
Under review as submission to TMLR

Blind Sequence Denoising with Self-Supervised
Set Learning

Anonymous authors
Paper under double-blind review

Abstract

Denoising discrete-valued sequences typically relies on training a supervised model on
ground-truth sources or fitting a statistical model of a noisy channel. Biological sequence
analysis presents a unique challenge for both approaches, as obtaining ground-truth se-
quences is resource-intensive and the complexity of sequencing errors makes it difficult to
specify an accurate noise model. Recent developments in DNA sequencing have opened an
avenue for tackling this problem by producing long DNA reads consisting of multiple sub-
reads, or noisy observations of the same sequence, that can be denoised together. Inspired by
this context, we propose a novel method for denoising sets of sequences that does not require
access to clean sources. Our method, Self-Supervised Set Learning (SSSL), gathers subreads
together in an embedding space and estimates a single set embedding as the midpoint of
the subreads in both the latent space and sequence space. This set embedding represents
the “average” of the subreads and can be decoded into a prediction of the clean sequence.
In experiments on simulated long-read DNA data, SSSL-denoised sequences contain 31%
fewer errors compared to a traditional denoising algorithm based on a multi-sequence align-
ment (MSA) of the subreads. When very few subreads are available or high error rates lead
to poor alignment, SSSL reduces errors by an even greater margin. On an experimental
dataset of antibody sequences, SSSL improves over the MSA-based algorithm on two pro-
posed self-supervised metrics, with a significant difference on difficult reads with fewer than
ten subreads that comprise over 75% of the test set. SSSL promises to better realize the
potential of high-throughput DNA sequencing data for downstream scientific applications.

1 Introduction

Denoising discrete-valued sequences is a task shared by a variety of applications such as spelling correction
(Angluin & Csűrös, 1997; Damerau & Mays, 1989; Mays et al., 1991), hidden Markov Model state estimation
(Ephraim & Merhav, 2002), and biological sequence analysis (Tabus et al., 2002; 2003; Lee et al., 2017).
In these settings, denoising typically involves specifying a statistical model of the noise process based on
prior domain knowledge or training a supervised model on ground-truth source labels. Denoising biological
sequences, however, presents unique challenges to both approaches. First, although supervised models
(Figure 1b) have found some success (Baid et al., 2022), ground-truth source sequences are usually resource-
intensive to obtain. Second, priors of self-similarity and smoothness that enable denoising in other domains
such as images (Fan et al., 2019) often do not transfer to discrete, variable-length data. Third, assumptions
on the independence of the noise process that underpin many methods are violated as the errors introduced
during sequencing tend to be context-dependent (Abnizova et al., 2012; Ma et al., 2019).

Recent developments in DNA/RNA sequencing technology have highlighted the need for an efficient and
accurate denoising method for biological sequences. Long-read sequencing platforms such as the Oxford
Nanopore Technology (ONT) can process sequences of up to 2-5 million base pairs (bps), but come at the
cost of much higher error rates (5-15%) compared to those of their predecessors (0.1-0.5%) (Amarasinghe
et al., 2020). Many applications require these longer reads, such as the analysis of full single-chain variable
fragments (scFv) of antibodies (Goodwin et al., 2016). In this sequencing paradigm, practitioners generate
a long read consisting of multiple noisy repeated observations, or subreads, of the same source sequence. A
denoising algorithm is then required to predict the clean sequence from the set of noisy subreads.
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Traditional denoising algorithms involve analyzing k-mers (Manekar & Sathe, 2018; Yang et al., 2010; Green-
field et al., 2014; Nikolenko et al., 2013; Medvedev et al., 2011; Lim et al., 2014), fitting a statistical error
model (Schulz et al., 2014; Meacham et al., 2011; Yin et al., 2013), or performing a multi-sequence alignment
(MSA) of the subreads (Kao et al., 2011; Salmela & Schröder, 2011; Bragg et al., 2012; Gao et al., 2020).
MSA-based algorithms (Figure 1a), the most commonly used, align the subreads and then collectively de-
noise them by identifying a consensus nucleotide base for each position (e.g. Kao et al., 2011). MSA-based
denoising tends to be unreliable when very few subreads are available or high error rates lead to poor align-
ment. Even when MSA does not fail, it may not always be possible to break a tie among the subreads for a
given position and identify an unambiguous “consensus” nucleotide.

In this paper, we propose self-supervised set learning (SSSL), a blind denoising method that is trained without
ground-truth source sequences and can be applied even in settings where MSA produces poor results. SSSL,
illustrated in Figure 1c, aims to learn an embedding space in which subreads cluster around their associated
source sequence. Since we do not have access to the source sequence, we estimate its embedding as the
midpoint between subread embeddings in both the latent space and sequence space. This “average” set
embedding can then be decoded to generate the denoised sequence. Our SSSL model consists of three
components, an encoder, decoder, and set aggregator. We formulate a self-supervised objective that trains
the encoder and decoder to reconstruct masked subreads, trains the set aggregator to find their midpoint,
and regularizes the latent space to ensure that aggregated embeddings can be decoded properly. Because
SSSL is trained on the data and source sequences it will denoise, it can combine information across sets of
subreads during training, allowing for more accurate denoising in few-subread settings.

We evaluate SSSL on two datasets, a simulated antibody sequence dataset for which we have ground-
truth sequences, and a dataset of real scFv antibody ONT reads for which we do not. In settings without
source sequences, we propose two metrics to evaluate and compare the success of our denoising method to
other baselines. Our primary metric, leave-one-out (LOO) edit distance, upper bounds the edit distance
from a denoised sequence to its associated source sequence. Our complementary metric, fractal entropy,
measures the complexity of a denoised sequence relative to its subreads. On simulated antibody data, SSSL
outperforms the MSA-based consensus baseline by an average source sequence edit distance of ∼12 bps,
reducing errors by 31% and achieving strong results even on challenging reads with very few subreads. On
real scFv antibody data, SSSL significantly improves LOO edit distance and fractal entropy relative to the
MSA-based consensus baseline, particularly on small reads with fewer than 10 subreads which comprise over
75% of the test set. Denoising these reads enables their use for downstream analysis, helping to realize the
full potential of long-read DNA platforms.

2 Background and Related Work
We first establish the notation and terminology used throughout the paper. Given a ground-truth source
sequence s = (s1, · · · , sTs

) with length Ts, we define a noisy read R as a set of m subread sequences
{r1, · · · , rm} with varying lengths {Tr1 , · · · , Trm}. Each subread sequence ri is a noisy observation of the
source sequence s generated by a stochastic corruption process q(r|s). We refer to the percentage of tokens
corrupted by q as the error rate. In the case of DNA sequencing, this corruption process consists of base
pair insertions, deletions, and substitutions. These errors are often context-dependent and carry long-range
correlations (Ma et al., 2019). The error rates and profiles can also vary widely depending on the specific
sequencing platform used (Abnizova et al., 2012).

2.1 DNA Sequence Denoising
The goal of DNA sequence denoising is to produce the underlying source sequence s given a noisy read R.
Traditional denoising methods are based on k-mer analysis, statistical error modeling, or multi-sequence
alignment (MSA) (Yang et al., 2012; Laehnemann et al., 2015). k-mer based methods (Manekar & Sathe,
2018; Yang et al., 2010; Greenfield et al., 2014; Nikolenko et al., 2013; Medvedev et al., 2011; Lim et al.,
2014) build a library of aggregate k-mer coverage and consensus information across reads and use this to
correct untrusted k-mers in sequences, but fail without large coverage of the same identifiable sections of
the genome. Statistical error model-based methods (Schulz et al., 2014; Meacham et al., 2011; Yin et al.,
2013) build an empirical model of the error generation process during sequencing using existing datasets,
but require strict modeling assumptions and the fitting proecedure can be computationally expensive (Lee
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(a) Multi-Sequence Alignment Denoising (b) Supervised Neural Denoising

(c) Denoising with Self-Supervised Set Learning

Figure 1: Given a set of subreads R = {r1, r2, r3 · · · }, (a) commonly used denoising methods identify a
per-position consensus from a multi-sequence alignment of the subreads. They are prone to failing when few
subreads are available or error rates are high. (b) Supervised denoising methods train a neural network to
directly predict the source sequence. During training, they rely on access to ground-truth sequences, which
can be prohibitively expensive to obtain. (c) Our proposed self-supervised set learning framework denoises
without access to source sequences by learning a latent space in which we can individually embed subreads,
aggregate them, and then decode the aggregated embedding into a prediction of the clean sequence.

et al., 2017). MSA-based methods (Kao et al., 2011; Salmela & Schröder, 2011; Bragg et al., 2012; Gao et al.,
2020) align the subreads within a read and then aggregate information by identifying a consensus nucleotide
for each position, but perform poorly when few subreads are available or the subreads are noisy. Although
combining these methods may alleviate some of these issues, current denoising methods are reliable only in
limited settings.

Recent work has instead leveraged large neural networks to perform denoising by training a model to directly
denoise reads in a fully supervised manner. Specifically, given a dataset D = {(R(i), s(i))}n

i=1 consisting of
reads R(i) generated from associated source sequences s(i), a neural denoising model learns to generate the
source input s(i) given subread sequences in R(i) and any other associated features. Models like DeepConsen-
sus (Baid et al., 2022) have shown that with a sufficiently large dataset of reads and ground-truth sequences,
a model can be trained to outperform traditional denoising methods. However, ground-truth sequences are
often prohibitively expensive to obtain, limiting the use cases for fully supervised neural methods.

2.2 Blind Denoising
In settings where we do not have access to ground-truth sequences, we need to perform blind denoising.
Specifically, given a dataset that consists of only noisy reads, D = {R(i)}n

i=1, we train a model that can
generate the associated source sequences s(i) without ever observing them during training or validation.
Existing work in blind denoising focuses on natural images, for which strong priors can be used to train
models with self-supervised objectives. The smoothness prior (i.e., pixel intensity varies smoothly) motivates
local averaging methods using convolution operators, such as a Gaussian filter, that blur out local detail.
Another common assumption is self-similarity; natural images are composed of local patches with recurring
motifs. Convolutional neural networks (CNNs) are often the architectures of choice for image denoising as
they encode related inductive biases, namely scale and translational invariance (LeCun et al., 2010). In the
case that the noise process is independently Gaussian, a denoising neural network can be trained on Stein’s
unbiased risk estimator (Ulyanov et al., 2018; Zhussip et al., 2019; Metzler et al., 2018; Raphan & Simoncelli,
2011). An extensive line of work (“Noise2X”) significantly relaxes the assumption on noise so that it need
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Figure 2: Our self-supervised set learning model architecture. All subread sequences in a given read first
pass through a transformer encoder, which yields a set of embeddings. These embeddings are decoded by
a transformer decoder and an autoencoding loss minimizes the reconstruction error. The set of embeddings
are also combined by a set aggregator to produce a single set embedding, from which we can decode the
denoised sequence using the transformer decoder. This set embedding is regularized to be the midpoint of
the subreads in both the latent space and the sequence space.

only be statistically independent across pixels, allowing for a greater variety of noise processes to be modeled
(Lehtinen et al., 2018; Batson & Royer, 2019; Laine et al., 2019; Krull et al., 2020).

Discrete-valued sequences with variable lengths do not lend themselves naturally to assumptions of smooth-
ness, self-similarity, Gaussianity, or even statistical independence under the Noise2X framework—all assump-
tions explicitly defined in the measurement space. Moreover, we must model more complex noise processes
for correcting DNA sequencing errors, which tend to be context-dependent and carry long-range correlations
(Abnizova et al., 2012; Ma et al., 2019). We thus require more flexibility in our modeling than are afforded
by common statistical error models that assume independent corruption at each position (Weissman et al.,
2005; Lee et al., 2017).

3 Blind Denoising with Self-Supervised Set Learning

3.1 Motivation
Suppose we are given a dataset D = {R(i)}n

i=1 of n noisy reads, each containing m(i) variable length subread
sequences {r(i)

j }m(i)

j=1 with correspond to noisy observations of a ground-truth source sequence s(i). Assume
that individual subreads and source sequences can be represented on a smooth, lower dimensional manifold
M (Chapelle et al., 2006). Because we do not have direct access to s(i), we cannot directly find its embedding
in M. However, since subreads from a given read are derived from a shared source sequence s(i) and are
more similar to s(i) than to one another, we expect the representations of the subreads to cluster around the
representation of their associated source sequence in M, as shown in Figure 1c. In such an embedding space,
we can estimate the embedding of s(i) at the midpoint between subread embeddings in both the latent space
and the sequence space. This embedding represents an “average” of the noisy subreads, and can then be
decoded to generate ŝ(i), our prediction of the true source sequence. We propose self-supervised set learning
(SSSL) to learn the manifold space M accommodating all of these tasks: encoding individual sequences,
finding a plausible midpoint by aggregating their embeddings, and decoding the aggregated embedding into
a denoised prediction.

3.2 Model Framework
Our proposed SSSL model architecture is shown in Figure 2. It consists of three components:
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• An encoder network fϕ parameterized by ϕ that takes as input a subread sequence r of Tr tokens
and outputs a sequence of d dimensional embeddings h ∈ Rd∗Tr .

• A set aggregator network aΦ parameterized by Φ that takes as input a set of variable-length embed-
dings H = {h1, · · · , hm} with hi ∈ Rd∗Tri , and outputs a set embedding ĥ ∈ Rd∗T ′ for some length
T ′.

• An autoregressive decoder network gθ parameterized by θ that takes as input an embedding ĥ ∈
Rd∗T ′ and a sequence of previously predicted output tokens (ŝ1, · · · , ŝt−1) and outputs a distribution
over the next token conditioned on the previous tokens p(ŝt|ŝ1, · · · , ŝt−1).

To denoise a given read R = {r1, · · · , rm}, we pass each subread through the encoder to generate associated
embeddings H = {h1, · · · , hm}. This set of variable-length embeddings is passed to the set aggregator to
yield a set embedding ĥ. The decoder then takes this set embedding ĥ, representing the whole read, and
generates a denoised sequence ŝ. At no point during training or validation does our model observe the true
source sequence s.

In our experiments, we parameterize our encoder and decoder as a transformer encoder and decoder, re-
spectively, with an additional projection head on top of the encoder network. Since the inputs to our set
aggregator network are of varying lengths, we first transform the subread embeddings in the read to a
common length by applying a monotonic location-based attention mechanism (Kim et al., 2021; Shu et al.,
2019). The single transformed length T ′ for a given read is calculated as the average of the subread lengths.
The σ scale is learned via a linear layer that takes as input a feature vector consisting of the d-dimensional
average of the embeddings in H, along with the sequence lengths {Tr1 · · · Trm

}. Once transformed to the
same length T ′, the subread embeddings are passed to a set transformer (Lee et al., 2019), a permutation
invariant attention mechanism that combines the length transformed embeddings at each position across
subreads to produce a single Rd embedding for each position and a sequence embedding ĥ ∈ Rd∗T ′ . Specific
model and training hyperparameters are provided in Appendix B.

3.3 Training Objective
We formulate a self-supervised training objective to construct an embedding space in which we can embed,
aggregate, and decode sequences. The encoder fϕ and decoder gθ are trained to map sequences to the
embedding space and back to the sequence space. We optimize fϕ and gθ with a simple autoencoding
objective that attempts to minimize the log probability of reconstructing a given subread rj , i.e. encoding
it with fϕ(rj) and decoding via gθ:

Lautoencode(R) = −
m∑

j=1
log gθ(rj |fϕ(rj)). (1)

We regularize the latent space learned by fϕ by applying a small Gaussian noise to the embeddings produced
by fϕ and randomly masking the input subreads during training. In addition, we apply L2 decay on the
embeddings to force them into a small ball around the origin. We call this regularization embedding decay:

Rembed(R) =
m∑

j=1

1
Lm

Lm∑
k=1

||fϕ(rj)k||22. (2)

The combination of these techniques acts similarly to those in LINDA (Kim et al., 2021), allowing the
decoder decode properly not only from the embeddings of observed subreads but also from the aggregate set
embedding at their center.

The set aggregator produces a single set embedding given a set of variable-length input embeddings. For
convenience, we define aϕ,Φ(R) = aΦ({fϕ(rj)}m

j=1 as the set embedding produced by the combination of
the encoder and set aggregator. In order to estimate the true source sequence embedding, we train the
set aggregator to produce an embedding at the midpoint of the subreads in both the latent space and the
sequence space. To find a midpoint in our latent space we require a distance metric d between variable-
length embeddings. We consider the sequence of embeddings as a set of samples drawn from an underlying

5



Under review as submission to TMLR

distribution defined for each sequence and propose the use of kernelized maximum mean discrepancy (MMD)
(Gretton et al., 2012):

dκ(x,y) =

 1
L2

x

Lx∑
i,j=1

κ(xi,xj) − 1
LxLy

Lx,Ly∑
i,j=1

κ(xi,yj) + 1
L2

y

Ly∑
i,j=1

κ(yi,yj)

 (3)

for a choice of kernel κ. In experiments we use the Gaussian kernel κ(x,y) = e−||x−y||2
2 . Intuitively, this

metric aims to reduce pairwise distances between individual token embeddings in each sequence while also
preventing embedding collapse within each sequence embedding. To find a midpoint in sequence space we
minimize the negative log likelihood of decoding each of the individual subreads given the set embedding.
Combining these sequence and latent midpoint losses gives us the loss used to train our set aggregator:

Lmidpoint(R) =
m∑

j=1
− log gθ(rj |aϕ,Φ(R))︸ ︷︷ ︸

Lsequence mid

+ dκ(aϕ,Φ(R), fϕ(rj))︸ ︷︷ ︸
Llatent mid

(4)

Putting all the components together, the objective used to jointly train the encoder, decoder, and set
aggregator is

arg min
Φ,ϕ,θ

1∑n
i=1 m(i)

n∑
i=1

Lautoencode(R(i)) + ηLmidpoint(R(i)) + λRembed(R(i)), (5)

where η and λ control the strength of the midpoint loss and regularization respectively. Rather than average
losses over each read and then over each batch, we average over the total number of subreads present in a
batch in order to ensure every subread in the batch is weighted equally. This weighting scheme has the effect
of upweighing higher signal-to-noise reads with more subreads.

4 Evaluation Metrics
The ultimate goal for a given denoising method f(·) is to produce a sequence f(R) = ŝ from a given read
R = {r1, · · · , rm} with the smallest edit distance dedit(ŝ, s) to the associated source sequence s. Since we do
not observe s, we require a self-supervised version of such a metric for evaluating and comparing denoising
methods. We propose a primary metric, leave-one-out (LOO) edit distance, which upper bounds the edit
distance dedit(ŝ, s). We also propose a secondary metric, fractal entropy, which measures the entropy of a
denoised sequence relative to its subreads. The combination of these metrics allows us to accurately evaluate
and compare the performance of any denoising method.

4.1 Leave-One-Out Edit Distance
For our primary metric, we formulate a direct upper bound on the edit distance from our denoised sequence
to the associated source sequence dedit(f(R), s). From the triangle inequality, we have

dedit(f(R), s) ≤ dedit(f(R), ri) + dedit(ri, s). (6)

Since dedit(ri, s) is a constant for a given subread, ri, dedit(f(R), ri) is an upper bound on the source edit
distance dedit(f(R), s). However, we would like to measure the ability of the f(·) to denoise unseen sequences.
We can instead denoise the set R with ri removed, R−i. Our upper bound is then dedit(f(R−i), ri) Averaging
over all subreads, our final leave-one-out edit distance metric is:

LOO(R, f) = 1
m

m∑
i=1

dedit(f(R−i), ri). (7)

4.2 Fractal Entropy
Our secondary metric complements the LOO edit distance by quantifying how well a denoised sequence
captures the patterns present in a set of subreads. Specifically, we measure the entropy of the denoised
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sequence relative to its subreads. Intuitively, a denoised sequence should have a lower entropy when more
of its k-mers are consistent with those present in the subreads, and higher when the k-mers in the denoised
sequence are rare or not present in the subreads. Entropy has been applied in genomics for analyzing full
genomes (Tenreiro Machado, 2012; Schmitt & Herzel, 1997) and detecting exon and introns (Li et al., 2019;
Koslicki, 2011), and in molecular analysis for generating molecular descriptors (Delgado-Soler et al., 2009)
and characterizing entanglement (Tubman & McMinis, 2012). However, directly calculating entropy for a
small set of sequences with ambiguous tokens is difficult and often unreliable (Schmitt & Herzel, 1997).

We propose fractal entropy, a metric based on the Renyí quadratic entropy in a universal sequence mapping
(USM) space estimated with a fractal block kernel that respects suffix boundaries. For a given sequence
r = (r1, r2, · · · , rTr ), a USM (Almeida & Vinga, 2002) maps each subsequence (r1, · · · ri) to a point si in
the unit hypercube such that subsequences that share suffixes are encoded closely together. Details on the
USM encoding process are provided in Appendix C. The USM space allows us to analyze the homology
between two sequences independently of scale or fixed-memory context. To estimate the probability density
of a sequence in this space, we use Parzen window estimation with a fractal block kernel (Vinga & Almeida,
2007; Almeida & Vinga, 2006) that computes a weighted k-mer suffix similarity of two sequences si and sj :

κL,β(si, sj) =
∑

k=0 L(|A|β)k
1k,sj (si)∑L

k=0 βk
(8)

where 1k,sj
(si) is an indicator function that is 1 when si lies in the same section of the USM corresponding

to sequences with the same length k suffix as sj . The kernel is defined by two parameters: L, which sets the
maximum k-mer size resolution, and β, which controls the how strongly weighted longer k-mers are. For a
given point si with associated subsequence (r1, · · · , ri), the probability density can then be computed as:

f̂L,β(si) = 1 + 1/Tr

∑L
k=1 |A|kβkc(ri[: k])∑L

k=0 βk
. (9)

where ri[: k] is the suffix of length k, (ri−k+1, · · · , ri), and c(·) is a count function that reduces the task of
summing the indicator function values to counting occurrences of a particular k-mer in r (Almeida & Vinga,
2006). We can then calculate the Renyí quadratic entropy with this density estimate by integrating over the
USM space, or equivalently by averaging the probability density over all possible k-mers of size L:

H2
L,β(r) = − log

∑
s∈AL

1
|A|L

f̂L,β(s)2. (10)

To calculate the entropy of a given denoised sequence, we calculate k-mer frequencies for all k ≤ L in all
subreads and the denoised sequence, and then compute the entropy as defined above. Since we want to
measure the ability of a denoised sequence to aggregate information across multiple subreads, we use the
entropy metric only on reads with at least 2 subreads, as the trivial lowest entropy denoised sequence for a
single subread is a copy of the subread. When counting k-mers for MSA-based denoised sequences for which
some n ≤ k ambiguous base pairs may be present, we add 1/|A|n to the counts of each potential k-mer. For
example, the k-mer A?G adds 1/4 to the counts of k-mers [AAG, ATG, ACG, AGG]. We report results on using
a kernel with parameters L = 8 and β = 8. Further discussion of specific kernel parameters and calculation
are provided in Appendix C.

5 Experimental Setup
5.1 Data
Sim Antibody: We begin by investigating the ability of our model to denoise simulated antibody-like
sequences for which the ground-truth source sequences are known. We generate a set of 10,000 source
sequences S using a procedure that mimics V-J recombination, a process by which the V-gene and J-
gene segments of the antibody light chain recombine to form diverse sequences. Details are provided in
Appendix A. To generate the simulated reads dataset D = {R(i)}n

i=1, we first select a sequence s(i) from
S at random, then sample a number of subreads to generate, m(i), from a beta distribution with shape
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parameters α = 1.3, β = 3 and scale parameter 20. To mimic the worst error rates present in ONT
sequencers (Laehnemann et al., 2015), we randomly select 15% of the base pairs in each of the m(i) subreads
r ∈ R(i) to corrupt. For each base pair selected, we insert a random base pair with 25% probability, delete
the base pair with 50% probability, and substitute for a different base pair with 25% probability. We choose
high deletion rates relative to the experimentally observed rates to test the ability of our model to accurately
correct missing base pairs. Substitutions are made by selecting a different base pair uniformly at random. We
generate a dataset of 100,000 reads and split these into a training, validation, and test set with a 90%/5%/5%
split, respectively.
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Figure 3: Cumulative distribution of
subreads per read in the scFv anti-
body test set. Over 75% of reads con-
tain fewer than 10 subreads.

scFv Antibody: To investigate our model’s ability to denoise
real data, we use an experimental scFv antibody library sequenced
with ONT. This dataset contains a total of 592,773 reads of antibody
sequences, each consisting of a single light and heavy chain sequence.
We focus on the light chains in this paper. Each read contains 2-101
subreads with an average of 8 subreads per read, and an average light
chain subread length of 327 base pairs. The cumulative distribution
of subreads per reads is shown in Figure 3. No reads of size 1 are
included since we only include reads for which a valid consensus can
be generated. As before, we split our data randomly into a training,
validation, and test set by randomly sampling 90%/5%/5% of the
data respectively.

5.2 Baselines
We compare our method only against baseline methods that similarly only take the raw subread sequences
as input. Our key baseline is an MSA-based consensus method, which generates a per-position consensus
of the sub-reads from their alignment. We do not consider k-mer based methods as baselines in this paper,
as they require access to genome alignments. We also do not consider methods based on statistical error
modeling, which require extensive domain knowledge about the error-generating process. To perform the
MSA, we use MAFFT v7.394 with default parameters (Katoh & Standley, 2013) and perform two rounds
of alignment, then generate a consensus by selecting the relative majority base pair at each position. For
positions where base pairs are tied we assign an “ambiguous” base pair. We refer to the generated sequence
as the consensus.

6 Results
6.1 Sim Antibody
On our simulated data, we first examine how well SSSL denoises sequences compared to the MSA-based
consensus baseline. Results are shown in Figure 4 and 5. On average, SSSL achieves a source sequence
edit distance of 27.27 while the MSA-based consensus achieves a source sequence edit distance of 39.26, an
improvement of nearly 12 bps. The distribution of edit distances, shown in Figure 4, demonstrates that our
method not only improves the average edit distance to the source sequence, but also has lower variance. In
Figure 5, our improvements over the MSA baseline are consistent regardless of the number of subreads per
read, with the largest improvements occurring in the few-subread settings where alignment-based approaches
struggle. SSSL is also able to denoise 1- and 2-subread reads, where MSA methods cannot be applied. Even
for reads consisting of a single subread, SSSL achieves a lower edit distance than would be expected by simply
copying the subread, indicating that the model has learned to aggregate information from other reads of the
same source sequence.

Since we have ground-truth source sequences for each read, we also investigate the quality of our LOO
edit and fractal entropy metrics. To evaluate the use of LOO edit distance as a proxy metric for source edit
distance, we calculate the Pearson R (Freedman et al., 2007) correlation of these two values for both SSSL and
consensus denoised sequences. We find a correlation of 0.83 for SSSL denoised sequences and a correlation
of 0.78 for consensus denoised sequences, justifying our use of LOO edit for hyperparameter tuning and
validation. To evaluate the use of both LOO edit distance and fractal entropy as a way to compare the
quality of denoising methods on the same dataset, we calculate the Pearson R correlation between between
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Figure 4: Edit distances from source sequences
for SSSL and consensus predictions. SSSL out-
performs the consensus by ∼12 bps on average
with lower variance and a smaller range.
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Figure 5: SSSL consistently achieves lower source
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when there are only one or two subreads. Er-
ror bars represent standard deviations. The ex-
pected subread error is the expected edit distance
between a subread and its source sequence.
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Figure 6: Validation of LOO edit distance and fractal entropy as evaluation metrics.

differences in both metrics and differences in edit distance on a given read. Entropy is calculated with a
fractal kernel of L = 8 and β = 8. Our analysis is presented in Figure 6.

We find that for reads of all sizes, differences in both LOO edit distance and fractal entropy correlate strongly
with differences in source edit distance, with larger reads exhibiting strong correlation. When examining
reads individually in Figure 6b, we find that reads with more subreads also align more closely with a line
through the origin. These results motivate our use of both metrics as a way to compare the performance of
different denoising methods in settings where we do not have ground-truth source sequences.

6.2 scFv Antibody
Results on antibody light chain data are shown in Figure 7. Since we do not have source sequences for the
reads in this dataset, we analyze the differences in LOO edit and fractal entropy between consensus and SSSL
denoised sequences. On average SSSL achieves a 21bp LOO edit distance while the consensus achieves a
26.2bp LOO edit distance, a 19.8% improvement of 5.2bp LOO edit. SSSL also achieves a 0.005 lower fractal
entropy compared to the consensus. As the number of subreads decreases, the median difference for both
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(a) Median differences in LOO edit between consen-
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Figure 7: Results on scFv antibody data. For both metrics, SSSL achieves significantly better performance
on reads with fewer than 10 subreads, or over 75% of the test set. On average, SSSL outperforms the
consensus by a LOO edit distance of 5.2 and entropy of 0.005.

metrics becomes significantly larger, with the largest difference of 11.7 LOO edit on reads with 3 subreads,
and 0.038 entropy on reads with 2 subreads. This behavior is similar to that observed in simulation data,
where SSSL improves most over the consensus on challenging reads where fewer subreads are present and
performs more similarly as read size increases. For reads with less than 10 subreads, comprising over 75% of
the test set, this difference is statistically significant. We measure statistical significance with a one-tailed
paired t-test, a p-value of 0.005, and a null hypothesis that SSSL does not produce a better denoised sequence
compared to the consensus.

The ONT platform is prone to introducing random insertions, deletions, and substitutions as well as ho-
mopolymer insertions, or erroneous repetitions of the same base pair. An ideal denoising algorithm is able
to remove context-dependent errors as well as long homopolymer insertions, while maintaining true genetic
variations present in the source sequence. We curate examples of SSSL and consensus denoised reads demon-
strating each type of sequencing error in Figure 8. Here, “scaffold” refers to the sequence used at the library
construction time to generate the read. While it is similar to the true source sequence, it may differ from it
by some genetic variation.

In particularly noisy regions with homopolymers (Figure 8a), SSSL generates the correct number of base
pairs while the MSA-based algorithm either generates too many or too few. In regions with many insertions
and deletions (Figure 8b), SSSL properly removes inserted base pairs while the MSA-based algorithm cannot
identify a consensus nucleotide and often outputs ambiguous base pairs. When real genetic variations are
present in all the subreads (Figure 8c), both the consensus and SSSL produce the correct base pair, ignoring
other reads it may have seen with different base pairs at those positions.

7 Analysis and Discussion
In this section we analyze how different data and model settings affect the downstream success of our
denoising method as well as its ability to denoise unseen sequences. Since we can only control data parameters
precisely on simulation data, all models are trained and evaluated on simulated antibody data generated
from the same set of source sequences as described in Section 5.1.

7.1 Regularization
How important is each regularization component of our SSSL objective? SSSL has six key regularization
components: sequence masking, embedding decay, embedding noise, sequence midpoint loss, latent midpoint
loss, and η loss weighting. To investigate the contribution of each component, we remove it and retrain the
model for a fixed number of steps on the simulated antibody dataset. Results are shown in Figure 9. We
find that all of our regularization components are important in improving the success of our model. The
latent midpoint and sequence midpoint losses are the most important; removing them causes the model
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(a) Homopolymer insertions that throw off the align-
ment and present difficulties for MSA-based methods
are denoised properly by SSSL.

(b) The MSA-based method outputs ambiguous pre-
dictions in sections with large numbers of insertions
and deletions, whereas SSSL remains robust.

(c) Both methods are capable of preserving true genetic variations in the source sequence that differentiates it from
the library scaffold.

Figure 8: Curated examples from the scFv dataset illustrating different types of errors.

to diverge and the loss to explode, so we do not display these results. η loss weighting is the next most
important, and increases the source edit distance on average by 9 bps, performing almost as poorly as the
consensus. Removing masking increases the source edit distance by 6 bps, and removing embedding decay
and embedding noise both perform similarly, increasing the source edit distance by 3 bps.

7.2 Subread Error Rates

How do different subread error rates affect the performance of SSSL denoising? We investigate error rates
from 5% to 35% and generate a new dataset for each percentage using the same source sequences. We then
train a model on each dataset until convergence. Results are shown in Figure 10. At the lowest error rate
of 5%, SSSL performs similarly to the consensus. Within the range of error rates observed in long-read
sequencing platforms (∼10 - 25%), our denoising method significantly outperforms the consensus, with an
improvement in edit distance of 3.5 bps at 10%, 12 bps at 15%, 12 bps at 20%, and 7 bps at 25%. Past 25%
error, neither model is able to denoise better than the expected subread edit distance to the source sequence
(i.e., denoising increases the existing noise present in the subreads).

8 Conclusion

We propose self-supervised set learning (SSSL), a method for denoising a set of noisy sequences without
observing the associated ground-truth source sequence during training. SSSL learns an embedding space in
which the noisy sequences cluster together and estimates source sequence representation as their midpoint.
This set embedding, which represents an “average” of the noisy sequences, can then be decoded to generate
a prediction of the clean sequence. We apply SSSL to the task of denoising long DNA sequence reads, for
which current denoising methods cannot be applied when source sequences are unavailable or error rates are
high. To evaluate our method, we propose two self-supervised metrics: leave-one-out (LOO) edit distance
and fractal entropy. On a simulated dataset of antibody-like sequences, SSSL consistently outperforms our
MSA-based consensus baseline. On an experimental dataset of antibody sequences, SSSL improves over the
MSA-based consensus in terms of both self-supervised metrics. The difference is statistically significant on
difficult reads with fewer than ten subreads, which comprise over 75% of the test set. By denoising these
few-subread reads, SSSL enables their use in downstream analysis and scientific applications, more fully
realizing the potential of long-read DNA sequencing platforms
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A Simulated Data Generation
In this section we describe our simulated data generation process. First, we randomly generate template
V-gene and J-gene sequences by sampling a sequence length then randomly sampling a base pair from
{A,T,C,G} uniformly and independently for each position. V-gene sequence lengths are sampled from a
normal distribution with µv = 300 and σv = 6. J-gene sequence lengths are sampled from a normal
distribution with µj = 33 and σj = 3. Given the resulting sets of V-gene and J-gene templates, V and J, we
then generate a set of source sequences S by concatenating each template sequence in V with each template
sequence in J. For our dataset we generate 100 V sequences and 100 J sequences for a total of 10,000 S
sequences.

B Model and Training Hyperparameters
In this section we describe our model and training hyperparameters. We preprocess our data by tokenizing
sequences using a codon vocabulary of all 1-, 2-, and 3-mers. We learn a token and position embedding
with dimension 64. Our sequence encoder and decoder are 4-layer transformers (Vaswani et al., 2017) with
8 attention heads and hidden dimension of size 64. Our set transformer also uses a hidden dimension of size
64 with 8 attention heads. On top of the base encoder we apply an additional 3-layer projection head all
with dimension 64 and BatchNorm (Ioffe & Szegedy, 2015) layers between each linear layer. Decoding is
performed via beam search with beam size 32. All models are trained with the Adam optimizer (Kingma &
Ba, 2014) with a learning rate of 0.001 and a batch size of 8 reads, although the total number of subreads
present varies from batch to batch. We apply loss weighting values η = 10 and λ = 0.0001, and apply
independent Gaussian noise to embeddings with a standard deviation of 0.01. Models and hyperparameters
are selected based on validation LOO edit distance (Section 4.1).

C Fractal Entropy
C.1 USM Encoding
Given an alphabet A (for DNA, A = {A,T,C,G}), we define the universal sequence mapping (USM)
space (Almeida & Vinga, 2002) in the d = log2 |A| dimensional unit hypercube where each corner cor-
responds to a character in our alphabet. For a given sequence r = (r1, r2, · · · , rTr ) with length Tr, we
compute a sequence of USM coordinates S = {s1, s2, · · · , str} generated by a chaos game that randomly se-
lects s0 ∼ Unif(0, 1)d then calculates si = 1/2(si−1 +bi) where bi is the corner of the hypercube corresponding
to the character at position i.

C.2 L and β Ablations
In this section we analyze the behavior of fractal entropy as our kernel parameters, L and β change. In-
tuitively, L controls the resolution of the kernel, and the smoothing parameter β control the weighting
among k-mers of different lengths. Values of β < 1/|A| correspond to higher weighting of shorter k-mers, and
β > 1/|A| correspond to higher weighting of longer k-mers (Almeida & Vinga, 2006). As we desire consistency
between longer k-mers, we consider only values of β > 1/|A|. As L increases, the correlation of fractal entropy
increases as well, although large values of L perform similarly. Since increasing the resolution of the kernel
increases computation costs, we select a value of L = 8 as a reasonably high resolution. For β ≤ 1, the
correlation is poor, and for β > 1, the correlation is almost identical. Since the correlation values with β = 8
are marginally higher, we select this value in our experiments.
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(a) Increasing L increases correlation on all read sizes
but reaches a plateau at L = 8.
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Figure 11: Ablations on fractal kernel parameters L and β which control kernel resolution and smoothness
respectively.
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