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Abstract

In this paper, we introduce Neural Information
Retrieval resources for 11 widely spoken In-
dian Languages (Assamese, Bengali, Gujarati,
Hindi, Kannada, Malayalam, Marathi, Oriya,
Punjabi, Tamil, and Telugu) from two major
Indian language families (Indo-Aryan and Dra-
vidian). These resources include (a) INDIC-
MARCO, a multilingual version of the MS
MARCO dataset in 11 Indian Languages cre-
ated using Machine Translation, and (b) Indic-
ColBERT, a collection of 11 distinct Mono-
lingual Neural Information Retrieval models,
each trained on one of the 11 languages in
the INDIC-MARCO dataset. To the best of
our knowledge, IndicIRSuite is the first at-
tempt at building large-scale Neural Informa-
tion Retrieval resources for a large number
of Indian languages, and we hope that it will
help accelerate research in Neural IR for In-
dian Languages. Experiments demonstrate
that Indic-ColBERT achieves 47.47% improve-
ment in the MRR @10 score averaged over the
INDIC-MARCO baselines for all 11 Indian lan-
guages except Oriya, 12.26% improvement in
the NDCG @10 score averaged over the MIR-
ACL Bengali and Hindi Language baselines,
and 20% improvement in the MRR @100 Score
over the Mr. Tydi Bengali Language baseline.

1 Introduction

Information Retrieval (IR) models process user
queries and search the document corpus to retrieve
a ranked list of relevant documents ordered by a
relevance score. Classical IR models, like BM25
(Robertson et al., 2009), retrieve documents that
have lexical overlap with the query tokens. Re-
cently, there has been a notable upsurge in adopting
Neural IR models utilizing language models such
as BERT (Devlin et al., 2018), which enable seman-
tic matching of queries and documents. This shift
has proven highly effective in retrieving and re-
ranking documents. ColBERTv2(Santhanam et al.,

2021), one of the state-of-art neural IR models, has
shown 0.185 points improvement in NDCG@ 10
Score over the BM25 model baseline on the MS
MARCO dataset (Thakur et al., 2021).

The importance of dataset size outweighs
domain-matching in training neural IR models
(Zhang et al., 2022a). Due to the scarcity of large-
scale domain-specific datasets, Neural IR models
are first trained on the MS MARCO passage rank-
ing dataset (Nguyen et al., 2016), and they are sub-
sequently evaluated on domain-specific datasets in
a zero-shot manner. MS MARCO dataset contains
39 million training triplets (q, +d, -d) where q is an
actual query from the Bing search engine, +d is a
human-labeled passage answering the query, and
-d is sampled from unlabelled passages retrieved
by the BM25 model. The MS MARCO dataset is
in English, implying that neural IR models trained
on it are effective only with English queries and
passages.

Monolingual IR for non-English languages
(Zhang et al., 2022b) (Zhang et al., 2021), Multilin-
gual IR (Lawrie et al., 2023), and Cross-lingual IR
(Lin et al., 2023) (Sun and Duh, 2020) extend the
English IR paradigm to support diverse languages.
In Monolingual IR for non-English languages, the
query and passages are in the same language, which
is not English. In cross-lingual IR, the query is used
to create a ranked list of documents such that each
document is in the same language, which is dif-
ferent from the query language. In Multilingual
IR, the query is used to create a ranked list of doc-
uments such that each document is in one of the
several languages, which can be the same or differ-
ent from the query language. In this work, we focus
on Monolingual IR for non-English languages.

Monolingual IR for non-English languages in-
volves training an encoder like mBERT (Devlin
et al., 2018), on a large-scale general-domain
monolingual dataset for non-English languages to
minimize the pairwise softmax cross-entropy loss.



The trained models are subsequently finetuned or
used in a zero-shot manner on small-scale domain-
specific datasets. However, there is a notable lack
of large-scale datasets like mMARCO (Bonifacio
et al., 2021) for training monolingual neural IR
models on many low-resource Indian languages.
We introduce neural IR resources to address this
scarcity and facilitate Monolingual neural IR across
11 Indian languages. Our contributions are:

* INDIC-MARCO, a multilingual dataset for
training neural IR models in 11 Indian Lan-
guages (Assamese, Bengali, Gujarati, Hindi,
Kannada, Malayalam, Marathi, Oriya, Pun-
jabi, Tamil and Telugu). For every language in
INDIC-MARCO, there exists 8.8 Million pas-
sages, 1 Million queries, 39 million training
triplets (query, relevant document, irrelevant
document), and approximately one relevant
document per query. To the best of our knowl-
edge, this is the first large-scale dataset for
training a neural IR system on 11 widely spo-
ken Indian languages.

Indic-ColBERT, a collection of 11 distinct
Monolingual Neural Information Retrieval
models, each trained on one of the 11 lan-
guages in the INDIC-MARCO dataset. Indic-
ColBERT achieves 47.47% improvement in
the MRR @10 score averaged over the INDIC-
MARCO baseline for all 11 Indian languages
except Oriya, 12.26% improvement in the
NDCG @10 score averaged over the MIRACL
Bengali and Hindi Language baselines, and
20% improvement in the MRR @100 Score
over the Mr. Tydi Bengali Language baseline.
To the best of our knowledge, this is the first
effort for a neural IR dataset and models on
11 major Indian languages, thereby providing
a benchmark for Indian language IR.

2 Related work

The size of datasets holds greater importance than
ensuring domain matching in the training of neural
IR models (Zhang et al., 2022a). In terms of size
and domain, mMARCO (Bonifacio et al., 2021) is
the most similar to our work as it introduces a large-
scale machine-translated version of MS MARCO
in many languages, Hindi being the only Indian
language. MIRACL (Zhang et al., 2022b) and Mr.
Tydi (Zhang et al., 2021) also introduce datasets
and models for Monolingual Neural IR in Hindi,
Bengali, and Telugu.

FIRE! was the most active initiative from 2008
to 2012 for Multilingual IR in Indian languages.
FIRE developed datasets for Multilingual IR in
six Indian Languages (Bengali, Gujarati, Hindi,
Marathi, Oriya, and Tamil). However, the size
of these datasets is not large enough to train neu-
ral IR systems based on transformer models like
mBERT(Devlin et al., 2018) and XLM(Lample and
Conneau, 2019). In addition, the text in the FIRE
dataset comes from newspaper articles (Palchowd-
hury et al., 2013), which is domain-specific; hence,
the models trained on such datasets cannot gen-
eralize well to other domains. Due to the lack of
large-scale datasets, Cross-lingual knowledge trans-
fer via Distillation has become popular for neural
IR in low-resource languages (Huang et al., 2023a)
(Huang et al., 2023b).

The key distinction in our work from the ear-
lier approaches is that we introduce monolingual
datasets and neural IR models in 11 major Indian
Languages (Assamese, Bengali, Gujarati, Hindi,
Kannada, Malayalam, Marathi, Oriya, Punjabi,
Tamil and Telugu), that can also benefit Cross-
lingual and Multilingual IR models from the cross-
lingual transfer effects when trained on a large num-
ber of Indian Languages (Zhang et al., 2022a).

3 Datasets

3.1 INDIC-MARCO

We introduce the INDIC-MARCO dataset, a mul-
tilingual version of the MS MARCO dataset. We
translate the queries and passages in the MS
MARCO passage ranking dataset into 11 widely
spoken Indian languages (Assamese, Bengali, Gu-
jarati, Hindi, Kannada, Malayalam, Marathi, Oriya,
Punjabi, Tamil and Telugu) originating from two
major language families (Indo-Aryan and Dravid-
ian). The translation process utilizes the int-8 quan-
tized version of the NLLB-1.3B-Distilled Model
(Costa-jussa et al., 2022), available at CTranslate2?
(Klein et al., 2020). We chose int-8 quantized ver-
sion of NLLB-1.3B-Distilled Model for two rea-
sons: (a) it has shown remarkable performance in
terms of BLEU scores for many Indian languages
as compared to IndicBART (Dabre et al., 2021)
and IndicTrans (Ramesh et al., 2022) (b) Quan-
tization (Klein et al., 2020) enables faster infer-
ence with less computing power and little or no

"http://fire.irsi.res.in/fire/static/data
Zhttps://forum.opennmt.net/t/nllb-200-with-
ctranslate2/5090



drop in translation quality. The machine transla-
tion process employs specific hyper-parameters: a
beam width of 4, a maximum decoding sequence
length of 200 tokens, a batch size of 64, and a
batch type equal to ‘examples’. Passages from the
MS MARCO dataset are split into multiple sen-
tences using the Moses SentenceSplitter’, ensuring
that each sentence serves as a translation unit in
a batch of 64 sentences. In contrast, queries with
an average length of 5.96 words (Thakur et al.,
2021) are not sentence-split before translation. We
also translate the MS MARCO Dev-Set(Small)*
containing 6,390 queries (1.1 qgrels/query) to ob-
tain INDIC-MARCO Dev-set(Small). The trans-
lation process on an Nvidia A100 GPU with 12
GB VRAM takes approximately 1584 hours for
passages in MS MARCO, 55 hours for queries in
MS MARCO, and 1.5 hours for queries in MS
MARCO Dev-Set(Small). Upon translation, the re-
sulting INDIC-MARCO dataset comprises around
8.8 million passages, 530k queries, and 39 Mil-
lion training triplets in 11 Indian languages. This
dataset allows for training monolingual neural IR
models for each language in the INDIC-MARCO
dataset.

4 Models

4.1 Baselines

BM25 (Robertson et al., 2009) serves as a strong
baseline as it performs better than many neural
IR models on domain-specific datasets with ex-
ceptions(Thakur et al., 2021). It does not require
any training. BM25 retrieves documents contain-
ing query tokens and assigns them a score for re-
ranking based on the frequency of query tokens
appearing in them and the document length. In this
work, we use the BM25 implementation provided
by Pyserini® with values for parameters k1=0.82
and b=0.68 for evaluation on INDIC-MARCO Dev-
Set obtained after machine translation. We use
Whitespace Analyzers to tokenize queries and doc-
uments during indexing and searching for all Indian
languages except Hindi, Bengali, and Telugu, for
which we use language-specific analyzers provided
in Pyserini. BM25-tuned (BM25-T) presented in
Mr. Tydi(Zhang et al., 2021) is optimized to maxi-
mize the MRR @100 score on the Mr. Tydi test-set
using a grid search over the range [0.1, 0.6] for k1

3https://pypi.org/project/mosestokenizer/
*https://ir-datasets.com/MS MARCO-passage.html
Shttps://github.com/castorini/pyserini

and [0.1, 1] for b.

Multilingual Dense Passage Retriever (mDPR)
is presented in both Mr. Tydi and MIRACL by
replacing the BERT encoder in Dense Passage
Retriever(DPR) (Karpukhin et al., 2020) with an
mBERT encoder. In Mr. Tydi, mDPR is trained
on English QA dataset (Kwiatkowski et al., 2019)
and used in a zero-shot manner for indexing and
retrieval of documents. In MIRACL, mDPR is
trained on the MS MARCO dataset and used in
a zero-shot manner for indexing and retrieving
documents. Multilingual ColBERT (mCol) is in-
troduced in MIRACL by replacing the BERT en-
coder in ColBERT(Santhanam et al., 2021) with
an mBERT encoder. mCol is trained on the MS
MARCO dataset and used in a zero-shot manner
for indexing and retrieval of documents.

4.2 Indic-ColBERT

Indic-ColBERT (iCol) is based on ColBERTV2
(Santhanam et al., 2021) with distinctions: it uses
mBERT as query-document encoder, and is trained
on INDIC-MARCO. Model architecture comprises
(a) a query encoder, (b) a document encoder, and
(c) max-sim function (same as CoIBERTV2). Given
a query with ¢ tokens and a document with d to-
kens, the Query encoder outputs ¢ fix-sized token
embeddings, and the document encoder outputs d
fix-sized token embeddings. The maximum input
sequence length for the query, ¢4z, and, for the
document, d,,q2, is set before giving them to the
respective encoders. If g is less than ¢y,45, We ap-
pend ¢mq. — ¢ [MASK] tokens to the input query,
and if g is greater than g,,,4., ¢ is truncated to ¢yqz.-
If d is less than d,,4., then d is neither truncated
nor padded. If d is greater than d,,,, d is truncated
to d;naz. The max-sim function is used to obtain
the relevance score of a document for a query using
the encoded representations.

S Experiment Setup

We train 11 distinct Indic-ColBERT (iCol) models
separately for 50k iterations with a batch size of
128 on the first 6.4 million training triplets from the
INDIC-MARCO dataset to optimize the pairwise
softmax cross entropy loss function, where each
triplet contains a query, a relevant passage and an
irrelevant passage in one of the 11 languages on
which the model is trained. The mBERT encoder is
finetuned from the official "bert-base-multilingual-
uncased" checkpoint, and the remaining parameters



Language MRR@10 Recall@1000
BM25 mCol iCol BM25 mCol iCol

Assamese  0.078  0.095 0.176 0.449 0.503 0.698
Bengali 0.112  0.159 0.221 0.622 0.691 0.788
Gujarati 0.100  0.141 0.232 0.539 0.653 0.805
Hindi 0.125 0.171 0.223 0.678 0.729 0.772
Kannada 0.089 0.156 0.219 0.520 0.691 0.787
Malayalam 0.076  0.124 0.198 0.442 0.603 0.742
Marathi 0.085 0.143 0.207 0476 0.655 0.750
Oriya 0.086 0.002 0.002 0.484 0.022 0.016
Punjabi 0.113  0.134 0.211 0.603 0.637 0.766
Tamil 0.088  0.144 0.202 0.495 0.661 0.756
Telugu 0.1007 0.144 0.206 0.569 0.648 0.749

Table 1: Results on INDIC-MARCO Dev-Set(Small). mColBERT (mCol) is trained on MS MARCO dataset
(Nguyen et al., 2016). Indic-ColBERT are 11 distinct monolingual neural IR models trained on INDIC-MARCO.

Language Mr. Tydi test-set MIRACL Dev-set

BM25 BM25-T mDPR mCol iCol | BM25 BM25-T mDPR mCol iCol
Bengali 0418 0413 0.258 0.414 0.501 | 0.508 x 0.443  0.546 0.606
Hindi X X X X X 0.458 x 0.383  0.470 0.483
Telugu 0.343 0424 0.106 0314 0.393 | 0.494 x 0.356 0.462 0.479

Table 2: Results on Mr. Tydi test-set (MRR @ 100) and MIRACL Dev-set (NDCG@10): For Mr. Tydi test-set, we
use official BM25, BM25-tuned (BM25-T) and mDPR model scores(Zhang et al., 2021); mCol (mColBERT trained
on MS MARCO), and iCol (Indic-ColBERT trained on INDIC-MARCO) are tested in a zero-shot manner. For the
MIRACL dev-set, we use official BM25, mDPR, and mCol(mColBERT) model scores (Zhang et al., 2022b); iCol
(Indic-ColBERT trained on INDIC-MARCO) is tested in a zero-shot manner.

are trained from scratch.

6 Results

Indic-ColBERT (iCol) outperforms baseline mod-
els (BM25, BM25-T, mDPR, mCol) by 20%,
in MRR@100 Score on Mr. Tydi test-set (Re-
fer Table 2) for Bengali Language. For Tel-
ugu, Indic-ColBERT (iCol) outperforms 3 (BM25,
mDPR, mCol) out of 4 baselines in terms of
MRR @100 scores. Indic-ColBERT (iCol) out-
performs baseline models (BM25, mDPR, mCol)
by 19.29% in Bengali and 5.4% in Hindi, in
NDCG @10 Score on MIRACL dev-set(Refer Ta-
ble 2). For Telugu, Indic-ColBERT (iCol) out-
performs 2 (mDPR, mCol) out of 3 baselines in
terms of NDCG @10 scores. Indic-ColBERT (iCol)
outperforms baseline models (BM25, mCol) by
47.47% in MRR@10 Score on INDIC-MARCO
Dev-Set(Small) (Refer Table 1) averaged over all
11 Indian languages (excluding Oriya). We do not
see any improvements for Oriya because mBERT
used in Indic-ColBERT is not pre-trained on Oriya
and Assamese. Assamese demonstrates a 125%

MRR @10 improvement over the BM25 baseline,
attributed to its linguistic similarity with Bengali
(indicated by the mColBERT model outperform-
ing BM25 by 21% in MRR@10 Score) and the
high-quality data in INDIC-MARCO, further en-
hancing the MRR@10 score by 104%, making
INDIC-MARCO a significant contributor to the
advancement for a low-resource language like As-
samese which mBERT does not support.

7 Summary, conclusion, and future work

We present IndicIRSuite, featuring INDIC-
MARCO, a multilingual neural IR dataset in 11
Indian languages, and Indic-ColBERT, comprising
11 monolingual neural IR models based on Col-
BERTV2. Our results demonstrate performance
enhancements over baselines in Mr. Tydi, MIR-
ACL, and INDIC-MARCO, particularly benefiting
low-resource languages like Assamese. INDIC-
MARCO proves valuable for such languages, not
supported by models like mBERT but linguistically
akin to Bengali. Future work includes expanding
IndicIRSuite to Multilingual and Crosslingual IR.



Limitations

The primary limitation of our study is the absence
of a comprehensive comparison of the trained IR
models across out-of-domain datasets beyond MIR-
ACL and Mr. Tydi. It is imperative to delve deeper
into the translation quality, specifically assessing
whether it exhibits pronounced "translationese." A
more exhaustive examination is warranted, particu-
larly in cases where the proposed models, such as
Indic-ColBERT, demonstrate subpar performance
compared to baseline models, as observed in the
instance where Indic-ColBERT lags behind the
BM25 Baseline for the Telugu Language in Mr.
Tydi test-set and MIRACL Dev-set.

Ethics Statement

We want to emphasize our commitment to uphold-
ing ethical practices throughout this work. This
work publishes a large-scale machine-translated
dataset for neural information retrieval in 11 Indian
languages - Assamese, Bengali, Gujarati, Hindi,
Kannada, Malayalam, Marathi, Oriya, Punjabi,
Tamil, and Telugu. MS MARCO passage ranking
Dataset in the English language used as a Source
dataset for translation is publicly available, and no
annotators were employed for data collection. We
have cited the datasets and relevant works used in
this study.
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