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ABSTRACT

Multi-modal learning methods with targeted uni-modal constraints have exhibited
their superior efficacy in alleviating the imbalanced multi-modal learning problem,
where most models cannot jointly utilize all modalities well, limiting their perfor-
mance. However, in this paper, we first identify that there are gradient conflict
between multi-modal and uni-modal learning objectives, potentially misleading the
optimization of shared uni-modal encoders. The necessity of diminishing conflict
during gradient integration naturally accords with the idea of Pareto methods, which
could provide a gradient that benefits all objectives. Unfortunately, conventional
Pareto method surprisingly fails in the context of multi-modal scenarios. We further
theoretically analyze this counterintuitive phenomenon and attribute it to the prior-
ity of Pareto method for multi-modal gradient with small magnitude, weakening
model generalization. To this end, we propose MMPareto algorithm, which could
ensure a direction that is common to all learning objectives while preserving mag-
nitude with guarantees for generalization, providing innocent uni-modal assistance
for primary multi-modal learning. Finally, empirical results across multiple dataset
with different modalities indicate our superior method performance. The proposed
method is also expected to facilitate multi-task cases with a clear discrepancy in
task difficulty, demonstrating its scalability.

1 INTRODUCTION

People are immersed in a variety of sensory messages, encompassing sight, sound, and touch, which
has sparked the study of multi-modal learning (Baltrušaitis et al., 2018). Although these methods have
revealed effectiveness, recent studies have found the imbalanced multi-modal learning problem, where
most multi-modal models cannot jointly utilize all modalities well, limiting their performance (Huang
et al., 2022). Under this scenario, several methods have been proposed to improve the training of
worse learnt modality with additional module or modality-specific training strategy (Peng et al.,
2022; Wu et al., 2022). These methods often have one common sense that targetedly improves
uni-modal training. Among them, multitask-like methods that directly add uni-modal constraints
besides multi-modal joint learning objective, exhibit their superior effectiveness for alleviating this
imbalanced multi-modal learning problem (Wang et al., 2020; Du et al., 2023; Fan et al., 2023).

However, behind the effective performance, we observe a hidden risk in model optimization under this
multitask-like scenario, potentially limiting the model ability. Every coin has two sides. Uni-modal
constraints undeniably enhance the learning of corresponding modalities, alleviating the imbalanced
multi-modal learning problem. Meanwhile, the optimization of parameters in uni-modal encoder is
influenced by both multi-modal joint learning objective and its own uni-modal learning objective.
This entails the need to minimize two learning objectives concurrently, but usually, there does not
exist a set of parameters that could satisfy this goal. Consequently, these multi-modal and uni-modal
learning objectives could have conflict during optimization. In Figure 1a, we take an example of the
video encoder on Kinetics Sounds dataset. Based on the empirical results, negative cosine similarity
indicates that multi-modal and uni-modal gradients indeed have conflicts in direction during the
optimization of shared uni-modal encoder. Especially, these conflicts at the early training stage could
substantially harm the model ability (Liu et al., 2020). Therefore, the primary multi-modal learning
is potentially disturbed. Addressing such conflicts is an essential problem that needs to be solved.
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(a) Kinetics Sounds. (b) Cityscapes. (c) Kinetics Sounds.

Figure 1: (a). Cosine similarity between multi-modal and uni-modal gradients in the video encoder
of Kinetics Sounds dataset (Arandjelovic & Zisserman, 2017). (b). Methods performance on the
multi-task dataset, Cityscapes (Cordts et al., 2016). Results are from Sener & Koltun (2018) (c).
Methods performance of multi-modal and uni-modal prediction on Kinetics Sounds. Single task/loss
is the results of solely trained model with one learning objective.

To avoid optimization conflicts, it is essential to well integrate both gradients, making the uni-modal
gradient not affect the primary multi-modal training but assist it. This necessity naturally accords
with the idea of Pareto method (Sener & Koltun, 2018), which aims to find a steep gradient that
benefits all objectives and finally converges to a trade-off state of them. This trade-off is called Pareto
optimal (Pareto, 1897), in which no objective can be advanced without harming any other objectives.
As shown in Figure 1b, in the typical multi-task field, Pareto method has achieved ideal advancement
in balancing the learning objective of multiple tasks. Therefore, it is expected to keep superiority in
solving conflicts in this multitask-like multi-modal learning framework. However, the fact is contrary
to the assumption. Based on the results in Figure 1c, the conventional Pareto method surprisingly
loses its efficacy, even is clearly worse than the uniform baseline without any gradient integration
strategy, where all gradients are equally summed.

To delve into this counterintuitive phenomenon, we first analyze the property within multi-modal
learning scenarios and the conventional Pareto method. Concretely, different from typical multi-task
cases, optimization of multi-modal joint loss with information from all modalities is often easier than
uni-modal loss only with information from one modality. Accordingly, the optimization of multi-
modal loss is favored over uni-modal loss, since the greedy nature of deep neural network (Mandt
et al., 2017). Therefore, multi-modal learning objective with a smaller loss value brings a smaller
gradient magnitude than that of uni-modal one. By coincidence, Pareto method tends to pay more
attention to the gradient with a small magnitude, resulting in the final gradient after integration being
mostly influenced by multi-modal gradient. Therefore, although avoiding conflicts, the efficacy of
uni-modal assistance is diminished as well. To go a step further, we theoretically explore the potential
influence for model generalization. Our finding suggests that this priority for multi-modal gradient
with small magnitude could basically weaken model generalization ability.

Based on the above theoretical analysis, it becomes imperative to address gradient conflicts in the
context of multi-modal scenarios. To this end, we propose the Multi-Modal Pareto (MMPareto) algo-
rithm, which respectively takes into account the direction and magnitude during gradient integration.
It ensures innocent uni-modal assistance, where the final gradient is with direction common to all
learning objectives while preserving magnitude with guarantees for generalization. We provide theo-
retical evidence of the method’s desirable convergence properties, demonstrating its ability to reach a
Pareto stationarity. Overall, our method diminishes the potential conflict with guaranteed generaliza-
tion, effectively alleviating the imbalance multi-modal learning problem. As shown in Figure 1c, our
MMPareto method provides both advanced multi-modal performance and uni-modal performance.
What’s more, the uni-modal performance is even superior to the solely trained uni-modal model.

In a nutshell, our contribution is three-fold. Firstly, we observe the potential gradient conflict in the
effective multitask-like framework for the imbalanced multi-modal learning problem. Secondly, we
theoretically analyze the failure of Pareto integration in the context of multi-modal learning, and then
propose the MMPareto algorithm which could provide innocent uni-modal assistance whose gradients
are with non-conflict direction and generalization guaranteed magnitude. Thirdly, experiments across
different dataset empirically verify our theoretical analysis as well as superior algorithm performance.
Furthermore, the proposed method could extend to multi-task cases with clear discrepancy in task
difficulty, indicating its scalability.
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2 RELATED WORK

2.1 IMBALANCED MULTI-MODAL LEARNING

Recent research has uncovered the imbalanced multi-modal learning problem, as multi-modal models
tend to favor specific modalities, thereby constraining their overall performance (Peng et al., 2022;
Huang et al., 2022). Several methods have been proposed for this problem, with a shared focus
on targetedly enhancing optimization of each modality (Wang et al., 2020; Peng et al., 2022; Wu
et al., 2022; Fan et al., 2023). Among them, multitask-like methods that directly incorporate targeted
uni-modal constraints have demonstrated superior effectiveness (Wang et al., 2020; Du et al., 2023;
Fan et al., 2023). However, under this multitask-like framework, optimization of uni-modal encoder
is simultaneously controlled by the multi-modal joint learning objective and corresponding uni-modal
learning objective, which could cause gradient conflict, potentially harming the primary multi-modal
learning. In this paper, we observe and diminish the potential conflict by the proposed MMPareto
algorithm. Our method could effectively alleviate the imbalanced multi-modal learning problem,
achieving considerable improvement.

2.2 PARETO INTEGRATION IN MULTI-TASK LEARNING

Shared parameter representation in multi-task learning is expected to fit several learning objectives
at once, but usually, there does not exist a single solution that minimizes all objective functions
simultaneously, resulting in the potential conflict problem during optimization. To solve conflict, the
Pareto method is introduced to integrate different gradients, which aims to find a gradient common to
all objectives and finally converge to a trade-off state of them (Sener & Koltun, 2018). Besides the
conventional one, the idea of Pareto integration is extended from different perspectives, including
more different trade-offs among different tasks or faster convergence speed, to better benefit multi-task
learning (Lin et al., 2019; Ma et al., 2020; Liu et al., 2021). Similarly, in this paper, we observe the
optimization conflict in the shared uni-modal encoder in the multitask-like multi-modal framework.
Inspired by the former success of Pareto integration, we introduce the idea of Pareto integration into
multi-modal learning but surprisingly find it failed. To this end, we further theoretically analyze and
find the harmed generalization of Pareto integration in the context of multi-modal learning, and then
propose MMPareto algorithm which could handle multi-modal scenarios as well as multi-task cases
with clear discrepancy in task difficulty.

3 METHOD

3.1 MULTITASK-LIKE MULTI-MODAL FRAMEWORK

In multi-modal learning, models are expected to produce correct predictions by integrating infor-
mation from multiple modalities. Therefore, there are often multi-modal joint loss in multi-modal
framework, which takes prediction of fused multi-modal feature. However, based on recent studies,
only utilizing such joint loss to optimize all modalities together could result in the optimization
process being dominated by one modality, leaving others being severely under-optimized (Peng et al.,
2022; Huang et al., 2022). To overcome this imbalanced multi-modal learning problem, introducing
uni-modal loss which targets the optimization of each modality is natural. Then, the final learning
objective of these multitask-like multi-modal models is:

L = Lm +

n∑
k=1

Lk
u, (1)

where Lm is the multi-modal joint loss and Lk
u is the uni-modal loss for modality k. n is the number

of modalities. We mainly consider the multi-modal discriminative task, and both multi-modal joint
loss and uni-modal loss are cross-entropy loss functions. The framework is illustrated in Figure 2.

Uni-modal losses in this multitask-like multi-modal framework effectively improve the learning of
corresponding modalities, getting rid of the suppression of dominant modality and further alleviating
the imbalanced multi-modal learning problem. However, the optimization of parameters in uni-modal
encoder is guided by both multi-modal joint learning objective and its own uni-modal learning
objective. Concretely, when using Stochastic Gradient Descent (SGD) optimization, at iteration
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Figure 2: Illustration of gradient integration strategy of conventional Pareto and our MMPareto.
Conventional Pareto integration has prior for the multi-modal gradient with smaller magnitude. Our
MMPareto method avoids gradient conflict and is with generalization guaranteed magnitude.

t with mini-batch S, the update of k-th uni-modal encoder parameter θk is determined by both
gm
S (θk(t)) and gu

S(θ
k(t)), which are the multi-modal gradient and uni-modal gradient, respectively.

Each gradient provides the ideal direction for decreasing the corresponding loss function. For brevity,
we rewrite {gi

S(θ
k(t))}i∈{m,u} with {gi}i∈{m,u} in the rest parts.

In multi-modal scenarios, multi-modal loss and uni-modal loss are tightly related, but their gradients
may still exist conflicts, as shown in Figure 1a. Here we take an example of the video encoder on
Kinetics Sounds dataset. Negative cosine similarity demonstrates that these two learning objective
indeed has conflict in direction, especially at the early training stage. Based on the former studies (Liu
et al., 2020), disturbances at the early stage could substantially harm the model ability (Liu et al.,
2020). Therefore, how to resolve these conflicts and well integrate gm and gu needs to be solved.

3.2 PARETO INTEGRATION IN THE CONTEXT OF MULTI-MODAL LEARNING

3.2.1 PARETO INTEGRATION

To avoid these optimization conflicts within uni-modal encoders disturbing the primary multi-modal
learning, it is essential to well integrate different gradients without bringing negative effects on
multi-modal training. This goal accords with the idea of Pareto method in multi-task learning (Sener
& Koltun, 2018). In Pareto method, at each iteration, gradients are assigned different weights, and
the weighted combination is the final gradient, which can benefit all learning objectives. Finally,
parameters can converge to a trade-off state, Pareto-optimality, in which no objective can be advanced
without harming any other objectives. It is natural to introduce Pareto integration into multi-modal
framework, avoiding conflict between multi-modal and uni-modal gradients. Concretely, in our case,
the Pareto algorithm is formulated to solve:

min
αm,αu∈R

∥αmgm + αugu∥2

s.t. αm, αu ≥ 0, αm + αu = 1,
(2)

where ∥ · ∥ denotes the L2-norm. This problem is equal to finding the minimum-norm in the
convex hull of the family of gradient vectors {gi}i∈{m,u}. We denote the found minimum-norm as
ω. Désidéri (2012) showed that either ω to this optimization problem is 0 and the corresponding
parameters are Pareto-stationary which is a necessary condition for Pareto-optimality, or ω can
provide descent direction common to all learning objectives.

3.2.2 GENERALIZATION HARMED RISK OF PARETO

Pareto integration is expected to exhibit advantage under multitask-like multi-modal framework,
since gradient conflicts are resolved. However, based on Figure 1c, the conventional Pareto method
surprisingly fails, and is clearly worse than the uniform baseline case without any specifically designed
gradient integration strategy. To explore the hidden reason, we further analyze the property within
multi-modal learning and the Pareto integration method.
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Although with a similar framework, our multi-modal case is different from the typical multi-task ones.
Uni-modal loss only receives the prediction based on data of corresponding modality. In contrast,
multi-modal loss with prediction based on data of all modalities is easy to be optimized with more
adequate information. When simultaneously optimizing both learning objectives, the multi-modal
loss is favored over uni-modal one, since the greedy nature of deep neural network (Mandt et al.,
2017). Hence multi-modal loss with a smaller loss value leads to a smaller gradient magnitude than
that of uni-modal one. In other words, ∥gm∥ < ∥gu∥. Combined with this discrepancy in gradient
magnitude, for the optimization problem of Equation 2, we can have its analytic solution:{

αm = 1, αu = 0 if cosβ ≥ ∥gm∥
∥gu∥ ,

αm = (gu−gm)⊤gu

∥gm−gu∥2 , αu = 1− αm else.

β is the angle between gm and gu. During training of the current iteration, the gradient weight of
gm and gu are assigned as 2αm and 2αu, respectively1. Here we further analyze the Pareto analytic
solution. When cosβ ≥ ∥gm∥

∥gu∥ , we have αm > αu. Otherwise, since ∥gm∥ < ∥gu∥, we have:

αm − αu =
(gu − gm)⊤gu

∥gm − gu∥2
− (1− (gu − gm)⊤gu

∥gm − gu∥2
)

=
∥gu∥2 − ∥gu∥∥gm∥ cosβ

∥gm − gu∥2
− ∥gm∥2 − ∥gu∥∥gm∥ cosβ

∥gm − gu∥2

> 0. (∥gm∥ < ∥gu∥)

(3)

Remark 1. Conventional Pareto integration method tends to assign larger weight to the gradient
with smaller magnitude.

As stated in Remark 1, we can conclude that the Pareto method tends to assign larger weight to the
multi-modal gradient gm during integration.

To further explore influence of this priority, we first analyze and obtain the SGD generalization bound
for case without any gradient integration strategy. Denote the expected risk as R(Q) and empirical
risk as R̂(Q). Concretely, for any positive real σ ∈ (0, 1), with probability at least 1 − σ over a
training sample size of size N , we have:

R(Q) ≤ R̂(Q) +

√
η
|S| tr ((C

m + Cu)A−1)− 2d− 2 log(det(Σ)) + 4 log
(
1
δ

)
+ 10 logN + 32

8N − 4
,

(4)
where η is the learning rate and S is the set of mini-batch. Cm and Cu are the covariance matrix,
bringing by the random sampling. A is the Hessian matrix around the optimum.

Furthermore, when applying Pareto integration, based on Remark 1, the Pareto method tends to assign
larger weight for gradient with smaller magnitude. Accordingly, the final gradients of Pareto method
would always have a smaller magnitude than the uniform baseline without any gradient integration
strategy. Then, we further obtain the SGD generalization bound with Pareto gradient integration. For
any positive real σ ∈ (0, 1), with probability at least 1− σ over a training sample size of size N , we
have:

R(Q) ≤ R̂(Q) +

√
ηγ
|S| tr ((C

m + Cu)A−1)− 2d− 2 log(det(Σ)) + 4 log
(
1
δ

)
+ 10 logN + 32

8N − 4
,

(5)
where 0 < γ < 1 is the least magnitude difference between Pareto integration and the uniform base-
line among all training iterations. Based on these two generalization bounds, the model generalization
ability is weakened after applying Pareto integration, compared with the case where all gradients
are not specifically adjusted, since 0 < γ < 1. Moreover, here γ is the least magnitude difference
between Pareto integration and the case without specific gradient integration. Therefore, Equation 5
is in fact a loose bound. Model generalization would be affected more in practice. The detailed proof
is provided in Appendix C. This theoretical analysis about the harmed generalization of conventional
Pareto method explains the results in Figure 1c, where it surprisingly loses its efficacy, even is clearly
worse than the uniform baseline without any gradient integration.

1Here we use 2αi as the gradient weight is to keeps the same gradient weight summation with uniform
baseline without any specifically designed gradient integration strategy, where all weight is assigned as 1.
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3.2.3 MULTI-MODAL PARETO ALGORITHM

Based on the above theoretical analysis, conventional Pareto method has priority for gradient with
smaller magnitude. Hence its final gradients always have a smaller magnitude than that of the case
without any gradient integration strategy. Accordingly, the model generalization ability is basically
weakened. Therefore, directly introducing Pareto integration in the context of multi-modal learning is
unreasonable and invalid. It becomes essential to address gradient conflicts in multi-modal scenarios.

Algorithm 1 MMPareto

Require: Training dataset D, iteration number T , initial-
ized uni-modal encoder parameters θk, k ∈ {1, 2, · · · , n},
other parameters θother.
for t = 0, · · · , T − 1 do

Sample a fresh mini-batch S from D;
Feed-forward the batched data S to the model;
Calculate gradient using back-propagation;
Update θother without gradient integration method;
for k = 1, · · · , n do

Obtain gm and gu for k-th uni-modal encoder;
Calculate cosβ; β is angle between gm and gu;
Solve problem of Equation 2, obtain αm, αu;
if ∥αmgm + αugu∥ = 0 then

Find the Pareto stationarity, stop training;
end if
if cosβ ≥ 0 then

αm = αu = 1
2 ;

end if
Integrate gradient: h = 2αmgm + 2αugu;
h = h/∥h∥︸ ︷︷ ︸

Keep non-conflict direction

· ∥gm + gu∥︸ ︷︷ ︸
Recovered magnitude

;

Update θk with h.
end for

end for

Hence we propose the Multi-Modal
Pareto (MMPareto) algorithm. It con-
siders both the direction and magni-
tude during gradient integration, to
provide innocent uni-modal assistance
where the final gradient is with direc-
tion common to all learning objectives
while preserving magnitude with guar-
antees for generalization. Our method
considers the conflict case and non-
conflict case respectively. The overall
algorithm is shown in Algorithm 1 and
illustrated in Figure 2.

Non-conflict case. We first consider
the case cosβ ≥ 0. Under this
case, the cosine similarity between
gm and gu is positive. For the di-
rection, the arbitrary convex combina-
tion of the family of gradient vectors
{gi}i∈{m,u} is common to all learn-
ing objectives. Therefore, to main-
tain the gradient magnitude as the case
without specific gradient integration,
we assign αm = αu = 1

2 . With this
setting, the risk of weakening model
generalization is avoided.

Conflict case. For the case cosβ < 0,
it is essential to find the direction that
is common to all losses and maintain the necessary magnitude during gradient integration. Hence
we first solve the Pareto optimization problem of Equation 2, obtaining αm and αu, which could
provide a non-conflict direction after integration. Furthermore, we recover the magnitude of final
gradient to the same scale as the case without specific gradient integration, in case of the influence
for generalization.
Theorem 1. If the sequence of training iteration generated by the proposed MMPareto method is
infinite, it admits a subsequence that converges to a Pareto stationarity.

Beyond that, we also analyze the convergence of proposed MMPareto method. As Theorem 1, our
algorithm is expected to converge to a Pareto stationarity. Detailed proof is provided in Appendix D.
Overall, our MMPareto method could provide innocent uni-modal assistance whose gradients are
with non-conflict direction and generalization guaranteed magnitude. It is expected to effectively
alleviate the imbalanced multi-modal learning problem, enhancing primary multi-modal learning.

4 EXPERIMENT

4.1 DATASET AND EXPERIMENT SETTINGS

CREMA-D (Cao et al., 2014) is an audio-visual dataset for emotion recognition, covering 6 usual
emotions. Kinetics Sounds (Arandjelovic & Zisserman, 2017) is an audio-visual dataset containing
31 human action classes. Colored-and-gray-MNIST (Kim et al., 2019) is a synthetic dataset based
on MNIST (LeCun et al., 1998). Each instance contains two kinds of images, a gray-scale and a
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Table 1: Comparison with imbalanced multi-modal learning methods where bold and underline
represent the best and runner-up respectively. * indicates that the uni-modal evaluation (Acc
audio and Acc video) is obtained by fine-tuning a uni-modal classifier with frozen trained uni-modal
encoder, since this method could not provide uni-modal prediction directly. This evaluation method
borrows from Peng et al. (2022). ↓ indicates a performance drop compared with uniform baseline.

Method CREMA-D Kinetics Sounds
Acc Acc audio Acc video Acc Acc audio Acc video

Audio only - 61.69 - - 53.63 -
Video only - - 56.05 - - 49.20

One joint loss* 66.13 59.27 36.56 64.61 52.03 35.47
Uniform baseline 71.10 63.44 51.34 68.31 53.20 40.55

G-Blending 72.01 60.62 (↓) 52.23 68.90 52.11 (↓) 41.35
OGM* 69.19 (↓) 56.99 (↓) 40.05 (↓) 66.79 (↓) 51.09 (↓) 37.86 (↓)

Greedy* 67.61 (↓) 60.69 (↓) 38.17 (↓) 65.32 (↓) 50.58 (↓) 35.97 (↓)
PMR* 66.32 (↓) 59.95 (↓) 32.53 (↓) 65.70 (↓) 52.47 (↓) 34.52 (↓)

MMPareto 75.13 65.46 55.24 70.13 56.40 53.05
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(c) Direction conflict.
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(d) Magnitude difference.

Figure 3: (a&c). Cosine similarity between gradients of multi-modal and uni-modal loss in the
audio encoder of Kinetics Sounds and video encoder of CREMA-D, respectively. (b&d). Gradient
magnitude in the audio encoder of Kinetics Sounds and video encoder of CREMA-D, respectively.

monochromatic colored image. ModelNet40 (Wu et al., 2015) is a dataset with 3D objects, covering
40 categories. This dataset could be used to classify these 3D objects based on the 2D views of their
front-view and back-view data (Su et al., 2015). Data of all views is 2D images of a 3D object.

When not specified, ResNet-18 (He et al., 2016) is used as the backbone in experiments and models
are trained from scratch. Uni-modal modal features are integrated with late fusion method. For the
Transformer backbone, MBT (Nagrani et al., 2021), is used as the backbone. Specifically, for the
Colored-and-gray MNIST dataset, we build a neural network with 4 convolution layers and 1 average
pool layer as the encoder, like Fan et al. (2023) does. More details are provided in Appendix A.

4.2 GRADIENT CONFLICT AND MAGNITUDE DIFFERENCE IN MULTI-MODAL SCENARIOS

In this section, we empirically verify the direction conflict and magnitude difference between multi-
modal and uni-modal gradient. Firstly, in Figure 1a and Figure 3 (a&c), we show the cosine similarity
between gradients on the Kinetics Sounds and CREMA-D. Based on the results, the update direction
of multi-modal and uni-modal gradient indeed have conflict, i.e., negative cosine similarity, which
potentially brings risk for the optimization of the corresponding shared uni-modal encoder. In
addition, such conflicts often exist in the early training stage, disturbance in which stage could
substantially harm the model ability (Liu et al., 2020). In addition, we also observe the magnitude
difference between gradients. Figure 3 (b&d) show the gradient magnitude of multi-modal and
uni-modal gradients. These results verify the analysis that multi-modal gradient often has a smaller
magnitude than that of uni-modal one.

4.3 OBSERVATION OF CONVENTIONAL PARETO INTEGRATION

To empirically verify the properties and performance of conventional Pareto method in the context
of multi-modal learning, we conduct experiments across different dataset. Based on the former
theoretical analysis, conventional Pareto method tends to result in the final gradient after integration
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Table 2: Comparison with imbalanced multi-modal learning methods where bold and underline
represent the best and runner-up respectively. The network is transformer-based backbone.

Method
CREMA-D Kinetics Sounds

from scratch with pretrain from scratch with pretrain
Acc mAP Acc mAP Acc mAP Acc mAP

One joint loss 44.96 43.51 66.69 69.79 42.51 42.62 68.30 73.85
Uniform baseline 45.30 45.37 69.89 75.08 43.31 43.09 69.40 74.32

G-Blending 46.38 45.46 69.91 74.67 44.69 45.35 69.41 74.34
OGM-GE 42.88 39.13 65.73 68.28 41.79 41.02 69.55 74.46

Greedy 44.49 43.19 66.67 69.59 43.31 43.62 69.62 74.57
PMR 44.76 43.59 65.59 69.20 43.75 44.31 69.67 74.59

MMPareto 48.66 46.77 70.43 75.22 45.20 46.79 70.28 74.65
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(a) Magnitude degradation. (b) Methods comparison.
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(c) Magnitude degradation. (d) Methods comparison.

Figure 4: (a&c). Final gradient magnitude of Pareto method and uniform baseline in audio encoder
of Kinetics Sounds and video encoder of CREMA-D. (b&d). Methods performance of multi-modal
and uni-modal prediction in audio encoder of Kinetics Sounds and video encoder of CREMA-D.

having a degradation in magnitude compared with the case without any gradient integration strategy.
Accordingly, the model generalization ability is potentially weakened. As shown in Figure 4 (a&c),
the results indicate that after applying conventional Pareto method, there indeed exists a magnitude
degradation in the final integrated gradient. What’s more, based on the results in Figure 1c and Figure 4
(b&d), the conventional Pareto method loses its efficacy in multi-modal scenarios, even is clear worse
than the uniform baseline, where all gradients are equally summed. These results demonstrate that
conventional Pareto method does not fit well in the context of multi-modal learning. In contrast, our
MMPareto, inspired by our theoretical finding, can handle this multi-modal case and provide both
advanced multi-modal and uni-modal performance.

4.4 COMPARISON WITH IMBALANCED MULTI-MODAL LEARNING METHODS

To validate the effectiveness of our MMPareto method in overcoming imbalanced multi-modal
learning problems, we compare it with recent studies: G-Blending (Wang et al., 2020), OGM-
GE (Peng et al., 2022), Greedy (Wu et al., 2022) and PMR (Fan et al., 2023). One joint loss is the
method that only uses multi-modal joint loss. And uniform baseline is the method in which multi-
modal and uni-modal gradients are equally summed. To comprehensively evaluate the model ability,
we further observe the uni-modal performance, besides the common multi-modal performance. Based
on Table 1, we can find that the uniform baseline can achieve considerable performance, and even
could outperform or be comparable with these imbalanced multi-modal learning methods. The reason
could be that the introduction of uni-modal loss effectively enhances the learning of each modality,
which accords with the core idea of these compared methods. Moreover, our MMpareto method
with a conflict-free and generalization-guaranteed optimization process achieves a considerable
improvement, compared with existing methods at the multi-modal prediction. More than that,
our MMPareto method simultaneously exhibits outstanding uni-modal performance, and even can
outperform solely trained uni-modal model. For example, Audio accuracy of MMPareto is superior
to Audio-only method on both CREMA-D and Kinetics Sounds dataset.

Besides the CNN backbone, we also conduct experiments under the widely used Transformer
backbone. The used backbone is MBT (Nagrani et al., 2021), which contains both single-modal
layers as well as cross-modal interaction layers. Compared to the former CNN backbone with
the late fusion method, uni-modal features in this transformer-based framework are more fully
interacted and integrated. During experiments, we conduct experiments both from scratch and with
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Table 3: Comparison with related multi-task methods on Colored-and-gray-MNIST, Model-
Net40 and Kinetics Sounds. Bold and underline represent the best and runner-up respectively.

Method
CG-MNIST
(Color/Gray)

ModelNet40
(Front/Back View)

Kinetics Sounds
(Audio/Video)

Acc mAP Acc mAP Acc mAP
One joint loss 60.50 60.43 87.88 77.36 64.61 57.62

Uniform baseline 75.68 77.66 89.18 82.75 68.31 61.28

GradNorm 76.16 78.68 88.98 82.35 65.84 60.29
PCGrad 79.35 82.78 89.59 83.57 69.11 65.07

MetaBalance 79.18 81.87 89.63 83.03 68.90 64.31

MMPareto 81.88 84.34 89.95 85.09 70.13 68.44

ImageNet pre-training. Results are shown in Table 2. Based on the results, we can have the following
observation. Firstly, former imbalanced multi-modal learning could lose efficacy under these more
complex scenarios with cross-modal interaction. For example, OGM-GE method is even worse than
the one joint loss method on CREMA-D dataset. In contrast, our MMPareto gradient integration
strategy is not only applicable to CNN backbones, but also able to maintain superior performance
in transformer-based frameworks with complex interactions. In addition, whether or not to use
pre-training does not affect the effectiveness of the method, which reflects its flexibility.

4.5 COMPARISON WITH RELATED MULTI-TASK METHODS

In past studies, there are other strategies that are used to balance multiple learning objectives. In
this section, we compare several representative ones: GradNorm (Chen et al., 2018), PCGrad (Yu
et al., 2020), MetaBalance (He et al., 2022). Experiments are conducted on different multi-modal
dataset, covering six kinds of modalities. Based on the results in Table 3, we can conclude that former
multi-task methods are also possibly invalid in the context of multi-modal learning. For example,
GradNorm method is inferior to the uniform baseline on both ModelNet40 and Kinetics Sounds
dataset. In contrast, our MMPareto method, which specifically considers the multi-modal property
that there is a magnitude discrepancy between multi-modal and uni-modal gradient, maintains its
superior performance across various dataset with different kinds of modalities.

4.6 EXTENSION TO MULTI-TASK SCENARIO Table 4: Results on MultiMNIST with
50% salt-and-pepper noise on the right
part of images.

Method Accuracy
Task 1 Task2

Uniform baseline 86.63 78.42

Conventional Pareto 86.95 77.04 (↓)
MMPareto 87.72 80.64

To evaluate scalability of our method in multi-task cases
with similar property that there is a clear discrepancy in
task difficulty, we conduct experiments on MultiMNIST
dataset (Sabour et al., 2017). In MultiMNIST, two images
with different digits from the original MNIST dataset are
picked, and then combined into a new one by putting
one digit on the left and the other one on the right. Two
tasks are to classify these two digits. In order to increase
the difference in difficulty of tasks, we add 50% salt-and-
pepper noise on the right part of images. We provide data
samples in Appendix B. Based on Table 4, conventional Pareto method also fails under this multi-
task case. Not surprisingly, our MMPareto could extend to this scenario and achieve considerable
performance, indicating its ideal scalability.

5 CONCLUSION

In this paper, we first identify the potential gradient conflict in the multitask-like framework for
the imbalanced multi-modal learning problem. To solve conflicts, the idea of Pareto integration is
introduced and theoretically analyzed in the context of multi-modal learning. Then, we propose
MMPareto method, which can provide innocent uni-modal assistance with diminished conflict and
guaranteed generalization for multi-modal learning, effectively alleviating the imbalance multi-modal
learning problem. Furthermore, this method could also extend to multi-task cases with a clear
discrepancy in task difficulty, indicating its scalability.
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A DATASET AND EXPERIMENT SETTINGS

CREMA-D (Cao et al., 2014) is an audio-visual dataset for emotion recognition, including 7,442
video clips, each spanning 2 to 3 seconds in duration. The video content is that actors speak several
short words. This dataset covers 6 emotions: angry, happy, sad, neutral, discarding, disgust and fear.

Kinetics Sounds (Arandjelovic & Zisserman, 2017) is an audio-visual dataset containing 31 human
action classes selected from Kinetics dataset (Kay et al., 2017). All videos are manually annotated
for human action using Mechanical Turk and cropped to 10 seconds long around the action.

Colored-and-gray-MNIST (Kim et al., 2019) is a synthetic dataset based on MNIST (LeCun et al.,
1998). Each instance contains two kinds of images, a gray-scale and a monochromatic colored image.
Monochromatic images in the training set are strongly color-correlated with their digit labels, while
monochromatic images in the other sets are weakly color-correlated with their labels.

ModelNet40 (Wu et al., 2015) is a dataset with 3D objects, covering 40 categories. It contains 9,483
training samples and 2,468 test samples. This dataset could be used to classify these 3D objects
based on the 2D views of their front-view and back-view data (Su et al., 2015). Data of all views is a
collection of 2D images of a 3D object.

When not specified, ResNet-18 (He et al., 2016) is used as the backbone in experiments and models
are trained from scratch. Concretely, for the visual encoder, we take multiple frames as the input,
and feed them into the 2D network like Zhao et al. (2018) does; for the audio encoder, we modified
the input channel of ResNet-18 from three to one like Chen et al. (2020) does and the rest parts
remain unchanged; Encoders of other modalities are not modified. For the CNN backbone, we use
the widely used late fusion method, to integrate uni-modal features. For the Transformer backbone,
MBT (Nagrani et al., 2021), is used as the backbone. Concretely, the backbone contains 6 single-
modal layers and 2 layers with cross-modal interaction. Specifically, for the Colored-and-gray MNIST
dataset, we build a neural network with 4 convolution layers and 1 average pool layer as the encoder,
like Fan et al. (2023) does. During the training, we use SGD with momentum (0.9) and set the
learning rate at 1e− 3. All models are trained on 2 NVIDIA RTX 3090 (Ti).

B SAMPLES OF MULTIMNIST DATASET

Here we provide several samples of MultiMNIST dataset. In MultiMNIST, two images with different
digits from the original MNIST dataset are picked, and then combined into a new one by putting one
digit on the left and the other one on the right. Two tasks are to classify these two digits. In order to
increase the difference in difficulty between tasks, we add 50% salt-and-pepper noise on the right
part of images.

(a) Sample 1 without noise; Label: [5,1]. (b) Sample 1 with noise; Label: [5,1].

(c) Sample 2 without noise; Label: [0,3]. (d) Sample 2 with noise; Label: [0,3].

Figure 5: Samples in MultiMNIST dataset.

C PROOF FOR GENERALIZATION OF CONVENTIONAL PARETO METHOD

C.1 THE PAC-BAYESIAN FRAMEWORK

The PAC-Bayesian theorem provides a generalization bound on randomized classifiers. Suppose the
prior distribution over the parameter space Θ is P . Let Q is the distribution on the parameter space Θ
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expressing the learnt hypothesis function. Denote the expected risk as R(Q) and empirical risk as
R̂(Q). Then, a classic result uniformly bounding the expected risk R(Q) in terms of the empirical
risk R̂ and the KL divergence D(Q∥P ) is as follows.

Lemma 1 ((McAllester, 1999), Theorem 1). For any positive real δ ∈ (0, 1), with probability as
least 1− δ over a sample set of size N , we have the following inequality for all distributions Q:

R(Q) ≤ R̂(Q) +

√
D(Q∥P ) + log 1

δ + 5
2 logN + 8

2N − 1
, (6)

where D(Q∥P ) = Eθ∼Q

(
log Q(θ)

P (θ)

)
.

C.2 SGD AS ORNSTEIN-UHLENBECK PROCESS

Lemma 2 ((Mandt et al., 2017), Appendix B). Under the 2-order differentiable assumption, SGD
can be translated as Ornstein-Uhlenbeck process with stationary distribution:

q(θ) ∝ exp

{
−1

2
θ⊤Σ−1θ

}
, (7)

where the covariance Σ satisfies:
AΣ+ ΣA =

η

|S|
C. (8)

A is the Hessian at the optimum and C is the covariance matrix, bringing by the random sampling
within SGD.

C.3 SGD GENERALIZATION BOUND OF MULTITASK-LIKE MULTI-MODAL FRAMEWORK

Formally, machine learning algorithms are designed to learn a hypothesis function with the lowest
expected risk R under the loss function L from a hypothesis class Fθ, where θ is the parameter of the
hypothesis. Suppose the parameter follows a distribution Q, the expected risks respectively in terms
of θ and Q are defined as:

R(θ) = E(X,Y )∼DL (Fθ(X), Y ) ,

R(Q) = Eθ∼QE(X,Y )∼DL (Fθ(X), Y ) ,
(9)

where (X,Y ) ∼ D is the training data. Since the data distribution D is not available. In practice, it is
often substituted with the empirical risk R̂:

R̂(θ) =
1

|N |

N∑
i=1

L (Fθ (Xi) , Yi) ,

R̂(Q) = Eθ∼Q

[
1

N

N∑
i=1

L (Fθ (Xi) , Yi)

]
,

(10)

where N is the number of training samples and (Xi, Yi) is the i-th sample within them.

To optimize the expected risk, gradient descent (GD) is the often used method. Specifically, suppose
the training set is with N samples. The gradient in item of parameter θ is as follows:

gN (θ(t)) = ∇θ(t)R̂(θ(t)) =
1

N

N∑
i=1

∇θ(t)L
(
Fθ(t) (Xi) , Yi

)
, (11)

where θ(t) is the parameter at iteration t. gN (θ(t)) is considered as the full gradient over all N
training samples at iteration t.

In practice, Stochastic gradient descent (SGD) is more widely used to optimize the network. In SGD,
it estimates the full gradient based on mini-batches of the training samples. Here we denote S be a

13



Under review as a conference paper at ICLR 2024

set of mini-batch. All mini-batchs are independently and identically drawn from the training samples.
Then, the gradient of SGD for the mini batch S at iteration t is:

gS(θ(t)) =
1

|S|
∑
n∈S

∇θ(t)L
(
Fθ(t) (Xn) , Yn

)
, (12)

Based on former studies of SGD optimization (Jastrzebski et al., 2017), gradient of a mini-batch
gS(θ(t)) is un-biased estimations of full gradient gN (θ(t)). And for a sufficiently large batch size,
based on the central limit theorem, the gradient of each mini-batch satisfies:

gS(θ(t)) ∼ N
(
gN (θ(t)),

1

|S|
C

)
, (13)

where C is the covariance matrix, bringing by the random sampling.

With this property of SGD optimization, we can further consider the multitask-like multi-modal
framework, with multi-modal loss function Lm and uni-modal loss function Lk

u. For θk, the uni-modal
encoder parameter of modality k, gradients of Lm and Lk

u at iteration t satisfy:

gm
S (θk(t)) ∼ N

(
gm
N (θk(t)),

1

|S|
Cm

)
,

gu
S(θ

k(t)) ∼ N
(
gu
N (θk(t)),

1

|S|
Cu

)
,

(14)

where Cm and Cu are the covariance matrix for Lm and Lk
u, respectively. During training, Lm and

Lk
u are calculated and back-propagation independently, so their gradients can be considered as be

independent. Then, when without any gradient integration strategy (uniform baseline where all losses
are equally summed), the final gradient is:

hS(θ
k(t)) = gm

S (θk(t)) + gu
S(θ

k(t)),

hS(θ
k(t)) ∼ N

(
gm
N (θk(t)) + gu

N (θk(t)),
Cm + Cu

|S|

)
.

(15)

Then, use the final gradient hS(θ
k(t)) to iteratively update the parameter θk:

θk(t+ 1) = θk(t)− ηhS(θ
k(t)),

θk(t+ 1) = θk(t)− η(gm
S (θk(t)) + gu

S(θ
k(t))),

θk(t+ 1) = θk(t)− η(gm
N (θk(t)) + gu

N (θk(t))) + ηϵt,

θk(t+ 1) = θk(t)− ηhN (θk(t)) + ηϵt,

(16)

where ϵt ∼ N
(
0, Cm+Cu

|S|

)
and η > 0 is the learning rate. hN (θk(t)) = gm

N (θk(t)) + gu
N (θk(t)).

For small enough constant learning rate, SGD can be treated as the numerical discretization of the
following stochastic differential equation (SDE) (Li et al., 2017; Mandt et al., 2017), which is a
Ornstein-Uhlenbeck process:

dθk = −hN (θk)dt+

√
η

|S|
BdW (t), (17)

where W (t) is a while noise and follows N (0, I) and Cm + Cu = BB⊤. As Cm and Cu can both
considered as symmetric positive-semidefinite matrix, Cm + Cu can be factorized as BB⊤. This
assumption has been primarily used in the former theoretically analysis (Mandt et al., 2017).

Moreover, assuming that the loss function in the local region around the minimum is convex and 2-
order differentiable, based on Lemma 2, this Uhlenbeck process has an analytic stationary distribution
q(θk) that is Gaussian:

q(θk) ∝ exp

{
−1

2
θk

⊤
Σ−1θk

}
, (18)
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where the covariance Σ satisfies:

ΣA+AΣ =
η

|S|
BB⊤ =

η

|S|
(Cm + Cu). (19)

A is the Hessian matrix around the optimum.

To further build the generalization bound of SGD, we utilize the PAC-Bayesian framework, inspired
by He et al. (2019). Therefore, based on Lemma 1, it is essential to build the KL divergence between
learnt distribution and the prior distribution. The learnt distribution over θk of SGD has been provided
in Equation 18. In addition, the prior distribution can be interpreted as the distribution of initial
parameters. In practice, the parameters are often initialized as Gaussian distribution or uniform
distributions. Therefore, we use a standard Gaussian distribution N (0, I) as the prior distribution.
Then we can have the densities of learnt distribution Q and prior distribution P is:

q(θk) =
1√

2π det(Σ)
exp

{
−1

2
θk

⊤
Σ−1θk

}
,

p(θk) =
1√

2π det(I)
exp

{
−1

2
θk

⊤
Iθk

}
.

(20)

Denote Θk = Rd as the parameter space of θk. Then we can have the KL divergence between
distribution Q and P :

D(Q∥P )

=Eθk∼Q

(
log

Q(θk)

P (θk)

)
=

∫
θk∈Θk

log

(
q(θk)

p(θk)

)
q(θk)dθk

=

∫
θk∈Θk

[
1

2
log

(
1

det(Σ)

)
+

1

2

(
θk

⊤
Iθk − θk

⊤
Σ−1θk

)]
q(θk)dθk

=
1

2
log

(
1

det(Σ)

)
+

1

2
tr(Σ− I).

(21)

Since the parameter dimension is d, we know that trace of I is d. For Σ, based on Equation 19:

ΣA+AΣ =
η

|S|
(Cm + Cu)

η

|S|
(Cm + Cu)A−1 = AΣA−1 +Σ

tr

(
η

|S|
(Cm + Cu)A−1

)
= tr

(
AΣA−1 +Σ

)
tr

(
η

|S|
(Cm + Cu)A−1

)
= tr

(
ΣA−1A

)
+ tr(Σ)

tr

(
η

|S|
(Cm + Cu)A−1

)
= 2 tr(Σ)

(22)

Then, we can have:

tr(Σ) =
1

2
tr

(
η

|S|
(Cm + Cu)A−1

)
=

1

2

η

|S|
tr
(
(Cm + Cu)A−1

)
. (23)

Then, with tr(Σ) and tr(I), we have:

D(Q∥P )

=
1

2
log

(
1

det(Σ)

)
+

1

2
tr(Σ− I)

=
1

4

η

|S|
tr
(
(Cm + Cu)A−1

)
− 1

2
d− 1

2
log(det(Σ)).

(24)
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Denote the expected risk as R(Q) and empirical risk as R̂(Q). Then, combine Equation 24 with the
PAC-Bayesian generalization bound, for any positive real σ ∈ (0, 1), with probability at least 1− σ
over a training sample size of size N , we have:

R(Q) ≤ R̂(Q) +

√
η
|S| tr ((C

m + Cu)A−1)− 2d− 2 log(det(Σ)) + 4 log
(
1
δ

)
+ 10 logN + 32

8N − 4
.

(25)

Overall, we now have the SGD generalization for uniform baseline case, where no gradient integration
methods are applied.

C.4 INFLUENCE OF CONVENTIONAL PARETO FOR SGD GENERALIZATION

Here we further consider the SGD optimization with conventional Pareto gradient integration. We
know that at each iteration, Pareto method would return weight αm and αu for the integration of
gm
S (θk) and gu

S(θ
k). Then, when updateing parameter, we have:

θk(t+ 1) = θk(t)− ηhPareto
S(θ

k),

θk(t+ 1) = θk(t)− η(2αmgm
S (θk) + 2αugu

S(θ
k)).

(26)

As stated in the manuscript, we use 2αi as the gradient weight is to keeps the same weight summation
with uniform baseline, where all gradient weight is assigned as 1 and no gradient integration methods
are applied. When applying Pareto integration, both the magnitude and direction of hPareto

S(θ
k) are

different from uniform baseline.

Based on the former analysis, for the uniform baseline case without any gradient integration method,
we have:

hS(θ
k(t)) = gm

S (θk(t)) + gu
S(θ

k(t)),

hS(θ
k(t)) ∼ N

(
gm
N (θk(t)) + gu

N (θk(t)),
Cm + Cu

|S|

)
.

(27)

Since gradient weight under any case is non-negative (both uniform baseline and Pareto integra-
tion), the final gradient after Pareto integration is in the convex hull of the family of gradient
vectors {{gi

S(θ
k(t))}i∈{m,u}. Then, we can find a new convex combination 2αmgm

S (θk(t)) +

2αmαugu
S(θ

k(t)), which have the same direction with Pareto direction (2αmgm
S (θk(t)) +

2αugu
S(θ

k(t))) and the same magnitude with the uniform baseline (gm
S (θk(t))+gu

S(θ
k(t))). Since the

gradient vector follows random distribution in SGD, its direction itself could oscillate, here we mainly
consider the influence of gradient magnitude. So we can view 2αmgm

S (θk(t)) + 2αmαugu
S(θ

k(t))
and uniform baseline with the same gradient magnitude case having the same distribution:

2αmgm
S (θk(t)) + 2αmαugu

S(θ
k(t)) ∼ N

(
gm
N (θk(t)) + gu

N (θk(t)),
Cm + Cu

|S|

)
. (28)

Then, we can have:

hPareto
S(θ

k(t)) = λ · (2αmgm
S (θk(t)) + 2αmαugu

S(θ
k(t))), (29)

where λ can considered as the magnitude difference between Pareto method and the uniform baseline
case without any specifically designed gradient integration. Based on Remark 1, the Pareto integration
tends to assign larger weight for gradient with smaller magnitude. Accordingly, the magnitude of
final gradient of Pareto method is smaller than that of uniform baseline case. Therefore, we have that
0 < λ < 1 at each iteration.

Since the magnitude difference between Pareto method and the uniform baseline case is changing
during training, the concrete value of λ is accordingly changing. Therefore, we use its largest value γ
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which is constant, to substitute for it. Then, the parameter update equation with Pareto integration is:

θk(t+ 1) = θk(t)− ηhPareto(θk),

θ(t+ 1)k = θk(t)− ηγ(2αmĝm
S (θk(t)) + 2αmαuĝu

S(θ
k(t))),

θk(t+ 1) = θk(t)− ηγ(gm
N (θk(t)) + gu

N (θk(t))) + ηγϵt,

θk(t+ 1) = θk(t)− ηγhN (θk(t)) + ηγϵt,

(30)

where ϵt ∼ N
(
0, Cm+Cu

|S|

)
.

Similarly, for small enough constant learning rate, SGD with Pareto integration can be treated as
the numerical discretization of the following stochastic differential equation (SDE) Li et al. (2017);
Mandt et al. (2017), which is a Ornstein-Uhlenbeck process:

dθk = −hN (θk)dt+

√
ηγ

|S|
BdW (t), (31)

where W (t) is a while noise and follows N (0, I) and Cm + Cu = BB⊤. As Cm and Cu can both
considered as symmetric positive-semidefinite matrix, Cm + Cu can be factorized as BB⊤. This
assumption has been primarily used in the former theoretically analysis (Mandt et al., 2017).

Following the analysis process as Section C.3, we can have the generalization bound for SGD with
Pareto integration. For any positive real σ ∈ (0, 1), with probability at least 1 − σ over a training
sample size of size N , we have:

R(Q) ≤ R̂(Q) +

√
ηγ
|S| tr ((C

m + Cu)A−1)− 2d− 2 log(det(Σ)) + 4 log
(
1
δ

)
+ 10 logN + 32

8N − 4
(32)

Based on the above analysis, we know that 0 < γ < 1. Compared with Equation 25, the upper
bound is decreased. Therefore, the generalization ability of SGD with Pareto integration is weakened,
compared with the case without any specifically designed gradient integration. Moreover, here γ is
the largest value of λ, i.e., the least gradient magnitude decrease value of Pareto integration, during
training. Hence this is in fact a loose bound. Model generalization would be affected more in practice.

D PROOF FOR THE CONVERGENCE OF MMPARETO

Theorem 1. If the sequence of training iteration generated by the proposed MMPareto method is
infinite, it admits a subsequence that converges to a Pareto stationarity.

Proof. In MMPareto algorithm, at each training iteration, we first sovle the optimization problem:

min
αm,αu∈R

∥αmgm + αugu∥2

s.t. αm, αu ≥ 0, αm + αu = 1.
(33)

For brevity, here we use {gi}i∈{m,u} to substitute {gi
S(θ

k(t))}i∈{m,u}. ∥ · ∥ denotes the L2-norm.
This problem is equal to find the minimum-norm in the convex hull of the family of gradient vectors
{gi}i∈{m,u}. We denote the found minimum-norm as ω = αmgm+αugu. Based on Désidéri (2012),
either ω to this optimization problem is 0 and the corresponding parameters is Pareto-stationary which
is a necessary condition for Pareto-optimality, or ω can provide a descent directions common to all
learning objectives. When the minimum-norm ω does not satisfy the condition of Pareto stationarity,
we consider the non-conflict case and conflict case respectively.

We first analyze the non-conflict case, where cosβ ≥ 0. β is the angle between gm and gu. Under
this case, the arbitrary convex combination of the family of gradient vectors {gi}i∈{m,u} is common
to all learning objectives. Therefore, to maintain the gradient magnitude as the case without specific
gradient integration, we assign αm = αu = 1

2 . Then, the final gradient h = 2αmgm + 2αugu is
with direction that can benefit all losses and generalization guaranteed magnitude.

Then we analyze the conflict case, where cosβ < 0. The results of optimization problem Equation 33
are used as αm and αu. Based on above statement, we can have that h = 2αmgm + 2αugu

17



Under review as a conference paper at ICLR 2024

can provide a direction that is common to all learning objective. Furthermore, we recover the
magnitude of final gradient to the same scale with the uniform baseline, to avoid potential risk for
model generalization. Overall, the final gradient can also benefit all losses and have generalization
guaranteed magnitude.

In summary, the final gradient of MMPareto could always provide the direction that is common to all
learning objectives. If the training iteration stops in a finite number of steps, a Pareto-stationary point
has been reached. Otherwise, the iteration continues indefinitely, generating an infinite sequence
of shared parameters θk. Since the value of loss function Lm and Lk

u is positive and monotone-
decreasing during optimization, it is bounded. Hence, the sequence of parameter θk is itself bounded
and it admits a subsequence converging to θk

∗.

Necessarily, θk∗ is a Pareto-stationary point. In other words, the minimum-norm ω∗ is zero at this
step. To establish this, assume instead that the obtained minimum-norm ω∗, which corresponds to
θk

∗, is nonzero. A new iteration would potentially diminish each learning objective of a finite amount,
and a better solution of parameter θk be found.

Therefore, if the sequence of training iteration generated by the proposed MMPareto method is
infinite, it admits a subsequence that converges to a Pareto stationarity.
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