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Abstract
Concentration inequalities play an essential role
in the study of machine learning and high di-
mensional statistics. In this paper, we obtain un-
bounded analogues of the popular bounded dif-
ference inequality for functions of independent
random variables with heavy-tailed distributions.
The main results provide a general framework
applicable to all heavy-tailed distributions with
finite variance. To illustrate the strength of our re-
sults, we present applications to sub-exponential
tails, sub-Weibull tails, and heavier polynomially
decaying tails. Applied to some standard prob-
lems in statistical learning theory (vector valued
concentration, Rademacher complexity, and algo-
rithmic stability), we show that these inequalities
allow an extension of existing results to heavy-
tailed distributions up to finite variance.

1. Introduction
Concentration inequalities are fundamental in empirical sci-
ence and serve as a critical toolkit for the study of both nat-
ural and artificial learning systems (Boucheron et al., 2005;
2013). They have been investigated over several decades
and applied in numerous fields, including convex geometry,
functional analysis, probability theory, information theory,
communications and coding theory, learning theory, and the-
oretical computer science (Raginsky & Sason, 2015; 2018).

The bounded difference inequality, also known as McDi-
armid’s inequality (McDiarmid, 1998), is among the most
renowned concentration inequalities. It has been extensively
used within statistical learning theory (Bousquet & Elisseeff,
2002; Bartlett & Mendelson, 2002) as a potent instrument.
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The bounded difference inequality encapsulates the probabil-
ities that a function of independent random variables varies
from its mean in terms of the sum of conditional ranges. It
surpasses the general Hoeffding-type and Bernstein-type in-
equalities that rely on the summation of independent random
variables (Vershynin, 2018; Wainwright, 2019) by charac-
terizing a general function; this renders it more adaptable
and effective for estimating complex statistics beyond the
sum (Maurer, 2019; Maurer & Pontil, 2018; 2019).

However, a limitation of the classical bounded difference
inequality (McDiarmid, 1998) is its requirement that con-
ditional ranges be uniformly bounded, a constraint that sig-
nificantly reduces its applicability. Many scenarios demand
the use of its unbounded variants. For example, extensive
research has focused on establishing generalization bounds
in unbounded situations, for which the classic inequality
is not readily applicable (Cortes et al., 2021; Kontorovich,
2014; Meir & Zhang, 2003). It is possible for conditional
ranges to be infinite, yet the conditional versions (obtained
by fixing all but one argument of the function) may exhibit
certain decaying tails (Maurer & Pontil, 2021). In such
relaxed conditions, one might anticipate the existence of
bounded difference-type inequalities. Some studies (Meir
& Zhang, 2003; Kontorovich, 2014; Kutin, 2002; Maurer
& Pontil, 2021) have successfully extended the classical
inequality to cover the unbounded case. Specifically, Kutin
(2002); Meir & Zhang (2003); Kontorovich (2014) have
provided concentration inequalities for sub-Gaussian decay
tails, while Maurer & Pontil (2021) have further contributed
inequalities for heavier sub-exponential decay tails.

Unsatisfactory, both sub-Gaussian and sub-exponential
distributions are relatively light-tailed distributions
(Vladimirova et al., 2020; Wainwright, 2019). A distinc-
tive difference between heavy-tailed distributions and
sub-Gaussian and sub-exponential distributions is the
moment generating function (MGF). The MGF exists for
sub-Gaussian and sub-exponential distributions (Vershynin,
2018), while it does not exist for heavy-tailed distributions
(Foss et al., 2011). Thus, the technique used in (Meir &
Zhang, 2003; Kontorovich, 2014; Kutin, 2002; Maurer
& Pontil, 2021) to find upper bounds for the MGF
clearly fails for heavy-tailed distributions. Meanwhile,
in many applications, such as probability theory (Wong
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et al., 2020), high-dimensional statistics (Kuchibhotla
& Chakrabortty, 2018; Guédon et al., 2014), stochastic
optimization (Gurbuzbalaban et al., 2021), and signal
processing (Bakhshizadeh et al., 2020), the assumption of
light-tailed sub-Gaussian and sub-exponential distributions
seems inappropriate. Therefore, concentration inequalities
for heavy-tailed random variables are necessary (Foss et al.,
2011).

This paper amis to provide bounded difference-type concen-
tration inequalities, where the centered conditional versions
have heavy-tailed distributions. We prove these inequal-
ities using the entropy method (Boucheron et al., 2003;
2013; Ledoux, 2001; Maurer, 2012; Raginsky & Sason,
2018) and the truncation technique for random variables
(Bakhshizadeh et al., 2023; Nagaev, 1979; Hahn & Klass,
1997; Klass & Nowicki, 2007; Hitczenko & Montgomery-
Smith, 2001). We demonstrate that the techniques used in
this paper can be applied to deduce concentration inequali-
ties for all distributions with finite variance.

Our main results, Theorem 3.1 and Theorem 3.2 in Section
3.1, provide general frameworks that are applicable to all
finite variance distributions. To illustrate the strength of
our frameworks, we present applications to sub-exponential,
sub-Weibull, and polynomially decaying tails, respectively.
These results are detailed in Section 3.2. Moreover, we
obtain refined concentration results in Section 3.3 based on
an asymptotic argument. To demonstrate the application
of these derived concentration inequalities, we apply them
to some standard problems in statistical learning: vector-
valued concentration, Rademacher complexity, and algorith-
mic stability. These applications follow the work (Maurer &
Pontil, 2021). Based on the bounded difference inequality,
Rademacher complexity and algorithmic stability are two
fundamental tools for deducing generalization bounds for
various learning problems. However, when deriving high
probability bounds, these tools typically require bounded-
ness of loss functions. As a result, our inequalities facilitate
the extension of these results to heavy-tailed distributions
with finite variance.

This paper is organized as follows. We first introduce the
preliminaries relevant to our discussion in Section 2. Sec-
tion 3 presents the main results, detailing the concentration
inequalities and their discussions. Section 4 is devoted
to applications: vector valued concentration, Rademacher
complexity and generalization, and algorithmic stability and
generalization. We conclude this paper in Section 5. All
proofs are postponed to the Appendix.

2. Preliminaries
Conventionally, we use uppercase letters to present random
variables and vector of random variables, and use lowercase

letters to present scalars and vector of scalars. Let X =
(X1, ..., Xn) be a vector of independent random variables
with values in a space X , and the vector X ′ = (X ′1, ..., X

′
n)

is independent and identically distributed (i.i.d.) to X . We
consider that f is a function f : Xn → R. In this paper, we
are interested in studying the concentration of the random
variable f(X) with respect to its expectation, i.e.,

P (f(X)− E[f(X ′)] > t) , ∀t ≥ 0.

To proceed, we need the following definition to characterize
the fluctuations of f in the k-th variable Xk, when the other
variables (xi : i 6= k) are given.

Definition 2.1. If f : Xn → R, x = (x1, ..., xn) ∈ Xn
and X = (X1, ..., Xn) is a random vector with indepen-
dent components in Xn, then the k-th centered conditional
version of f is the variable

fk(X)(x) =f (x1, ..., xk−1, Xk, xk+1, ..., xn)

− E [f (x1, ..., xk−1, X
′
k, xk+1, ..., xn)] .

Then fk(X) is a random-variable-valued-function fk(X) :
x ∈ Xn → fk(X)(x), which does not depend on the k-th
coordinate of x. And

fk(X)(X) =f(X1, ..., Xk−1, Xk, Xk+1, ..., Xn)

− E[f(X)|X1, ..., Xk−1, Xk+1, ..., Xn].

The expectation in fk(X)(x) and fk(X)(X) is taken on
the k-th random variable of f since we are interested in its
centered conditional version. Also, consider the summation
case f(x) =

∑n
i=1 xi, then fk(X)(x) = Xk − E[Xk] is

independent of x.

We then introduce some notations relevant to the heavy-
tailed random variable. The following definition describes
the tail property of a random variable.

Definition 2.2. Let h : R → R≥0 be an increasing and
continuous function. We say h captures the right tail of
random variable Z if

P(Z > t) ≤ exp(−h(t)), ∀t > 0.

The function h(t) is generic. We will describe our main
results in terms of this generic function and will be interested
in some concrete tails: sub-exponential tail (h(t) = ct for
some fixed coefficient c), sub-Weibull tail (h(t) = cθt

1
θ for

some θ ≥ 1), and polynomially decaying tail (h(t) = c log t
such that c > 2). In the sequel, for any random variable Z,
we use the notation Zτ to present its truncated version, i.e.,

Zτ = ZI(Z ≤ τ), τ > 0.
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3. Results
In this section, we show concentration inequalities for gen-
eral functions of heavy-tailed random variables. We first
give general frameworks in Section 3.1 and then apply them
to some popular heavy-tailed distributions in Section 3.2.
Finally, we will further provide refined results in Section
3.3 based on an asymptotic argument.

3.1. Main Results

Let fτk (X)(x) = fk(X)(x)I(fk(X)(x) ≤ τ). The first
result is a general framework.

Theorem 3.1. Suppose that the right tail of fk(X)(x) for
all x ∈ Xn and any k = 1, ..., n is captured by h(t) as
defined in Definition 2.2. Let η ∈ (0, 1] and β = ηh(τ)

τ , we
define

Λ(τ, η) , sup
x∈Xn

E
[
(fτk (X)(x))

2 I(fτk (X)(x) ≤ 0)
]

+E
[
(fτk (X)(x))

2
eβf

τ
k (X)(x)I(0 < fτk (X)(x))

]
.

Further, we define t(η) , sup
{
t ≥ 0 : t ≤ ηh(t)

t nΛ(t, η)
}

.

Then, (1) if t ≥ t(η), we have

P (f(X)− E[f(X ′)] > t)

≤ exp (−ctηh(t)) + n exp(−h(t)),

where ct =
(

1− 1
2t
ηh(t)
t nΛ(t, η)

)
∈ [ 1

2 , 1);

(2) if 0 ≤ t < t(η), we have

P (f(X)− E[f(X ′)] > t)

≤ exp

(
− t2

2nΛ(t(η), η)

)
+ n exp

(
− t(η)2

ηnΛ(t(η), η)

)
.

We give some remarks.

(1) Theorem 3.1 assumes that fk(X)(x) has a uniform tail
captured by h(t) for all x simultaneously, which follows the
work (Maurer & Pontil, 2021). Specifically, for fk(X)(x)
being sub-exponential, Theorem 4 in (Maurer & Pontil,
2021) shows

P (f(X)− Ef(X ′) > t) ≤ exp

(
−t2

4e2A+ 2eBt

)
, (1)

where A = supx∈Xn
∑n
k=1 ‖fk(X)(x)‖2ψ1

, B =
maxk supx∈Xn ‖fk(X)(x)‖ψ1

and ‖ · ‖ψ1
is the sub-

exponential norm. This inequality is built on the supremum
supx∈Xn of fk(X)(x), which means assuming a uniform
tail on fk(X)(x) for all x simultaneously. Since this paper
aims to extend the sub-Gaussian and sub-exponential dis-
tributions in (Maurer & Pontil, 2021) to heavy-tailed ones,

we adhere to similar assumptions for consistency. Similarly,
we assume that Λ(τ, η) is constant for all x ∈ Xn.

(2) Theorem 3.1 is an unbounded version of the bounded
difference inequality (McDiarmid, 1998), featuring a mix-
ture of two tails, a sub-Gaussian tail for small deviations,
which is expected from the central limit theorem, and a
heavy tail of magnitude O(exp(−ch(t))) for large devia-
tions, where c > 0 is a constant, which is expected from
the right tail of fk(X)(x). The transition between the two
different regimes occurs at a threshold t(η). Given that h(t)
is a generic function, the result is general enough to derive
concrete concentration inequalities for distributions with
finite variance.

(3) To derive concrete concentration inequalities, one needs
to get an upper bound for Λ(τ, η), denoted by Λ̄(τ, η). It is
noteworthy that Λ(τ, η) can be substituted by Λ̄(τ, η) for all
values of τ , including τ = t and τ = t(η). One should then
set τ = t and identify the region t ≤ ηh(t)

t nΛ̄(t, η) for t ≥
0, and subsequently find its supremum t(η). Now, applying
inequalities from Theorem 3.1 and replacing Λ(t(η), η) with
Λ̄(t(η), η) yields concrete concentration inequalities.

(4) The justification for substituting Λ(t, η) with an upper
bound Λ̄(t, η) is that the proof of Theorem 3.1 accommo-
dates it. The proof holds by using an upper bound of Λ(t, η).
In other words, if Λ(t, η) ≤ Λ̄(t, η), Theorem 3.1 remains
valid by replacing Λ(t, η) with Λ̄(t, η) in the definition of
t(η) and the coefficients appeared in the inequalities.

(5) Considering a simplified case where Λ(τ, η) ≤ c, the
inequality is established by replacing Λ(τ, η) with c. In
Section 3.3, we will show that Λ(τ, η) converges to the
variance supx∈Xn E[(fk(X)(x))2] if τ grows to infinity.
In this case, the inequality is constructed by substituting
Λ(τ, η) with this variance.

(6) A limitation of Theorem 3.1 is its inability to provide the
optimal rate for Gaussian variables. For a better discussion,
we mention concentration results for Lipschitz functions
(Vershynin, 2018). If X1, ..., Xn are independent random
variables, each bounded on [a, b], and let f : Rn → R is
convex and L-Lipschitz with respect to the Euclidean norm,
then for all t ≥ 0

P (|f(X)− E[f(X)]| > t) ≤ 2 exp

(
− t2

2L2(b− a)2

)
.

This result is truly remarkable since the concentration holds
for a quantity independent of n. Note that the convexity
assumption cannot be dropped in general; see (Ledoux &
Talagrand, 2013), pp17. However, if Xi are distributed
normally, we no longer need the convexity assumption, re-
sulting in the following concentration: let X1, ..., Xn be
independent random variables each distributedN (0, 1), and
let f : Rn → R be L-Lipschitz with respect to the Euclidean
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norm, then for all t ≥ 0

P (|f(X)− E[f(X)]| > t) ≤ 2 exp

(
− t2

2L2

)
.

This bound illustrates that the concentration properties of
Lipschitz functions of Gaussian variables exhibit a particu-
larly attractive form of dimension-free concentration. Look-
ing back at our inequalities. When h(t) = t2 (sub-Gaussian
tail), Λ(τ, η) is bounded by a constant, and t(η) is infinity.
Thus for any t ≥ 0 we have the following inequality

P (f(X)− E[f(X ′)] > t)

≤ exp

(
− t2

2nΛ(t(η), η)

)
+ n exp

(
− t(η)2

ηnΛ(t(η), η)

)
.

The analysis in Section 3.3 demonstrates that if t(η)
grows to infinity, Λ(t(η), η) converges to the variance
supx∈Xn E[(fk(X)(x))2]. In this context, we have

P (f(X)− E[f(X ′)] > t)

≤2 exp

(
− t2

2n supx∈Xn E[(fk(X)(x))2]

)
,

which introduces a dimension-dependent bound. By compar-
ison, our bound gives a weaker result, thereby not providing
the optimal rate for Gaussian variables. However, our in-
equality, as formulated in Theorem 3.1, does not require the
Lipschitz condition, offering broader applicability. More-
over, the dependency on the dimension n is inherited from
the drawback of the bounded difference-type inequality.

(7) Another limitation of Theorem 3.1 is its inability to han-
dle distributions with infinite variance. Our proof requires
bounding the term Λ(τ, η), which excludes the infinite vari-
ance. To address scenarios with infinite variance, additional
methodologies may be necessary. Here, we would like to
highlight the significance of the infinite variance setting.
Distributions with infinite variance are characterized by
heavier tails and have broader applicability. We believe
that Φ-entropies and moment inequalities (Boucheron et al.,
2013) could potentially serve as powerful tools to move to
the infinite variance setting.

Theorem 3.1 provides the best possible result implied by our
analysis. We can also obtain a single inequality by adding
the inequalities for each regime.

Theorem 3.2. Let fk(X)(x), η, β and Λ(τ, η) be as in
Theorem 3.1. Then we have

P (f(X)− E[f(X ′)] > t) ≤ exp

(
− t2

2nΛ(t, η)

)
+ exp

(
−max

{
ct,

1

2

}
ηh(t)

)
+ n exp(−h(t)),

where ct = 1− ηh(t)
2t2 nΛ(t, η).

3.2. Heavy-tailed Distributions

To illustrate the strength of our main results, we apply them
to some popular distributions, including sub-exponential,
sub-Weibull, and heavier polynomially distributions.

The first result assumes that the right tail of fk(X)(x) is
sub-exponential.

Theorem 3.3. Suppose that the right tail of fk(X)(x)
for all x ∈ Xn and any k = 1, ..., n is captured
by h(t) = ct for some fixed coefficient c. Assume
supx∈Xn E[(fk(X)(x))

2 I(fk(X)(x) ≤ 0)] = σ2
− < ∞.

Let η ∈ (0, 1), we have

Λ(τ, η) ≤ 2

(1− η)3c2
+ σ2
− = Λ̄(τ, η).

Let t(η) = ηcnΛ̄(τ, η). Then, (1) if t ≥ t(η), we have

P (f(X)− E[f(X ′)] > t)

≤ exp (−ctηct) + n exp(−ct),

where ct = 1− nηcΛ̄(τ,η)
2t ; (2) if 0 ≤ t < t(η), we have

P (f(X)− E[f(X ′)] > t)

≤ exp

(
− t2

2nΛ̄(τ, η)

)
+ n exp

(
− t(η)2

ηnΛ̄(τ, η)

)
.

We give some remarks.

(1) Both the bound Λ̄(τ, η) and the inequalities exclude
the truncated parameter τ , highlighting the benign property
of sub-exponential random variables. We explore the sub-
exponential tail since it is relatively simple and intuitive.
Theorem 3.3 effectively illustrates how to apply Theorem
3.1 to concrete tails.

(2) We present a user-friendly corollary.

Corollary 3.4. Let fk(X)(x) and h(t) be as in Theorem
3.3. Assume supx∈Xn E[(fk(X)(x))

2 I(fk(X)(x) ≤ 0)] =
σ2
− < ∞. Let α = 16

c2 + σ2
− and t(η) = cn

2 α. Then, if
t ≥ t(η), we have

P (f(X)− E[f(X ′)] > t) ≤ 2 exp

(
−1

4
ct

)
;

if 0 ≤ t < t(η), when n ≥ 8 logn
3c2α , we have

P (f(X)− E[f(X ′)] > t) ≤ 2 exp

(
− t2

2nα

)
.

Given n grows much faster than log n, the condition n ≥
8 logn
3c2α is readily met. Indeed, it is easy to verify that σ2

− ≤
2c−2 for h(t) = ct. Plugging this bound into α, we see that
the condition n ≥ 8 logn

3×18 is always satisfied.
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(3) For bounded difference-type inequalities of sub-
exponential random variables, a related result is Theorem
4 in (Maurer & Pontil, 2021), as shown in (1). As a com-
parison, the proof techniques used are different. Our in-
equalities also allow a fine-grained analysis where the right
tail of fk(X)(x) is assumed to be captured by h(t) = ckt
for any k = 1, ..., n. In comparison, our proof employs
truncation techniques, which are not utilized in (Maurer &
Pontil, 2021). We then examine the similarities between
the two bounds. Specifically, given the equivalent proper-
ties of sub-exponential variables regarding their tails and
moments (refer to Proposition 2.7.1 in (Vershynin, 2018)),
both the two bounds exhibit a sub-Gaussian tail governed
by the variance proxy n

c2 for small deviations, and a sub-
exponential tail governed by the scale-proxy 1

c for large
deviations. Moreover, the transition between the two differ-
ent regimes occurs at a similar threshold n

c .

(4) If f is a sum, i.e., f(x) =
∑n
i=1 xi, we recover Bern-

stein’s inequality for sub-exponential random variables, re-
ferring to Theorem 2.8.1 in (Vershynin, 2018) and Proposi-
tion 2.9 in (Wainwright, 2019).

The next result assumes that the right tail of fk(X)(x) is
sub-Weibull.

Theorem 3.5. Suppose that the right tail of fk(X)(x)
for all x ∈ Xn and any k = 1, ..., n is cap-
tured by h(t) = cθt

1
θ for some θ ≥ 1. Assume

supx∈Xn E[(fk(X)(x))
2 I(fk(X)(x) ≤ 0)] = σ2

− < ∞.

Let η ∈ (0, 1) and β = ηcθτ
1
θ

τ , we have

Λ(τ, η) ≤ Γ(2θ + 1)

((1− η)cθ)2θ

+
ηcθτ

1
θ Γ(3θ + 1)

3τ((1− η)cθ)3θ
+ σ2
− = Λ̄(τ, η).

Let t(η) =
(
ηcθnΛ̄(t, η)

) θ
2θ−1 . Then, one can plug t(η)

and Λ̄(t(η), η) into Theorem 3.1 to get the concentration
inequalities. Furthermore, using the bound in Theorem 3.2
we get

P (f(X)− E[f(X ′)] > t) ≤ exp

(
− t2

2nΛ̄(t, η)

)
+ exp

(
−max

{
ct,

1

2

}
ηcθt

1
θ

)
+ n exp(−cθt

1
θ ),

where ct = 1− ηcθt
1
θ

2t2 nΛ̄(t, η).

We give some remarks.

(1) Sub-Weibull distributions are parameterized by a pos-
itive tail index θ and reduced to sub-Gaussian distribu-
tions for θ = 1/2 and to sub-exponential distributions for
θ = 1. A higher tail parameter θ indicates a heavier tail.

The MGF of sub-Weibull distributions becomes unbounded
when θ > 1, posing serious challenges in deducing concen-
tration inequalities for this distribution. For more details
of sub-Weibull distributions, please refer to (Vladimirova
et al., 2020; Kuchibhotla & Chakrabortty, 2018; Bong &
Kuchibhotla, 2023).

(2) In Theorem 3.5, the upper bound of Λ(τ, η) includes
the truncated parameter τ , contrasting sharply with the sub-
exponential case.

(3) We provide a user-friendly corollary.

Corollary 3.6. Let fk(X)(x) and h(t) be as in Theorem
3.5. Assume supx∈Xn E[(fk(X)(x))

2 I(fk(X)(x) ≤ 0)] =

σ2
− <∞. Let α = Γ(2θ+1)22θ

c2θθ
+
cθc

1/θ
1 Γ(3θ+1)23θ

6c1c3θθ
+σ2
− and

t(η) = (1
2cθnα)

θ
2θ−1 , where c1 is a positive constant. Then,

if t ≥ t(η), when n
1

2θ−1 ≥ 4
3cθ

( 1
2cθα)

1
1−2θ log n, we have

P (f(X)− E[f(X ′)] > t) ≤ 2 exp

(
−1

4
cθt

1
θ

)
;

if 0 ≤ t < t(η), when n
1

2θ−1 ≥ 8
3α( 1

2cθα)
2θ

1−2θ log n, we
have

P (f(X)− E[f(X ′)] > t) ≤ 2 exp

(
− t2

2nα

)
.

Given n
1

2θ−1 grows faster than log n, the condi-
tions n

1
2θ−1 ≥ 4

3cθ
( 1

2cθα)
1

1−2θ log n and n
1

2θ−1 ≥
8
3α( 1

2cθα)
2θ

1−2θ log n are easily met. It is evident that the
bounds delineate two distinct regimes: the sub-Gaussian
and the sub-Weibull tails.

(4) For bounded difference-type inequalities of sub-Weibull
random variables, we have not found results comparable to
Theorem 3.5 in the literature. Concentration inequalities for
independent sub-Weibull random variables are primarily de-
voted to the sum, referring to (Kuchibhotla & Chakrabortty,
2018; Zhang & Wei, 2021; Bakhshizadeh et al., 2023; Bong
& Kuchibhotla, 2023). Compared with these bounds, our
inequalities exhibit a similar threshold n

θ
2θ−1 between the

two different regimes (sub-Gaussian and sub-Weibull tail),
as seen in Theorem 1.(c) in (Zhang & Wei, 2021), Theorem
3.1 in (Kuchibhotla & Chakrabortty, 2018), Corollary 2 in
(Bakhshizadeh et al., 2023), and Theorem 2.3 in (Bong &
Kuchibhotla, 2023).

In the last, we assume that the right tail of fk(X)(x) is
polynomially decaying.

Theorem 3.7. Suppose that the right tail of fk(X)(x)
for all x ∈ Xn any k = 1, ..., n is captured
by h(t) = c log t such that c > 2. Assume
supx∈Xn E[(fk(X)(x))

2 I(fk(X)(x) ≤ 0)] = σ2
− < ∞.
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Let η ∈ (0, 1) and β = ηc log τ
τ , we have (1) if η 6= 1− 2

c

Λ(τ, η) ≤
2 + ηc

(
− 1

2−(1−η)c

)
2− (1− η)c

(
τ2−(1−η)c − 1

)
+
τ2−(1−η)cηc log τ

2− (1− η)c
+ τ cητ

−1

+ σ2
− = Λ̄(τ, η).

(2) if η = 1− 2
c ,

Λ(τ, η) ≤2 log τ +
(c− 2)(log τ)2

2

+ τ cητ
−1

+ σ2
− = Λ̄(τ, η).

Then, one can plug Λ̄(τ, η) into Theorem 3.1 to get the
concentration inequalities. Furthermore, using the bound
in Theorem 3.2 we get

P (f(X)− E[f(X ′)] > t)

≤ exp

(
− t2

2nΛ̄(t, η)

)
+

n

tηcmax{ct,0.5}
+
n

tc
,

where ct = 1− ηc log t
2t2 nΛ̄(t, η).

We give some remarks.

(1) The polynomially decaying tails are heavier than the
sub-Weibull ones. Similar to discussions regarding the sub-
exponential and sub-Weibull cases, a user-friendly corollary
can be derived by following the same methodology.

(2) Due to the presence of terms τ2−(1−η)c and 1
2−(1−η)c ,

it is necessary for 2− (1− η)c < 0, i.e., c > 2
1−η > 2, to

guarantee that the upper bound of Λ(τ, η) is finite. Under
this condition, even if τ closes to infinity the bound of
Λ(τ, η) remains bounded, and so is the concentration results.
Proving concentration inequalities for independent variables
with polynomially decaying tails when c ≤ 2 remains an
open problem.

(3) For bounded difference-type inequalities of polynomially
decaying variables, we have not found results comparable
to Theorem 3.7 in the literature. The bounds in Theorem
3.7 also delineate two distinct regimes: the sub-Gaussian
tail and the polynomially decaying tail. A related result is
Corollary 3 in (Bakhshizadeh et al., 2023), but it applies
only to the sum of independent variables.

3.3. Refined Results

In this section, we give refined concentration results by
considering enough large values of the truncated parameter
τ , which is motivated by Bakhshizadeh et al. (2023). Our
first result studies the sub-Weibull tail.

Theorem 3.8. Suppose that the right tail of fk(X)(x) for
all x ∈ Xn and any k = 1, ..., n is captured by h(t) =

cθt
1
θ for some θ > 1. Let supx∈Xn E[(fk(X)(x))2] =

σ2. Then for any η ∈ (0, 1) and δ > 0, we have t(η) =(
ηcθn(σ2 + δ)

) θ
2θ−1 , and there exists a positive constant cδ

such that for any t ≥ cδ ,

P (f(X)− E[f(X ′)] > t)

≤

exp
(
−ctηcθt

1
θ

)
+ n exp

(
−cθt

1
θ

)
if t > t(η),

exp
(
− t2

2n(σ2+δ)

)
+ n exp

(
− t(η)2

ηn(σ2+δ)

)
if t ≤ t(η),

where ct =

(
1− 1

2t
ηcθt

1
θ

t n(σ2 + δ)

)
∈ [ 1

2 , 1).

We give some remarks.

(1) We focus on the concentration behavior for large values
of the truncation parameter τ . The proof demonstrates that
if τ grows to infinity, Λ(τ, η) converges to the variance
supx∈Xn E[(fk(X)(x))2]:

lim
τ→∞

E[(fτk (X)(x))2I(fτk (X)(x) ≤ 0)

+ (fτk (X)(x))2eβf
τ
k (X)(x)I(0 < fτk (X)(x) ≤ τ)]

= E
[
(fk(X)(x))2

]
whenever β ≤ ηh(τ)

τ . This implies that if τ is
very large, we get a tighter bound of Λ(τ, η). Both
the bounds exp(− t2

2n(σ2+δ) ) + n exp(− t(η)2

ηn(σ2+δ) ) and

exp(−ctηcθt
1
θ ) + n exp(−cθt

1
θ ) are very possible to be

sharp, thus we conclude that a tighter bound for Λ(τ, η)
leads to an accurate concentration result.

(2) Since the bound of Λ(τ, η) in Theorem 3.3 does not
involve the parameter τ , the results for sub-exponential tails
do not require a refinement.

The second result studies the polynomially decaying tail,
with discussions that can follow Theorem 3.8.

Theorem 3.9. Suppose that the right tail of fk(X) for all
x ∈ Xn and any k = 1, ..., n is captured by h(t) = c log t
for c > 2 and η < 1− 2

c . Let supx∈Xn E[(fk(X)(x))2] =
σ2. Then for any η ∈ (0, 1) and δ > 0, we have t(η) =
ηc log t(η)
t(η) n(σ2 + δ), and there exists a positive constant cδ

such that for any t ≥ cδ ,

P (f(X)− E[f(X ′)] > t)

≤

{
exp (−ctηc log t) + n exp (−c log t) if t > t(η),

exp
(
− t2

2n(σ2+δ)

)
+ n exp

(
− t(η)2

ηn(σ2+δ)

)
if t ≤ t(η),

where ct =
(

1− 1
2t
ηc log t
t n(σ2 + δ)

)
∈ [ 1

2 , 1).

We give a remark to discuss the proof technique of our
results in Section 3.

6



Concentration Inequalities for General Functions of Heavy-Tailed Random Variables

The proof of our results in Section 3 mainly follows
Bakhshizadeh et al. (2023), which studies the concentration
for the sums of i.i.d. random variables with heavy-tailed
distributions, while we study the concentration for general
functions of heavy-tailed random variables. Specifically, our
proof combines the entropy method used in (Maurer, 2012)
and the truncation technique of random variables used in
(Bakhshizadeh et al., 2023). We apply the entropy method
to derive our concentration inequalities for functions of in-
dependent random variables and employ the truncation tech-
nique to manage heavy-tailed random variables. The sub-
additivity of the entropy method facilitates the tensorization
of the total entropy, while the truncation technique allows
for the continued use of the MGF on truncated variables.

4. Applications
To illustrate the application of these inequalities we give
their use in vector valued concentration and two different
methods to prove generalization bounds: Rademacher com-
plexity and algorithmic stability. For conciseness, we focus
mainly on applications of the two user-friendly corollaries.
Applications of other tails can often be substituted by the
reader by following the same pattern.

4.1. Vector Valued Concentration

Define the Lp-norm of a real-valued random variable Z as
‖Z‖p = (E[|Z|p])1/p for p ≥ 1. We study concentration of
vectors in a normed space (X , ‖ · ‖).

Theorem 4.1. Suppose the Xi are i.i.d. random variables
with values in a normed space (X , ‖ · ‖) and the right tails
of the ‖Xi‖ are captured by ct for some fixed coefficient c.
Let α = 16

(c′c)2 + 4E[‖X1‖2] and t(η) = c′cn
2 α, where c′ is

an absolute positive constant. (i) Then if t ≥ t(η)

P

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥− E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ > t

)
≤ 2 exp

(
−1

4
c′ct

)
;

if 0 ≤ t < t(η) and when n ≥ 8 logn
3(c′c)2α

P

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥− E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ > t

)
≤ 2 exp

(
− t2

2nα

)
.

(ii) If X is a Hilbert space, then if t ≥ t(η)

P

(∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥ > t+
√
n‖‖X1‖‖2

)

≤2 exp

(
−1

4
c′ct

)
;

if 0 ≤ t < t(η) and when n ≥ 8 logn
3(c′c)2α

P

(∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥ > t+
√
n‖‖X1‖‖2

)

≤2 exp

(
− t2

2nα

)
.

We compare Theorem 4.1 with the result of (Latała, 1997).
Example 3.3 in (Latała, 1997) demonstrates that if Xi are
independent symmetric random variables with logarithmi-
cally convex tails, i.e., P(|Xi| ≥ t) = e−N(t) for t ≥ 0,
where N : R+ → R+ is a concave function, then for
p ≥ 2, it holds that ‖

∑n
i=1Xi‖p ≤ c

(
p
∑

EX2
i

)1/2
+

(
∑

E|Xi|p)1/p, where c is a constant. Considering the case
where N(t) = t, by homogeneity, we derive∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
p

≤ c′(√p
√
n+ p),

where c′ is a constant, see Corollary 1.2 in (Bogucki, 2015).
Using Markov’s inequality to transfer the moment to proba-
bility, we obtain

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

(
−min

{
t2

4e2c′2n
,
t

2ec′

})
.

This bound exhibits a mixture of two tails, a sub-
Gaussian tail exp

(
− t2

4e2c′2n

)
and a sub-exponential tail

exp
(
− t

2ec′

)
. By comparison, our upper bound of

P (‖
∑n
i=1Xi‖ − E ‖

∑n
i=1Xi‖ > t) similarly exhibits a

mixture of a sub-Gaussian tail 2 exp
(
− t2

2nα

)
and a sub-

exponential tail 2 exp
(
− 1

4c
′ct
)
. The exact relationship be-

tween the constants in our bounds compared to those in the
result of (Latała, 1997) remains to be clarified. However,
given that our Theorem 4.1 is devised for vector-valued vari-
ables, the bound from (Latała, 1997) can be considered a
one-dimensional instance of our results.

The second result studies the sub-Weibull tail.

Theorem 4.2. Suppose the Xi are i.i.d. random vari-
ables with values in a normed space (X , ‖ · ‖) and the
right tails of ‖Xi‖ are captured by h(t) = cθt

1
θ for some

θ ≥ 1. Let α = Γ(2θ+1)22θ

(c′θ)2θ +
c′θc

1/θ
1 Γ(3θ+1)23θ

6c1(c′θ)3θ +4E[‖X1‖2]

and t(η) = (1
2c
′
θnα)

θ
2θ−1 , where c1 and c′θ are two posi-

tive constants. (i) Then if t ≥ t(η) and when n
1

2θ−1 ≥
4

3c′θ
( 1

2c
′
θα)

1
1−2θ log n

P

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥− E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ > t

)
≤ 2 exp

(
−1

4
c′θt

1
θ

)
;
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if t ≥ t(η) and when n
1

2θ−1 ≥ 4
3c′θ

( 1
2c
′
θα)

1
1−2θ log n,

P

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥− E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ > t

)
≤ 2 exp

(
− t2

2nα

)
.

(ii) If X is a Hilbert space, then if t ≥ t(η) and when
n

1
2θ−1 ≥ 4

3c′θ
( 1

2c
′
θα)

1
1−2θ log n

P

(∥∥∥∥∥
n∑
i=1

(Xi − E[X ′1])

∥∥∥∥∥ > t+
√
n‖‖X1‖‖2

)

≤2 exp

(
−1

4
c′θt

1
θ

)
;

if 0 ≤ t < t(η) and when n
1

2θ−1 ≥ 8
3α( 1

2c
′
θα)

2θ
1−2θ log n

P

(∥∥∥∥∥
n∑
i=1

(Xi − E[X ′1])

∥∥∥∥∥ > t+
√
n‖‖X1‖‖2

)

≤2 exp

(
− t2

2nα

)
.

It is straightforward to obtain an upper bound for the second
order moment ‖‖X1‖‖2 using standard analysis. Vector
valued concentration inequalities have broad applications in
learning theory, which will also be used to prove generaliza-
tion bounds in Section 4.2.

4.2. Rademacher Complexity

Rademacher complexity is a modern concept of complexity
that is dependent on the distribution. Let’s consider a class
of functions G, where each function g : X → R. The
Rademacher complexity of G is defined as:

R(G) = E

[
1

n
E

[
sup
g∈G

∑
i

εig(Xi)|X

]]
,

where ε1, ..., εn are independent Rademacher variables
such that P(εi = 1) = P(εi = −1) = 1/2. To-
gether with the symmetrization argument, it leads to
a uniform bound E

[
supg∈G

1
n

∑
i g(Xi)− E[g(X ′i)]

]
≤

2R(G). Based on the bounded difference inequality,
the classical method in statistical learning shows that
supg∈G

1
n

∑
i g(Xi) − E[g(X ′i)] is sharply concentrated

around its mean E[supg∈G
1
n

∑
i g(Xi)− E[g(X ′i)]]. This

leads to the following generalization bound:

P

(
sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)] > 2R(G) + t

)
≤ exp

(
−2nt2

)
, t ≥ 0,

where the function g is assumed to satisfy g : X → [0, 1].
While fundamental, this approach necessitates that g(Xi)

be bounded random variables due to using the bounded
difference inequality. However, deriving bounds on the
Rademacher complexity does not necessarily require bound-
edness, and Lipschitz properties are more commonly as-
sumed.

We will demonstrate that the boundedness can be relaxed by
heavy-tailed distributions for uniformly Lipschitz function
classes up to finite variance distributions. We illustrate this
viewpoint with the sub-exponential and sub-Weibull tails.

Theorem 4.3. Let X = (X1, ..., Xn) be a vector of i.i.d.
random variables with values in a Banach space (X , ‖ · ‖)
and let G be a class of function g : X → R such that
g(x)− g(y) ≤ L‖x− y‖ for all g ∈ G and that x, y ∈ X .
Suppose the right tails of the ‖Xi‖ are captured by ct for
some fixed coefficient c. Let α = 16

( nL c
′c)2 + 4L2

n2 E[‖X1‖2]

and t(η) = c′cn2

2L α, where c′ is an absolute positive constant.
Then, (i) if t ≥ t(η)

P
(

sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)] > 2R(G) + t

+
2L√
n
‖‖X1‖‖2

)
≤ 2 exp

(
− n

4L
c′ct
)

;

(ii) if 0 ≤ t < t(η) and when n ≥ 8 logn
3( nL c

′c)2α

P
(

sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)] > 2R(G) + t

+
2L√
n
‖‖X1‖‖2

)
≤ 2 exp

(
− t2

2nα

)
.

The second result considers the sub-Weibull tail.

Theorem 4.4. Let X = (X1, ..., Xn) be a vector of
i.i.d. random variables with values in a Banach space
(X , ‖ · ‖) and let G be a class of function g : X → R
such that g(x) − g(y) ≤ L‖x − y‖ for all g ∈ G and
that x, y ∈ X . Suppose the right tails of the ‖Xi‖
are captured by h(t) = cθt

1
θ for some θ ≥ 1. Let

α = Γ(2θ+1)22θ

(( nL )
1
θ c′θ)2θ

+
( nL )

1
θ c′θc

1/θ
1 Γ(3θ+1)23θ

6c1(( nL )
1
θ c′θ)3θ

+ 4L2

n2 E[‖X1‖2]

and t(η) = ( 1
2 (nL )

1
θ c′θnα)

θ
2θ−1 , where c1 and c′θ are

two positive constants. Then (i) if t ≥ t(η) and when
n

1
2θ−1 ≥ 4

3( nL )
1
θ c′θ

( 1
2 (nL )

1
θ c′θα)

1
1−2θ log n

P
(

sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)] > 2R(G) + t

+
2L√
n
‖‖X1‖‖2

)
≤ 2 exp

(
−1

4
(
n

L
)

1
θ c′θt

1
θ

)
;

(ii) if 0 ≤ t < t(η) and when n
1

2θ−1 ≥

8
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8
3α( 1

2 (nL )
1
θ c′θα)

2θ
1−2θ log n

P
(

sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)] > 2R(G) + t

+
2L√
n
‖‖X1‖‖2

)
≤ 2 exp

(
− t2

2nα

)
.

4.3. Algorithmic Stability

Algorithmic stability is gaining increasing attention in the
generalization analysis of machine learning algorithms as
this approach is beneficial to give dimension-free general-
ization bounds. Based on the bounded difference inequality
and specific measures on the algorithmic stability, algo-
rithmic stability demonstrates the sharp concentration of
f(X)− E[f(X ′)] around its mean, yielding stability-based
generalization bounds (Bousquet & Elisseeff, 2002). How-
ever, this method necessitates boundedness. Here, we review
two related works that extend classical stability theory to
unbounded cases. Suppose (X , d, µ) constitutes a metric
probability space, and X,X ′ ∼ µ are independent and iden-
tically distributed random variables with values in X . (Kon-
torovich, 2014) examines the sub-Gaussian tail of d(X,X ′).
(Maurer & Pontil, 2021) further extend the approach of
(Kontorovich, 2014) from sub-Gaussian to sub-exponential
distributions. They operate with sub-Gaussian and sub-
exponential norms defined respectively as ‖d(X,X ′)‖ψ2

and ‖d(X,X ′)‖ψ1 for independent X ′, X ∼ µ.

Our results build upon the methods of (Maurer & Pontil,
2021; Kontorovich, 2014), extending them to encompass all
heavy-tailed distributions with finite variance. We illustrate
this extension using the sub-exponential and sub-Weibull
tails.

Theorem 4.5. Let X = (X1, ..., Xn) be a vector of i.i.d.
random variables with values in X and let f : Xn → R
have Lipschitz constant L with respect to the metric ρ on
Xn defined by ρ(x, y) =

∑
i d(xi, yi). Suppose the right

tails of the d(Xi, X
′
i) are captured by ct for some fixed

coefficient c. Let α = 16
( 1
L c
′c)2 + L2E[(d(X1, X

′
1))

2
] and

t(η) = c′cn
2L α, where c′ is an absolute positive constant.

Then, we have (i) if t ≥ t(η)

P (f(X)− E[f(X ′)] > t) ≤ 2 exp

(
− 1

4L
c′ct

)
;

(ii) if 0 ≤ t < t(η) and when n ≥ 8 logn
3( 1
L c
′c)2α

P (f(X)− E[f(X ′)] > t) ≤ 2 exp

(
− t2

2nα

)
.

The second result considers the sub-Weibull tail.

Theorem 4.6. Let X = (X1, ..., Xn) be a vector of i.i.d.
random variables with values in X and let f : Xn → R

have Lipschitz constant L with respect to the metric ρ on
Xn defined by ρ(x, y) =

∑
i d(xi, yi). Suppose the right

tails of the d(Xi, X
′
i) are captured by h(t) = cθt

1
θ for

some θ ≥ 1. Let α = Γ(2θ+1)22θ

(( 1
L )

1
θ c′θ)2θ

+
( 1
L )

1
θ c′θc

1/θ
1 Γ(3θ+1)23θ

6c1(( 1
L )

1
θ c′θ)3θ

+

L2E[(d(X1, X
′
1))

2
] and t(η) = ( 1

2 ( 1
L )

1
θ c′θnα)

θ
2θ−1 , where

c1 and c′θ are two positive constants. Then we have (i) if t ≥
t(η) and when n

1
2θ−1 ≥ 4

3( 1
L )

1
θ c′θ

( 1
2 ( 1
L )

1
θ c′θα)

1
1−2θ log n

P (f(X)− E[f(X ′)] > t) ≤ 2 exp

(
−1

4
(

1

L
)

1
θ c′θt

1
θ

)
;

(ii) if 0 ≤ t < t(η) and when n
1

2θ−1 ≥
8
3α( 1

2 ( 1
L )

1
θ c′θα)

2θ
1−2θ log n

P (f(X)− E[f(X ′)] > t) ≤ 2 exp

(
− t2

2nα

)
.

Our results can be equally substituted to establish general-
ization bounds using the concept of total Lipschitz stability,
just as in (Maurer & Pontil, 2021; Kontorovich, 2014).

5. Conclusion
In this paper, we presented bounded difference-type concen-
tration inequalities for functions of heavy-tailed independent
random variables. The results provided a probabilistic tool-
box that can be employed to derive bounded difference-type
concentration inequalities for a very large number of heavy-
tailed distributions, which holds for all distributions with
finite variance. We illustrated our concentration inequalities
to several popular distributions. Applications to statistical
learning theory are also provided.

It would be interesting to show more applications of these
inequalities in future work.
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A. Proofs of Section 3
The following section collects a set of tools.

A.1. Some necessary tools

We introduce some necessary tools of the entropy method. The entropy S(Z) of a real valued random variable Z is defined
as

S(Z) = EZ [Z]− lnE[eZ ],

where the expectation functional EZ is defined as EZ [Y ] = E[Y eZ ]/E[eZ ]. Besides, we have the following fluctuation
representation of the entropy.

Lemma A.1. (Maurer, 2012) For γ > 0, we have

S(γZ) =

∫ γ

0

(∫ γ

t

EsZ [(Z − EsZ [Z])2]ds

)
dt.

If f : Xn → R and X and the fk are as in Section 2 then the conditional entropy is the function Sf,k : Xn → R defined by
Sf,k(x) = S(fk(X)(x)) for x ∈ Xn. The following lemma shows the sub-additivity of entropy, which states that the total
entropy is no greater than the thermal average of the sum of the conditional entropies.

Lemma A.2. (Maurer, 2012) The sub-additivity of entropy is

S(f(X)) ≤ Ef(X)

[
n∑
i=1

Sf,k(X)

]
.

We present an important Lemma shows how bounds on the entropy can lead to concentration results.

Lemma A.3. (Maurer, 2012) For any f : Xn → R and β > 0, we have

lnE
[
eβ(f(X)−E[f(X′)])

]
= β

∫ β

0

S(γf(X))

γ2
dγ,

and, for any t ≥ 0,

P (f(X)− E[f(X ′)] > t) ≤ exp

(
β

∫ β

0

S(γf(X))dγ

γ2
− βt

)
.

A.2. Proof of Theorem 3.1

Proof. To begin, we define two events A : f(X) − E[f(X ′)] > t and B : ∃k, fk(X)(x) > τ , and we define B̄ as the
complement event of B. Then we have

P(A) ≤ P (AB̄) + P (B),

that is,

P(f(X)− E[f(X ′)] > t) ≤ P(f(X)− E[f(X ′)] > t and B̄) + P(∃k, fk(X)(x) > τ). (2)

Firstly, let’s focus on P(f(X)− E[f(X ′)] > t and B̄). Using the Markov’s inequality, we obtain

P(f(X)− E[f(X ′)] > t and B̄) ≤ exp
(

lnE
[
eβ(f(X)−E[f(X′)])1B̄

]
− βt

)
, (3)
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where the value of 1B̄ is 1 if B̄ holds true, and 0 otherwise. Together with Lemma A.3 and then with Lemma A.2, the bound
in (3) implies

P(f(X)− E[f(X ′)] > t and B̄)

≤ exp

(
β

∫ β

0

S(γ(f(X))1B̄)dγ

γ2
− βt

)

≤ exp

(
β

∫ β

0

Eγ(f(X))1B̄
[
∑
k S(γ(fk(X)(X))1B̄)] dγ

γ2
− βt

)

≤ exp

(
β

∫ β

0

∑
k supx∈Xn S(γfτk (X)(x))dγ

γ2
− βt

)
, (4)

where fτk (X)(x) = fk(X)(x)I(fk(X)(x) ≤ τ), the first inequality uses Lemma A.2, and the second uses Lemma A.2.

Next, we need to bound the conditional entropy S(γfτk (X)(x)) for any x ∈ Xn. According to Lemma A.1, we derive

Esfτk (X)(x)

[(
fτk (X)(x)− Esfτk (X)(x) [fτk (X)(x)]

)2
]
≤ Esfτk (X)(x)

[
(fτk (X)(x))

2
]

=
E
[
(fτk (X)(x))2esf

τ
k (X)(x)

]
E
[
esf

τ
k (X)(x)

]
=
E
[
(fτk (X)(x))2esf

τ
k (X)(x)I(fτk (X)(x) ≤ 0)

]
E
[
esf

τ
k (X)(x)

] +
E
[
(fτk (X)(x))2esf

τ
k (X)(x)I(fτk (X)(x) > 0)

]
E
[
esf

τ
k (X)(x)

] , (5)

where the first inequality follows from the variational property of the variance and the first identity follows from the definition
of the entropy. Since (fτk (X)(x))2I(fτk (X)(x) ≤ 0) is a nonincreasing function and esf

τ
k (X)(x) is a nondecreasing function

of fτk (X)(x), Harris’ inequality (Theorem 2.15 in (Boucheron et al., 2013)) implies that

E
[
(fτk (X)(x))2esf

τ
k (X)(x)I(fτk (X)(x) ≤ 0)

]
≤ E

[
(fτk (X)(x))2I(fτk (X)(x) ≤ 0)

]
E
[
esf

τ
k (X)(x)

]
. (6)

And since E[esf
τ
k (X)(x)] = E[esf

τ
k (X)(x)I(fτk (X)(x) ≤ 0)] + E[esf

τ
k (X)(x)I(fτk (X)(x) > 0)], esf

τ
k (X)(x) > 0 when

fτk (X)(x) ≤ 0, and esf
τ
k (X)(x) ≥ 1 when fτk (X)(x) > 0, this implies that

E
[
(fτk (X)(x))2esf

τ
k (X)(x)I(fτk (X)(x) > 0)

]
E
[
esf

τ
k (X)(x)

] ≤
E
[
(fτk (X)(x))2esf

τ
k (X)(x)I(fτk (X)(x) > 0)

]
E
[
esf

τ
k (X)(x)I(fτk (X)(x) > 0)

]
≤E

[
(fτk (X)(x))2esf

τ
k (X)(x)I(fτk (X)(x) > 0)

]
. (7)

Combining (5), (6) and (7) we obtain

Esfτk (X)(x)

[
(fτk (X)(x))

2
]
≤ E

[
(fτk (X)(x))2I(fτk (X)(x) ≤ 0)

]
+ E

[
(fτk (X)(x))2esf

τ
k (X)(x)I(fτk (X)(x) > 0)

]
. (8)

In Lemma A.1 and Lemma A.3, we know that s ≤ γ ≤ β, and (8) becomes

Esfτk (X)(x)

[
(fτk (X)(x))

2
]
≤ E

[
(fτk (X)(x))

2 I(fτk (X)(x) ≤ 0)
]

+ E
[
(fτk (X)(x))

2
eβf

τ
k (X)(x)I(0 < fτk (X)(x))

]
.

Define Λ(τ, η) , supx∈Xn E[(fτk (X)(x))2I(fτk (X)(x) ≤ 0)] + E[(fτk (X)(x))2eβf
τ
k (X)(x)I(fτk (X)(x) > 0)]. Together

with Lemma A.1 this gives the following entropy bound

S(γfτk (X)(x)) ≤
∫ γ

0

(∫ γ

t

Λ(τ, η)ds

)
dt =

γ2

2
Λ(τ, η).

Plugging the upper bound of S(γfτk (X)(x)) into (4) then gives

P(f(X)− E[f(X ′)] > t and B̄) ≤ exp

(
β

∫ β

0

∑
k
γ2

2 Λ(τ, η)dγ

γ2
− βt

)
≤ exp

(
nβ2

2
Λ(τ, η)− βt

)
.
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Combining this entropy bound and (2), we obtain

P (f(X)− E[f(X ′)] > t)

≤ exp

(
nβ2

2
Λ(τ, η)− βt

)
+ nP(fk(X)(x) > τ)

≤ exp

(
nβ2

2
Λ(τ, η)− βt

)
+ n exp(−h(τ)). (9)

In the following, we need to choose values for free parameters β and τ to get the best bound. We first consider t > t(η). In
this case, we select τ = t and β = ηh(t)

t = ηh(τ)
τ , then we get

P (f(X)− E[f(X ′)] > t)

≤ exp

(
−
(

1− nβ

2t
Λ(τ, η)

)
βt

)
+ n exp(−h(τ))

= exp

(
−
(

1− nηh(t)

2t2
Λ(t, η)

)
ηh(t)

)
+ n exp(−h(t)).

Since t > t(η), we have t > ηh(t)
t nΛ(t, η), which implies 1− nηh(t)

2t2 Λ(t, η) ∈ [ 1
2 , 1). We then consider t ≤ t(η). In this

case, we select τ = t(η) and β = t
nΛ(τ,η) ≤

t(η)
nΛ(τ,η) = ηh(τ)

τ , then we get

P (f(X)− E[f(X ′)] > t)

≤ exp

(
− t2

2nΛ(τ, η)

)
+ n exp(−h(τ))

= exp

(
− t2

2nΛ(τ, η)

)
+ n exp

(
− t(η)2

ηnΛ(τ, η)

)
= exp

(
− t2

2nΛ(t(η), η)

)
+ n exp

(
− t(η)2

ηnΛ(t(η), η)

)
,

where the first inequality using the fact β = t
nΛ(τ,η) , and where the first identity using t(η)

nΛ(τ,η) = ηh(τ)
τ and τ = t(η).

Combining the two cases, the proof is complete.

A.3. Proof of Theorem 3.2

Proof. Let τ = t. Using (9) and the fact that Λ(τ, η) is increasing in η we have

P (f(X)− E[f(X ′)] > t) ≤ exp

(
nβ2

2
Λ(τ, η)− βt

)
+ n exp(−h(τ)), ∀β ≤ ηh(t)

t
.

To prove Theorem 3.2, we need to ensure that the following bound holds for β ≤ ηh(t)
t

exp

(
nβ2

2
Λ(τ, η)− βt

)
≤ exp

(
− t2

2nΛ(t, η)

)
+ exp

(
−max

{
ct,

1

2

}
ηh(t)

)
.

We consider two cases. When ct ≥ 1
2 , by selecting β = ηh(t)

t , we obtain

exp

(
nβ2

2
Λ(τ, η)− βt

)
= exp

(
−
(

1− nβ

2t
Λ(τ, η)

)
βt

)
= exp

(
−
(

1− nηh(t)

2t2
Λ(t, η)

)
ηh(t)

)
= exp (−ctηh(t)) = exp

(
−max

{
ct,

1

2

}
ηh(t)

)
.

When ct < 1
2 , we get t

nΛ(t,η) <
ηh(t)
t . Selecting β = t

nΛ(t,η) , we then get

exp

(
nβ2

2
Λ(τ, η)− βt

)
= exp

(
− t2

2nΛ(t, η)

)
.

Combining the two cases, the proof is complete.

14



Concentration Inequalities for General Functions of Heavy-Tailed Random Variables

A.4. Proof of Theorem 3.3

Proof. Given Theorem 3.1, we need to bound Λ(τ, η). Firstly, we have

sup
x∈Xn

E
[
(fτk (X)(x))

2 I(fτk (X)(x) ≤ 0)
]
≤ sup
x∈Xn

E
[
(fk(X)(x))

2 I(fk(X)(x) ≤ 0)
]

= σ2
−.

Then, we derive that for any x ∈ Xn

E
[
(fτk (X)(x))

2
eβf

τ
k (X)(x)I(0 < fτk (X)(x) ≤ τ)

]
=

∫ ∞
0

P
(

(fτk (X)(x))
2
eβf

τ
k (X)(x)I(0 < fτk (X)(x) ≤ τ) > u

)
du

=

∫ ∞
0

P
(

(fτk (X)(x))
2
eβf

τ
k (X)(x) > t2eβt, 0 < fτk (X)(x) ≤ τ

)
(2t+ βt2)eβtdt

=

∫ ∞
0

P (|fτk (X)(x)| > t, 0 < fτk (X)(x) < τ) (2t+ βt2)eβtdt

=

∫ τ

0

P (fτk (X)(x) > t) (2t+ βt2)eβtdt

≤
∫ τ

0

exp(−ct)(2t+ βt2)eβtdt

=

∫ τ

0

exp(−(1− βc−1)ct)(2t+ βt2)dt

≤
∫ ∞

0

exp(−u)

(
2u

((1− βc−1)c)2
+

βu2

((1− βc−1)c)3

)
du

=
βΓ(3)

((1− βc−1)c)3
+

2Γ(2)

((1− βc−1)c)2
=

2

(1− βc−1)3c2
,

where Γ(z) =
∫∞

0
tz−1e−tdt. Combining the two bounds, we obtain

Λ(τ, η) ≤ 2

(1− βc−1)3c2
+ σ2
−.

Since β = ηc, the above bound implies that Λ(τ, η) ≤ 2
(1−η)3c2 + σ2

−. Substituting this bound into Theorem 3.1, the proof
is complete.

A.5. Proof of Corollary 3.4

Proof. In Theorem 3.3, choosing η = 1
2 gives Λ̄(τ, η) = 16

c2 + σ2
− , α and t(η) = cn

2 ( 16
c2 + σ2

−). In the first case t ≥ t(η),
we know ct ∈ [ 1

2 , 1). Selecting the worst-case value ct = 1
2 we obtain

P(f(X)− E[f(X ′)] > t) ≤ exp

(
−1

4
ct

)
+ n exp(−ct).

Further, we derive

n exp(−ct) = exp(log n− ct) ≤ exp

(
−1

4
ct

)
whenever log n ≤ 3

4ct. Since t ≥ t(η), we have

3

4
ct ≥ 6n+

3c2nσ2
−

8
> log n.

Therefore, we conclude P(f(X)− E[f(X ′)] > t) ≤ 2 exp(− 1
4ct) when t > t(η). In the second case t < t(η), we have

P(f(X)− E[f(X ′)] > t) ≤ exp

(
− t2

2nα

)
+ n exp

(
−2t(η)2

nα

)
= exp

(
− t2

2nα

)
+ exp

(
−2t(η)2

nα
+ log n

)
.
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Due to t < t(η), we derive

t2

2nα
− 2t(η)2

nα
+ log n =

t2 − t(η)2 − 3
4c

2n2α2 + 2nα log n

2nα
<
− 3

4c
2n2α2 + 2nα log n

2nα
≤ 0

whenever n ≥ 8 logn
3c2α . In this case, the first term dominates the second, and thus we get

P (f(X)− E[f(X ′)] > t) ≤ 2 exp

(
− t2

2nα

)
.

The proof is complete.

A.6. Proof of Theorem 3.5

Proof. Also, given Theorem 3.1, we need to bound Λ(τ, η). Firstly, we have

sup
x∈Xn

E
[
(fτk (X)(x))

2 I(fτk (X)(x) ≤ 0)
]
≤ sup
x∈Xn

E
[
(fk(X)(x))

2 I(fk(X)(x) ≤ 0)
]

= σ2
−.

Then, following the proof of Theorem 3.3, we derive that for any x ∈ Xn

E
[
(fτk (X)(x))

2
eβf

τ
k (X)(x)I(0 < fτk (X)(x) ≤ τ)

]
=

∫ τ

0

P (fτk (X)(x) > t) (2t+ βt2)eβtdt

≤
∫ τ

0

exp(−cθt
1
θ )(2t+ βt2)eβtdt

=

∫ τ

0

exp(−(1− βc−1
θ t1−

1
θ )cθt

1
θ )(2t+ βt2)dt

≤
∫ ∞

0

exp(−(1− βc−1
θ τ1− 1

θ )cθt
1
θ )(2t+ βt2)dt

≤
∫ ∞

0

exp(−u)

(
2θu2θ−1

((1− βc−1
θ τ1− 1

θ )cθ)2θ
+

βθu3θ−1

((1− βc−1
θ τ1− 1

θ )cθ)3θ

)
du

=
2θΓ(2θ)

((1− βc−1
θ τ1− 1

θ )cθ)2θ
+

βθΓ(3θ)

((1− βc−1
θ τ1− 1

θ )cθ)3θ

=
Γ(2θ + 1)

((1− βc−1
θ τ1− 1

θ )cθ)2θ
+

βΓ(3θ + 1)

3((1− βc−1
θ τ1− 1

θ )cθ))3θ
.

Combining the two bounds gives

Λ(τ, η) ≤ Γ(2θ + 1)

((1− βc−1
θ τ1− 1

θ )cθ)2θ
+

βΓ(3θ + 1)

3((1− βc−1
θ τ1− 1

θ )cθ)3θ
+ σ2
−.

Since β = ηcθτ
1
θ

τ , the above bound implies that Λ(τ, η) ≤ Γ(2θ+1)
((1−η)cθ)2θ + ηcθτ

1
θ Γ(3θ+1)

3τ((1−η)cθ)3θ + σ2
−. Substituting this bound into

Theorem 3.1, the proof is complete.

A.7. Proof of Corollary 3.6

Proof. According to the bounds in Theorem 3.5, for all τ ≥ c1 where c1 is a positive constant depending only on the
distribution of fk(X)(x), we have

Λ̄(τ, η) ≤ Γ(2θ + 1)

((1− η)cθ)2θ
+
ηcθc

1/θ
1 Γ(3θ + 1)

3c1((1− η)cθ)3θ
+ σ2
− , α
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and

t(η) = (ηcθnα)
θ

2θ−1 .

Then, choosing η = 1
2 gives α = Γ(2θ+1)22θ

c2θθ
+

cθc
1/θ
1 Γ(3θ+1)23θ

6c1c3θθ
+ σ2
− and t(η) = ( 1

2cθnα)
θ

2θ−1 . Similarly, in the first case

t ≥ t(η), selecting the worst-case value ct = 1
2 we get

P (f(X)− E[f(X ′)] > t) ≤ 2 exp

(
−1

4
cθt

1
θ

)
whenever log n ≤ 3

4cθt
1
θ .

We offer two ways to parse this bound. Firstly, since t ≥ t(η), we have

3

4
cθt

1
θ ≥ 3

4
cθ(

1

2
cθnα)

1
2θ−1 ≥ log n

whenever n
1

2θ−1 ≥ 4
3cθ

( 1
2cθα)

1
1−2θ log n. Given n

1
2θ−1 grows faster than log n, the condition n

1
2θ−1 ≥ 4

3cθ
( 1

2cθα)
1

1−2θ log n

can be easily satisfied, and thus we get P (f(X)− E[f(X ′)] > t) ≤ 2 exp(− 1
4cθt

1
θ ).

Secondly, for all t ≥ c2n
θ

2θ−1 , where c2 is a positive constant, we have

3

4
cθt

1
θ ≥ 3

4
cθc

1/θ
2 n

1
2θ−1 .

Given n
1

2θ−1 grows faster than log n, by choosing large c2, we can ensure log n ≤ 3
4cθt

1
θ holds for all integer n. There-

fore, there exists a positive constant c2 > 0, such that for every t ≥ c2n
θ

2θ−1 , we have P (f(X)− E[f(X ′)] > t) ≤
2 exp(− 1

4cθt
1
θ ).

In the second case t < t(η), we have

P(f(X)− E[f(X ′)] > t) ≤ exp

(
− t2

2nα

)
+ n exp

(
−2t(η)2

nα

)
= exp

(
− t2

2nα

)
+ exp

(
−2t(η)2

nα
+ log n

)
.

Similar to the sub-exponential case, due to t < t(η), we derive

t2

2nα
− 2t(η)2

nα
+ log n =

t2 − t(η)2 − 3
4 ( 1

2cθnα)
2θ

2θ−1 + 2nα log n

2nα
<
− 3

4 ( 1
2cθnα)

2θ
2θ−1 + 2nα log n

2nα
≤ 0

whenever n
1

2θ−1 ≥ 8
3α( 1

2cθα)
2θ

1−2θ log n. In this case, the first term exp(− t2

2nα ) also dominates the second, and thus we get
P (f(X)− E[f(X ′)] > t) ≤ 2 exp(− t2

2nα ). The proof is complete.

A.8. Proof of Theorem 3.7

Proof. Again, given Theorem 3.1, we need to bound Λ(τ, η). Firstly, we have

sup
x∈Xn

E
[
(fτk (X)(x))

2 I(fτk (X)(x) ≤ 0)
]
≤ sup
x∈Xn

E
[
(fk(X)(x))

2 I(fk(X)(x) ≤ 0)
]

= σ2
−.

Then, for any x ∈ Xn, we can decompose E[fτk (X)2eβf
τ
k (X)I(fτk (X) > 0)] as follows

E
[
(fτk (X)(x))

2
eβf

τ
k (X)(x)I(0 < fτk (X)(x) ≤ τ)

]
=E

[
(fτk (X)(x))

2
eβf

τ
k (X)(x)I(0 < fτk (X)(x) ≤ 1)

]
+ E

[
(fτk (X)(x))

2
eβf

τ
k (X)(x)I(1 < fτk (X)(x) ≤ τ)

]
.
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Note that β = ητ−1(c log τ). When 2− (1− η)c 6= 0, i.e., η 6= 1− 2
c , we derive

E
[
(fτk (X)(x))

2
eβf

τ
k (X)(x)I(1 < fτk (X)(x) ≤ τ)

]
=

∫ τ

1

P (fτk (X)(x) > t) (2t+ βt2)eβtdt

≤
∫ τ

1

exp(−c log t)(2t+ βt2)eβtdt

=

∫ τ

1

exp(−(1− βt(c log t)−1)c log t)(2t+ βt2)dt

=

∫ τ

1

t1−(1−βt(c log t)−1)c (2 + βt) dt

≤
∫ τ

1

t1−(1−βτ(c log τ)−1)c (2 + βt) dt

=

∫ τ

1

t1−(1−η)c

(
2 + ηc

log τ

τ
t

)
dt

≤
∫ τ

1

t1−(1−η)c

(
2 + ηc

log t

t
t

)
dt

=
t2−(1−η)c

2− (1− η)c

(
2 + ηc

(
− 1

2− (1− η)c
+ log t

))∣∣∣∣τ
1

=
τ2−(1−η)c

2− (1− η)c

(
2 + ηc

(
− 1

2− (1− η)c
+ log τ

))
−

(
2 + ηc

(
− 1

2−(1−η)c

))
2− (1− η)c

=
2 + ηc

(
− 1

2−(1−η)c

)
2− (1− η)c

(τ2−(1−η)c − 1) +
τ2−(1−η)cηc log τ

2− (1− η)c
,

where we have used the fact that
∫
tadt = ta+1

a+1 ,
∫
ta log tdt = ( log t

k+1−
1

(k+1)2 )ta+1 and log t
t ≥

log τ
τ . When 2−(1−η)c = 0,

i.e., η = 1− 2
c , we derive

E
[
(fτk (X)(x))

2
eβf

τ
k (X)(x)I(1 < fτk (X)(x) ≤ τ)

]
≤
∫ τ

1

t1−(1−η)c

(
2 + ηc

log t

t
t

)
dt =

∫ τ

1

t−1

(
2 + c(1− 2

c
)
log t

t
t

)
dt = 2 log τ +

(c− 2)(log τ)2

2
.

For E[(fτk (X)(x))2eβf
τ
k (X)(x)I(0 < fτk (X)(x) ≤ 1)], we derive that

E
[
(fτk (X)(x))

2
eβf

τ
k (X)(x)I(0 < fτk (X)(x) ≤ 1)

]
≤ E[eβ ] = eητ

−1(c log τ) = τ cητ
−1

.

Putting these terms together gives: (1.) If η 6= 1− 2
c , we have Λ(τ, η) ≤

2+ηc(− 1
2−(1−η)c )

2−(1−η)c (τ2−(1−η)c−1)+ τ2−(1−η)cηc log τ
2−(1−η)c +

τ cητ
−1

+ σ2
−. (2.) If η = 1− 2

c , we have Λ(τ, η) ≤ 2 log τ + (c−2)(log τ)2

2 + τ cητ
−1

+ σ2
−. Substituting these bounds into

Theorem 3.1, the proof is complete.

A.9. Proof of Theorem 3.8

Proof. The proof uses the Lebesgue Dominated Convergence Theorem. It’s essential to bound Λ(τ, η) ,
supx∈Xn E[(fτk (X)(x))2I(fτk (X)(x) ≤ 0)] + E[(fτk (X)(x))2eβf

τ
k (X)(x)I(0 < fτk (X)(x) ≤ τ)]. Firstly, we have

(fτk (X)(x))2 ≤ (fk(X)(x))2. If τ grows to infinity, fτk (X)(x) converges to fk(X)(x) almost surely. Thus, using
the Lebesgue Dominated Convergence Theorem, we obtain

lim
τ→∞

E[(fτk (X)(x))2I(fτk (X)(x) ≤ 0)] = E[(fk(X)(x))2I(fk(X)(x) ≤ 0)].
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Next, we examine E[(fτk (X)(x))2eβf
τ
k (X)(x)I(0 < fτk (X)(x) ≤ τ)]. From the proof of Theorem 3.1, we know that

β ≤ ηh(τ)
τ , where η < 1. When h(t) = cθt

1
θ such that θ > 1, we have 1

θ − 1 < 0 and limτ→∞ β ≤ limτ→∞
ηcθτ

1
θ

τ = 0,
which further implies that (fτk (X)(x))2eβf

τ
k (X)(x) converges to (fk(X)(x))2 almost surely.

To proceed, we introduce the following dominated variable

(fk(X)(x))2eηcθ(fk(X)(x))
1
θ I(0 < fk(X)(x)). (10)

Consequently, we derive

eβf
τ
k (X)(x) ≤ exp

(ηcθτ 1
θ

τ
fτk (X)(x)

)
≤ exp

(ηcθ(fτk (X)(x))
1
θ

fτk (X)(x)
fτk (X)(x)

)
≤ exp

(
ηcθ(fk(X)(x))

1
θ

)
,

which means that

(fτk (X)(x))2eβf
τ
k (X)(x)I(0 < fτk (X)(x) ≤ τ) ≤ (fk(X)(x))2eηcθ(fk(X)(x))

1
θ I(0 < fk(X)(x)).

The following step is to prove the integrability of (fk(X)(x))2eηcθ(fk(X)(x))
1
θ I(0 < fk(X)(x)), leading to

E
[
(fk(X)(x))2eηcθ(fk(X)(x))

1
θ I(0 < fk(X)(x))

]
=

∫ ∞
0

P
(

(fk(X)(x))2eηcθ(fk(X)(x))
1
θ I(0 < fk(X)(x)) > u

)
du

=

∫ ∞
0

P
(

(fk(X)(x))2eηcθ(fk(X)(x))
1
θ > t2eηcθt

1
θ , fk(X)(x) > 0

)
dt2eηcθt

1
θ

=

∫ ∞
0

P (fk(X)(x) > t)

(
2t+ t2

1

θ
ηcθt

1
θ−1

)
eηcθt

1
θ dt

≤
∫ ∞

0

exp
(
−cθt

1
θ

)(
2t+ t2

1

θ
ηcθt

1
θ−1

)
eηcθt

1
θ dt

≤
∫ ∞

0

exp
(
−(1− η)cθt

1
θ

)(
2t+

1

θ
ηcθt

1
θ+1

)
dt <∞,

where the last inequality follows from that η < 1 and that the exponential term converges faster than the polynomial. Thus,

(fk(X)(x))2eηcθ(fk(X)(x))
1
θ I(0 < fk(X)(x)) is integrable. By the Lebesgue Dominated Convergence Theorem, we obtain

lim
τ→∞

E
[
(fτk (X)(x))2eβf

τ
k (X)(x)I(0 < fτk (X)(x) ≤ τ)

]
= E[(fk(X)(x))2I(fk(X)(x) > 0)].

Combining the two bounds, we obtain

lim
τ→∞

sup
x∈Xn

E
[
(fτk (X)(x))2eβf

τ
k (X)(x)I(0 < fτk (X)(x) ≤ τ) + (fτk (X)(x))2I(fτk (X)(x) ≤ 0)

]
= sup
x∈Xn

E
[
(fk(X)(x))2

]
= σ2.

Thus, for any given δ > 0, we will obtain a constant cδ > 0 such that for any τ > cδ

sup
x∈Xn

E
[
(fτk (X)(x))2eβf

τ
k (X)(x)I(0 < fτk (X)(x) ≤ τ) + (fτk (X)(x))2I(fτk (X)(x) ≤ 0)

]
≤ σ2 + δ.

This inequality also implies that for all t > cδ , Theorem 3.8 is proved by plugging Λ(τ, η) = σ2 + δ into Theorem 3.1. The
proof is complete.
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A.10. Proof of Theorem 3.9

Proof. The proof is similar to the proof of Theorem 3.8. In (10), we instead need to introduce the following dominated
variable

(fk(X)(x))2eηc log fk(X)(x)I(0 < fk(X)(x)) = (fk(X)(x))2+ηcI(0 < fk(X)(x)).

In this case, we derive

eβf
τ
k (X)(x) ≤ exp

(ηc log τ

τ
fτk (X)(x)

)
≤ exp

(ηc log fτk (X)(x)

fτk (X)(x)
fτk (X)(x)

)
≤ exp

(
ηc log fk(X)(x)

)
,

which means that

(fτk (X)(x))2eβf
τ
k (X)(x)I(0 < fτk (X)(x) ≤ τ) ≤ (fk(X)(x))2eηc log fk(X)(x)I(0 < fk(X)(x)).

The following step is also to prove the integrability of (fk(X)(x))2+ηcI(0 < fk(X)(x)), leading to

E
[
(fk(X)(x))2+ηcI(0 < fk(X)(x))

]
=

∫ ∞
0

P
(
(fk(X)(x))2+ηc > t2+ηc, fk(X)(x) > 0

)
(2 + ηc)t1+ηcdt

=

∫ ∞
0

P (fk(X)(x) > t) (2 + ηc)t1+ηcdt

≤
∫ ∞

0

exp(−c log t)(2 + ηc)t1+ηcdt

=

∫ ∞
0

t(1+ηc−c)(2 + ηc)dt <∞,

where the last inequality follows from that 1 + ηc− c < 0 since c > 2 and η < 1− 2
c . Thus, by the Lebesgue Dominated

Convergence Theorem, for c > 2 and η < 1− 2
c , we obtain

lim
τ→∞

sup
x∈Xn

E
[
(fτk (X)(x))2eβf

τ
k (X)(x)I(0 < fτk (X)(x) ≤ τ) + (fτk (X)(x))2I(fτk (X)(x) ≤ 0)

]
= sup
x∈Xn

E
[
(fk(X)(x))2

]
= σ2.

Then, for any given δ > 0, we will obtain a constant cδ > 0 such that for any τ > cδ

sup
x∈Xn

E
[
(fτk (X)(x))2eβf

τ
k (X)(x)I(0 < fτk (X)(x) ≤ τ) + (fτk (X)(x))2I(fτk (X)(x) ≤ 0)

]
≤ σ2 + δ.

This inequality also implies that for all t > cδ , Theorem 3.9 is proved by plugging Λ(τ, η) = σ2 + δ into Theorem 3.1. The
proof is complete.

B. Proofs of Section 4
Lemma B.1 (Lemma 6 in (Maurer & Pontil, 2021)). Let X , X ′ be iid with values in X , φ : X ×X → R measurable. Then

‖E[φ(X,X ′)|X]‖p ≤ ‖φ(X,X ′)‖p.

B.1. Proof of Theorem 4.1

Proof. (i) We consider the function f(x) = ‖
∑n
i=1 xi‖. Then

|fk(X)(x)| =

∣∣∣∣∣∣
∥∥∥∥∥∥
∑
i 6=k

xi +Xk

∥∥∥∥∥∥− E

∥∥∥∥∥∥
∑
i 6=k

xi +X ′k

∥∥∥∥∥∥
∣∣∣∣∣∣ ≤ E [‖Xk −X ′k‖ |Xk] .
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By Lemma B.1, we get ‖E[‖Xk − X ′k‖|X]‖p ≤ 2‖‖Xk‖‖p and thus ‖fk(X)(x)‖p ≤ 2‖‖Xk‖‖p. Given that the ‖Xk‖
have the tail ct, the tail of fk(X)(x) can be expressed as c′ct, where c′ is an absolute positive constant and comes from the
equivalent properties of sub-exponential random variables on their tails and moments, see Proposition 2.7.1 in (Vershynin,
2018). We now provide the proof. For all p ≥ 1, by Markov’s inequality,

P(fk(X)(x) > t) ≤ E[|fk(X)(x)|P ]

tp
.

Setting t ssuch that exp(−p) = E[|fk(X)(x)|P ]
tp , we obtain

P(fk(X)(x) > e‖fk(X)(x)‖p) ≤ exp(−p),

implying that

P(fk(X)(x) > 2e‖‖Xk‖‖p) ≤ exp(−p).

Note that if the ‖Xk‖ have the tail ct, ‖‖Xk‖‖p ≤ 1
c′cp, where c′ is an absolute positive constant, see Proposition 2.7.1 in

(Vershynin, 2018). Thus, solving p, we get

P(fk(X)(x) > t) ≤ exp

(
−c
′c

2e
t

)
, (11)

meaning that the tail of fk(X)(x) can be expressed as c′ct, where c′ is an absolute positive constant.

Furthermore, we have

σ2
− = sup

x∈Xn
E[(fk(X)(x))

2 I(fk(X)(x) ≤ 0)] ≤ E[(E [‖Xk −X ′k‖ |Xk])
2
] ≤ E[‖Xk −X ′k‖

2
] ≤ 4E[‖X1‖2],

where the second inequality uses Lemma B.1 and the last inequality uses the i.i.d. assumption.

Plugging these bounds into Corollary 3.4, we get α = 16
(c′c)2 + 4E[‖X1‖2] and t(η) = c′cn

2 α. Hence, if t ≥ t(η) we have

P

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥− E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ > t

)
≤ 2 exp

(
−1

4
c′ct

)
;

if 0 ≤ t < t(η), when n ≥ 8 logn
3(c′c)2α , we have

P

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥− E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ > t

)
≤ 2 exp

(
− t2

2nα

)
.

(ii) We consider the function f(x) = ‖
∑n
i=1(xi − EX ′1)‖. By the i.i.d. property of the Xi and Jensen’s inequality, we have

E

∥∥∥∥∥
n∑
i=1

(Xi − EX ′i)

∥∥∥∥∥ ≤ (nE [‖X1 − EX ′1‖
2
])1/2

≤
√
n‖‖X1‖‖2.

Then we have

|fk(X)(x)| =

∣∣∣∣∣∣
∥∥∥∥∥∥
∑
i6=k

xi +Xk − nEX ′1

∥∥∥∥∥∥− E

∥∥∥∥∥∥
∑
i 6=k

xi +X ′k − nEX ′1

∥∥∥∥∥∥
∣∣∣∣∣∣ ≤ E [‖Xk −X ′k‖ |Xk] .

Similarly, by Lemma B.1, we have ‖fk(X)(x)‖p ≤ 2‖‖Xk‖‖p, and the tail of fk(X)(x) can be expressed as c′ct, where c′

is an absolute positive constant.

Furthermore, we have

σ2
− = sup

x∈Xn
E[(fk(X)(x))

2 I(fk(X)(x) ≤ 0)] ≤ E[(E [‖Xk −X ′k‖ |Xk])
2
] ≤ E[‖Xk −X ′k‖

2
] ≤ 4E[‖X1‖2],

21



Concentration Inequalities for General Functions of Heavy-Tailed Random Variables

where the second inequality uses Lemma B.1 and the last inequality uses the i.i.d. assumption.

Plugging these bounds into Corollary 3.4, we obtain α = 16
(c′c)2 + 4E[‖X1‖2] and t(η) = c′cn

2 α. Hence, if t ≥ t(η), we
have

P

(∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥ > t+ E

∥∥∥∥∥
n∑
i=1

(Xi − EX ′i)

∥∥∥∥∥
)

≤P

(∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥ > t+
√
n‖‖X1‖‖2

)
≤ 2 exp

(
−1

4
c′ct

)
.

If 0 ≤ t < t(η), when n ≥ 8 logn
3(c′c)2α , we have

P

(∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥ > t+ E

∥∥∥∥∥
n∑
i=1

(Xi − EX ′i)

∥∥∥∥∥
)

≤P

(∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥ > t+
√
n‖‖X1‖‖2

)
≤ 2 exp

(
− t2

2nα

)
.

The proof is complete.

B.2. Proof of Theorem 4.2

Proof. The proof follows the proof of Theorem 4.1.

(i) Since the ‖Xk‖ have the tail cθt
1
θ , the tail of fk(X)(x) can be written as c′θt

1
θ , where c′θ is a positive constant and comes

from the equivalent properties of sub-Weibull random variables on its tails and moments, see Theorem 2.1 in (Vladimirova
et al., 2020). We now provide the proof. For all real p ≥ 1, by Markov’s inequality,

P(fk(X)(x) > t) ≤ E[|fk(X)(x)|P ]

tp
.

Setting t such that exp(−p) = E[|fk(X)(x)|P ]
tp , we obtain

P(fk(X)(x) > e‖fk(X)(x)‖p) ≤ exp(−p),

implying that

P(fk(X)(x) > 2e‖‖Xk‖‖p) ≤ exp(−p).

Note that if the ‖Xk‖ have the tail cθt
1
θ , ‖‖Xk‖‖p ≤ 1

c′θ
pθ, where c′θ is a positive constant, see Theorem 2.1 in (Vladimirova

et al., 2020). Thus, solving p, we get

P(fk(X)(x) > t) ≤ exp

(
−
(
c′θ
2e
t

) 1
θ

)
, (12)

meaning that the tail of fk(X)(x) can be written as c′θt
1
θ , where c′θ is a positive constant.

Plugging this bound into Corollary 3.6, we get α = Γ(2θ+1)22θ

(c′θ)2θ +
c′θc

1/θ
1 Γ(3θ+1)23θ

6c1(c′θ)3θ + 4E[‖X1‖2] and t(η) = (1
2c
′
θnα)

θ
2θ−1 ,

where c1 is a positive constant. Hence, if t ≥ t(η) and when n
1

2θ−1 ≥ 4
3c′θ

( 1
2c
′
θα)

1
1−2θ log n we have

P

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥− E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ > t

)
≤ 2 exp

(
−1

4
c′θt

1
θ

)
.
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If 0 ≤ t < t(η) and when n
1

2θ−1 ≥ 8
3α( 1

2c
′
θα)

2θ
1−2θ log n, we have

P

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥− E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ > t

)
≤ 2 exp

(
− t2

2nα

)
.

(ii) This proof follows the same pattern. If t ≥ t(η) and when n
1

2θ−1 ≥ 4
3c′θ

( 1
2c
′
θα)

1
1−2θ log n we have

P

(∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥ > t+ E

∥∥∥∥∥
n∑
i=1

(Xi − EX ′i)

∥∥∥∥∥
)
≤ P

(∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥ > t+
√
n‖‖X1‖‖2

)
≤ 2 exp

(
−1

4
c′θt

1
θ

)
.

If 0 ≤ t < t(η) and when n
1

2θ−1 ≥ 8
3α( 1

2c
′
θα)

2θ
1−2θ log n, we have

P

(∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥ > t+ E

∥∥∥∥∥
n∑
i=1

(Xi − EX ′i)

∥∥∥∥∥
)
≤ P

(∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥ > t+
√
n‖‖X1‖‖2

)
≤ 2 exp

(
− t2

2nα

)
.

The proof is complete.

B.3. Proof of Theorem 4.3

Proof. The vector space

B =

{
p : G → R : sup

g∈G
|p(g)| <∞

}
becomes a normed space with norm ‖p‖B = supg∈G |p(g)|. For each Xi define X̄i ∈ B by X̄i(g) = 1

n (g(Xi)− E[g(X ′i)]).
The X̄i are zero mean random variable in B and

sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)] =

∥∥∥∥∥∑
i

X̄i

∥∥∥∥∥
B

.

With Lemma B.1 and the i.i.d. assumption, we have

‖‖X̄i‖B‖p =
1

n

∥∥∥∥sup
g

(E[g(Xi)− g(X ′i)]|X)

∥∥∥∥
p

≤ L

n
‖E[‖Xi −X ′i‖]|X‖p ≤

2L

n
‖‖Xi‖‖p =

2L

n
‖‖X1‖‖p ,

where the first inequality uses the Lipschitz condition. Since the ‖Xi‖ have the tail ct, the tail of ‖X̄i‖B can be written
as n

Lc
′ct, where c′ is an absolute positive constant and comes from the equivalent properties of sub-exponential random

variables on its tails and moments, see (11).

Furthermore, we have

σ2
− ≤

4L2

n2
E[‖X1‖2].

Let α = 16
( nL c

′c)2 + 4L2

n2 E[‖X1‖2] and t(η) = c′cn2

2L α. Thus, from Theorem 4.1 (ii), we have

P

(
sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)]− E

[
sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)]

]
> t+

2L√
n
‖‖X1‖‖2

)

≤

{
2 exp

(
− 1

4
n
Lc
′ct
)

if t ≥ t(η),

2 exp
(
− t2

2nα

)
if 0 ≤ t < t(η) and when n ≥ 8 logn

3( nL c
′c)2α .

The proof is complete.
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B.4. Proof of Theorem 4.4

Proof. The proof follows the proof of Theorem 4.3.

Since the ‖Xi‖ have the tail cθt
1
θ , the tail of ‖X̄i‖B can be written as (nL )

1
θ c′θt

1
θ , where c′θ is a positive constant and comes

from the equivalent properties of sub-Weibull random variables on its tails and moments, referring to (12).

Let α = Γ(2θ+1)22θ

(( nL )
1
θ c′θ)2θ

+
( nL )

1
θ c′θc

1/θ
1 Γ(3θ+1)23θ

6c1(( nL )
1
θ c′θ)3θ

+ 4L2

n2 E[‖X1‖2] and t(η) = (1
2 (nL )

1
θ c′θnα)

θ
2θ−1 , where c1 is a positive constant.

Thus, from Theorem 4.1 (ii), we have

P

(
sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)]− E

[
sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)]

]
> t+

2L√
n
‖‖X1‖‖2

)

≤

2 exp
(
− 1

4 (nL )
1
θ c′θt

1
θ

)
if t ≥ t(η) and when n

1
2θ−1 ≥ 4

3( nL )
1
θ c′θ

( 1
2 (nL )

1
θ c′θα)

1
1−2θ log n,

2 exp
(
− t2

2nα

)
if 0 ≤ t < t(η) and when n

1
2θ−1 ≥ 8

3α( 1
2 (nL )

1
θ c′θα)

2θ
1−2θ log n.

The proof is complete.

B.5. Proof of Theorem 4.5

Proof. It is clear that

‖fk(X)(x)‖p
= ‖f(x1, ..., Xk, xk+1, ..., xn)− E[f(x1, ..., Xk, xk+1, ..., xn)]‖p
= ‖E[f(x1, ..., Xk, xk+1, ..., xn)− f(x1, ..., X

′
k, xk+1, ..., xn)|Xk]‖p

≤L‖E[d(Xk, X
′
k)|Xk]‖p

≤L‖d(Xk, X
′
k)‖p,

where the first inequality uses the Lipschitz condition and the last inequality uses Lemma B.1. Since the d(Xk, X
′
k) have the

tail ct, the tail of fk(X)(x) can be written as 1
Lc
′ct, where c′ is an absolute positive constant and comes from the equivalent

properties of sub-exponential random variables on its tails and moments, see (11). Furthermore, we have

σ2
− = sup

x∈Xn
E[(fk(X)(x))

2 I(fk(X)(x) ≤ 0)] ≤ L2E[(d(X1, X
′
1))

2
].

Plugging these bounds into Corollary 3.4, we get α = 16
( 1
L c
′c)2 + L2E[(d(X1, X

′
1))

2
] and t(η) = c′cn

2L α. Hence, if t ≥ t(η)

we have

P (f(X)− E[f(X ′)] > t) ≤ 2 exp

(
− 1

4L
c′ct

)
;

if 0 ≤ t < t(η), when n ≥ 8 logn
3( 1
L c
′c)2α

, we have

P (f(X)− E[f(X ′)] > t) ≤ 2 exp

(
− t2

2nα

)
.

The proof is complete.

B.6. Proof of Theorem 4.6

Proof. The proof follows the proof of Theorem 4.5.

Since the d(Xk, X
′
k) have the tail cθt

1
θ , the tail of fk(X)(x) can be written as ( 1

L )
1
θ c′θt

1
θ , where c′θ is a positive constant

and comes from the equivalent properties of sub-Weibull random variables on its tails and moments, referring to (12).

Plugging this bound into Corollary 3.6, we get α = Γ(2θ+1)22θ

(( 1
L )

1
θ c′θ)2θ

+
( 1
L )

1
θ c′θc

1/θ
1 Γ(3θ+1)23θ

6c1(( 1
L )

1
θ c′θ)3θ

+ L2E[(d(X1, X
′
1))

2
] and t(η) =
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( 1
2 ( 1
L )

1
θ c′θnα)

θ
2θ−1 , where c1 is a positive constant. Hence, if t ≥ t(η) and when n

1
2θ−1 ≥ 4

3( 1
L )

1
θ c′θ

( 1
2 ( 1
L )

1
θ c′θα)

1
1−2θ log n

we have

P (f(X)− E[f(X ′)] > t) ≤ 2 exp

(
−1

4
(

1

L
)

1
θ c′θt

1
θ

)
.

If 0 ≤ t < t(η) and when n
1

2θ−1 ≥ 8
3α( 1

2 ( 1
L )

1
θ c′θα)

2θ
1−2θ log n, we have

P (f(X)− E[f(X ′)] > t) ≤ 2 exp

(
− t2

2nα

)
.

The proof is complete.
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