. When such messages are incorporated, the value functions and policies are extended as $Q^i(\tau_t^i, m_t^i, a_t^i)$ and $\pi^i(\cdot \mid \tau_t^i, m_t^i)$. This formulation enables agents to leverage shared information to improve coordination and reduce uncertainty, ultimately enhancing cooperative performance in decentralized environments.

2.2 Large Language Models for Reasoning

Large language models (LLMs) such as GPT (OpenAI, 2023), Gemini (Gemini Team & Google, 2023), LLaMA (Touvron et al., 2023), and Claude (Anthropic, 2024) have rapidly expanded beyond natural language processing to domains requiring complex reasoning. Built on the Transformer architecture (Vaswani et al., 2017) with billions of parameters and trained on terabytes of text, these models exhibit strong capabilities in generation, contextual understanding, and abstract inference. To strengthen reasoning, methods such as Chain-of-Thought (CoT)(Wei et al., 2022) and Reflexion(Shinn et al., 2023) introduce intermediate steps and iterative refinement. In CoT, the model first produces reasoning tokens $z \sim f_{\theta}^{\rm LLM}(x)$ from input prompt x and then generates the final answer $y \sim f_{\theta}^{\rm LLM}(x,z)$, where $f_{\theta}^{\rm LLM}$ denotes an LLM with parameters θ . Reflexion extends this process with feedback-driven updates: at step k, the model outputs $y^{(k)} \sim f_{\theta}^{\rm LLM}(x,z^{(k)})$, derives a feedback sentence $c^{(k+1)} \sim f_{\theta}^{\rm LLM}(x,\tilde{x},z^{(k)},y^{(k)})$ where \tilde{x} is the feedback instruction, and then refines the reasoning as $z^{(k+1)} \sim f_{\theta}^{\rm LLM}(x,c^{(k+1)})$, leading to $y^{(k+1)} \sim f_{\theta}^{\rm LLM}(x,z^{(k+1)})$. This iterative procedure enables LLMs to revise their reasoning sequences based on prior errors and self-generated feedback, thereby achieving more consistent and robust performance in long-horizon problem solving. In this work, we leverage LLMs for communication protocol design in MARL, where Reflexion-based refinement is employed to progressively enhance the protocols.

3 RELATED WORKS

Communication for MARL In communication-based MARL, extensive studies have explored how agents can cooperate under partial observability through learned communication protocols (Sukhbaatar et al., 2016; Foerster et al., 2016). Research on what to communicate ranges from continuous messages in CommNet to efficient variants such as TMC (Das et al., 2019a), NDQ (Wang et al., 2020), and MAIC (Du et al., 2022), with later work addressing robustness to noisy channels (Zhang et al., 2019; Freed et al., 2020). Studies on when and with whom to communicate introduce gating and scheduling strategies (Singh et al., 2019; Karten et al., 2022; Niu et al., 2021; Xue et al., 2022; Yuan et al., 2023b; Hu et al., 2024). Finally, how to use messages has been studied through integration mechanisms such as attention in TarMAC (Das et al., 2019b) and representation learning in MASIA (Li et al., 2022b). While these methods improve coordination, the exchanged signals are typically uninterpretable and may not guarantee consistent recovery of task-relevant information across agents.

Large Language Models for Reasoning LLMs, pretrained on massive corpora, have demonstrated strong reasoning abilities beyond language generation. Chain-of-Thought prompting (Wei et al., 2022) has been extended into more structured reasoning formats (Zhou et al., 2022; Yao et al., 2023; Besta et al., 2023; Sel et al., 2023; Zhou et al., 2024), while zero-shot reasoning (Kojima et al., 2022) and instruction tuning with self-generated data (Wang et al., 2022) highlight the versatility of prompting. ReAct (Yao et al., 2022) integrates reasoning traces with environment interactions, and iterative refinement methods such as Reflexion (Shinn et al., 2023), Retroformer (Chen et al., 2024), and Expel (Zhao et al., 2024) enable continual self-correction. These advances establish LLMs as higher-level reasoning engines capable of stepwise abstraction and iterative improvement.

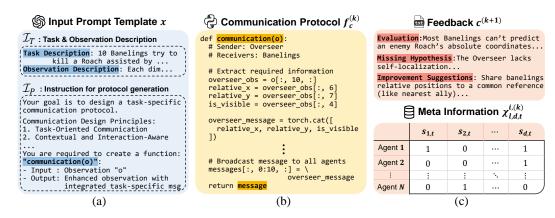


Figure 2: Elements of the LLM-based communication protocol refinement process: (a) Input prompt x with task description \mathcal{I}_T and design instruction \mathcal{I}_P , (b) generated protocol $f_C^{(k)}$ that maps local observations to agent-specific messages, and (c) meta-information data with phase-specific feedback instructions, which guide refinement by analyzing recovery accuracy and inter-agent imbalance.

Large Language Models for Reinforcement Learning Recent studies have applied LLMs to various aspects of reinforcement learning (Cao et al., 2025). Applications include reward design (Yu et al., 2024; Adeniji et al., 2023; Chu et al., 2023; Nair et al., 2022; Ma et al., 2024), trajectory summarization and task transformation (Du et al., 2023; Yuan et al., 2023a; Qiu et al., 2024), and state representation (Chen et al., 2023b; Wang et al., 2024; Da et al., 2024). LLMs have also been used directly as policy networks (Li et al., 2022a; Zitkovich et al., 2023; Shi et al., 2024), or for grounding actions into affordances and coordination policies (Ahn et al., 2022; Hu & Sadigh, 2023). More recently, their role in multi-agent cooperation has begun to be explored (Li et al., 2024; 2025; Agashe et al., 2025), though challenges remain in ensuring interpretable and consistent communication across agents.

Distinct from prior studies, our work leverages LLMs to design and refine communication protocols, explicitly aiming for interpretability, consistent state recovery, and stable cooperation in MARL.

4 METHODOLOGY

In this section, we provide the detailed description of our approach, expanding on the LLM-based communication protocol design and meta-cognitive representation learning introduced in Section 1.

4.1 LLM-Guided Multi-Phase Communication Protocol Design

We now present a detailed description of our communication design. At each phase k, the LLM generates a communication protocol $f_C^{(k)}$ using the task prompt x and reasoning tokens $z^{(k)}$, i.e.,

$$f_C^{(k)} \sim f_\theta^{\text{LLM}}(x, z^{(k)}), \ k \in \{0, 1, 2\}$$
 (1)

where $f_C^{(k)}$ maps the agents' observation histories $(\tau_t^0,\ldots,\tau_t^{n-1})$ to interpretable messages $(m_t^{0,(k)},\ldots,m_t^{n-1,(k)})$ for all agents. In other words, $f_C^{(k)}$ is designed to generate messages that explicitly correspond to and compose from dimensions of the agents' observations described in x, so that both agents and human can interpret what information is being exchanged and how it contributes to reconstructing task-relevant states. The refinement process at phase k is then guided by feedback $c^{(k+1)}$, discriminator $D^{(k)}$, and feedback instruction $\tilde{x}^{(k+1)}$, which determine how the next protocol $f_C^{(k+1)}$ is constructed. Specifically, the update process is given by

$$c^{(k+1)} \sim f_{\theta}^{\text{LLM}}(x, \tilde{x}^{(k+1)}, D^{(k)}, f_C^{(k)}, z^{(k)}) \rightarrow z^{(k+1)} \sim f_{\theta}^{\text{LLM}}(x, c^{(k+1)}) \rightarrow f_C^{(k+1)} \sim f_{\theta}^{\text{LLM}}(x, z^{(k+1)}).$$
(2)

Here, $\tilde{x}^{(k+1)}$ is the phase-specific feedback instruction, $D^{(k)}$ is the discriminator evaluating how well $f_C^{(k)}$ meets the refinement goal, and $c^{(k+1)}$ is the feedback sentence used to update reasoning tokens. Unlike Reflexion, which applies a fixed feedback signal at every step, our framework

adaptively updates \tilde{x} as objectives evolve across phases. Protocol design therefore proceeds in three stages, each with a distinct refinement goal:

Protocol Initialization (k=0): The goal is to generate an initial communication protocol that enables agents to encode and exchange task-relevant information provided in the global state, reconstructing it as accurately as possible from their local observations and messages. To this end, we construct the task prompt $x=(\mathcal{I}_T,\mathcal{I}_P)$, where \mathcal{I}_T specifies the task objectives and environment characteristics (state, observation, and action spaces), and \mathcal{I}_P provides instructions ensuring that each agent i, given its history and message, can better infer the global state. The initial protocol $f_C^{(0)}$ is then generated accordingly.

The initial protocol $f_C^{(0)}$ is designed to embed task-relevant information for approximate state recovery, but it must be validated against actual environment trajectories. To this end, we employ a dataset $\mathcal B$ of sampled trajectories and define meta-information that measures how accurately each agent can recover state dimensions. Specifically, for agent i, state dimension d, and timestep t, we denote by $\chi_{l,d,t}^{i,(k)}$ the binary indicator of whether $s_{d,t}$ can be successfully reconstructed, where l=1 represents the case with the message $m_t^{i,(k)}$ and l=0 represents the case without it. Formally,

$$\chi_{l,d,t}^{i,(k)} = \mathbb{I}\left[\|\hat{s}_{l,d,t}^{i} - s_{d,t}\|^{2} \le \alpha\right],\tag{3}$$

where \mathbb{I} is the indicator function, $\hat{s}^i_{1,d,t} = D^{(k)}_\phi(\tau^i_t, m^{i,(k)}_t, i)\big|_d$ (with message), and $\hat{s}^i_{0,d,t} = D^{(k)}_\phi(\tau^i_t, \mathbf{0}, i)\big|_d$ (without message). Here, $D^{(k)}_\phi$ is the discriminator parameterized by ϕ and trained to reconstruct the state using \mathcal{B} , while α denotes the reconstruction threshold. The temporal average $\mathbb{E}_t[\chi^{i,(k)}_{l,d,t}]$ then measures how well agent i recovers dimension d with or without messages, and the variance $\mathrm{Var}_i[\chi^{i,(k)}_{l,d,t}]$ quantifies how unevenly this recovery is distributed across agents, serving as an indicator of information imbalance.

We then use these statistics to drive the refinement process in the subsequent phases as follows:

Recognition Enhancement Phase (k=1): The goal of this phase is to improve recovery accuracy for each agent. To this end, the temporal average $\mathbb{E}_t[\chi_{l,d,t}^{i,(0)}]$ is obtained to identify cases where messages fail to support accurate recovery. Based on this data, the feedback instruction $\tilde{x}^{(1)}$ specifies why accuracy is lacking and how the protocol should be revised, guiding the LLM to refine $f_C^{(1)}$ toward encoding more task-relevant information.

Sharing Enhancement Phase (k=2): Although $f_C^{(1)}$ improves recovery, inconsistencies may remain across agents. This phase exploits the variance $\mathrm{Var}_i[\chi_{l,d,t}^{i,(1)}]$ to analyze why imbalance arises, such as when certain agents cannot identify specific state dimensions. From this data, the feedback instruction $\tilde{x}^{(2)}$ proposes concrete modifications to reduce heterogeneity, enabling the LLM to refine $f_C^{(2)}$ so that all agents consistently interpret shared information.

Through this process, we obtain the final communication protocol $f_C = (f_C^{(0)}, f_C^{(1)}, f_C^{(2)})$ that first initializes a protocol, then improves recognition, and finally reduces imbalance across agents. To illustrate the process, Fig.2 shows the overall refinement pipeline, including the task prompt, an example of the generated protocol, and the meta-information with feedback used for updating. Fig.3 presents phase-wise evaluation results, where the average meta-information $\mathbb{E}_t[\chi_{1,d,t}^{i,(k)}]$ increases steadily, indicating improved information recovery, while the variance across agents $\mathrm{Var}_i[\chi_{1,d,t}^{i,(k)}]$ decreases, reflecting reduced information imbalance. These trends show that as refinement progresses, the designed protocol enhances information recognition, alleviates information imbalance among agents, confirming that the framework achieves its intended design. Additional details on prompt construction, discriminator training, and trajectory dataset preparation are provided in Appendix B.

4.2 META-COGNITIVE REPRESENTATION LEARNING FOR MARL FRAMEWORK

Based on the final communication protocol f_C , we define each agent's aggregated message as $m_t^i = \left(m_t^{i,(0)}, m_t^{i,(1)}, m_t^{i,(2)}\right) = f_C(\tau_t)$. Using these messages, we propose LMAC, a MARL framework

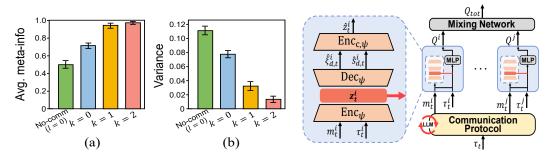


Figure 3: Phase-wise evaluation of meta-information: Figure 4: Overall framework of the proposed (a) Average values and (b) variance across agents

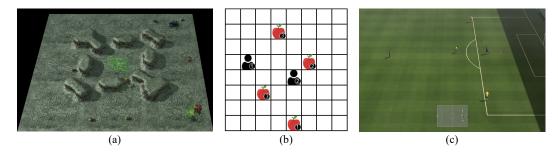


Figure 5: MALR Benchmarks used in our experiments: (a) SMAC-Comm, (b) LBF, and (c) GRF

that integrates LLM-driven communication into CTDE training. We adopt OMIX (Rashid et al., 2018) as the baseline, aiming to provide each individual Q^i with informative representations of the global state, though the approach can also generalize to general CTDE methods such as VDN (Sunehag et al., 2017) and QPLEX (Wang et al., 2021). Rather than feeding raw messages, we employ an encoder-decoder ($\mathrm{Enc}_{\psi}, \mathrm{Dec}_{\psi}$) with parameter ψ to compress and reconstruct information, addressing the inefficiency of high-dimensional states and the redundancy of raw messages. The latent representation is defined as $z_t^i = \mathrm{Enc}_{\psi}(\tau_t^i, m_t^i)$, and the encoder–decoder is trained to reconstruct both the state s_t and auxiliary meta-information $\xi_{d,t}^{i} = \mathbb{I}[\|\hat{s}_{d,t}^i - s_{d,t}\|^2 \leq \alpha]$, where $\hat{s}_{d,t}^i$ is the reconstructed d-th state dimension. Here, ξ reuses the meta-information idea from protocol design, allowing agents to identify which state dimensions are accurately captured and which remain uncer-

In addition, to prevent irrelevant information from being encoded, we adopt a cycle-consistency loss inspired by Zhu et al. (2017). Specifically, the latent z_t is decoded and then re-encoded using an auxiliary encoder $\operatorname{Enc}_{c,\psi}$, enforcing $\hat{z}_t \sim \operatorname{Enc}_{c,\psi}(\operatorname{Dec}_{\psi}(z_t))$ so that $\operatorname{Enc}_{c,\psi}$ is trained to reconstruct z_t . The key intuition is that any redundant information in z_t is discarded during decoding and thus cannot be recovered by $\operatorname{Enc}_{c,\psi}$. As a result, the model learns to encode only reconstructable, task-relevant features while suppressing noise. Finally, the learned latent z_i^t is incorporated into the individual utilities $Q^i(\tau_i^i, z_i^i)$, and the joint action-value Q^{tot} is optimized via TD-learning. The overall framework is shown in Fig.4, and further details, including algorithm, loss functions, and training procedures, are provided in AppendixB.

EXPERIMENTS

In this section, we evaluate the proposed method on three benchmark environments shown in Fig.5: StarCraft Multi-Agent Challenge with Communication (SMAC-Comm) (Samvelyan et al., 2019), a communication-intensive variant of StarCraft II evaluated on bane_vs_hM, 1o_10b_vs_1r, 20_20b_vs_2r, and 5z_vs_1ul; Level-Based Foraging (LBF) Papoudakis et al. (2021a), a cooperative foraging task with settings 8x8-2p-2f-s1-coop and 11x11-6p-4f-s1-coop, $(n \times n)$: grid size, p: agents, f: fruits, s: sight range); and Google Research Football (GRF) (Kurach et al., 2020), a cooperative soccer game with scenarios 3_vs_1_with_keeper and run_pass_and_shoot. We first compare performance against other communication baselines,

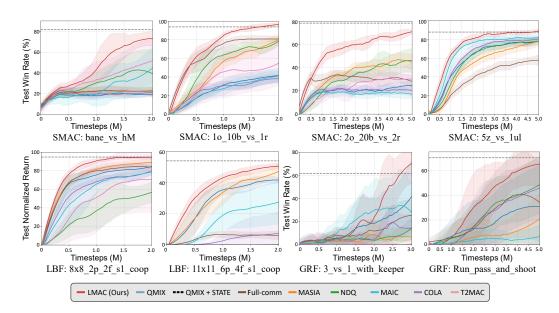


Figure 6: Performance comparison in various MARL benchmarks

then analyze how phase-specific protocols contribute to cooperation. Unless otherwise specified, experiments use gpt-4.1-2025-04-14 as the backbone LLM, with other variants included in ablation studies. All results are averaged over 5 random seeds with standard deviations, and more experimental details are provided in Appendix C.

5.1 PERFORMANCE COMPARISON

To validate our approach, we compare LMAC against a broad set of communication-based MARL methods. The comparison includes our baseline **QMIX**(Rashid et al., 2018), **FullComm**, where agents broadcast full observations to all teammates, and **QMIX+State**, where each agent is provided with the global state as an upper-bound reference. We further evaluate against **NDQ**(Wang et al., 2020), which reduces communication cost via decomposable value functions; **MASIA**(Li et al., 2022b), which aggregates information through self-supervised representation learning; **MAIC**(Du et al., 2022), which generates incentive messages to bias teammates' utilities; **COLA**(Monda et al., 2023), which improves coordination through inter-agent consensus; and **T2MAC**(Liu et al., 2024), which enables selective communication via evidence-driven integration. All baselines are evaluated using author-released implementations. For our method, results are reported with the best-performing threshold α , while full hyperparameter settings and further details of competing algorithms are provided in Appendix C.

Fig. 6 reports success rates across the three benchmark environments. On SMAC-Comm, our method achieves faster convergence and higher final success rates across all four scenarios, with particularly large gains on bane_vs_hM and the large-scale 2o_20b_vs_2r, showing strong scalability when state recovery is difficult or agent numbers grow. Notably, our results nearly match the upper-bound QMIX+State, indicating that the designed protocols effectively capture the most critical state information. On LBF, similar trends appear: our method learns faster and consistently reaches higher final performance, again approaching QMIX+State. This confirms that interpretable and refined communication enables sufficient state reconstruction for coordinated behavior. On GRF, our method not only surpasses all baselines but even outperforms QMIX+State in final success rates. Since GRF involves high-dimensional observations, simply giving all agents the full state leads to excessive dimensionality and slow convergence. By contrast, our latent learning compresses messages into compact task-relevant features, enabling faster convergence and stronger cooperative strategies. This directly demonstrates the efficiency of our latent representation design. Overall, these results high-light that our framework consistently improves learning speed and final performance, while allowing agents to exploit information more effectively across diverse MARL settings. In addition, to verify

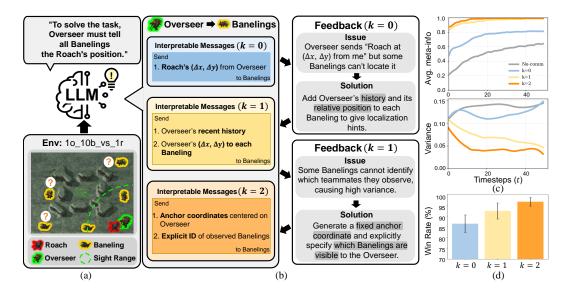


Figure 7: Protocol refinement analysis on SMAC 10_10b_vs_1r: (a) Task scenario with Overseer, Roach and Banelings under partial observability, (b) protocol messages and corresponding feedback at each phase k, (c) trajectory-level averages and variances of meta-information with (k=0,1,2) or without messages (No-comm), and (d) average win rates across phases.

the generality of our approach, we also apply LMAC to VDN Sunehag et al. (2017) and QPLEX Wang et al. (2021) in Appendix E and observe similarly significant performance gains.

5.2 Trajectory Analysis

To analyze how our framework yields interpretable communication protocols that improve information recovery and balance, we conduct a trajectory analysis on the SMAC 10-10b_vs_1r map, summarized in Fig.7. In (a), the task requires 10 Banelings (10b) to quickly converge on a Roach (1r), with the Overseer (1o) providing positional cues. Because absolute positions are not included in raw observations, the LLM reasons that agents must infer both the Roach's location and each Baneling's absolute position; otherwise, delays occur and less damage is dealt. In (b), protocol evolution is shown: at k=0, the Overseer broadcasts "the Roach is $\Delta x, \Delta y$ (relative position) away from the Overseer," enabling partial localization but failing without knowledge of the Overseer's position. At k=1, feedback notes that "the Overseer's position is difficult to identify," so the protocol is refined to include the Overseer's relative position and recent history as localization hints. At k=2, variance-based feedback highlights that "some Banelings still cannot identify which teammates they observe," prompting the use of a fixed anchor coordinate centered on the Overseer with explicit IDs of observed agents. The final protocol thus shares the Roach's relative position, the anchor, and teammate IDs, allowing consistent absolute recovery. In (c), average meta-information increases in phase 1, while its variance across agents drops in phase 2. In (d), learning performance improves across phases as agents achieve shared localization and coordinate attacks. These results confirm that our method yields interpretable messages whose refinements directly enhance recovery and eliminate imbalance, validating the intended protocol design. Similar patterns are observed in other environments, with additional analyses provided in Appendix E.

5.3 ABLATION STUDY

We conduct three ablation studies in the SMAC-Comm environment to validate the contributions of our framework: (a) component evaluation, (b) comparison of different LLM variants, and (c) the effect of the reconstruction threshold α . We additionally conducted experiments on the effect of the number of update phases, the impact of reduced communication capacity, and computational complexity, which can be found in Appendix E, F.

Component Evaluation: To analyze the effect of each component, we compare the performance of protocols obtained at different refinement stages (k=0,1,2), as well as two variants of our framework: one without the consistency loss ('w/o Consistency') and one without meta-information

Table 1: Ablation study on SMAC-Comm: (a) Component evaluation (b) LLM variants (c) Comparison across reconstruction threshold α

Setting	Avg. Win Rate(%)	LLM	Avg. Win Rate(%)	α	Avg. Win Rate(%)
w/o Consistency	66.5 ± 2.1	GPT	82.9 ± 1.9	0.0005	77.2± 2.1
w/o Meta	76.6 ± 5.6	GPT-mini	79.8 ± 1.5	0.002	79.3 ± 2.8
k = 0	68.5 ± 3.8	GPT-o1-mini	81.8 ± 2.9	0.005	80.5 ± 1.7
k = 1	77.8 ± 2.2	Claude	81.9 ± 2.6	0.05	$\textbf{82.9} \pm \textbf{1.9}$
k = 2 (Ours)	$\textbf{82.9} \pm \textbf{1.9}$	Gemini	80.8 ± 1.6	0.5	80.2 ± 3.2
(a) Component evaluation		(b) I I M variants		(a) o comparison	

(a) Component evaluation

432

433

442 443 444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464 465

466

467

468

469

470

471

472

473

474

475

476 477

478

479

480

481

482

483

484

485

(b) LLM variants

(c) α comparison

reconstruction ('w/o Meta'). As shown in Table 1(a), performance steadily improves as the refinement phase progresses, consistent with our earlier findings that state recovery and balance improve with each stage. Removing the consistency loss causes a clear drop in performance, demonstrating that eliminating redundant information in messages is crucial for learning. Similarly, removing meta-information also degrades performance, confirming that knowing not only the recovered state but also its reliability is essential for effective cooperation. Overall, these results show that every component of our framework contributes substantially to performance.

LLM Variants: Table 1(b) evaluates our method with different LLMs, including GPT-4.1, GPT-4.1-mini, o1-mini, Gemini-2.5-Flash, and Claude-Opus. Results show that all recent LLMs achieve strong performance, with GPT providing the highest success rates. However, smaller and more efficient models (e.g., GPT-4.1-mini, o1-mini) still perform competitively, demonstrating that the key driver of performance is the multi-phase refinement process rather than reliance on a particular model. This refinement procedure further encourages consistency in the resulting communication protocols, ensuring that our framework remains broadly applicable across different LLMs.

Reconstruction Threshold α : Finally, Table 1(c) analyzes the effect of the reconstruction threshold α used in constructing meta-information. A too small α makes the criterion overly strict, causing most dimensions to be judged unrecoverable and leading to excessive message generation. While performance is maximized at $\alpha=0.05$, results remain stable for larger values, suggesting that our method is not highly sensitive to this parameter. This robustness indicates that our framework can be applied without heavy hyperparameter tuning.

6 LIMITATION

While our framework performs well and behaves as we intended, there remain a few limitations. First, the approach introduces some overhead from training the discriminator and interacting with LLMs during protocol refinement. However, as shown in the computational complexity analysis in Appendix F, the discriminator contributes only a small fraction to the total training cost, and the limited number of LLM queries per refinement phase keeps the overhead modest. Second, the protocol design partially depends on the reasoning ability of the chosen LLM. Nevertheless, as shown in our ablation study, the method achieves consistent performance across different LLM variants, and with the rapid progress in LLM reasoning, this dependency is unlikely to pose a major obstacle going forward.

7 CONCLUSION

In this work, we introduced LMAC, a new communication-based MARL framework that combines LLM-guided protocol refinement and meta-cognitive latent learning. Our method designs interpretable communication protocols through multi-phase refinement with discriminator feedback, ensuring that agents recover task-relevant information consistently and alleviate information imbalance. The refined messages are then integrated into MARL framework via a latent module that reconstructs states with reliability-aware meta-information, while cycle consistency enforces compactness. Through this design, LMAC provides communication that is both interpretable and effective, enabling agents to achieve shared cognition and more stable cooperation. Empirical results on SMAC-Comm, LBF, and GRF benchmarks show that our approach consistently achieves faster convergence and higher final performance than strong communication baselines.

ETHICS STATEMENT

This work focuses exclusively on algorithmic contributions in cooperative multi-agent reinforcement learning (MARL) under the CTDE paradigm. All experiments were conducted using publicly available simulation environments, including SMAC-Comm (Samvelyan et al., 2019; Wang et al., 2020), LBF (Papoudakis et al., 2021a), and GRF (Kurach et al., 2020). These benchmarks do not involve human subjects, personal data, or sensitive information. LLMs were used only for generating and refining communication protocols within our proposed framework and for minor editorial polishing, without influencing research ideation, problem formulation, or analysis. We do not foresee harmful applications beyond the intended scope of cooperative agent research. All work was conducted in compliance with the ICLR Code of Ethics, with careful attention to fairness, transparency, and research integrity.

REPRODUCIBILITY STATEMENT

We have made substantial efforts to ensure reproducibility of our results. Section 4 provides the detailed description of our proposed framework, and Appendix C includes the implementation details. The benchmarks used in our experiments are all publicly available, and code links are provided in Appendix C. An anonymized code repository containing our implementation and experiment scripts is submitted as supplementary material, with further explanations included in the implementation details. The baselines and their official code repositories are listed in Appendix C.2, ensuring that all results reported in this paper can be independently reproduced.

REFERENCES

- Adebola Adeniji, Annie Xie, Cristian Sferrazza, Younggyo Seo, Stephen James, and Pieter Abbeel. Language reward modulation for pretraining reinforcement learning. *arXiv preprint arXiv:2308.12270*, 2023. URL https://arxiv.org/abs/2308.12270.
- Saaket Agashe, Yue Fan, Anthony Reyna, and Xin Eric Wang. LLM-coordination: Evaluating and analyzing multi-agent coordination abilities in large language models. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 8038–8057, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.448.
- Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Brian David, Chelsea Finn, Cheng Fu, et al. Do as i can, not as i say: Grounding language in robotic affordances. *arXiv* preprint arXiv:2204.01691, 2022. URL https://arxiv.org/abs/2204.01691.
- Anthropic. The claude 3 model family: Opus, sonnet, haiku. https://www.anthropic.com/news/claude-3-family, 2024.
- Maciej Besta, Nils Blach, Ales Kubicek, Robert Kubik, Michal Niewiadomski, Piotr Tora, Paweł an, and Marc Gerstenberger. Graph of thoughts: Solving elaborate problems with large language models. *arXiv preprint arXiv:2308.09687*, 2023.
- Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua Zhao, Jinyue Yan, and Yun Li. Survey on large language model-enhanced reinforcement learning: Concept, taxonomy, and methods. *IEEE Transactions on Neural Networks and Learning Systems*, 36(6):9737–9757, June 2025. ISSN 2162-2388. doi: 10.1109/tnnls.2024.3497992. URL http://dx.doi.org/10.1109/TNNLS.2024.3497992.
- Jingyu Chen, Ruidong Ma, and John Oyekan. A deep multi-agent reinforcement learning framework for autonomous aerial navigation to grasping points on loads. *Robotics and Autonomous Systems*, 167:104489, 2023a.
- Siwei Chen, Anxing Xiao, and David Hsu. Llm-state: Open world state representation for long-horizon task planning with large language model. *arXiv preprint arXiv:2311.17406*, 2023b.

543

544

545

546 547

548

549

550 551

552

553 554

555

556

558

559

560 561

562

563

564

565 566

567

568

569

570

571

572

573 574

575

576

577

578

579 580

581

582

583

584

585

586

588

589 590

- 540 Yifan Chen, Weiming Dong, Zhitong Han, Yali Zhang, Si Liu, Zhaofei Chang, Lin Zhou, and Tong Chen. Retroformer: Retrospective large language agents with policy gradient. In The Twelfth 542 International Conference on Learning Representations (ICLR), 2024.
 - Kai Chu, Xin Zhao, Cornelius Weber, Ming Li, and Stefan Wermter. Accelerating reinforcement learning of robotic manipulations via feedback from large language models. arXiv preprint arXiv:2311.02379, 2023. URL https://arxiv.org/abs/2311.02379.
 - Longchao Da, Minquan Gao, Hao Mei, and Hua Wei. Prompt to transfer: Sim-to-real transfer for traffic signal control with prompt learning. In Proceedings of the AAAI Conference on Artificial *Intelligence*, volume 38, pp. 82–90, 2024.
 - Abhishek Das, Theo Gervet, Joel Romoff, Dhruv Batra, Devi Parikh, Marc'aurelio Ranzato, and Arthur Szlam. TMC: Targeted multi-agent communication. In International Conference on Machine Learning (ICML), 2019a.
 - Abhishek Das, Théophile Gervet, Jiasen Romoff, Dhruv Batra, Devi Parikh, Mike Rabbat, and Joelle Pineau. Tarmac: Targeted multi-agent communication. In Proceedings of the International Conference on Machine Learning (ICML), 2019b.
 - Yuchen Du, Sheng Han, Jia Zhang, Meng-Feng Wang, and Zongqing Lu. Multi-agent incentive communication via decentralized teammate modeling. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
 - Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language models. In Proceedings of the 40th International Conference on Machine Learning (ICML), 2023.
 - Jakob N Foerster, Yannis M Assael, Nando de Freitas, and Shimon Whiteson. Learning to communicate with deep multi-agent reinforcement learning. In Advances in neural information processing systems (NIPS), pp. 2137–2145, 2016.
 - Benjamin Freed, Guillaume Sartoretti, Jiaheng Hu, and Howie Choset. Communication learning via backpropagation in discrete channels with unknown noise. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 7160-7167, 2020. URL https://ojs.aaai.org/index. php/AAAI/article/view/6205.
 - Gemini Team and Google. Gemini: A family of highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023. URL https://arxiv.org/abs/2312.11805.
 - C. V. Goldman and S. Zilberstein. Communication-based decomposition mechanisms for decentralized mdps. Journal of Artificial Intelligence Research, 32:169–202, May 2008. ISSN 1076-9757. doi: 10.1613/jair.2466. URL http://dx.doi.org/10.1613/jair.2466.
 - Hongxin Hu and Dorsa Sadigh. Language instructed reinforcement learning for human-ai coordination. In International Conference on Machine Learning, pp. 13697–13712. PMLR, 2023. URL https://proceedings.mlr.press/v202/hu23e.html.
 - Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Learning multi-agent communication from graph modeling perspective. In International Conference on Learning Representations (ICLR), 2024.
 - Seth Karten, Mycal Tucker, Siva Kailas, and Katia Sycara. Towards true lossless sparse communication in multi-agent systems. arXiv preprint arXiv:2212.00115, 2022.
 - Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-Large language models are zero-shot reasoners. In Advances in Neural Information Processing Systems, volume 35, pp. 22199-22213, 2022. **URL** https://proceedings.neurips.cc/paper_files/paper/2022/file/ 8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf.

- Karol Kurach, Antonin Roux, Arthur Mensch, Szymon Sidor, Suzy Zoghbi, Eric Song, Corentin Tallec, Marcin Andrychowicz, Wojciech Zaremba, Nicolas Heess, and Olivier Pietquin. Google research football: A novel reinforcement learning environment. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2020.
 - Huao Li, Hossein Nourkhiz Mahjoub, Behdad Chalaki, Vaishnav Tadiparthi, Kwonjoon Lee, Ehsan Moradi-Pari, Charles Michael Lewis, and Katia P Sycara. Language grounded multi-agent communication for ad-hoc teamwork. In *Advances in Neural Information Processing Systems* (NeurIPS), 2024.
 - Lihe Li, Lei Yuan, Pengsen Liu, Tao Jiang, and Yang Yu. LLM-assisted semantically diverse teammate generation for efficient multi-agent coordination. In *Proceedings of the 42nd International Conference on Machine Learning (ICML)*, 2025.
 - Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An Huang, Ekin Akyürek, Anima Anandkumar, Jacob Andreas, Igor Mordatch, Antonio Torralba, and Yuke Zhu. Pre-trained language models for interactive decision-making. In *Advances in Neural Information Processing Systems*, volume 35 of *NeurIPS*, pp. 31199–31212, 2022a.
 - Shun-Fei Li, Yu-An Liu, Cheng-Lin Wu, Ziyuan Luo, and Kai-Yi. Efficient multi-agent communication via self-supervised information aggregation. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022b.
 - Yiqin Liu, Hao Sun, Jianing Pang, Zhaowei Wang, Yuzheng Zhang, and Guodong Li. T2mac: Targeted and trusted multi-agent communication through selective engagement and evidence-driven integration. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2024.
 - Yecheng Jason Ma, Jacky Collins, Lily Wong, Yuqing Du, Pieter Abbeel, and Abhishek Gupta. Eureka: Human-level reward design via coding large language models. In *The Twelfth International Conference on Learning Representations (ICLR)*, 2024.
 - Gianmarco Paolo La Monda, Salvatore D'Oro, Alberto Garcia-Saez, and Albert L. Simeone. Cola: Consensus learning for cooperative multi-agent reinforcement learning. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2023.
 - Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal visual representation for robot manipulation. *arXiv preprint arXiv:2203.12601*, 2022. URL https://arxiv.org/abs/2203.12601.
 - Tri-Cong Nguyen, Ngoc-Duy Nguyen, and Saeid Nahavandi. Deep reinforcement learning for multiagent systems: A review of challenges, solutions and applications. *IEEE Transactions on Cybernetics*, 50(9):3826–3842, 2020.
 - Yuan Niu, Rohan R. Paleja, and Matthew C. Gombolay. Multi-agent graph-attention communication and teaming. In *Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS)*, pp. 964–973, 2021. URL https://www.yaruniu.com/pubs/aamas21_magic.pdf.
 - Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value functions for decentralized pomdps. *Journal of Artificial Intelligence Research*, 32:289–353, 2008.
 - OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.org/abs/2303.08774.
- James Orr and Ayan Dutta. Multi-agent deep reinforcement learning for multi-robot applications: A survey. *Sensors*, 23(7):3625, 2023.
- Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmarking multi-agent deep reinforcement learning algorithms in cooperative tasks. In *Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks*, 2021a.

- Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Benchmarking multi-agent deep reinforcement learning algorithms in cooperative tasks, 2021b. URL https://arxiv.org/abs/2006.07869.
- Jielin Qiu, Mengdi Xu, William Han, Seungwhan Moon, and Ding Zhao. Embodied executable policy learning with language-based scene summarization. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 1896–1913, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.105.
- Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob N. Foerster, and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2018.
- Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob N. Foerster, and Shimon Whiteson. The starcraft multi-agent challenge, 2019.
- Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar, Ruoxi Jia, and Ming Jin. Algorithm of thoughts: Enhancing exploration of ideas in large language models. *arXiv preprint arXiv:2308.10379*, 2023. URL https://arxiv.org/abs/2308.10379.
- Ruizhe Shi, Yuyao Liu, Yanjie Ze, Simon S. Du, and Huazhe Xu. Unleashing the power of pretrained language models for offline reinforcement learning. In *International Conference on Learning Representations (ICLR)*, 2024. URL https://openreview.net/forum?id= AY6aM13gGF. Poster.
- Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: Language agents with verbal reinforcement learning. In Advances in Neural Information Processing Systems (NeurIPS), 2023.
- Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. Learning when to communicate at scale in multiagent cooperative and competitive tasks. In *Proceedings of the 36th International Conference on Machine Learning (ICML)*, 2019. URL http://arxiv.org/abs/1812.09755.
- Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent communication with backpropagation. In *Advances in Neural Information Processing Systems (NIPS)*, 2016.
- Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel. Value-decomposition networks for cooperative multi-agent learning, 2017. URL https://arxiv.org/abs/1706.05296.
- Hugo Touvron, Thibaut Lavril, Guillaume Izacard, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023. URL https://arxiv.org/abs/2302.13971.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2017.
- Boyuan Wang, Yun Qu, Yuhang Jiang, Jianzhun Shao, Chang Liu, Wenming Yang, and Xiangyang Ji. LLM-empowered state representation for reinforcement learning. In *Proceedings of the 41st International Conference on Machine Learning (ICML)*, 2024.
- Jianhao Wang, Zhizhou Ren, Terrence Sun, Yanguang Yu, and Chongjie Zhang. Learning nearly decomposable value functions via communication minimization. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2020.
- Jianhao Wang, Zongqi Ren, Teng Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling multiagent q-learning. In *International Conference on Learning Representations (ICLR)*, 2021.

- Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. arXiv preprint arXiv:2212.10560, 2022. URL https://arxiv.org/abs/2212.10560.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
- Di Xue, Lei Yuan, Zongzhang Zhang, and Yang Yu. Efficient multi-agent communication via shapley message value. In *IJCAI*, pp. 578–584, 2022.
- Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*, 2022. URL https://par.nsf.gov/servlets/purl/10451467.
- Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Sha, Silvio Savarese, Tao an, and Ruslan R-Salakhutdinov. Tree of thoughts: Deliberate problem solving with large language models. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- Tianbao Yu, Yihua Li, Jiaming Fu, Kun Zhou, Yuan Wang, Chao Chen, Yi Yang, Lizhen Liu, and Fan Yang. Text2Reward: Reward shaping with language models for reinforcement learning. In *The Twelfth International Conference on Learning Representations (ICLR)*, 2024.
- Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing Lu. Skill reinforcement learning and planning for open-world long-horizon tasks. *arXiv preprint arXiv:2303.16563*, 2023a. doi: 10.48550/arXiv.2303.16563.
- Tingting Yuan, Hwei-Ming Chung, Jie Yuan, and Xiaoming Fu. Dacom: Learning delay-aware communication for multi-agent reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 11763–11772, 2023b. URL https://ojs.aaai.org/index.php/AAAI/article/view/26389.
- Sai Qian Zhang, Qi Zhang, and Jieyu Lin. Efficient communication in multi-agent reinforcement learning via variance based control, 2019. URL https://arxiv.org/abs/1909.02682.
- Boyuan Zhao, Tsu-Jui Chang, Kuang-Huei Lee Liu, Andy Zeng, Chuyun Zhang, and S-Liang an. Expel: Lifelong language agents with experiential learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 155–164, 2024.
- Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning in large language models. *arXiv preprint arXiv:2205.10625*, 2022. URL https://arxiv.org/abs/2205.10625.
- Zexiong Zhou, Yigang Chen, Jiacheng Li, Xin Wang, hang Yan, and Dahua Lin. Buffer of thoughts: Thought-augmented reasoning with large language models. In *Thirty-eighth Conference on Neural Information Processing Systems (NeurIPS)*, 2024.
- Changxi Zhu, Mehdi Dastani, and Shihan Wang. A survey of multi-agent deep reinforcement learning with communication. In Mehdi Dastani, Jaime Simão Sichman, Natasha Alechina, and Virginia Dignum (eds.), *Proceedings of the 23rd International Conference on Autonomous Agents and MultiAgent Systems*, pp. 2845–2847, 2024a.
- Changxi Zhu, Mehdi Dastani, and Shihan Wang. A survey of multi-agent deep reinforcement learning with communication, 2024b. URL https://arxiv.org/abs/2203.08975.
- Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pp. 2223–2232, 2017. doi: 10.1109/ICCV.2017.244.
- Boris Zitkovich, Tianhe Yu, Sherry Xu, Peng Xu, Tete Xiao, Fei Xia, Jiajun Wu, Paul Wohlhart, et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control. In *Conference on Robot Learning*, pp. 2165–2183. PMLR, 2023. URL https://proceedings.mlr.press/v229/zitkovich23a.html.

A THE USE OF LARGE LANGUAGE MODELS

In this work, LLMs were employed only for two purposes: (i) as part of our proposed framework, where API-based models (e.g., GPT-4.1-2025-04-14 and variants) were used to generate and iteratively refine communication protocols, and (ii) for polishing grammar and improving the clarity of our writing. LLMs were not involved in research ideation, problem formulation, method design, experimentation, analysis, or interpretation, and all scientific content and decisions were made by the authors.

B IMPLEMENTATION DETAILS

This section provides the implementation details of our refinement process. B.1 describes the construction of prompts used in different refinement phases. B.2 presents examples of LLM outputs for both protocol generation and feedback. Finally, B.3 details the training objectives of LMAC, including the reconstruction, meta, and consistency losses.

B.1 PROMPT CONSTRUCTION FOR REFINEMENT PROCESS

Task prompt x: Here, x is the phase-specific prompt designed to guide the generation of communication protocols, and the LLM outputs a Python code based implementation of the protocol. For each environment, we construct task descriptions based on the original scenarios defined by their respective authors, including SMAC-Comm (Samvelyan et al., 2019; Wang et al., 2020), LBF (Du et al., 2022), and GRF (Kurach et al., 2020). Furthermore, the mapping of each observation and state dimension into natural language is guided by Wang et al. (2024), and representative examples are illustrated below.

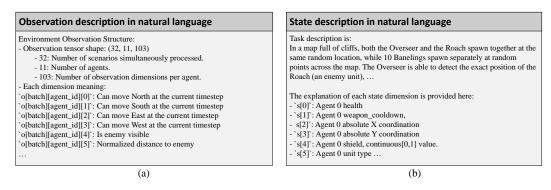


Figure B.1: (a) Example of observation description, (b) Example of state description

The task prompt is defined as $x=(\mathcal{I}_T,\mathcal{I}_P)$, where \mathcal{I}_T specifies the task objectives and environment characteristics, and \mathcal{I}_P provides explicit instructions for protocol generation. Before directly instructing the LLM to design a protocol, we first guide it through CoT (Wei et al., 2022) reasoning to identify task-critical state dimensions. This reasoning step filters out irrelevant dimensions in high-dimensional states and ensures that the protocol concentrates on essential information. In particular, \mathcal{I}_T is constructed as a prompt describing the task and environment properties, while \mathcal{I}_P provides detailed instructions for communication protocol design. Their respective templates are presented below.

Task Description Template(I_T) Task Context - Task Objectives and Environment Characteristics: Task Description: $\{task_description\}$ Environment Observation Structure:

- Observation tensor shape: {obs_shape}

- {obs_dim_desc}
- Each dimension meaning: {detail_content}
Environment Characteristics:
- Multi-agent partially observable environment
- Agents must coordinate under incomplete information
- Communication enables sharing of non-locally observable information

810

811

820 821

822 823

824

825

827

828

830

831

832

833

834 835

836

837

838

839

840

841 842 843

844

845 846 847

848

849 850

851

852

853

854

855

856 857

858

861

862

Protocol Generation Template(I_P)

Communication Design Key Principles:

1. Task-Oriented Communication:

- Explicitly identify observation dimensions crucial to solving the task.
- Messages must clearly relate these dimensions to task objectives.

2. Uniqueness, Sufficiency & Compactness:

- Each agent should communicate information that others do not already possess or cannot easily infer based on their own observations.
- Communication should ensure sufficiency, meaning that agents exchange enough information to enable effective inference and coordination under partial observability.
- At the same time, messages should maintain compactness, minimizing redundancy and avoiding the transmission of unnecessary or easily inferable data.

3. Contextual and Interaction-Aware:

- Communication should be based on the agent's own observations, actively leveraging behavior-relevant information derived from its "perceived possibilities and recent behavior patterns".
- In environments where direct observation of allies and enemies is severely limited, agents should emphasize sharing self-perceived behavioral information, such as movement possibilities and recent actions, if available.

4. Explicitness and Clarity:

- Avoid overly abstract messages. All information critical for solving the task must be included explicitly, in a clear and interpretable form.

5. Structured Output:

- The final output should be a tensor of shape ({batch, agents, obs_dim} + message_dim).

6. Communication Protocol:

- Specify whether information is exchanged via peer-to-peer (agent-specific) or broadcast (global).
- Each agent should customize received messages based on the context and utility.
- Messages produced by an agent must be distributed and concatenated into the observations of other agents, never into only its own.
- Each message must include a sender identity field (one-hot encoded vector).

7. Computational Efficiency:

- No trainable components (e.g., neural networks) in the communication function.

Observation Access Pattern:

For example:

- o[2, 0, :] = observation vector of agent 0 in the 2nd batch - o[2, 2, :] = observation vector of agent 2 in the 2nd batch

Protocol Requirements:

 Using the important state dimensions reasoning Tokens above, design a communication protocol that enables agents to share information about these critical dimensions to improve coordination.

You are required to create two Python functions:

- 1. message_design_instruction():
- Clearly describes how the message content is constructed based on the important state dimensions and observation context
- 2. communication(o):
- Input: Observation tensor o
- Output: Enhanced observation tensor with integrated task-specific messages
- Focus on communicating information related to the important dimensions identified above Both functions must be executable and ready for direct integration with MARL algorithms. Caution!: Create two Python functions that minimizes the use of "for loops" when handling batch processing to optimize computational efficiency.

Let's think step by step. Below is an illustrative example of the expected output:

```
""python
import torch as th
def message_design_instruction():
#Explain how this protocol helps agents coordinate using these critical dimensions
return message_description
def communication(o):
#Your communication implementation focusing on important dimensions
#You should design the communication protocol based on the message design instruction
#use same device as input to avoid CUDA/CPU mismatch
return messages_o
""
```

Feedback instruction: \tilde{x} is a prompt designed to generate natural language feedback by analyzing the limitations of the current protocol through meta-information derived from the discriminator's evaluation and by suggesting directions for improvement. The Feedback Prompt Template follows a fixed structure with the phase index, objectives, phase instruction, and discriminator results. Among these, the phase instruction provides the phase index with a clear goal and concise guidance on how the protocol should be refined. In the Recognition Enhancement phase it emphasizes improving reconstruction of critical state dimensions and addressing uneven prediction across agents, while in the Sharing Enhancement phase it focuses on reducing cross-agent imbalance and ensuring consistent state recovery through coordination cues and temporal signals.

Feedback Prompt Template

You are an analysis agent tasked with improving communication strategies in a multi-agent reinforcement learning (MARL) system.

{**x**}

910 {phase_instruction}

Previous Protocol Under Analysis:

{cur_communication_method}

DISCRIMINATOR EVALUATION RESULTS:

{meta_information}

Analysis Context:

- Each agent combines its own local observation with received messages to infer important state dimensions
- You are analyzing predictability results showing how accurately each agent can infer critical dimensions
- Performance differences across agents indicate areas where communication protocol needs improvement

```
Expected Output Format (JSON):
{
  "Evaluation": "...",
  "Missing_Information_Hypothesis": "...",
  "Improvement_Suggestions": "..."
}
```

To update the protocol with the generated feedback, the following additional context template is appended to the protocol generation prompt.

Additional context Template

Here is the feedback from the previous communication protocol evaluation:

{feedback}

Reflect the feedback by designing messages from each agent's own observations, prioritizing information that enables all agents to achieve consistent state prediction and shared understanding.

973974975

976

977

978

979

980 981

B.2 Details of LLM Outputs for Protocol and Feedback

Communication Protocol Since protocol generation relies on high-dimensional tensors, the LLM may not align dimensions correctly in one attempt. We therefore adopt a Reflexion-based mechanism, where error messages are fed back for iterative correction. Expressing the protocol in code allows direct verification of transmitted information, while the accompanying message design instruction makes the communication process interpretable even to non-experts. Here is the example of the communication protocol.

```
982
         Example of Generated Protocol
983
984
         import torch as th
985
         def message_design_instruction():
986
987
             Message Design Instruction:
988
989
             - **Sender**: Only the Overseer (agent at index 10) sends
990
                messages.
             - **Receivers**: All Banelings (agent indices 0~9) receive the
991
                message.
992
               The Overseer does not receive any messages.
993
             - **Message Content**:
994
                 - `relative_x`: Overseer's observed relative X position of
995
                    the enemy
                   Roach (`o[..., 6]`).
996
997
             - **Why**: Only the Overseer can observe the Roach; Banelings
998
                need this
999
               precise and actionable info to coordinate and attack.
1000
                  Including sender
               identity ensures explicit grounding and prevents ambiguity.
1001
1002
             11 11 11
1003
             return (
1004
                 "Message Structure: [relative_x, relative_y, is_visible, "
1005
             )
1007
        def communication(o):
1008
             device = o.device
1009
             batch_size, n_agents, obs_dim = o.shape
1010
             message\_dim = 14
1011
             # 1. Get Overseer's observation (agent index 10)
1012
             overseer_obs = o[:, 10, :] # (batch, 103)
1013
1014
             # 2. Extract required info from Overseer
1015
             relative_x = overseer_obs[:, 6].unsqueeze(1)
                                                             # (batch, 1)
             relative_y = overseer_obs[:, 7].unsqueeze(1)
                                                             # (batch, 1)
1016
             is_visible = overseer_obs[:, 4].unsqueeze(1)
                                                             # (batch, 1)
1017
1018
             # 5. Broadcast message to all agents
1019
             messages = th.zeros(batch_size, n_agents, message_dim,
                device=device)
1020
             messages[:, 0:10, :] = overseer_message.unsqueeze(1).expand(-1,
1021
                10, -1)
1022
1023
             # 6. Concatenate messages to observations
1024
             messages_o = th.cat([o, messages], dim=2) # (batch, 11, 117)
1025
             return messages_o
```

Meta-information: Meta-information serves as a quantitative indicator of how communication improves state prediction compared to the no-message baseline. In the *Recognition Enhancement* phase, it measures the average success rate of reconstructing state dimensions, as can be seen in Figure B.2.(a), which shows the overall improvement achieved through communication. In the *Sharing Enhancement* phase, it captures the variance of prediction performance across agents over time, as illustrated in Figure B.2.(b), enabling a more fine-grained analysis of consistency.

```
      Meta-information Vari
      X (A,t)

      "dimensions": "s[62] - Agent 10 absolute X coordination",

      "with_communication": {
      "early": [0.407, ..., 0.775], variance: [0.033],

      "mid": [0.791, ..., 0.978], variance: [0.013]

      "late": [0.766, ..., 1.0], variance: [0.015]

      },

      "without_communication": {

      "early": [0.219, ..., 0.769], variance: [0.363],

      "mid": [0.575, ..., 0.981], variance: [0.243],

      "late": [0.716, ..., 1.0], variance: [0.143]
```

Figure B.2: (a) Example of temporal average $\mathbb{E}_t[\chi_{l,d,t}^{i,(k)}]$ based on meta-information , (b) Example of variance $\mathrm{Var}_i[\chi_{l,d,t}^{i,(k)}]$ based on meta-information

Natural Language based Feedback: The natural language feedback $c^{(k+1)}$ transforms the quantitative meta-information into actionable and interpretable guidance that directly supports protocol refinement. It consists of three parts: (i) evaluation of the current protocol, (ii) hypotheses about missing information, and (iii) concrete suggestions for improvement. An example can be found below, which illustrates how quantitative results are translated into actionable refinements.

Example natural language feedback $c^{(k+1)}$

Evaluation : The current communication protocol enables the Banelings (agents 0–9) to receive Overseer's (agent 10) relative enemy position ... This significantly improves prediction accuracy of critical state dimensions ... compared to no communication. However, the success rates across Banelings are uneven and notably lower than the Overseer's own high accuracy, indicating inconsistent inference ...

Missing information hypothesis: The protocol currently misses explicit indicators of agent-specific observation reliability or visibility, which would clarify which agents have direct knowledge of the enemy or Overseer positions and which rely solely on communication. It also omits behavioral or temporal context that could help agents disambiguate relative positioning over time. ...

Improvement suggestions:

- 1. Include an explicit visibility or reliability flag per agent in the message to indicate whether the Overseer currently has direct, reliable observation of the enemy and itself, enabling agents to weigh communicated information appropriately.
- 2. Augment the message with behavioral cues such as a timestamp or sequence number to help agents track message freshness and temporal consistency.

B.3 TRAINING LOSSES OF LMAC

 Discriminator Training: The training dataset \mathcal{B} consists of 5000 trajectories per environment, collected at 200k training steps under ϵ -greedy exploration with the initial protocol fixed across five seeds to avoid bias and capture its limitations as a basis for refinement. Based on this dataset, the discriminator $D^{(k)}$ evaluates how well a candidate communication protocol $f_C^{(k)}$ contributes to state reconstruction: for each agent i, it takes the local observation o_t^i and the message $m_t^{i,(k)}$ as input and reconstructs the global state s_t . The training objective is defined as

$$\phi^{*(k)} = \arg\min_{\phi} \mathbb{E}_{(o, m^{(k)}, s) \sim \mathcal{B}} \|D_{\phi}^{(k)}(o_t^i, m_t^{i, (k)}) - s_t\|_2^2, \tag{B.1}$$

where $D^{(k)}$ is implemented as an autoencoder that compresses the input into a latent representation and reconstructs it to estimate the global state. Training is conducted with $\mathcal B$ using MSE loss and mini-batch SGD in a supervised learning setup. The reconstructed outputs are further used to compute the meta-information $\chi^{i,(k)}_{l,d,t}$, which provides recognition accuracy and imbalance indicators.

Table B.1: Hyperparameters used for training the discriminator $D^{(k)}$.

Parameter	Value
Batch size	32
Dropout rate	0.1
Epochs	1000
Iterations per epoch	10
Hidden dimension	64
Latent dimension	20
Learning rate	0.0005
Optimizer	Adam

Representation and Policy Training: The Meta-Cognitive Representation Learning module is implemented as an autoencoder architecture. The encoder Enc_{ψ} incorporates an attention mechanism, where the query is formed from the current observation and received messages, while the key and value are derived from the trajectory τ_t^i . This allows the latent representation z_t^i to capture how the current observation and message attend to τ_t^i . The decoder Dec_{ψ} takes the latent representation as input and produces two outputs: (i) an estimate of the global state \hat{s}_t^i , and (ii) the meta information $\hat{\xi}_{d,t}^i$. The meta information is defined as $\xi_{d,t}^i = \mathbb{I}\left[\left(\hat{s}_{d,t}^i - s_{d,t}\right)^2 \leq \alpha\right]$, which indicates whether agent i, given its messages and trajectory, can accurately reconstruct a particular state dimension. The training objective for these outputs is

$$\mathcal{L}_{\text{recon}} = \mathbb{E}_{(\tau,s)\sim\mathcal{B}} \left[\frac{1}{ND} \sum_{i=1}^{N} \sum_{d=1}^{D} \left(\|\hat{s}_{d,t}^{i} - s_{d,t}\|_{2}^{2} + \lambda_{\text{meta}} \operatorname{CE}(\hat{\xi}_{d,t}^{i}, \xi_{d,t}^{i}) \right) \right],$$
(B.2)

where CE denotes the cross-entropy loss and λ_{meta} balances state reconstruction with meta-awareness in the latent representation.

To prevent unnecessary information from being encoded in the latent space, we introduce a cycle-consistency constraint. Specifically, the latent representation z_t^i is reconstructed through the decoder and re-encoded using an auxiliary encoder $\mathrm{Enc}_{c,\psi}$, ensuring that only essential state-related features remain in the latent representation. The corresponding loss is

$$\mathcal{L}_{\text{cons}} = \mathbb{E}_{(\tau,s)\sim\mathcal{B}} \left[\frac{1}{N} \sum_{i=1}^{N} \left(\|\hat{z}_t^i - z_t^i\|_2^2 \right) \right]. \tag{B.3}$$

In parallel, policy learning is guided by the temporal-difference (TD) error, computed using the current network parameters θ and the target network parameters θ^- .

$$\mathcal{L}_{\text{TD}} = \mathbb{E}_{s,a,r,s'} \left[\left(r_t + \gamma \max_{a'} Q_{\theta^-}^{\text{tot}}(s_{t+1}, a') - Q_{\theta}^{\text{tot}}(s_t, a_t) \right)^2 \right]. \tag{B.4}$$

1134 Algorithm 1 LLM-driven Multi Agent Communication (LMAC) 1135 1: **Initialize:** task prompt $x = (\mathcal{I}_T, \mathcal{I}_P)$, reasoning tokens $z^{(0)}$ (via CoT essential state selection), 1136 ϕ , ψ , Q network 1137 2: **for** k = 0, 1, 2 **do** 1138 Generate communication protocol $f_C^{(k)} \sim f_{\theta}^{\text{LLM}}(x, z^{(k)})$ 3: 1139 if k = 0 then 4: 1140 Collect trajectory dataset \mathcal{B} 5: 1141 6: 1142 Train discriminator $D_{\phi}^{(k)}$ on $\mathcal B$ by minimizing equation B.1 7: 1143 Compute meta-information $\chi_{l,d,t}^{i,(k)}$ 8: 1144 9: Derive feedback instruction $\tilde{x}^{(k+1)}$ and generate feedback $c^{(k+1)}$ 1145 Update tokens $z^{(k+1)} \sim f_{\theta}^{\text{LLM}}(x, c^{(k+1)})$ 10: 1146 11: **end for** 1147 12: Final protocol $f_C = (f_C^{(0)}, f_C^{(1)}, f_C^{(2)})$ 1148 13: for each training episode do 1149 Obtain messages $m_t^i = f_C(\tau_t)$ 14: 1150 Encode latent $z_t^i = \operatorname{Enc}_{\psi}(\tau_t^i, m_t^i)$ 15: 1151 Decode to predict state \hat{s}_t^i and meta-info $\hat{\xi}_{dt}^i$ 16: 1152 17: Compute $\mathcal{L}_{\mathrm{recon}}$ using Equation B.2 1153 18: Compute \mathcal{L}_{cons} by Equation B.3 1154 19: Update parameters ψ and by minimizing the overall objective with TD-loss for QMIX 1155 20: **end for**

Finally, representation learning is jointly optimized with the TD error, and the complete objective is defined as

$$\mathcal{L} = \mathcal{L}_{\text{TD}} + \mathcal{L}_{\text{recon}} + \lambda_{\text{cons}} \mathcal{L}_{\text{cons}}.$$
 (B.5)

The overall training procedure of LMAC is summarized in Algorithm 1.

115611571158

1159

1160

1161

C EXPERIMENTAL DETAILS

All baseline algorithms are evaluated using the official implementations and default settings released by their respective authors. The implementation of LMAC is based on EPyMARL¹ (Papoudakis et al., 2021b), and all experiments in SMAC were conducted using StarCraft II version 2.4.10. Our method and comparisons are trained on an NVIDIA RTX 4090 GPU with an AMD EPYC 9334 CPU (Ubuntu 20.04). In the following sections, we provide details of the environments, baseline algorithms, reconstruction threshold settings, and hyper-parameter configurations used in our experiments. In particular, C.1 outlines the environment settings, C.2 describes the baseline algorithms, and C.3 summarizes the hyper-parameter configurations of our implementation.

C.1 Environment Details

C.1.1 STARCRAFT MULTI-AGENT CHALLENGE WITH COMMUNICATION

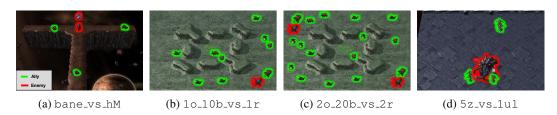


Figure C.1: SMAC-comm scenarios: (a) bane_vs_hM, (b) 1o_10b_vs_1r, (c) 2o_20b_vs_2r, (d) 5z_vs_1u1.

We evaluate our method on four scenarios from the StarCraft Multi-Agent Challenge with communication (SMAC-Comm). Among them, bane_vs_hM, 1o_10b_vs_1r, and 5z_vs_1u1 are introduced by Wang et al. (2020), while 2o_20b_vs_2r is a new map we propose based on 1o_10b_vs_1r. The illustrations of these scenarios are shown in Figure C.1, and their detailed configurations are summarized in Table C.1.

In SMAC-Comm, the **state space** contains absolute information of all units, including their positions, health, shields, energies, cooldowns, unit types, and most recent actions, while each agent's **observation space** is restricted to local information within its sight range, capturing relative positions, health, shield status, and unit types of nearby allies and enemies. The **action space** is defined as a set of discrete actions, including movement in four directions, attacks on visible enemies, special unit abilities, as well as stop and no-op commands, where no-op is used exclusively by eliminated units. The reward function is shaped by damage dealt to enemies, elimination of enemy units, and winning the scenario, and is formally defined as

$$R = \sum_{e \in \text{enemies}} \Delta \text{Health}(e) + \sum_{e \in \text{enemies}} \mathbb{I}(\text{Health}(e) = 0) \cdot \text{Reward}_{\text{death}} + \mathbb{I}(\text{win}) \cdot \text{Reward}_{\text{win}} \quad \text{(C.1)}$$

where $\Delta \text{Health}(e)$ denotes the health reduction of enemy unit e during a timestep, $\mathbb{I}(\cdot)$ is an indicator function, and Reward_{death} and Reward_{win} are set to 10 and 200, respectively. A more detailed description of each scenario is provided below.

bane_vs_hM: Three Banelings attempt to take down a Hydralisk supported by a Medivac. Only when all three explode together can the Hydralisk be defeated, as any delay allows the Medivac to restore its health. To succeed, the Banelings must strike in perfect unison at the central junction of the T-shaped map, where the Hydralisk is positioned. This scenario requires agents to accurately perceive their positions and execute attacks simultaneously in order to succeed.

10_10b_vs_1r: On a cliff-dense map, an Overseer locates a Roach that must be eliminated by its 10 Baneling allies to secure victory. While the Overseer and Roach appear together at a random spot, the Banelings spawn separately across the map. Under a minimal communication scheme, the Banelings remain silent, leaving the Overseer responsible for encoding its own position and transmitting it to guide the team.

https://github.com/uoe-agents/epymarl

20_20b_vs_2r:. This map is an extension of 10_10b_vs_1r that we propose. Similar to the original setting, the scenario is played on a cliff-dense map where 20 Banelings must eliminate 2 Roaches. Both Roaches and Banelings spawn at random locations across the map. This environment is designed to evaluate whether our proposed communication method remains effective in more complex scenarios with a larger number of agents.

 5z_vs_1ul: This map features five Zealots controlled by the agents against one Ultralisk as the enemy. The Ultralisk has high health and strong melee attacks, requiring coordinated micro-management from the Zealots to win. The challenge emphasizes some tactics such as kiting strategies, positioning, and focus fire to maximize damage while minimizing losses.

Man

Table C.1: Detailed description of SMAC-Comm scenarios

State Dimension

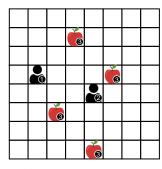
Enemy Units

1	254
1	255
1	256

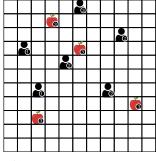
111up	ring emis	znemy emes	State Dimension	Obs Dimension	1 (dilli of fictions
bane_vs_hM	3 Banelings	1 Hydralisk, 1 Medivac	52	31	8
1o_10b_vs_1r	1 Overseer, 10 Banelings	1 Roach	148	85	7
2o_20r_vs_2r	2 Overseers, 20 Banelings	2 Roaches	296	171	7
5z_vs_1ul	5 Zealots	1 Ultralisk	63	36	7

C.1.2 LEVEL-BASED FORAGING

Ally Units



(a) 8x8_2p_2f_s1_coop



Obs Dimension

Num of Actions

(b) 11x11_6p_4f_s1_coop

Figure C.2: LBF scenarios: (a) 8x8_2p_2f_s1_coop, (b) 11x11_6p_4f_s1_coop.

We adopt the Level-Based Foraging (LBF) variant introduced by Li et al. (2022b). The **state space** is represented as a structured grid encoding the positions and levels of all agents along with the locations and required levels of food items, rather than by concatenating individual observations. With the cooperation option enabled, each food item requires the joint effort of multiple agents, with its level set equal to the sum of the three lowest agent levels, ensuring that no agent can collect food alone and that every successful loading demands coordination. The **observation space** for each agent is limited to a 3×3 local field centered on itself, capturing relative information about nearby agents and food. The **action space** consists of six discrete actions: moving north, south, east, or west, attempting to load adjacent food, and the idle action (none). The **reward function** is cooperative and normalized by the total potential food value, granting positive returns only when the combined levels of participating agents meet or exceed the requirement of the targeted food. We evaluate two cooperative configurations as illustrated in Figure C.2.

8x8_2p_2f_s1_coop: A compact 8×8 grid with 2 agents and 2 food items, where cooperation is strictly enforced for every collection attempt.

11x11_6p_4f_s1_coop: A larger 11×11 grid with 6 agents and 4 food items under the same cooperative setting, introducing greater complexity through increased agent interactions and map size.

C.1.3 GOOGLE FOOTBALL RESEARCH

1296

1297 1298 1299

1300

1301 1302

1309

1310 1311

1313

1314

1315

1316

1317

1318

1319

1320 1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

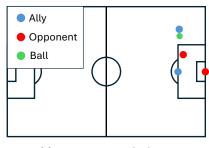
1337

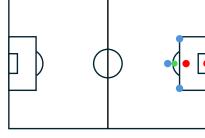
1338 1339 1340

1341

1344

1347 1348 1349





(a) run_pass_and_shoot

(b) 3_vs_1_with_keeper

Figure C.3: GRF scenarios: (a) Run_pass_and_shoot, (b) 3_vs_1_with_keeper.

We use the Google Research Football (GRF) environment (Kurach et al., 2020), a physics-based soccer simulator that incorporates core mechanics such as ball control, passing, shooting, tackling, and player movement. In this environment, each agent controls an individual player and must cooperate with teammates to score goals against scripted opponents. From the GRF scenarios, we consider academy_3_vs_1_with_keeper and academy_run_pass_and_shoot_with_keeper, which we refer to as 3_vs_1_with_keeper and run_pass_and_shoot for brevity. The illustrations of the GRF scenarios are shown in Figure C.3, and their detailed configurations are summarized in Table C.2.

In GRF, the state space contains the positions and velocities of all players as well as the ball, with ally and opponent features represented in the same format. Each agent's observation space consists of local information about itself, nearby teammates, opponents, and ball-related features, all expressed relative to the agent's frame. The action space is discrete and includes movement in eight directions, sliding, passing, shooting, sprinting, and standing still, which together enable the agents to create scoring opportunities. The **reward function** is provided under two schemes: Scoring and Checkpoint. The Scoring function gives +1 for scoring a goal and -1 for conceding, while the Checkpoint function provides additional intermediate rewards such as for successful passes or defensive actions. In our experiments, we adopt the sparse Scoring function to increase the difficulty of the scenarios. A more detailed description of each scenario is provided below.

3_vs_1_with_keeper: Three attackers operate from the edge of the box: one on each wing and one in the center. The central player begins with the ball while directly confronted by a defender, and an opposing goalkeeper guards the net. The scenario emphasizes teamwork through passing and positioning to create scoring opportunities.

run_pass_and_shoot: Two attackers are positioned near the edge of the penalty area. One player starts wide with possession and is unmarked, while the other is placed centrally, marked by a defender, and facing the goalkeeper. The setup encourages passing and coordinated shooting to overcome the defense.

Table C.2: Detailed description of GRF scenarios

Scenario	Ally	Opponent	State Dim	Obs Dim	Action Dim
3_vs_1_with_keeper	3 central midfield	1 goalkeeper, 1 center back	26	26	19
Run_pass_and_shoot	2 central back	1 goalkeeper, 1 center back	22	22	19

C.2 Detailed Description of Baseline Algorithms

QMIX (Rashid et al., 2018) QMIX factorizes the joint action-value function into individual utilities using a monotonic mixing network. It provides a strong baseline for cooperative MARL under centralized training with decentralized execution, but does not involve explicit communication between agents. We base our implementation of QMIX on the following repository: https://github.com/hijkzzz/pymarl2

FullComm A variant of QMIX where each agent broadcasts its full local observation to all others at every timestep. This represents an upper-bound setting with maximal communication capacity but incurs heavy redundancy and communication cost.

QMIX+State An oracle-like upper bound where each agent is directly given the global state in addition to its local observation. This allows agents to make fully informed decisions and serves as a reference for the maximum achievable performance.

NDQ (Wang et al., 2020) Neural Decomposable Q-learning introduces nearly decomposable Q-functions that minimize communication overhead. Agents act independently most of the time, but exchange messages guided by information-theoretic regularizers that maximize mutual information while minimizing entropy. This approach achieves strong coordination while reducing communication by over 80% compared to full exchange. The official code can be found at: https://github.com/TonghanWang/NDQ

MASIA (Li et al., 2022b) Multi-Agent Self-supervised Information Aggregation enables agents to aggregate received raw messages into compact, permutation-invariant representations. These embeddings are optimized through self-supervised objectives such as reconstruction and prediction, allowing agents to extract the most relevant information for decision-making and significantly improve coordination. The official code can be found at: https://github.com/chenf-ai/Multi-Agent-Communication-Considering-Representation-Learning

MAIC (Du et al., 2022) Multi-Agent Incentive Communication allows each agent to generate incentive messages that directly bias teammates' value functions, promoting explicit coordination. By learning targeted teammate models and applying sparsity regularization, MAIC improves efficiency and achieves strong performance across diverse cooperative MARL benchmarks. The official code can be found at: https://github.com/mansicer/MAIC

COLA (Monda et al., 2023) Consensus Learning for Agents enables cooperative behavior by allowing agents to infer a shared consensus representation from their local observations. Even without direct access to the global state, agents learn viewpoint-invariant representations that converge to the same discrete consensus, which is then used as an additional input for decentralized decision-making. The official code can be found at: https://github.com/deligentfool/COLA

T2MAC (Liu et al., 2024) Targeted and Trusted Multi-Agent Communication equips agents with mechanisms for selective engagement and evidence-driven message integration. Agents decide when and with whom to communicate, exchange individualized messages, and integrate received information at the evidence level, leading to more efficient and reliable cooperation. The official code can be found at: https://github.com/ZangZehua/T2MAC

C.3 Hyper-parameter Setup

We calibrated the reconstruction threshold α according to the spatial structure and visibility conditions of each environment: 0.05 for SMAC-Comm where normalized coordinates directly reflect spatial error, a stricter 0.005 for the more challenging bane_vs_hM scenario, 0.002 for GRF with absolute field coordinates and weaker observability limits, and 0.1 for the grid-based LBF where prediction depends on cell occupancy. Beyond these thresholds, default hyper-parameters were used as the baseline configuration. For each scenario, we primarily followed the settings provided by the original authors; when such specifications were unavailable, the default parameters were applied. The full set of hyper-parameters used in our experiments is summarized in Table C.3.

Table C.3: Common hyper-parameter setting of LMAC

Value
64
20
0.1
Adam
50000
$1.0 \rightarrow 0.05$
5000
200
32
32
0.99
0.0005
0.1
1
0.6

D ADDITIONAL TRAJECTORY ANALYSIS

In addition to the main trajectory analysis presented in the paper, we further examine protocol refinement in other SMAC-Comm scenarios and GRF tasks. These supplementary cases demonstrate that the framework yields interpretable communication protocols whose iterative refinements adapt to scenario-specific challenges. The following analyses provide examples from different environments, illustrating how the protocol evolves beyond the scenarios presented in Section 5.2.

SMAC-comm: bane_vs_hM

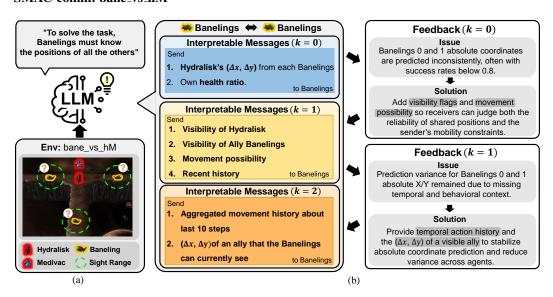


Figure D.1: Protocol refinement analysis on SMAC bane_vs_hM: (a) Task scenario with Banelings, Hydralisk and Medivac under partial observability, (b) protocol messages and corresponding feedback at each phase k

As a complementary case, we analyze protocol refinement in the SMAC bane_vs_hM map, summarized in Fig. D.1. In (a), three Banelings must coordinate a simultaneous detonation against a Hydralisk supported by a Medivac, where precise synchronization is critical. Because absolute coordinates are absent from local observations and the long vertical corridor makes y-position inference particularly difficult, agents struggle to align their attacks without additional cues. In (b), protocol evolution is shown: at k=0, Banelings broadcast the Hydralisk's relative position $(\Delta x, \Delta y)$ and their own health ratio, which provides partial but unreliable signals, resulting in inconsistent absolute localization. Feedback highlights this instability and suggests including visibility indicators, movement possibilities, and recent history. At k=1, these additions improve the interpretability of shared information, but prediction variance remains high for certain coordinates due to missing temporal and behavioral context. At k=2, variance-based feedback leads to incorporating aggregated movement history over the last 10 steps together with the relative position of currently visible allies, allowing agents to stabilize absolute predictions and achieve consistent coordination. These results show that refining protocols to generate and share structured temporal-behavioral features, rather than only raw observations, is key to enabling consistent absolute localization under partial observability.

GRF: Run_pass_and_shoot

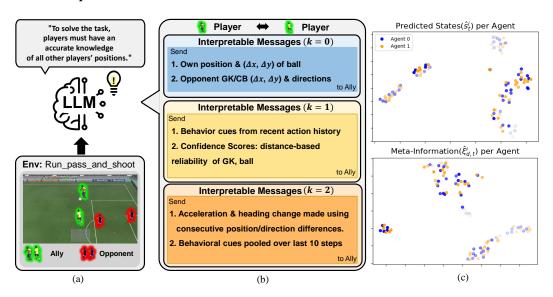


Figure D.2: Protocol refinement analysis on GRF Run_pass_and_shoot: (a) Task scenario with two attackers, a defender, and goalkeeper near the penalty area, (b) protocol messages at each phase k, (c) t-SNE of predicted states and meta-information showing convergence across agents after communication.

As a complementary case, we analyze protocol refinement in the GRF Run_pass_and_shoot scenario, summarized in Fig. D.2. In (a), two attackers must cooperate near the penalty area against a central defender and a goalkeeper. Although the state space in GRF is structurally simpler than in SMAC, it remains important that agents infer states from shared messages and incorporate them into policy decisions, a pattern that is also observed in LBF. (b) shows the protocol evolution. At k=0, each agent shares its own position, the relative displacement of the ball, and the positions of the central defender and goalkeeper, but such information alone is limited for predicting other aspects of the state. Accordingly, at k=1, behavioral cues such as pass/shoot readiness and sprinting, together with confidence scores regarding the goalkeeper and ball, are added. At k=2, dynamic features such as acceleration and heading changes, along with aggregated behavioral histories over the last 10 steps, are incorporated, stabilizing predictions and enabling cooperative play in which the wide attacker penetrates open space while the central striker draws defensive pressure. In (c), the t-SNE visualization shows that the predicted states $\hat{s}t^i$ and the meta-information ξd , t^i converge across agents after communication. This indicates that through message exchange, all agents come to predict state dimensions at a similar level and, moreover, share a common recognizability of which dimensions are reliably captured.

E ADDITIONAL EXPERIMENTAL ANALYSES

In this section, we present additional experimental analyses to further examine LMAC. We first assess the generality of LMAC by combining it with different value decomposition methods and scaling to larger environments with more agents, as shown in E.1. We then explore how performance changes when the feedback-based refinement is applied multiple times, as detailed in E.2. Lastly, we study the influence of restricting the message dimension on protocol design and communication efficiency, which is discussed in E.3.

E.1 GENERALITY OF LMAC

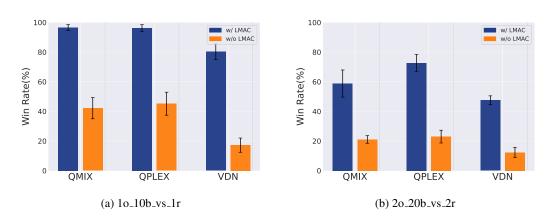


Figure E.1: Generality of LMAC across different value decomposition methods (VDN, QMIX, QPLEX) and larger environments with more agents

We further evaluate the generality of LMAC by combining it with different value decomposition algorithms (VDN, QMIX, QPLEX). As shown in Figure E.1, LMAC provides a consistent performance boost across all methods, not only when paired with QMIX. In addition, this benefit is preserved in more complex environments with larger numbers of agents, such as 20_20b_vs_2r, demonstrating that the effectiveness of LMAC scales beyond simple scenarios. These results confirm that the proposed communication framework generalizes well across both algorithmic backbones and environmental complexities.

E.2 EFFECT OF THE NUMBER OF UPDATE PHASES

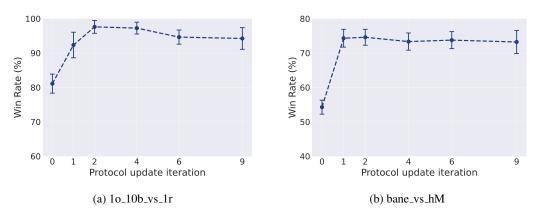


Figure E.2: Performance comparison when the communication protocol is iteratively updated across different numbers of update phases in (a) 10_10b_vs_1r and (b) bane_vs_hM.

 We analyze the effect of repeatedly applying feedback-based protocol refinement using the Sharing Enhancement update scheme. As shown in Figure E.2, performance improves as the number of update phases k increases, but the marginal gain quickly saturates around k=3. In fact, even k=2 is sufficient to capture most important state dimensions that can be inferred from observations, while larger k mainly increases message size and introduces redundant information, reducing efficiency. Nevertheless, in environments that demand more sophisticated reasoning, employing more refinement phases may still offer benefits.

E.3 EFFECT OF REDUCED COMMUNICATION CAPACITY UNDER CONSTRAINTS

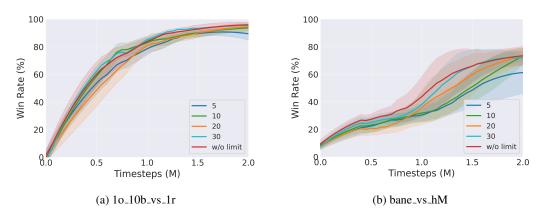


Figure E.3: Performance comparison under message dimension constraints in (a) 10_10b_vs_1r and (b) bane_vs_hM.

We further investigated how performance changes when message dimensionality is constrained, since larger message sizes naturally lead to higher communication overhead. Here, we use communication capacity to denote the effective amount of information that agents can transmit through messages, which is directly determined by message dimensionality. Thus, restricting the number of message dimensions can be regarded as limiting the communication capacity of agents. As shown in Fig. E.3, our method remains robust under such conditions: even with reduced message sizes, performance is largely preserved. In particular, the LLM reduced overhead by designing protocols that avoid unnecessary all-to-all communication through one-way broadcast structures, or by compactly encoding key features such as movement possibility, last action, and sender ID into only a few bits. However, in more challenging scenarios such as bane_vs_hM, where state inference is inherently more difficult, excessive compression slowed convergence, indicating that a moderate level of communication capacity is still necessary for effective learning.

F COMPARISON OF COMPUTATIONAL COMPLEXITY

In the SMAC communication experiments, we measured the total training time for 2M steps on the bane_vs_hM and 1o_10b_vs_1r maps, as reported in Table F.1. On average, LMAC requires about 15% more training time than strong baselines such as MASIA and MAIC. This overhead mainly comes from training the discriminator and collecting additional trajectory data for it, but it is a necessary cost that allows the model to diagnose weaknesses in the communication protocol and iteratively refine it. As a result, LMAC consistently achieves higher performance than all baselines, demonstrating that the improvement in coordination quality outweighs the extra computation.

Table F.1: Total training time (hours) for 2M steps in SMAC communication settings.

Algorithm	bane_vs_hM	1o_10b_vs_1r
QMIX	4h 12m	5h 42m
NDQ	5h 17m	6h 33m
T2MAC	5h 34m	7h 28m
MASIA	7h 13m	8h 13m
MAIC	7h 45m	8h 32m
COLA	7h 54m	8h 24m
LMAC(Ours)	8h 26m	9h 47m