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ABSTRACT

Multivariate Time Series Forecasting (MTSF) aims to predict the future values
of multiple interrelated time series and support decision-making. While deep
learning models have attracted much attention in MTSF for their powerful spatial-
temporal encoding capabilities, they frequently encounter the challenge of miss-
ing data resulting from numerous malfunctioning data collectors in practice. In
this case, existing models only rely on sparse observation, making it difficult to
fully mine the semantics of MTS, which leads to a decline in their forecasting
performance. Furthermore, the unfixed missing rates across different samples in
reality pose robustness challenges. To address these issues, we propose Multi-
View Representation Learning (Merlin) based on offline knowledge distillation
and multi-view contrastive learning, which aims to help existing models achieve
semantic alignment between sparse observations with different missing rates and
complete observations, and enhance their robustness. On the one hand, we intro-
duce offline knowledge distillation where a teacher model guides a student model
in learning how to mine semantics from sparse observations similar to those ob-
tainable from complete observations. On the other hand, we construct positive and
negative data pairs using sparse observations with different missing rates. Then,
we use multi-view contrastive learning to help the student model align semantics
across sparse observations with different missing rates, thereby further enhanc-
ing its robustness. In this way, Merlin can fully enhance the robustness of existing
forecasting models to MTS with unfixed missing rates and achieves high-precision
MTSF with sparse observations. Experiments on four real-world datasets validate
our motivation and demonstrate the superiority and practicability of Merlin.

1 INTRODUCTION

Multivariate Time Series Forecasting (MTSF) is widely used in practice, such as transportation
(Wang et al., 2023), environment (Tan et al., 2022) and weather (Xu et al., 2021). Deep learning-
based models, such as Spatial-Temporal Graph Neural Networks (STGNNs) (Shao et al., 2022b) and
Transformers (Yu et al., 2023b), are widely used due to their powerful semantic mining capabilities
(Benidis et al., 2022). However, they need to fully mine semantics (Global and local information)
from the complete MTS, and achieve accurate spatial-temporal forecasting (Zheng et al., 2020). In
reality, due to factors such as natural disasters and component failures, data collectors can easily
malfunction and fail to output data normally (Zheng et al., 2023). In this case, existing models only
use sparse observations to predict future values, which limits their performances (Cini et al., 2022).
To illustrate, we evaluate the performance of several models (Liu et al., 2023; Shao et al., 2022a;
Zhou et al., 2023) under different missing rates on the METR-LA dataset and PEMS04 dataset. As
shown in Figure 1(a) and Figure 1(b), the forecasting errors (Mean Absolute Error) of the above
forecasting models increase significantly as the missing rate increases.

To mitigate the adverse effects of incomplete MTS data, we must delve deeper into two questions:
how do missing values lead to the performance degradation of these models, and how can this
issue be mitigated as much as possible? By rethinking the characteristics of this task, we believe
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Missing rate

25 % 50 % 75 % 90 %

(b) MAE values of different models (PEMS04) (c) Traffic flow data with missing values.

Missing rate

25 % 50 % 75 % 90 %

(a) MAE values of different models (METR-LA)

Figure 1: Examples of MTSF with sparse observations. (a) MAE values of different models on
METR-LA. (b) MAE values of different models on PEMS04. As the missing rate increases, the
forecasting errors of several models increase significantly. (c) Missing values disrupt the global in-
formation in time series (such as periodicity), and introduce error local information (such as sudden
changes). Furthermore, the missing rate of time series changes over time.

that a large number of missing values1 in historical observations can severely disrupt the semantics
of MTS and affect the robustness of forecasting models. Specifically, as shown in Figure 1 (b),
on the one hand, missing values disrupt the global information (such as periodicity) of time series
and introduce error local information such as sudden changes (From normal to zero) and abnormal
straight lines. If models forcibly capture these anomalies, they will mine incorrect semantics, leading
to a decline in forecasting accuracy. On the other hand, since the distribution of missing values
usually changes over time, the missing rates of time series at different time points are often unfixed.
In this case, existing models (Lim et al., 2021; Li & Zhu, 2021; Tang et al., 2020) often need to
be trained separately for different missing rates to ensure their performance, further limiting their
practicability. These two phenomena lead to existing models having poor robustness in MTSF with
sparse observations, resulting in a decline in their forecasting performance.

Based on the findings above, we believe that the core reason why existing forecasting models fail to
achieve effective forecasting results in MTSF with sparse observations is that missing values inhibit
their ability to accurately capture the semantics in sparse observations and limit their robustness.
To solve the above problems, existing works use imputation methods to improve the performance
of forecasting models and propose two-stage modeling approaches (Xu et al., 2023) or end-to-end
modeling approaches (Tran et al., 2023) to improve their performance. However, these methods still
face several challenges: (1) Existing imputation methods (Miao et al., 2021; Wu et al., 2023a) usu-
ally require reconstructing both missing and normal values, which can disrupt the local information
of MTS and lead to error accumulation. (2) Existing imputation methods (Du et al., 2023; Zhou
et al., 2023) need to train models separately for data with different missing rates to ensure the accu-
racy of data recovery. Since the missing rates in MTS are often unfixed at different time points in
reality, existing imputation methods struggle to effectively recover time series with unfixed missing
rates, which limits their robustness and practicality. Overall, imputation methods still fail to fully
assist forecasting models in accurately mining semantics from sparse observations and addressing
the issue of poor robustness. As shown in Appendix H, if imputation and forecasting models are not
trained separately for each missing rate, their performance is limited.

To solve the above problems and realize robust multivariate time series forecasting with unfixed
missing rates, we need to enhance the capability of existing forecasting models for semantic align-
ment, which includes two aspects: (1) enabling forecasting models to align the semantics between
sparse observations and complete observations. (2) enabling forecasting models to align the seman-
tics among sparse observations with different missing rates. To this end, we propose Multi-View
Representation Learning (Merlin) by taking advantage of knowledge distillation and contrastive
learning. On the one hand, knowledge distillation can transfer valuable knowledge from the teacher
model to the student model, thereby constraining the modeling process of the student model and
improving its performance (Dong et al., 2023). Considering that the model can mine more accurate
semantics with complete data, we use the model trained with complete data as the teacher model.

1Missing values in most datasets, such as PEMS04 and METR-LA, are usually processed as zeros.
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The student model, whose input features are sparse observations, has the same structure as the
teacher model. In the training process, we transfer representations and forecasting results obtained
by the teacher model as knowledge to the student model, aiming to make the student model produce
representations and forecasting results that are as similar to them as possible. In this way, by con-
straining the student model’s encoding process and forecasting process, it can learn how to align the
semantics between sparse observations and complete observations, thereby enhancing the quality
of the semantics mined by the student model. On the other hand, multi-view contrastive learning
can help the model enhance the dissimilarity for negative data pairs and the similarity for positive
data pairs, thereby achieving semantic alignment among positive data pairs (Zhang et al., 2024). To
further achieve semantic alignment between samples with different missing rates and enhance the
robustness of the student model, we treat samples from the same time point with different missing
rates as positive data pairs, and samples from different time points as negative data pairs. In this
way, multi-view contrastive learning strengthens the ability of the student model to mine and align
the semantics of sparse observations with different missing rates. In this way, we only need to train
one student model to adapt to samples with unfixed missing rates, significantly enhancing its robust-
ness. Based on above methods, Merlin can effectively help existing forecasting models learn how to
mine semantics from sparse observations, just as if using complete observations. Additionally, Mer-
lin can enhance the ability of existing forecasting models to achieve semantic alignment between
sparse observations with different missing rates, enabling them to achieve robust multivariate time
series forecasting with unfixed missing rates. The main contributions can be outlined as follows:

• We believe that the main issue limiting the performance of existing forecasting models in
MTSF with sparse observations is their poor robustness. On the one hand, missing values
introduce error semantics to MTS. On the other hand, the missing rate of MTS changes
over time, and existing models need to be trained separately for different missing rates.

• We believe that the key to achieving robust MTSF with unfixed missing rates is to help ex-
isting models achieve semantic alignment between sparse observations with different miss-
ing rates and complete observations. To this end, we propose Multi-View Representation
Learning (Merlin), including knowledge distillation and contrastive learning.

• We design experiments on four real-world datasets. Results show that Merlin can enhance
the performance of existing forecasting models more effectively than other imputation
methods. Besides, through Merlin, forecasting models only need to be trained once to
adapt to sparse observations with different missing rates.

2 RELATED WORK

2.1 SPATIAL-TEMPORAL FORECASTING METHODS

Classic STGNNs (Liu et al., 2021; Li et al., 2018; Wu et al., 2019) combine the Graph Convo-
lutional Network (GCN) and sequence models to exploit spatial-temporal correlations. Besides,
existing advanced STGNNs (Yi et al., 2023; Yu et al., 2024a) introduces graph learning technology
to further improve the ability of modeling spatial correlations. Different from STGNNs, existing
Transformers (Wu et al., 2023b; Zhang & Yan, 2022; Yu et al., 2023a) combine temporal attention
and spatial attention, or their variants, to capture spatio-temporal information. Although STGNNs
and Transformers have achieved extensive research, they often suffer from high complexity and lim-
ited scalability (Yu et al., 2024b). Currently, lightweight models based on Multi-Layer Perceptron
(MLP) have gained widespread recognition. (Chen et al., 2023b) proposes TSMixer, which use
all-MLP architecture to mine spatial-temporal correlations. (Shao et al., 2022a) analyze the core
of modeling spatial-temporal correlations and propose an MLP framework based on the spatial-
Temporal Identity (STID). In summary, a suitable MLP framework can achieve satisfactory results
more efficiently than complex models. Considering that STID analyzes the characteristics of MTSF
and has satisfactory performance on most datasets, it is selected as the backbone. Besides, we also
evaluate the performance improvement of Merlin on other complex models.

2.2 KNOWLEDGE DISTILLATION

Knowledge distillation can transfer valuable knowledge from the teacher model to the student model
to improve the student model’s performance (Xu et al., 2022). Mainstream techniques include offline
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knowledge distillation and online knowledge distillation. Among them, offline knowledge distilla-
tion offers advantages such as good stability, high flexibility, and a simplified training process. It
improves the ability of the student model by continually guiding it to align with the teacher model
(Yang et al., 2022). (Chattha et al., 2022) use knowledge distillation to enhance the ability of neural
networks to mine samples. Experiments show that the proposed method can still achieve satisfactory
results even if the sample size is reduced by 50%. (Monti et al., 2022) propose a trajectory forecast-
ing model based on knowledge distillation and spatial-temporal Transformer, enabling the student
model to perform well with only 25% of historical observations. In summary, knowledge distillation
can help the student model achieve satisfactory forecasting results even when the effective informa-
tion in input features is significantly reduced (Wang et al., 2021). Therefore, it can enhance the
student model’s capability to handle sparse observations.

2.3 CONTRASTIVE LEARNING

Multi-view contrastive learning enhances the model’s ability to mine key information by aligning the
semantics of the similar samples under different views (Hassani & Khasahmadi, 2020). (Woo et al.,
2021) treat the seasonal and trend components of time series as different views and use contrastive
learning to align the semantics of these different views. (Yue et al., 2022) propose the hierarchi-
cal contrastive learning method to help the model improve their ability to align the semantics of
time series with different scales. (Liu & Chen, 2023) propose a self-supervised contrastive learning
framework for time series representation learning, and make the forecasting model produce more
reliable representations. (Dong et al., 2024) combine different masking ways with contrastive learn-
ing to mine semantics from time series. Experimental results show that contrastive learning aligns
the semantics of different masked time series and enhances the reconstruction effect. Based on these
references, it can be found that contrastive learning can enhance the model’s ability to distinguish
different samples and align the semantics between positive data pairs (Liu et al., 2022). Therefore,
if we can effectively construct positive data pairs, contrastive learning can align the semantics of
sparse observations with different missing rates and enhance the model’s robustness.

3 METHODOLOGY

3.1 PRELIMINARIES

In this section, we introduce multivariate time series forecasting and multivariate time series fore-
casting with sparse observations. Some of the commonly used notations are presented in Table 1.

Multivariate time series (Chen et al., 2023a). It represents the data composed of multiple sequences
that change over time, and can be defined through a tensor X ∈ RNv∗NL∗Nc . Nv is the number of
sequences. NL is the number of time slices. Nc is the number of features.

Multivariate time series forecasting (Chengqing et al., 2023). Given a historical observation tensor
X ∈ RNv∗NH∗Nc from NH time slices in history, the model can predict the value Y ∈ RNv∗NL

of the nearest NL time slices in the future. Nv is the number of sequences. Nc is the number of
features. The core goal of MTSF is to construct mapping function between input X ∈ RNv∗NH∗Nc

and output Y ∈ RNv∗NL .

Multivariate time series forecasting with sparse observations (Sridevi et al., 2011). Compared
with MTSF, the main difference of this task is that there are so much missing values in historical
observations. In other words, we need to mask M% point randomly from the historical observation
tensor X ∈ RNv∗NH∗Nc . After the above processing, a new input feature XM ∈ RNv∗NH∗Nc

is obtained. The core goal of this task is to construct mapping function between input XM ∈
RNv∗NH∗Nc and output Y ∈ RNv∗NL .

3.2 OVERALL FRAMEWORK

The overall framework of Merlin is shown in Figure 2. During the training phase, we utilize STID
as the backbone and propose Merlin that combines offline knowledge distillation with multi-view
contrastive learning to it. At this stage, the input features of the teacher model are complete historical
observations. The input features of the student model are sparse observations. During the inference
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Table 1: Frequently used notation.
Notation size Definitions

NH Constant Length of historical observations
NL Constant Length of forecasting results
Ns Constant Batch size
Nv Constant Number of variables
Nc Constant Number of features
m Constant Number of missing rates
X Nv ∗NH ∗Nc Complete historical observations
XM Nv ∗NH ∗Nc Sparse observations
Y Nv ∗NL Forecasting results
FC Functions Fully connected layer

ReLU Functions Activation function ReLU
Mean Functions The mean of the Tensor

softmax Functions Activation function softmax

Timeline

Teacher model

Student model

Embedding Layer 

Spatial-Temporal

Embedding 

Sparse Observations with Different 

Missing Rates Mx%
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Figure 2: Overall framework of Merlin. During the training phase, the inputs of the teacher model
and the student model are complete observations and sparse observations respectively. During the
inference phase, only the student model is used for forecasting, whose inputs are sparse observations.

phase, we only use the student model for forecasting, whose input features are sparse observations
with different missing rates. Next, we briefly describe the motivation for designing each component.

First, we explain the motivation for using STID as the backbone, which has the following advan-
tages: (1) It introduces spatial-temporal identity embeddings to provide the model with additional
information, effectively mitigating the damage of missing values. (2) It adopts a lightweight frame-
work, which results in the model’s computational complexity being only O(NH).

Then, we briefly introduce offline knowledge distillation, whose purpose is to enable STID to learn
how to align the semantics between sparse and complete observations. We first train STID as a
teacher model using complete observations. Then, when training the student model using sparse
observations, we transfer the knowledge of the teacher model by using the representations and fore-
casting results generated by the teacher model. This helps the student model learn how to use sparse
observations to generate representations and forecasting results similar to those generated by the
teacher model. In this way, the student model can achieve semantic alignment between sparse ob-
servations and complete observations as much as possible.

Finally, we discuss the effects of multi-view contrastive learning. Although offline knowledge dis-
tillation helps STID learn how to align the semantics between sparse and complete observations, the
student model still needs to improve its robustness to unfixed missing rates. Therefore, the student
model needs to learn how to align the semantics between sparse observations under different missing
rates. Therefore, we use sparse observations under different missing rates as positive data pairs and
different samples within the same batch as negative data pairs. Through this method, the student
model can utilize multi-view contrastive learning to enhance its robustness to sparse observations
with different missing rates, without the need for retraining.
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3.3 BACKBONE

In this section, we briefly introduce the basic structure of the backbone (STID), which is composed
of a embeding layer, L fully connected layer and a regression layer. A detailed description and
definition of STID can be found in the reference (Shao et al., 2022a). The basic modeling process
of STID is shown as follows:

Step I: First, the embedded layer based on a fully connected layer is used to transform the input
feature X into a high dimension hidden representation H:

H = FC(X), (1)
where, FC(·) is the fully connected layer.

Step II: Then, the spatial-temporal identity embedding (SE , TD
E and TW

E ) are passed to H as addi-
tional inputs to improve the ability of the encoder to produce effective representations.

HE = Concat(H,SE , T
D
E , TW

E ), (2)
where, Concat(·) means concatenate several tensors. Assuming Nv time series and NH time slots
in a day and Nw = 7 days in a week. SE ∈ RNv∗D is the spatial identity embedding. TD

E ∈ RNH∗D

and TW
E ∈ RNw∗D are the temporal embedding. D is the embedding size.

Step III: The encoder based on L layers of MLP with the residual connection is used to mine the
above representation Z. The l-th MLP layer can be denoted as:

H l+1
E = FC(Relu(FC(H l

E))) +H l
E , (3)

where, Relu(·) is the activation function.

Step IV: Finally, based on the hidden representation HL
E , the regression layer is used to obtain the

forecasting results Y .
Y = FC(HL

E), (4)

In the following section, we will show how to use the hidden representation HL
E and forecasting

result Y for knowledge distillation and contrastive learning.

3.4 OFFLINE KNOWLEDGE DISTILLATION

In this paper, we use two STID models as the student model and the teacher model. The input
features to the teacher model are the complete historical observations X . It produces the hidden
representation HL

E,Teacher and the forecasting result YTeacher. The input features to the student
model are the sparse observations XM,1 to XM,m. m stands for the number of missing rates. It
produces m hidden representations HL

E,1 to HL
E,m and m forecasting results YM,1 to YM,m.

The offline knowledge distillation consists of two components: the hidden representation distillation
and the forecasting result distillation. The hidden representation distillation refers to transferring the
representations produced by the teacher model to the student model, aiming to minimize the mean
squared error (MSE) between the representations produced by the student model and those produced
by the teacher model. Its specific formula is shown as follows:

LHD =
1

m
(

m∑
i=1

Mean((HL
E,Teacher −HL

E,i)
2)), (5)

where, Mean(·) is the mean of the Tensor.

The process of forecasting result distillation involves transferring the forecasting results produced
by the teacher model to the student model, with the objective of minimizing the MSE between the
forecasting results produced by the student model and those produced by the teacher model. The
specific formula is shown as follows:

LRD =
1

m
(

m∑
i=1

Mean((YTeacher − YM,i)
2)), (6)
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Based on LHD and LRD, the teacher model can effectively guide the student model to use sparse
observations to produce better representations and forecasting results. In this way, the student model
can effectively achieve semantic alignment between sparse observations and complete observations,
thereby enhancing its ability to mine key semantics from sparse observations.

3.5 MULTI-VIEW CONTRASTIVE LEARNING

Considering that the missing rates of historical observations in reality are not fixed, in order to
further enhance the robustness of the student model and realize the semantic alignment of data
with different missing rates, this paper proposes a multi-view contrastive learning method. We use
historical observations with different missing rates at the same time point as positive data pairs,
and use historical observations at different time point (other samples within a batch) as negative
data pairs. For representations HL

E,1 to HL
E,m encoded by historical observations with different

missing rates, we employ a pairwise contrastive learning approach to achieve multi-view contrastive
learning. The specific steps are given as follows:

Step I: Considering that appropriate dimension reduction can enhance the effectiveness of con-
trastive learning, a fully connected layer is used to decode the hidden representations HL

E,1 to HL
E,m,

and get the representations ZE,1 to ZE,m for Contrastive learning.

ZE,1 = FC(HL
E,1), (7)

Step II: Firstly, we use the ZE,1 and ZE,2 to obtain 2Ns samples. In ZE,1 and ZE,2, the correspond-
ing two samples form a positive data pair, while the other samples are their negative data pairs. The
contrast loss between any two samples zE,i and zE,j is shown as follows:

li,j = −log(
exp(sim(zE,i, zE,j)/τ)∑2Ns

k=1&k ̸=i exp(sim(zE,i, zE,k)/τ)
), (8)

where, exp(·) is the exp function. sim(·) is the Cosine similarity. Ns is the number of samples. τ is
the temperature parameter.

Step III: Then, the contrastive loss between ZE,1 and ZE,2 can be obtained by the following formula:

LZ1,Z2 =
1

2Ns

Ns∑
k=1

(l2k−1,2k + l2k,2k−1), (9)

Step IV: Repeat the above steps and obtain the contrastive loss between ZE,1 to ZE,m pairwise. The
final multi-view contrastive learning loss is shown below:

LCL =
2

m(m− 1)
(

m∑
Zj=Zi

m−1∑
Zi=1

LZi,Zj), (10)

3.6 LOSS FUNCTION

To realize the supervised learning process, we also incorporate ground truth and L1 loss to train the
student model. The formula is shown as follows (Challu et al., 2023):

(11)
where, Ytru is the ground truth. | · | stands for absolute value.

Finally, we need to effectively combine all the above Loss functions. There are two main ways to
integrate these Loss functions (Gou et al., 2023): multi-stage training or stacking all Loss functions.
Considering the problem of information forgetting caused by multi-stage training, we use the method
of adding all Loss functions. The formula is given as follows:

LFinally = LPre + β(LHD + LRD + LCL), (12)

where, β stands for the weight of the Loss. After completing the process of the training phase, the
inference phase is performed by using only the student model. Besides, the input features are sparse
observations with different missing rates.

7
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4 EXPERIMENT AND ANALYSIS

4.1 EXPERIMENTAL DESIGN

Datasets. To comprehensively evaluate the validity of the proposed model, we select four real-world
datasets from different domains: traffic speed (METR-LA), traffic flow (PEMS04), environment
(China AQI), and meteorology (Global Wind). Detailed descriptions are provided in Appendix A.1.

Baselines. To comprehensively verify the performance of the proposed model, we select base-
lines from three perspectives: (1) We select three one-stage models that can handle missing values:
GPT4TS (Zhou et al., 2023), MegaCRN (Jiang et al., 2023), and Corrformer (Wu et al., 2023b).
(2) To demonstrate the improvement of Merlin on STID, we compare the STID+Merlin with the
raw STID. Besides, we select four imputation methods and combine them with STID to create
multiple two-stage models: STID+GATGPT (Chen et al., 2023d), STID+SPIN (Ivan et al., 2022),
STID+GPT2 (Zhou et al., 2023) and STID+MAE (Li et al., 2023). (3) We combine several existing
spatial-temporal forecasting models with imputation models, and obtain several two-stage models
as baselines: iTransformer (Liu et al., 2023) + S4 (Gu et al., 2022), FourierGNN (Yi et al., 2023) +
SPIN, DSformer (Yu et al., 2023a) + GATGPT, and TSMixer (Chen et al., 2023b) + GPT2 (Note:
The previous method for each combination is the forecasting model.).

Setting. Hyperparametric analysis can be found in the Appendix B. Besides, we design the exper-
iments from the following aspects: (1) According to ratios in (Shao et al., 2023), four datasets are
uniformly divided into training sets, validation sets, and testing sets. (2) The history length and fu-
ture length of all forecasting models are 12. All Metrics are calculated as the average of the 12-step
forecasting results. More experiments on the history length and future length can be found in the
Appendix G and Appendix B. (3) We randomly assign mask points with ratios of 25%, 50%, 75%,
and 90%. The value of the masked point is uniformly set according to related works (Chen et al.,
2023c). Experiments are repeated with 5 different random seeds for each model. The final metrics
are calculated as the mean value of repeated experiments. In addition, we provide the standard de-
viation of the forecasting results. (4) To prove the robustness of our model, we train it once, using
samples with multiple missing rates. In other words, the student model is trained simultaneously
using data with missing rates of 25%, 50%, 75%, and 90%. For other baselines, we train them using
two ways and report the best results: one is training a separate model for each missing rate, and the
other is training a single model using samples with multiple missing rates (Shan et al., 2023). In the
process of training imputation models and the teacher model, the raw data is used.

Metrics. In order to comprehensively evaluate the forecasting performance of our model and other
baselines, three classical metrics are used, including MAE (Mean Absolute Error), RMSE (Root
Mean Square Error) and MAPE (Mean Absolute Percentage Error) (Liu et al., 2020).

4.2 MAIN RESULTS

Table 2 shows the performance comparison results of all baselines and the proposed model on all
datasets. Based on the experimental results, we can draw the following conclusions: (1) Compared
with other two-stage models, the forecasting errors of all single-stage models are larger. The main
reason is that existing single-stage models are easily affected by missing values, leading them to
mine incorrect semantic. (2) Compared with other imputation methods, Merlin can improve the
forecasting performance of STID more effectively. The main reason is that Merlin effectively com-
bines the advantages of multi-view contrastive learning and offline knowledge distillation, which can
significantly enhance the robustness of STID in modeling sparse observations and improve the ca-
pacity of STID to mine the semantics from data. (3) STID+Merlin can work better than all baselines
in all cases. Firstly, we select the high-performance STID as our backbone model, which introduces
temporal and spatial embeddings to provide additional semantic information for the model, helping
to mitigate the impact of missing values. Secondly, we introduce offline knowledge distillation to
instruct STID on how to align the semantics between sparse observations and complete observations,
thereby enhancing the model’s ability to mine crucial information. Finally, we propose multi-view
contrastive learning to achieve semantic alignment among sparse observations with different miss-
ing rates, further improving the robustness of STID. Therefore, STID+Merlin can achieve the best
forecasting results on all datasets and all missing rates. In the next section, we will further evaluate
Merlin’s performance improvement effects on other backbone models.
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Table 2: Performance comparison results of several models. The best results are shown in bold. The
subscript represents the standard deviation of the forecasting results.

Datasets Models Missing rate 25% Missing rate 50% Missing rate 75% Missing rate 90%
MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

METR-LA

Corrformer 3.74±0.02 10.56±0.10 7.22±0.04 3.88±0.02 11.15±0.12 7.62±0.04 3.97±0.04 11.71±0.14 7.94±0.06 4.15±0.04 12.38±0.18 8.25±0.7

MegaCRN 3.63±0.02 10.13±0.10 6.88±0.04 3.79±0.02 10.76±0.12 7.38±0.04 3.94±0.04 11.18±0.14 7.65±0.02 4.03±0.04 11.89±0.17 7.93±0.06

GPT4TS 3.72±0.02 10.49±0.10 7.21±0.04 3.82±0.02 10.86±0.11 7.39±0.04 3.98±0.04 11.31±0.14 7.75±0.06 4.08±0.04 12.01±0.15 8.04±0.07

iTransformer+S4 3.53±0.02 9.43±0.10 6.74±0.04 3.70±0.02 10.31±0.12 6.97±0.04 3.84±0.02 10.91±0.13 7.42±0.04 3.99±0.04 11.44±0.14 7.86±0.06

FourierGNN+SPIN 3.50±0.01 9.32±0.08 6.71±0.02 3.63±0.01 10.15±0.08 6.89±0.02 3.75±0.02 10.79±0.10 7.34±0.04 3.91±0.02 11.24±0.13 7.68±0.04

DSformer+GATGPT 3.52±0.01 9.37±0.09 6.73±0.02 3.65±0.01 10.24±0.09 6.94±0.02 3.78±0.02 10.86±0.10 7.38±0.04 3.89±0.02 11.19±0.12 7.66±0.04

TSMixer+GPT2 3.48±0.01 9.29±0.08 6.69±0.02 3.62±0.01 9.97±0.09 6.85±0.02 3.71±0.02 10.48±0.10 7.25±0.04 3.85±0.02 11.14±0.12 7.65±0.04

STID (Raw) 3.54±0.02 9.35±0.10 6.74±0.04 3.77±0.02 10.83±0.12 7.29±0.04 3.93±0.04 11.16±0.14 7.64±0.07 4.07±0.04 11.89±0.16 8.03±0.08

STID+SPIN 3.44±0.01 9.27±0.07 6.65±0.02 3.54±0.01 9.36±0.08 6.75±0.02 3.67±0.02 10.44±0.12 7.05±0.04 3.79±0.02 10.92±0.13 7.41±0.04

STID+GPT2 3.49±0.01 9.31±0.08 6.68±0.02 3.59±0.01 9.44±0.09 6.79±0.02 3.68±0.02 10.46±0.10 7.09±0.04 3.77±0.02 10.84±0.12 7.35±0.04

STID+MAE 3.50±0.02 9.34±0.10 6.70±0.04 3.60±0.02 9.52±0.07 6.82±0.04 3.70±0.02 10.51±0.08 7.12±0.04 3.78±0.02 10.86±0.08 7.37±0.04

STID+GATGPT 3.43±0.01 9.25±0.07 6.64±0.02 3.52±0.01 9.33±0.09 6.71±0.02 3.64±0.02 10.07±0.10 6.93±0.04 3.75±0.02 10.76±0.13 7.31±0.04

STID+Merlin 3.35±0.01 9.21±0.05 6.58±0.02 3.49±0.01 9.29±0.05 6.65±0.02 3.58±0.02 9.56±0.08 6.81±0.04 3.69±0.02 10.45±0.10 7.06±0.04

PEMS04

Corrformer 23.65±0.21 16.24±0.15 37.71±0.26 27.38±0.23 18.29±0.18 41.83±0.27 30.46±0.23 21.54±0.20 46.07±0.29 33.12±0.25 24.06±0.22 50.95±0.30

MegaCRN 21.95±0.18 14.82±0.13 34.06±0.22 24.43±0.20 17.15±0.14 39.48±0.24 26.09±0.22 18.49±0.17 41.18±0.25 28.29±0.24 19.91±0.20 42.81±0.26

GPT4TS 22.37±0.20 14.97±0.14 35.62±0.24 25.63±0.21 18.04±0.15 39.74±0.25 27.56±0.23 19.21±0.18 42.95±0.27 29.04±0.23 20.18±0.19 44.31±0.29

iTransformer+S4 20.64±0.16 14.08±0.14 32.56±0.19 22.76±0.18 15.34±0.16 36.25±0.21 24.34±0.19 17.26±0.15 39.16±0.23 25.94±0.21 18.06±0.18 40.23±0.24

FourierGNN+SPIN 20.06±0.14 13.75±0.11 32.13±0.16 21.54±0.15 14.57±0.12 33.92±0.18 22.65±0.18 15.89±0.16 35.64±0.21 24.03±0.19 16.72±0.16 38.15±0.22

DSformer+GATGPT 20.38±0.15 13.87±0.13 32.35±0.19 21.98±0.16 14.89±0.13 34.14±0.20 22.71±0.18 15.74±0.15 34.57±0.23 24.26±0.20 16.56±0.17 39.10±0.24

TSMixer+GPT2 20.49±0.15 13.94±0.12 32.47±0.18 22.47±0.16 15.13±0.13 35.99±0.20 24.16±0.18 17.02±0.16 38.94±0.21 25.58±0.19 17.94±0.16 39.89±0.23

STID (Raw) 20.67±0.19 14.11±0.14 32.68±0.23 28.36±0.21 19.25±0.17 43.44±0.25 30.11±0.22 21.38±0.18 45.91±0.26 33.65±0.25 24.27±0.23 51.47±0.31

STID+SPIN 19.53±0.13 13.22±0.11 31.35±0.15 20.79±0.15 13.82±0.12 32.79±0.18 22.85±0.15 15.77±0.13 35.69±0.18 23.79±0.17 16.45±0.15 37.96±0.21

STID+GPT2 19.85 ±0.14 13.54±0.11 31.86±0.17 21.45±0.16 14.33±0.13 33.54±0.19 22.44±0.17 15.51±0.13 35.21±0.21 23.51±0.19 16.21±0.16 37.58±0.24

STID+MAE 19.94±0.15 13.62±0.12 31.97±0.18 21.05±0.17 13.94±0.14 33.04±0.21 22.06±0.18 15.03±0.15 34.65±0.22 23.34±0.20 15.98±0.18 37.42±0.24

STID+GATGPT 19.48±0.12 13.15±0.09 31.28±0.15 20.73±0.14 14.16±0.10 32.72±0.17 21.98±0.14 14.92±0.11 35.41±0.18 23.39±0.16 16.04±0.14 37.53±0.20

STID+Merlin 18.86±0.10 12.97±0.07 30.67±0.13 19.56±0.11 13.29±0.09 31.41±0.15 21.19±0.13 14.21±0.11 33.38±0.16 22.62±0.13 15.49±0.12 36.27±0.17

China AQI

Corrformer 16.52±0.15 34.96±0.21 27.81±0.20 18.32±0.16 39.27±0.22 30.44±0.21 20.47±0.19 43.51±0.24 31.95±0.22 22.48±0.23 45.37±0.28 34.79±0.26

MegaCRN 16.35±0.15 34.75±0.21 27.61±0.20 18.14±0.16 38.43±0.22 29.46±0.20 19.96±0.18 42.64±0.23 32.54±0.21 22.06±0.21 44.28±0.27 34.42±0.24

GPT4TS 16.03±0.15 33.06±0.21 27.04±0.20 17.85±0.16 37.68±0.22 28.91±0.21 19.28±0.18 41.15±0.24 32.07±0.21 21.65±0.21 43.97±0.26 33.95±0.25

iTransformer+S4 15.49±0.13 32.06±0.19 25.57±0.17 16.79±0.15 35.76±0.21 27.84±0.19 18.44±0.17 39.76±0.22 30.68±0.21 21.32±0.20 43.62±0.25 33.68±0.23

FourierGNN+SPIN 15.28±0.12 31.44±0.18 25.24±0.15 16.17±0.14 34.13±0.20 27.02±0.17 18.05±0.15 38.56±0.21 30.06±0.19 20.53±0.17 42.15±0.22 32.43±0.20

DSformer+GATGPT 15.39±0.12 31.89±0.18 25.43±0.16 16.39±0.14 34.82±0.20 27.58±0.19 18.29±0.16 39.37±0.22 30.17±0.20 21.07±0.18 42.97±0.22 33.04±0.21

TSMixer+GPT2 15.45±0.12 32.04±0.18 25.59±0.16 16.43±0.14 34.73±0.20 27.65±0.18 18.33±0.16 39.85±0.22 30.23±0.20 21.25±0.18 43.54±0.23 33.59±0.21

STID (Raw) 15.53±0.14 32.46±0.20 25.71±0.19 18.56±0.16 39.95±0.22 30.47±0.21 20.36±0.19 43.63±0.25 32.09±0.22 23.24±0.21 46.18±0.26 35.54±0.24

STID+SPIN 14.98±0.09 30.25±0.16 25.06±0.13 15.67±0.13 32.25±0.19 25.98±0.17 17.43±0.15 37.65±0.21 28.89±0.19 19.94±0.17 41.78±0.23 32.16±0.20

STID+GPT2 15.12±0.12 30.89±0.17 25.15±0.15 15.89±0.14 32.84±0.20 26.74±0.18 17.35±0.15 37.22±0.20 28.72±0.18 19.50±0.16 41.26±0.22 31.73±0.19

STID+MAE 15.22±0.12 31.06±0.18 25.19±0.16 15.94±0.14 32.76±0.20 26.97±0.18 17.29±0.14 37.05±0.19 28.42±0.17 19.23±0.15 40.53±0.21 31.59±0.18

STID+GATGPT 15.07±0.10 30.53±0.16 25.11±0.14 15.75±0.12 32.65±0.18 26.61±0.16 17.26±0.13 36.94±0.19 29.15±0.17 19.19±0.15 40.56±0.20 31.36±0.18

STID+Merlin 14.89±0.08 29.97±0.15 24.93±0.12 15.39±0.10 31.86±0.16 25.46±0.14 16.83±0.11 36.30±0.17 27.30±0.15 18.68±0.13 39.39±0.19 30.31±0.17

Global Wind

Corrformer 5.78±0.02 34.32±0.17 8.52±0.04 5.99±0.02 37.18±0.19 8.79±0.05 6.29±0.04 42.65±0.20 9.18±0.07 6.59±0.04 45.98±0.22 9.63±0.08

MegaCRN 5.71±0.02 32.98±0.16 8.39±0.03 5.91±0.02 36.12±0.18 8.71±0.04 6.17±0.04 40.69±0.19 9.09±0.07 6.44±0.04 45.21±0.21 9.48±0.08

GPT4TS 5.73±0.02 33.25±0.16 8.41±0.03 5.95±0.02 36.57±0.18 8.76±0.04 6.23±0.04 41.35±0.20 9.13±0.07 6.53±0.04 45.79±0.21 9.56±0.08

iTransformer+S4 5.62±0.01 32.66±0.15 8.30±0.02 5.86±0.02 35.12±0.17 8.67±0.04 6.10±0.02 39.45±0.18 8.94±0.05 6.32±0.04 43.61±0.20 9.24±0.07

FourierGNN+SPIN 5.59±0.01 32.18±0.14 8.23±0.02 5.72±0.02 33.22±0.16 8.43±0.03 5.95±0.02 35.69±0.17 8.69±0.04 6.16±0.03 40.18±0.18 9.01±0.06

DSformer+GATGPT 5.60±0.01 32.25±0.13 8.25±0.02 5.79±0.02 34.53±0.16 8.54±0.03 5.98±0.02 37.21±0.17 8.76±0.04 6.21±0.03 41.25±0.18 9.15±0.06

TSMixer+GPT2 5.61±0.01 32.58±0.14 8.28±0.02 5.83±0.02 34.94±0.16 8.62±0.03 6.09±0.02 38.52±0.17 8.91±0.05 6.31±0.03 43.57±0.18 9.22±0.06

STID (Raw) 5.63±0.01 32.73±0.15 8.31±0.02 6.05±0.02 38.49±0.18 8.87±0.04 6.34±0.04 43.19±0.19 9.25±0.06 6.68±0.04 46.72±0.22 9.77±0.08

STID+SPIN 5.53±0.01 31.15±0.11 7.93±0.02 5.64±0.01 32.78±0.14 8.33±0.02 5.97±0.02 36.71±0.17 8.74±0.04 6.22±0.03 41.45±0.18 9.11±0.07

STID+GPT2 5.57±0.01 32.01±0.12 7.99±0.02 5.69±0.02 33.09±0.15 8.39±0.03 5.89±0.02 35.90±0.17 8.65±0.04 6.15±0.03 40.05±0.18 9.08±0.06

STID+MAE 5.58±0.01 32.06±0.13 8.04±0.02 5.71±0.02 33.25±0.15 8.43±0.04 5.86±0.02 35.46±0.16 8.62±0.04 6.11±0.02 39.45±0.17 9.02±0.05

STID+GATGPT 5.55±0.01 31.75±0.11 7.98±0.02 5.68±0.01 32.45±0.13 8.37±0.02 5.85±0.02 35.08±0.16 8.57±0.04 6.13±0.02 39.84±0.17 9.05±0.05

STID+Merlin 5.49±0.01 30.54±0.10 7.85±0.02 5.57±0.01 31.98±0.12 8.01±0.02 5.78±0.01 34.19±0.14 8.49±0.02 6.02±0.02 38.47±0.16 8.84±0.04

4.3 TRANSFERABILITY OF MERLIN

It can be found from the main results that Merlin can effectively improve the forecasting performance
of STID in MTSF with sparse observations. To further validate the effectiveness and transferability
of Merlin, we choose three other models (TSmixer, DSformer, and FourierGNN) as backbones and
compare the performance of Merlin with other imputation methods (GATGPT, GPT2, MAE and
SPIN). Table 3 shows the MAE values of Merlin and other imputation methods. Based on the re-
sults, we can draw the following conclusions: (1) Advanced one-stage models struggle to perform
well in MTSF with sparse observations. Specifically, the presence of missing data makes it diffi-
cult for existing models to mine semantics from sparse observations, resulting in poor robustness.
Therefore, existing forecasting models struggle to achieve satisfactory results. (2) Compared with
SPIN, the generative imputation methods can achieve better forecasting results when the missing
rate is higher. The main reason is that SPIN relies on local spatial-temporal information, which
makes its performance limited at high missing rates. (3) Compared with other methods, Merlin can
better restore the performance of all backbone models on all datasets. The experimental results fully
prove the transfer ability and practical value of Merlin. Specifically, Merlin can help existing ad-
vanced models achieve semantic alignment between sparse observations and complete observations,
thereby effectively enhancing the model’s robustness and achieving better forecasting results.

4.4 ABLATION EXPERIMENTS

We conduct ablation experiments from the following perspectives: (1) w/o HD: We remove the
hidden representation distillation. (2) w/o RD: We remove the forecasting result distillation. (3) w/o
KD: We removed the teacher model and knowledge distillation. In this case, STID uses complete
observations and sparse observations to construct contrastive learning. (4) w/o CL: We remove the
multi-view contrastive learning. Figure 3 shows the results of the ablation experiment. Based on the
experimental results, we can draw the following conclusions: (1) The forecasting result distillation
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Table 3: MAE values of Merlin and other methods (The best results are shown in bold).
Backbone Methods METR-LA PEMS04 China AQI Global Wind

25% 50% 75% 90% 25% 50% 75% 90% 25% 50% 75% 90% 25% 50% 75% 90%

T
Sm

ix
er

+Merlin 3.44±0.01 3.54±0.01 3.66±0.02 3.78±0.02 19.53±0.12 21.54±0.13 22.39±0.14 23.95±0.15 15.18±0.09 16.07±0.11 17.94±0.12 20.58±0.14 5.55±0.01 5.77±0.01 5.96±0.02 6.15±0.02

+GATGPT 3.46±0.01 3.59±0.01 3.69±0.02 3.81±0.02 19.97±0.13 21.85±0.14 23.06±0.16 24.47±0.17 15.22±0.10 16.38±0.12 18.25±0.14 20.97±0.16 5.58±0.01 5.79±0.01 6.03±0.02 6.22±0.02

+GPT2 3.48±0.01 3.62±0.01 3.71±0.02 3.85±0.02 20.49±0.15 22.47±0.16 24.16±0.18 25.58±0.19 15.45±0.12 16.43±0.14 18.33±0.16 21.25±0.18 5.61±0.01 5.83±0.02 6.09±0.02 6.31±0.03

+MAE 3.53±0.02 3.65±0.02 3.73±0.02 3.84±0.02 20.67±0.16 22.58±0.17 24.23±0.18 25.37±0.20 15.52±0.14 16.52±0.15 18.27±0.16 21.03±0.17 5.64±0.01 5.92±0.02 6.11±0.02 6.28±0.02

+SPIN 3.47±0.01 3.60±0.01 3.72±0.02 3.87±0.03 20.23±0.13 22.15±0.15 24.19±0.16 25.76±0.18 15.25±0.12 16.39±0.14 18.41±0.16 21.54±0.17 5.60±0.01 5.81±0.02 6.07±0.02 6.34±0.03

raw 3.62±0.02 3.78±0.02 3.95±0.04 4.06±0.04 21.53±0.20 26.39±0.22 29.18±0.25 31.42±0.27 16.33±0.15 18.44±0.17 20.59±0.20 22.98±0.22 5.77±0.02 6.01±0.02 6.31±0.04 6.63±0.04

D
Sf

or
m

er

+Merlin 3.49±0.01 3.61±0.01 3.70±0.02 3.82±0.02 20.17±0.13 21.67±0.14 22.08±0.16 23.84±0.17 15.23±0.10 16.15±0.12 18.07±0.13 20.78±0.15 5.54±0.01 5.72±0.01 5.87±0.02 6.14±0.02

+GATGPT 3.52±0.01 3.65±0.01 3.78±0.02 3.89±0.02 20.38±0.15 21.98±0.16 22.71±0.18 24.26±0.20 15.39±0.12 16.72±0.14 18.76±0.16 21.35±0.18 5.60±0.01 5.79±0.02 5.98±0.02 6.21±0.03

+GPT2 3.56±0.01 3.69±0.01 3.83±0.02 3.97±0.02 20.79±0.16 22.59±0.18 23.78±0.19 25.14±0.21 15.54±0.21 16.82±0.15 18.84±0.17 21.46±0.19 5.62±0.01 5.82±0.02 6.04±0.03 6.25±0.04

+MAE 3.57±0.02 3.71±0.02 3.85±0.02 3.95±0.02 20.94±0.16 22.67±0.17 23.84±0.19 24.98±0.21 15.87±0.14 16.91±0.16 18.90±0.17 21.39±0.19 5.68±0.01 5.89±0.02 6.05±0.03 6.23±0.03

+SPIN 3.54±0.01 3.66±0.01 3.82±0.02 3.98±0.02 20.54±0.15 22.45±0.17 23.95±0.19 25.47±0.22 15.43±0.22 16.74±0.14 18.79±0.16 21.54±0.19 5.64±0.01 5.78±0.02 6.01±0.04 6.27±0.04

raw 3.72±0.02 3.87±0.02 3.95±0.04 4.11±0.04 23.24±0.21 27.85±0.23 30.47±0.23 33.25±0.25 16.52±0.15 18.75±0.16 20.96±0.18 23.47±0.21 5.75±0.02 5.98±0.02 6.25±0.04 6.57±0.04

Fo
ur

ie
rG

N
N +Merlin 3.45±0.01 3.53±0.01 3.65±0.02 3.76±0.02 19.32±0.11 20.19±0.12 21.76±0.13 23.24±0.15 15.04±0.09 15.92±0.11 17.67±0.13 20.04±0.14 5.52±0.01 5.67±0.01 5.88±0.02 6.06±0.02

+GATGPT 3.48±0.01 3.57±0.01 3.68±0.02 3.79±0.02 19.76±0.13 20.86±0.15 22.13±0.15 23.51±0.17 15.19±0.11 16.15±0.12 17.97±0.14 20.37±0.15 5.56±0.01 5.69±0.01 5.91±0.02 6.10±0.02

+GPT2 3.53±0.01 3.61±0.01 3.72±0.02 3.84±0.02 19.97±0.14 21.61±0.16 22.58±0.18 23.91±0.20 15.37±0.12 16.25±0.14 18.12±0.16 20.51±0.18 5.58±0.01 5.71±0.02 5.94±0.02 6.14±0.03

+MAE 3.55±0.02 3.66±0.02 3.75±0.02 3.83±0.02 20.08±0.15 21.73±0.17 22.70±0.18 23.87±0.19 15.42±0.13 16.31±0.15 18.15±0.16 20.49±0.17 5.61±0.01 5.73±0.02 5.93±0.02 6.12±0.03

+SPIN 3.50±0.01 3.58±0.01 3.71±0.02 3.86±0.02 19.83±0.14 21.54±0.15 22.65±0.18 24.03±0.19 15.28±0.12 16.17±0.14 18.05±0.15 20.53±0.17 5.59±0.01 5.72±0.02 5.95±0.02 6.16±0.03

raw 3.61±0.02 3.77±0.02 3.92±0.04 4.05±0.04 21.34±0.18 24.58±0.20 27.05±0.22 29.71±0.24 15.98±0.15 17.69±0.16 19.13±0.18 21.57±0.21 5.73±0.02 5.93±0.02 6.15±0.04 6.39±0.04

(b) PEMS04

Missing rate Missing rate
(c) China AQI (d) Global Wind(a) METR-LA

Missing rate Missing rate

Figure 3: Results of ablation experiments. w/o HD represents the removal of hidden representation
distillation. w/o RD stands for the removal of forecasting result distillation. w/o KD indicates the
deletion of the teacher model and the offline knowledge distillation. w/o CL represents the removal
of multi-view contrastive learning.

has the least effect on the results. The experimental results show that as long as the encoder can
mine important semantics, the decoder can realize effective forecasting. (2) When the missing rate is
large, the effect of multi-view contrastive learning increases significantly. The main reason is that the
STID has the ability to mine semantics when the missing rate is low. (3) When STID does not use the
teacher model and knowledge distillation, it can only use contrastive learning to help STID learn how
to align the semantics between sparse observations and complete observations. In this case, without
the guidance of teachers, it is difficult for STID to fully mine semantics from sparse observations.
(4) After the hidden representation distillation is removed, the forecasting performance of STID
decreases significantly. The main reason is that hidden representation distillation enables STID to
learn how to make full use of sparse observations to obtain representations that can be obtained with
complete observations, which is crucial for aligning the semantics between sparse observations and
complete observations.

5 CONCLUSION

This paper considers the challenge of MTSF with unfixed missing rates from the perspective of
robustness. Specifically, existing models face two challenges when modeling sparse observations:
on the one hand, they must address the issue of missing values disrupting the semantics of MTS.
On the other hand, they also need to face the challenge that the missing rate of MTS is unfixed at
different time points in the real world. To this end, we propose Merlin based on offline knowledge
distillation and multi-view contrastive learning. Merlin aims to assist existing models in effectively
achieving semantic alignment between sparse observations with different missing rates and complete
observations, thereby significantly enhancing their robustness. Extensive experiments show that the
proposed model achieves satisfactory forecasting results on all datasets and settings. Additionally,
Merlin can significantly improve the performance and robustness of existing forecasting models in
MTSF with unfixed missing rates. In future work, we plan to investigate the effects of knowledge
distillation when the teacher model and the student model utilize different network structures, such
as large language models.
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A IMPLEMENTATION DETAILS

A.1 DATASETS

The basic statistics for these datasets are shown in Table 4. A brief introduction to these datasets is
provided as follows:

• METR-LA2: It is a traffic speed dataset collected by loop-detectors located on the LA
County road network, which contains data collected by 207 sensors from Mar 1st, 2012
to Jun 30th, 2012. Each time series is sampled at a 5-minute interval, totaling 34272 time
slices.

• PEMS043: It is a traffic flow dataset collected by CalTrans PeMS, which contains data
collected by 307 sensors from January 1st, 2018, to February 28th, 2018. Each time series
is sampled at a 5-minute interval, totaling 16992 time slices.

• China AQI4: It is an air quality dataset collected by environmental monitoring stations
in China, which includes data from 1,300 air monitoring stations from January 2015 to
December 2020. Each time series is sampled at a 1-hour interval, totaling 41,506 time
slices.

• Global Wind5: It is derived from the global wind speed dataset of the National Oceanic
and Atmospheric Administration (NOAA) National Center for Environmental Information
(NCEI), which includes data from 2,908 meteorological monitoring stations from 1993 to
2022. Each time series is sampled at a 1-day interval, totaling 10,957 time slices.

Table 4: The statistics of four datasets.
Datasets Variates Timesteps Granularity

METR-LA 207 34272 5 minutes
PEMS04 307 16992 5 minutes

China AQI 1300 41506 1 hour
Global Wind 2908 10957 1 day

A.2 BASELINES

The hyperparameter settings for the baselines are selected based on their original papers and codes.
The search process of hyperparameters is mainly based on the grid search method. Specifically, we
referred to the original papers and codes to set the search range for hyperparameters and introduced
grid search to obtain the optimal hyperparameters. All baselines are introduced as follows:

• Corrformer: It uses autoregressive attention and cross attention to mine spatial-temporal
correlations.

• MegaCRN: It uses utilizes the memory bank to enhance the adaptive graph convolution’s
ability to model spatial correlations and embeds the component into the recurrent neural
network.

• GPT4TS: It uses a pretrained GPT2 to encode the context of time series, and then employs
a linear decoder to obtain the forecasting results.

• STID: It uses spatial-temporal identity embedding to improve the ability of MLP to mine
multivariate time series.

• STID+SPIN: SPIN effectively combines temporal attention, spatial attention, and cross
attention to mine the spatial-temporal correlation of multivariate time series, thereby im-
proving the effectiveness of data recovery.

2https://github.com/liyaguang/DCRNN
3https://github.com/guoshnBJTU/ASTGNN/tree/main/data
4https://quotsoft.net/air/
5https://www.ncei.noaa.gov/
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• STID+GPT2: It first uses GPT2 to recover missing values, and then uses STID to model
the processed data.

• STID+MAE: MAE adopts autoencoder structure to improve the effect of data recovery.

• STID+GATGPT: GATGPT combines GPT and graph attention mechanism to recover
missing data by fully using spatial-temporal correlations.

• iTransformer+S4: iTransformer changes the function of the attention and feedforward
layer to improve the time series forecasting results. S4 uses the fundamental state space
model to mine temporal information of time series.

• FourierGNN+SPIN: FourierGNN uses Fourier Graph Operator to replace GCN and obtain
better time series forecasting results.

• DSformer+GATGPT: DSformer uses uses double sampling block and temporal variable
attention block to realize multivariate time series forecasting.

• TSMixer+GPT2: TSMixer uses residual connections and MLP to mine spatial-temporal
correlations. Compared with complex models, this framework has the advantages of both
performance and efficiency.

B HYPERPARAMETER ANALYSIS

Table 5 shows the main hyperparameters of the backbone (STID) and Merlin. We evaluate three
hyperparameters that have the greatest impact on Merlin (The weight of the loss, batch size and
temperature parameter) (Chen et al., 2020). Besides, we also evaluate three hyperparameters that
have the greatest impact on the backbone (Embeding size, input length and number of layers).

The experimental results of hyperparameter analysis are shown in Figure 4 to Figure 7. Based on
the hyperparameter analysis results, we can draw the following conclusions: (1) Appropriately in-
creasing the batch size can improve the forecasting accuracy of STID. On the one hand, the increase
of batch size can increase the number of negative data pairs, which can better enhance the model’s
robustness and uncover key semantic information. On the other hand, too large batch size can lead
to premature convergence of STID, resulting in underfitting problems. (2) Proper balance of temper-
ature parameter is important to improve the effect of contrastive learning. On the one hand, properly
reducing the temperature parameter can improve the effect of the model and improve convergence.
On the other hand, the value of temperature parameter being too small may lead to the problem of
local optimality. (3) When the weight of the loss is set to 1, the proposed model can perform best,
which fully demonstrates the importance of Merlin. Specifically, the proposed loss functions help
STID realize semantic alignment effectively, reduce the interference of missing values, and thus
guarantee the forecasting performance. (4) Properly balancing the size of the embedding dimension
and the number of layers can effectively ensure the forecasting performance of STID. Specifically,
too few parameters fail to sufficiently exploit the sparse observations, while too many parameters
can lead to overfitting. (5) The input length has a significant impact on the forecasting results. The
main reason is that the input length determines the amount of information that the model can cap-
ture. If the input length is too short, it fails to provide sufficient useful information, whereas an
excessively long input length can lead to overfitting.

C EFFICIENCY

In order to demonstrate the efficiency advantages of Merlin, this section compares the training times
on the PEMS04 dataset for STID+Merlin, STID+GPT2, STID+GATGPT, iTransformer+S4, and
FourierGNN+SPIN. Specifically, considering that STID+Merlin only needs to be trained once to
adapt to different missing rates, whereas the other baselines require separate training sessions for
each missing rate, we directly recorded the training time of STID+Merlin for a single epoch and
summed up the training times for each missing rate for the other baselines. The experimental equip-
ment is the Intel(R) Xeon(R) Gold 5217 CPU @ 3.00GHz, 128G RAM computing server with RTX
3090 graphics card.

Figure 8 displays the average training time per epoch for these models. Based on the experimental
results, the following conclusions can be drawn: (1) Compared to two-stage models, STID+Merlin
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Table 5: Values of the corresponding hyperparameters.
Methods Config Values

Merlin
batch size 32

β 1
temperature parameter 0.1

STID

optimizer Adam (Kingma & Ba, 2014)
learning rate 0.002

embeding size 64
node embeding size 64

temporal embeding size (day) 64
temporal embeding size (week) 64

number of layers 3
dropout 0.15

learning rate schedule MultiStepLR
clip gradient normalization 5

milestone [1, 50, 80]
gamme 0.5
epoch 100

Missing rate Missing rate
(a) Batch size (b) Temperature parameter (c) The weight of the Loss

Missing rate

Missing rate Missing rate

(d) Embedding size (e) Number of layers (f) Input length
Missing rate

Figure 4: The results of hyperparameter experiment (METR-LA dataset).
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Missing rate Missing rate
(a) Batch size (b) Temperature parameter (c) The weight of the Loss

Missing rate

Missing rate Missing rate

(d) Embedding size (e) Number of layers (f) Input length
Missing rate

Figure 5: The results of hyperparameter experiment (PEMS04 dataset).

Missing rate Missing rate
(a) Batch size (b) Temperature parameter (c) The weight of the Loss

Missing rate

Missing rate Missing rate

(d) Embedding size (e) Number of layers (f) Input length
Missing rate

Figure 6: The results of hyperparameter experiment (China AQI dataset).
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Missing rate Missing rate
(a) Batch size (b) Temperature parameter (c) The weight of the Loss

Missing rate

Missing rate Missing rate

(d) Embedding size (e) Number of layers (f) Input length
Missing rate

Figure 7: The results of hyperparameter experiment (Global Wind dataset).

STID+

Merlin

STID+

MAE

iTransformer

+S4

STID+

GATGPT
FourierGNN

+SPIN

Figure 8: Training time for each epoch of different models. Compared to the two-stage models
that require separate training for each missing rate, the proposed STID+Merlin significantly reduces
training consumption.

requires less training time. The main reason is that STID+Merlin only needs to train one teacher
model and one student model. (2) Since neither the imputation model nor the teacher model is
needed during the inference phase, STID+Merlin offers greater efficiency advantages during infer-
ence. (3) Overall, despite incorporating components such as contrastive learning and knowledge
distillation during the training process, STID+Merlin also achieves satisfactory results in terms of
efficiency.

D VISUALIZATION

We demonstrate the input features and forecasting results of STID+Merlin under different missing
rates on the Global wind dataset. Visualization results fully demonstrate the practical value of the
proposed model. The visualization results are shown in Figure 9. It can be found that even if the
input features are very sparse, the STID optimized by Merlin can still obtain satisfactory forecasting
results. In addition, STID can obtain satisfactory forecasting results for input features with different
missing rates. This fully proves the practical value of the proposed model in the task of multivariate
time series forecasting with sparse observations.
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Input features

Input features

Input features

Forecasting results

Forecasting results

Forecasting results

Ground truth

(a) Real spatial distribution of Global wind

(b) The input and forecasting results of STID+Merlin (Missing rate is 50%)

(c) The input and forecasting results of STID+Merlin (Missing rate is 75%)

(d) The input and forecasting results of STID+Merlin (Missing rate is 90%)
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Figure 9: Visualization of input features and forecasting results of STID+Merlin under different
missing rates (Global Wind dataset). Even with a significant increase in the missing rate, STID can
still achieve good forecasting results.
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Table 6: MAE values of the proposed method and other loss functions (The best results are shown
in bold).

Datasets Methods Missing rates
25% 50% 75% 90%

METR-LA

Proposed 3.35±0.01 3.49±0.01 3.58±0.02 3.69±0.02

L1 3.40±0.01 3.51±0.01 3.61±0.02 3.72±0.02

L2 3.39±0.01 3.52±0.01 3.63±0.02 3.73±0.02

KL-divergence 3.42±0.01 3.55±0.01 3.68±0.02 3.79±0.02

Swapping 3.37±0.01 3.50±0.01 3.60±0.02 3.71±0.02

PEMS04

Proposed 18.86±0.10 19.56±0.11 21.19±0.13 22.62±0.13

L1 19.14±0.11 19.95 ±0.12 21.78±0.14 23.05±0.16

L2 19.22±0.11 20.14±0.12 22.12±0.14 23.86±0.16

KL-divergence 19.45±0.12 20.38±0.14 22.53±0.17 24.07±0.19

Swapping 19.36±0.11 20.27±0.13 22.09±0.14 23.42±0.16

China AQI

Proposed 14.89±0.08 15.39±0.10 16.83±0.11 18.68±0.13

L1 15.01±0.09 15.68±0.11 17.21±0.12 19.06±0.14

L2 14.98±0.09 15.61±0.11 17.13±0.12 19.01±0.14

KL-divergence 15.05±0.10 15.71±0.12 17.24±0.03 19.11±0.15

Swapping 14.93±0.08 15.52±0.10 17.02±0.12 18.93±0.13

Global Wind

Proposed 5.49±0.01 5.57±0.01 5.78±0.01 6.02±0.02

L1 5.54±0.01 5.63±0.01 5.84±0.01 6.10±0.02

L2 5.52±0.01 5.61±0.01 5.82±0.01 6.07±0.02

KL-divergence 5.56±0.01 5.65±0.01 5.89±0.01 6.15±0.02

Swapping 5.51±0.01 5.59±0.01 5.80±0.01 6.05±0.02

E COMPARED WITH DIFFERENT LOSS FUNCTIONS

In terms of constructing the loss function, this paper uses L1 Loss to evaluate the difference between
the forecasting results of the student model and the ground truth. In addition, L2 Loss is used
to evaluate the difference between the student model and the teacher model. To better analyze
the impact of the loss function on the results, we consider using only one of the loss functions
or swapping the use of the two loss functions. Besides, considering that KL divergence is also
commonly used to evaluate the similarity between different distributions, we use KL divergence as
a new Loss of the hidden representation distillation and carry out experiments.

Table 6 shows the MAE values of the proposed method and other loss functions (The best results are
shown in boldface). The experimental results show that the proposed Loss function can get the best
result. Additionally, compared to KL divergence, the MSE loss achieves better results. The main
reason is that KL divergence focuses on improving the similarity between the distributions of rep-
resentations, while MSE focuses on minimizing the numerical differences between representations.
In summary, Multivariate time series forecasting is a regression task, where minimizing numerical
differences is more important.

F COMPARED WITH MULTI-STAGE TRAINING

Considering that different training processes can affect the overall performance of the model, this
section compares the effects of multi-stage training with adding all loss functions. The multi-stage
training strategy used to construct the comparative experiment includes the following two aspects
(Mukherjee & Awadallah, 2020): (1) Three-stage training: Firstly, train the model using the Loss
function of knowledge distillation, then optimize the student model using the Loss function of con-
trastive learning, and finally optimize the student model using the Loss function of forecasting re-
sults. (2) Two-stage training: Firstly, train the model using the combination of knowledge distillation
and contrastive learning. Then optimize the student model using the L1 Loss and the ground truth.

Table 7 shows the RMSE values of the proposed method and other multi-stage training methods (The
best results are shown in boldface). Based on the experimental results, we can draw the following
conclusions: (1) Compared with the multi-stage training strategy, the proposed method can achieve
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Table 7: RMSE values of the proposed method and other multi-stage training methods (The best
results are shown in bold).

Datasets Methods Missing rates
25% 50% 75% 90%

METR-LA
Proposed 6.58±0.02 6.65±0.02 6.81±0.04 7.06±0.04

Two-stage 6.62±0.02 6.68±0.02 6.84±0.04 7.15±0.04

Three-stage 6.65±0.02 6.70±0.02 6.89±0.04 7.22±0.04

PEMS04
Proposed 30.67±0.13 31.41±0.15 33.38±0.16 36.27±0.17

Two-stage 30.89±0.14 31.87±0.16 33.94±0.17 36.84±0.19

Three-stage 31.04±0.15 31.94±0.16 34.26±0.18 37.15±0.19

China AQI
Proposed 24.93±0.12 25.46±0.14 27.30±0.15 30.31±0.17

Two-stage 25.06±0.13 25.88±0.15 27.95±0.16 31.06±0.18

Three-stage 25.15±0.15 26.03±0.17 28.14±0.18 31.47±0.19

Global Wind
Proposed 7.85±0.02 8.01±0.02 8.49±0.02 8.84±0.04

Two-stage 7.87±0.02 8.05±0.02 8.58±0.02 8.97±0.04

Three-stage 7.89±0.02 8.13±0.02 8.61±0.02 9.01±0.04

Table 8: MAE values of different models on METR-LA datasets (The best results are shown in
bold).

Future Methods Missing rates
Lengths 25% 50% 75% 90%

6

STID+Merlin 2.94±0.01 3.09±0.01 3.21±0.01 3.34±0.02

STID+GATGPT 3.02±0.01 3.16±0.01 3.32±0.02 3.43±0.02

iTransformer+S4 3.14±0.02 3.29±0.02 3.44±0.02 3.58±0.02

TSMixer+GPT2 3.11±0.01 3.25±0.01 3.39±0.02 3.54±0.02

24

STID+Merlin 4.06±0.01 4.17±0.02 4.29±0.02 4.41±0.02

STID+GATGPT 4.12±0.01 4.23±0.02 4.35±0.02 4.52±0.04

iTransformer+S4 4.42±0.02 4.56±0.04 4.60±0.04 4.75±0.06

TSMixer+GPT2 4.37±0.01 4.52±0.02 4.55±0.04 4.71±0.04

336

STID+Merlin 4.46±0.02 4.59±0.02 4.72±0.04 4.85±0.04

STID+GATGPT 4.57±0.02 4.71±0.02 4.82±0.04 4.95±0.06

iTransformer+S4 5.06±0.04 5.19±0.04 5.32±0.06 5.46±0.06

TSMixer+GPT2 4.82±0.02 4.95±0.04 5.10±0.04 5.23±0.06

better forecasting results. The main reason is the problem of information forgetting in multi-stage
training, which limits the performance of STID. (2) When the missing rate increases, the forecasting
performance of the multi-stage training strategy decreases more significantly. The main reason is
that information forgetting leads to the limited ability of STID to mine valuable semantics from
sparse observations, which leads to the deterioration of forecasting performance.

G EXPERIMENT ON DIFFERENT FUTURE LENGTHS

Evaluating the performance of the proposed model under different future lengths can better show
its application value. To this end, we additionally set three future lengths of 6, 24, and 336 on the
METR-LA and PEMS04 datasets, and compare the forecasting performance of STID+Merlin with
STID+GATGPT, DSformer+GATGPT, and TSMixer+GPT2. The setting of the input length is based
on existing works (Zhou et al., 2023; Shao et al., 2023).

Table 8 and Table 9 shows the MAE values of different models. Based on the experimental results,
it can be found that STID+Merlin can obtain the best forecasting results under different settings,
which further proves its practicability. Specifically, the proposed model shows promising potential
and value for applications in both short-term and long-term forecasting.
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Table 9: MAE values of different models on PEMS04 datasets (The best results are shown in bold).
Future Methods Missing rates

Lengths 25% 50% 75% 90%

6

STID+Merlin 17.95±0.09 18.78±0.10 20.06±0.12 21.34±0.12

STID+GATGPT 18.35±0.11 19.16±0.13 20.94±0.13 22.45±0.15

iTransformer+S4 19.54±0.15 20.63±0.17 22.06±0.18 24.04±0.20

TSMixer+GPT2 19.31±0.14 20.39±0.15 21.87±0.17 23.98±0.18

24

STID+Merlin 20.34±0.10 21.47±0.11 22.78±0.13 24.36±0.13

STID+GATGPT 20.89±0.12 22.05±0.14 23.34±0.14 25.19±0.16

iTransformer+S4 21.97±0.16 23.86±0.18 25.88±0.19 28.04±0.21

TSMixer+GPT2 21.63±0.15 23.47±0.16 25.31±0.18 27.69±0.19

336

STID+Merlin 24.65±0.12 26.49±0.13 27.87±0.15 29.04±0.16

STID+GATGPT 25.04±0.14 26.95±0.16 28.35±0.16 29.97±0.19

iTransformer+S4 27.58±0.18 28.78±0.20 30.06±0.21 31.57±0.23

TSMixer+GPT2 26.94±0.17 27.32±0.18 28.84±0.20 30.75±0.21

H EXPERIMENT ON TIME SERIES WITH UNFIXED MISSING RATES

To better simulate the unfixed missing rates in time series data under real-world scenarios, we con-
duct the following experiments in this section: (1) For the test data, we divided the time series into
different segments based on time and applied masking to each segment with random missing rates
of 25%, 50%, 75%, and 90%. (2) For the training and validation data, we additionally processed
the data into four forms with missing rates of 25%, 50%, 75%, and 90%. (3) For Merlin+STID, we
trained the models as described in this paper: the unmasked data is used to train the teacher model,
while the masked data is used to train the student model. Only the student model is used on the
test set. (4) For other baselines, we used three training strategies: the first strategy involve training
separate models for each missing rate, with the corresponding model selected for forecasting on the
test set based on the current data’s missing rate. The second strategy uses a single model trained on
data with all four missing rates, which is then directly evaluated on the test set. The final strategy is
to train a model using only the raw data, which is then directly evaluated on the test set.

Table 10 shows the performance comparison results of several models under unfixed missing rates.
Based on the experimental results, the following conclusions can be drawn: (1) With only be trained
once, the proposed STID+Merlin achieves optimal results across all datasets. Experimental results
demonstrate that STID+Merlin can effectively handle the real-world scenario of time series with
unfixed missing rates. (2) For the other baselines, training models for each missing rates separately
performs better than training a single model for all missing rates, which further demonstrates that
existing methods are limited in both practical value and robustness in the real-world scenario of time
series with unfixed missing rates. (3) If a forecasting model is trained using only complete data, its
forecasting performance significantly declines when data missing occurs. This demonstrates the
poor robustness of existing models in real-world scenarios.

I EXPERIMENT ON OTHER DATA MISSING SCENARIOS

Evaluating the proposed model’s adaptability to different missing data scenarios can better demon-
strate its practical value. Based on related works (Zerveas et al., 2021; Marisca et al., 2024), we
conduct additional experiments under the following missing data scenarios: (1) Data points whose
mask exceeds a certain threshold: we treat m% of the larger values and m% of the smaller values
in the dataset as missing values. In other words, only the data points in the middle (1 − 2m)% of
the value range are kept. (2) Random point missing based on geometric distribution: different
from uniformly random missing situations, in this distribution, missing values appear in segments.
In other words, multivariate time series exhibit a certain amount of consecutive missing values over
different time periods.

Table 11 and Table 12 show the performance comparison results of several models under different
data missing scenarios (The best results are shown in bold). Based on the experimental results, it can
be found that STID+Merlin can still achieve the best experimental results under other data missing
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Table 10: Performance comparison results of several models under unfixed missing rates (The best
results are shown in bold).

Datasets Methods MAE MAPE RMSE

METR-LA

Proposed 3.54±0.01 9.41±0.05 6.72±0.02

STID+GATGPT (Separately) 3.58±0.01 9.52±0.09 6.83±0.02

STID+GATGPT (Together) 3.67±0.02 10.12±0.10 6.98±0.04

iTransformer+S4 (Separately) 3.76±0.02 10.78±0.12 7.32±0.04

iTransformer+S4 (Together) 3.88±0.04 11.12±0.14 7.61±0.07

STID (Separately) 3.82±0.04 10.87±0.14 7.38±0.07

STID (Together) 3.95±0.04 11.52±0.15 7.62±0.08

STID (Complete) 4.06±0.04 12.04±0.16 8.01±0.08

GPT4TS (Separately) 3.89±0.04 11.23±0.15 7.64±0.08

GPT4TS (Together) 4.02±0.04 12.06±0.16 7.95±0.08

GPT4TS (Complete) 4.12±0.04 12.34±0.16 8.19±0.08

PEMS04

Proposed 20.37±0.12 13.91±0.10 32.33±0.16

STID+GATGPT (Separately) 21.04±0.14 14.06±0.11 33.26±0.18

STID+GATGPT (Together) 22.76±0.15 15.83±0.13 34.68±0.19

iTransformer+S4 (Separately) 23.58±0.18 16.32±0.16 37.75±0.22

iTransformer+S4 (Together) 25.15±0.19 17.68±0.17 39.27±0.24

STID (Separately) 28.84±0.21 20.15±0.17 43.96±0.25

STID (Together) 30.06±0.22 21.85±0.18 45.28±0.26

STID (Complete) 31.45±0.24 22.76±0.21 47.89±0.29

GPT4TS (Separately) 26.57±0.21 18.97±0.15 42.06±0.24

GPT4TS (Together) 28.23±0.23 19.52±0.18 43.08±0.26

GPT4TS (Complete) 29.97±0.25 20.84±0.20 44.97±0.30

scenarios. The experimental results show that Merlin can effectively guarantee the robustness of the
prediction model under different data missing scenarios.

J EXPERIMENTS WHEN THE PERFORMANCE OF THE TEACHER MODEL IS
DEGRADED

Existing imputation models typically assume access to complete training data and train models
through reconstruction tasks (Ahn et al., 2022). Considering the possibility of incomplete data
collection in real-world scenarios (i.e., missing data in the training set), the teacher model might be
trained on multivariate time series with missing values, potentially leading to degraded performance.
Therefore, it is crucial to evaluate the effectiveness of Merlin under such conditions. In this section,
we simulate scenarios where the training data for the teacher model has missing rates of 5% and
10% (imputation models also face this challenge) and assess the improvement brought by Merlin
and GATGPT to different backbone under these settings. Specifically, the original data is first pro-
cessed to simulate missing rates of 5% and 10%. Subsequently, the data with these missing rates is
further processed to simulate missing rates of 25%, 50%, 75%, and 90%. The proposed model and
baselines are trained separately on datasets with 5% and 10% missing rates, as well as the datasets
with subsequent missing rates of 25%, 50%, 75%, and 90%.

Table 13 and Table 14 show the MAE values of Merlin and other methods when the missing rates
of the training sets are 5% and 10%, respectively. Based on the experimental results, the follow-
ing conclusions can be drawn: (1) Even when the data quality of the training sets for the teacher
model decreases, Merlin can still effectively enhance the forecasting performance of several back-
bone models. (2) Compared to GATGPT, Merlin demonstrates superior capability in recovering
the forecasting performance of different backbone models, further highlighting its practical value in
real-world scenarios.
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Table 11: MAE values of several models (Data points whose mask exceeds a certain threshold).

Datasets Methods Missing rates
10% 20% 30% 40%

METR-LA

Proposed 3.31±0.01 3.37±0.01 3.42±0.01 3.51±0.02

STID+GATGPT 3.39±0.01 3.44±0.01 3.49±0.02 3.56±0.02

STID+MAE 3.46±0.01 3.53±0.02 3.57±0.02 3.63±0.02

STID+GPT2 3.44±0.01 3.50±0.01 3.55±0.02 3.61±0.02

STID+SPIN 3.40±0.01 3.46±0.01 3.52±0.01 3.58±0.02

FourierGNN+SPIN 3.45±0.01 3.51±0.01 3.58±0.02 3.65±0.02

DSformer+GATGPT 3.49±0.01 3.54±0.02 3.62±0.02 3.70±0.02

TSMixer+GPT2 3.43±0.01 3.49±0.01 3.55±0.02 3.63±0.02

PEMS04

Proposed 18.56±0.10 18.94±0.10 19.32±0.11 19.75±0.12

STID+GATGPT 19.21±0.12 19.52±0.12 20.34±0.14 20.86±0.15

STID+MAE 19.67±0.15 20.03±0.16 20.79±0.17 21.42±0.17

STID+GPT2 19.53±0.14 19.97±0.15 20.87±0.16 21.67±0.16

STID+SPIN 19.28±0.13 19.61±0.14 20.57±0.14 21.15±0.15

FourierGNN+SPIN 19.98±0.14 20.14±0.15 21.06±0.15 21.74±0.16

DSformer+GATGPT 20.15±0.15 20.45±0.16 21.58±0.16 22.35±0.18

TSMixer+GPT2 20.23±0.16 20.57±0.17 21.68±0.17 22.73±0.19

China AQI

Proposed 14.76±0.08 14.92±0.08 15.12±0.09 15.45±0.10

STID+GATGPT 14.93±0.09 15.10±0.10 15.57±0.11 15.83±0.13

STID+MAE 14.98±0.12 15.29±0.13 15.82±0.15 16.19±0.16

STID+GPT2 15.05±0.12 15.21±0.12 15.74±0.14 16.08±0.15

STID+SPIN 14.87±0.09 15.04±0.09 15.61±0.11 15.94±0.12

FourierGNN+SPIN 15.07±0.12 15.32±0.13 15.87±0.15 16.25±0.16

DSformer+GATGPT 15.21±0.12 15.45±0.14 15.98±0.15 16.53±0.17

TSMixer+GPT2 15.25±0.12 15.51±0.14 16.04±0.15 16.68±0.17

Global Wind

Proposed 5.46±0.01 5.52±0.01 5.57±0.01 5.60±0.01

STID+GATGPT 5.53±0.01 5.58±0.01 5.64±0.01 5.71±0.01

STID+MAE 5.56±0.01 5.61±0.01 5.67±0.02 5.74±0.02

STID+GPT2 5.55±0.01 5.60±0.01 5.64±0.01 5.72±0.02

STID+SPIN 5.51±0.01 5.57±0.01 5.61±0.01 5.69±0.01

FourierGNN+SPIN 5.58±0.01 5.62±0.01 5.69±0.01 5.76±0.02

DSformer+GATGPT 5.61±0.01 5.67±0.01 5.74±0.01 5.82±0.02

TSMixer+GPT2 5.59±0.01 5.64±0.01 5.75±0.01 5.86±0.02
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Table 12: MAE values of several models (Random point missing based on geometric distribution).

Datasets Methods Missing rates
25% 50% 75% 90%

METR-LA

Proposed 3.41±0.01 3.55±0.01 3.68±0.02 3.81±0.02

STID+GATGPT 3.48±0.01 3.63±0.01 3.75±0.02 3.93±0.02

STID+MAE 3.54±0.02 3.67±0.02 3.81±0.02 3.95±0.02

STID+GPT2 3.53±0.01 3.66±0.01 3.78±0.02 3.96±0.02

STID+SPIN 3.49±0.01 3.64±0.01 3.77±0.02 3.98±0.02

FourierGNN+SPIN 3.55±0.01 3.71±0.01 3.84±0.02 4.01±0.02

DSformer+GATGPT 3.59±0.01 3.74±0.01 3.87±0.02 4.05±0.02

TSMixer+GPT2 3.53±0.01 3.69±0.01 3.81±0.02 3.98±0.02

PEMS04

Proposed 19.03±0.10 19.87±0.11 21.45±0.13 22.87±0.13

STID+GATGPT 19.63±0.12 21.06±0.14 22.57±0.14 24.15±0.16

STID+MAE 20.16±0.15 21.44±0.17 22.63±0.18 24.14±0.20

STID+GPT2 20.04±0.14 21.67±0.16 22.87±0.17 24.35±0.19

STID+SPIN 19.75±0.13 21.13±0.15 23.14±0.15 24.49±0.18

FourierGNN+SPIN 20.85±0.14 22.35±0.15 23.76±0.18 24.55±0.19

DSformer+GATGPT 21.03±0.15 22.89±0.16 24.32±0.18 24.78±0.23

TSMixer+GPT2 21.16±0.15 23.07±0.16 24.58±0.18 25.19±0.21

China AQI

Proposed 14.95±0.08 15.48±0.10 17.06±0.11 18.87±0.13

STID+GATGPT 15.14±0.10 15.89±0.12 17.43±0.13 19.31±0.15

STID+MAE 15.28±0.12 16.13±0.14 17.51±0.14 19.42±0.15

STID+GPT2 15.19±0.12 16.06±0.14 17.63±0.15 19.78±0.16

STID+SPIN 15.06±0.10 15.91±0.10 17.75±0.10 20.1±0.105
FourierGNN+SPIN 15.37±0.12 16.26±0.14 18.59±0.17 20.98±0.19

DSformer+GATGPT 15.49±0.12 16.45±0.14 18.67±0.19 21.45±0.20

TSMixer+GPT2 15.61±0.12 16.53±0.14 18.81±0.18 21.97±0.20

Global Wind

Proposed 5.52±0.01 5.61±0.01 5.82±0.01 6.09±0.02

STID+GATGPT 5.59±0.01 5.72±0.01 5.91±0.02 6.18±0.02

STID+MAE 5.62±0.01 5.75±0.02 5.93±0.02 6.16±0.02

STID+GPT2 5.60±0.01 5.73±0.02 5.97±0.02 6.19±0.03

STID+SPIN 5.57±0.01 5.69±0.01 6.01±0.02 6.25±0.03

FourierGNN+SPIN 5.63±0.01 5.76±0.02 6.02±0.02 6.21±0.03

DSformer+GATGPT 5.66±0.01 5.82±0.02 6.07±0.02 6.28±0.03

TSMixer+GPT2 5.64±0.01 5.85±0.02 6.15±0.02 6.37±0.03
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Table 13: MAE values of Merlin and other methods (The missing rate of the training set is 5%).
Backbone Methods METR-LA PEMS04 China AQI Global Wind

25% 50% 75% 90% 25% 50% 75% 90% 25% 50% 75% 90% 25% 50% 75% 90%

ST
ID

+Merlin 3.39±0.01 3.54±0.01 3.62±0.02 3.71±0.02 19.14±0.10 20.07±0.11 21.43±0.13 23.28±0.13 15.06±0.08 15.67±0.10 17.06±0.11 18.93±0.13 5.52±0.01 5.61±0.01 5.82±0.01 6.06±0.02

+GATGPT 3.46±0.01 3.57±0.01 3.68±0.02 3.80±0.02 19.72±0.12 21.08±0.14 22.54±0.14 23.97±0.16 15.27±0.10 15.98±0.12 17.52±0.13 19.43±0.15 5.58±0.01 5.72±0.01 5.90±0.02 6.17±0.02

+GPT2 3.51±0.01 3.64±0.01 3.72±0.02 3.81±0.02 20.05±0.14 21.76±0.16 22.84±0.17 24.15±0.17 15.31±0.12 16.19±0.14 17.64±0.15 19.84±0.16 5.59±0.01 5.74±0.02 5.94±0.02 6.21±0.03

+MAE 3.52±0.02 3.66±0.02 3.74±0.02 3.82±0.02 20.13±0.15 21.52±0.17 22.63±0.18 24.02±0.20 15.41±0.12 16.52±0.14 18.27±0.14 19.52±0.15 5.60±0.01 5.76±0.02 5.92±0.02 6.16±0.02

+SPIN 3.47±0.01 3.62±0.01 3.75±0.02 3.84±0.02 19.80±0.13 21.34±0.15 23.02±0.15 24.33±0.17 15.25±0.12 16.39±0.13 18.41±0.15 20.09±0.15 5.57±0.01 5.73±0.02 6.01±0.02 6.26±0.03

raw 3.54±0.02 3.77±0.02 3.93±0.04 4.07±0.04 20.67±0.19 28.36±0.21 30.11±0.22 33.65±0.25 15.53±0.14 18.56±0.16 20.36±0.19 23.24±0.21 5.63±0.01 6.05±0.02 6.34±0.04 6.68±0.04

T
Sm

ix
er

+Merlin 3.48±0.01 3.59±0.01 3.70±0.02 3.82±0.02 19.84±0.12 21.95±0.13 22.78±0.14 24.43±0.15 15.43±0.09 16.31±0.11 18.24±0.12 20.81±0.14 5.58±0.01 5.81±0.01 6.01±0.02 6.21±0.02

+GATGPT 3.51±0.01 3.64±0.01 3.75±0.02 3.87±0.02 20.45±0.13 22.38±0.14 23.47±0.16 24.89±0.17 15.51±0.10 16.74±0.12 18.55±0.14 21.17±0.16 5.62±0.01 5.84±0.01 6.07±0.02 6.26±0.02

+GPT2 3.55±0.01 3.66±0.01 3.78±0.02 3.90±0.02 20.72±0.15 22.85±0.16 24.41±0.18 25.84±0.19 15.69±0.12 16.82±0.14 18.67±0.16 21.49±0.18 5.65±0.01 5.89±0.02 6.13±0.02 6.37±0.03

+MAE 3.57±0.02 3.67±0.02 3.79±0.02 3.89±0.02 20.94±0.16 23.01±0.17 24.54±0.18 25.78±0.20 15.78±0.14 16.96±0.15 18.59±0.16 21.30±0.17 5.67±0.01 5.97±0.02 6.15±0.02 6.34±0.02

+SPIN 3.54±0.01 3.62±0.01 3.81±0.02 3.93±0.03 20.53±0.13 22.62±0.15 24.56±0.16 26.07±0.18 15.57±0.12 16.77±0.14 18.74±0.16 21.85±0.17 5.63±0.01 5.86±0.02 6.11±0.02 6.39±0.03

raw 3.62±0.02 3.78±0.02 3.95±0.04 4.06±0.04 21.53±0.20 26.39±0.22 29.18±0.25 31.42±0.27 16.33±0.15 18.44±0.17 20.59±0.20 22.98±0.22 5.77±0.02 6.01±0.02 6.31±0.04 6.63±0.04

D
Sf

or
m

er

+Merlin 3.54±0.01 3.66±0.01 3.74±0.02 3.88±0.02 20.54±0.13 22.18±0.14 22.74±0.16 24.47±0.17 15.50±0.10 16.39±0.12 18.45±0.13 21.16±0.15 5.57±0.01 5.76±0.01 5.92±0.02 6.18±0.02

+GATGPT 3.58±0.01 3.70±0.01 3.84±0.02 3.96±0.02 20.86±0.15 22.54±0.16 23.26±0.18 24.68±0.20 15.71±0.12 17.04±0.14 19.15±0.16 21.71±0.18 5.63±0.01 5.82±0.02 6.01±0.02 6.24±0.03

+GPT2 3.61±0.01 3.75±0.01 3.88±0.02 4.01±0.02 21.04±0.16 22.92±0.18 24.06±0.19 25.40±0.21 15.82±0.13 17.15±0.15 19.28±0.17 21.89±0.19 5.65±0.01 5.85±0.02 6.07±0.03 6.29±0.04

+MAE 3.63±0.02 3.77±0.02 3.90±0.02 3.99±0.02 21.27±0.16 23.01±0.17 24.11±0.19 25.26±0.21 15.87±0.14 17.24±0.16 19.31±0.18 21.77±0.20 5.70±0.01 5.92±0.02 6.09±0.03 6.26±0.03

+SPIN 3.59±0.01 3.72±0.01 3.87±0.02 4.03±0.02 20.97±0.15 22.87±0.17 24.23±0.19 25.73±0.22 15.76±0.13 17.08±0.14 19.23±0.16 21.98±0.19 5.67±0.01 5.83±0.02 6.05±0.04 6.31±0.04

raw 3.72±0.02 3.87±0.02 3.95±0.04 4.11±0.04 23.24±0.21 27.85±0.23 30.47±0.23 33.25±0.25 16.52±0.15 18.75±0.16 20.96±0.18 23.47±0.21 5.75±0.02 5.98±0.02 6.25±0.04 6.57±0.04

Fo
ur

ie
rG

N
N +Merlin 3.50±0.01 3.57±0.01 3.68±0.02 3.80±0.02 19.67±0.11 20.79±0.12 22.25±0.13 23.92±0.15 15.32±0.09 16.22±0.11 17.92±0.13 20.38±0.14 5.55±0.01 5.70±0.01 5.91±0.02 6.10±0.02

+GATGPT 3.52±0.01 3.61±0.01 3.73±0.02 3.85±0.02 20.08±0.13 21.19±0.15 22.68±0.15 24.05±0.17 15.47±0.11 16.42±0.12 18.27±0.14 20.84±0.15 5.60±0.01 5.73±0.01 5.95±0.02 6.15±0.02

+GPT2 3.55±0.01 3.65±0.01 3.76±0.02 3.89±0.02 20.25±0.14 21.94±0.16 22.84±0.18 24.24±0.20 15.63±0.12 16.54±0.14 18.35±0.16 20.97±0.18 5.61±0.01 5.76±0.02 5.98±0.02 6.18±0.03

+MAE 3.57±0.02 3.69±0.02 3.80±0.02 3.87±0.02 20.32±0.15 22.05±0.17 23.02±0.18 24.19±0.19 15.69±0.13 16.58±0.15 18.39±0.16 20.89±0.17 5.64±0.01 5.78±0.02 5.96±0.02 6.17±0.03

+SPIN 3.54±0.01 3.63±0.01 3.74±0.02 3.91±0.02 20.14±0.14 21.87±0.15 22.97±0.18 24.35±0.19 15.56±0.12 16.46±0.14 18.31±0.15 21.02±0.17 5.63±0.01 5.75±0.02 6.01±0.02 6.21±0.03

raw 3.61±0.02 3.77±0.02 3.92±0.04 4.05±0.04 21.34±0.18 24.58±0.20 27.05±0.22 29.71±0.24 15.98±0.15 17.69±0.16 19.13±0.18 21.57±0.21 5.73±0.02 5.93±0.02 6.15±0.04 6.39±0.04

Table 14: MAE values of Merlin and other methods (The missing rate of the training set is 10%).
Backbone Methods METR-LA PEMS04 China AQI Global Wind

25% 50% 75% 90% 25% 50% 75% 90% 25% 50% 75% 90% 25% 50% 75% 90%

ST
ID

+Merlin 3.42±0.01 3.57±0.01 3.66±0.02 3.75±0.02 19.41±0.10 20.39±0.11 21.81±0.13 23.64±0.13 15.23±0.08 15.94±0.10 17.35±0.11 19.25±0.13 5.55±0.01 5.64±0.01 5.85±0.01 6.10±0.02

+GATGPT 3.49±0.01 3.62±0.01 3.73±0.02 3.85±0.02 20.05±0.12 21.43±0.14 22.88±0.14 24.31±0.16 15.41±0.10 16.24±0.12 17.79±0.13 19.78±0.15 5.60±0.01 5.78±0.01 5.96±0.02 6.21±0.02

+GPT2 3.52±0.01 3.67±0.01 3.76±0.02 3.90±0.02 20.33±0.14 22.08±0.16 23.14±0.17 24.48±0.17 15.46±0.12 16.38±0.14 17.93±0.15 20.03±0.16 5.61±0.01 5.80±0.02 6.01±0.02 6.27±0.03

+MAE 3.53±0.02 3.68±0.02 3.77±0.02 3.88±0.02 20.51±0.15 21.84±0.17 22.95±0.18 24.37±0.20 15.51±0.12 16.78±0.14 18.47±0.14 19.87±0.15 5.62±0.01 5.83±0.02 5.99±0.02 6.20±0.02

+SPIN 3.49±0.01 3.65±0.01 3.79±0.02 3.91±0.02 20.14±0.13 21.71±0.15 23.31±0.15 24.64±0.17 15.39±0.12 16.57±0.13 18.56±0.15 20.27±0.15 5.59±0.01 5.79±0.02 6.07±0.02 6.29±0.03

raw 3.54±0.02 3.77±0.02 3.93±0.04 4.07±0.04 20.67±0.19 28.36±0.21 30.11±0.22 33.65±0.25 15.53±0.14 18.56±0.16 20.36±0.19 23.24±0.21 5.63±0.01 6.05±0.02 6.34±0.04 6.68±0.04

T
Sm

ix
er

+Merlin 3.51±0.01 3.64±0.01 3.75±0.02 3.88±0.02 20.11±0.12 22.29±0.13 23.15±0.14 24.82±0.15 15.77±0.09 16.58±0.11 18.48±0.12 21.03±0.14 5.62±0.01 5.86±0.01 6.07±0.02 6.27±0.02

+GATGPT 3.55±0.01 3.68±0.01 3.80±0.02 3.93±0.02 20.79±0.13 22.75±0.14 23.81±0.16 25.13±0.17 15.86±0.10 16.92±0.12 18.79±0.14 21.42±0.16 5.67±0.01 5.89±0.01 6.14±0.02 6.31±0.02

+GPT2 3.58±0.01 3.71±0.01 3.84±0.02 3.96±0.02 21.03±0.15 23.12±0.16 24.73±0.18 26.16±0.19 15.97±0.12 17.05±0.14 18.81±0.16 21.65±0.18 5.65±0.01 5.94±0.02 6.18±0.02 6.41±0.03

+MAE 3.60±0.02 3.72±0.02 3.83±0.02 3.95±0.02 21.25±0.16 23.34±0.17 24.82±0.18 26.03±0.20 16.04±0.14 17.13±0.15 18.74±0.16 21.54±0.17 5.67±0.01 6.01±0.02 6.19±0.02 6.38±0.02

+SPIN 3.57±0.01 3.67±0.01 3.86±0.02 3.98±0.03 20.87±0.13 22.95±0.15 24.94±0.16 26.29±0.18 15.92±0.12 16.99±0.14 18.92±0.16 22.03±0.17 5.63±0.01 5.91±0.02 6.22±0.02 6.45±0.03

raw 3.62±0.02 3.78±0.02 3.95±0.04 4.06±0.04 21.53±0.20 26.39±0.22 29.18±0.25 31.42±0.27 16.33±0.15 18.44±0.17 20.59±0.20 22.98±0.22 5.77±0.02 6.01±0.02 6.31±0.04 6.63±0.04

D
Sf

or
m

er

+Merlin 3.58±0.01 3.71±0.01 3.78±0.02 3.94±0.02 20.82±0.13 22.50±0.14 23.07±0.16 24.84±0.17 15.73±0.10 16.62±0.12 18.73±0.13 21.38±0.15 5.63±0.01 5.83±0.01 5.99±0.02 6.25±0.02

+GATGPT 3.62±0.01 3.76±0.01 3.89±0.02 4.01±0.02 21.14±0.15 22.90±0.16 23.59±0.18 25.06±0.20 15.96±0.12 17.31±0.14 19.39±0.16 21.95±0.18 5.66±0.01 5.87±0.02 6.08±0.02 6.30±0.03

+GPT2 3.65±0.01 3.79±0.01 3.92±0.02 4.05±0.02 21.36±0.16 23.25±0.18 24.34±0.19 25.71±0.21 16.09±0.13 17.33±0.15 19.54±0.17 22.14±0.19 5.68±0.01 5.90±0.02 6.11±0.03 6.35±0.04

+MAE 3.66±0.02 3.80±0.02 3.93±0.02 4.04±0.02 21.52±0.16 23.35±0.17 24.42±0.19 25.58±0.21 16.15±0.14 17.41±0.16 19.61±0.18 22.03±0.20 5.72±0.01 5.96±0.02 6.14±0.03 6.31±0.03

+SPIN 3.63±0.01 3.78±0.01 3.90±0.02 4.07±0.02 21.19±0.15 23.19±0.17 24.56±0.19 26.01±0.22 16.04±0.13 17.24±0.14 19.49±0.16 22.26±0.19 5.69±0.01 5.8±0.02 6.12±0.04 6.38±0.04

raw 3.72±0.02 3.87±0.02 3.95±0.04 4.11±0.04 23.24±0.21 27.85±0.23 30.47±0.23 33.25±0.25 16.52±0.15 18.75±0.16 20.96±0.18 23.47±0.21 5.75±0.02 5.98±0.02 6.25±0.04 6.57±0.04

Fo
ur

ie
rG

N
N +Merlin 3.54±0.01 3.62±0.01 3.72±0.02 3.85±0.02 19.97±0.11 21.05±0.12 22.54±0.13 24.26±0.15 15.58±0.09 16.47±0.11 18.14±0.13 20.63±0.14 5.59±0.01 5.75±0.01 5.97±0.02 6.16±0.02

+GATGPT 3.56±0.01 3.65±0.01 3.79±0.02 3.91±0.02 20.37±0.13 21.55±0.15 23.03±0.15 24.43±0.17 15.71±0.11 16.68±0.12 18.51±0.14 21.06±0.15 5.65±0.01 5.79±0.01 6.01±0.02 6.21±0.02

+GPT2 3.58±0.01 3.68±0.01 3.80±0.02 3.96±0.02 20.54±0.14 22.27±0.16 23.25±0.18 24.63±0.20 15.81±0.12 16.76±0.14 18.64±0.16 21.28±0.18 5.67±0.01 5.82±0.02 6.04±0.02 6.24±0.03

+MAE 3.59±0.02 3.72±0.02 3.83±0.02 3.92±0.02 20.63±0.15 22.34±0.17 23.38±0.18 24.52±0.19 15.86±0.13 16.89±0.15 18.62±0.16 21.15±0.17 5.68±0.01 5.84±0.02 6.03±0.02 6.23±0.03

+SPIN 3.57±0.01 3.66±0.01 3.79±0.02 3.97±0.02 20.44±0.14 22.15±0.15 23.34±0.18 24.75±0.19 15.75±0.12 16.71±0.14 18.58±0.15 21.34±0.17 5.66±0.01 5.81±0.02 6.07±0.02 6.27±0.03

raw 3.61±0.02 3.77±0.02 3.92±0.04 4.05±0.04 21.34±0.18 24.58±0.20 27.05±0.22 29.71±0.24 15.98±0.15 17.69±0.16 19.13±0.18 21.57±0.21 5.73±0.02 5.93±0.02 6.15±0.04 6.39±0.04

K COMPARED WITH END-TO-END MODELS THAT CAN HANDLE MISSING
DATA

The experimental results in Section 4.2 (Main Results) and Section 4.3 (Transferability of Merlin)
demonstrate that Merlin achieves superior predictive performance compared to two-stage models.
To further validate the model’s performance, we compared Merlin with several existing end-to-end
models that can handle missing data. All models are introduced as follows:

• MGSFformer (Yu et al., 2024b): This model introduces residual redundancy reduction
blocks, spatiotemporal attention blocks, and dynamic fusion blocks to achieve multivariate
time series forecasting (MTSF).

• S4 (Gu et al., 2022): It proposes a fundamental state space model to achieve accurate
MTSF.

• GinAR (Yu et al., 2024a): This model incorporates interpolation attention and adaptive
graph learning to enhance its performance in MTSF with missing data.

Table 15 show the RMSE values of several models. Based on the experimental results, it can be
observed that compared with end-to-end models that can handle missing data, the proposed model
still achieves better forecasting performance.
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Table 15: RMSE values of several models (The best results are shown in bold).

Datasets Methods Missing rates
25% 50% 75% 90%

METR-LA

Proposed 6.58±0.02 6.65±0.02 6.81±0.04 7.06±0.04

GinAR 6.72±0.02 6.91±0.04 7.38±0.04 7.67±0.04

MGSFformer 6.78±0.04 6.98±0.04 7.45±0.04 7.84±0.06

S4 7.13±0.04 7.54±0.04 7.82±0.06 8.16±0.08

PEMS04

Proposed 30.67±0.13 31.41±0.15 33.38±0.16 36.27±0.17

GinAR 32.15±0.16 34.27±0.18 35.86±0.21 38.19±0.22

MGSFformer 32.78±0.19 36.43±0.21 39.21±0.23 40.16±0.24

S4 35.23±0.24 40.17±0.25 43.06±0.27 45.58±0.29
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