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ABSTRACT

We present a new column generation approach based on Machine Learning (ML)
for solving combinatorial optimization problems. The aim of our method is to
generate high-quality columns that belong to an optimal integer solution, in con-
trast to the traditional approach that aims at solving linear programming relax-
ations. To achieve this aim, we design novel features to characterize a column,
and develop an effective ML model to predict whether a column belongs to an op-
timal integer solution. We then use the ML model as a filter to select high-quality
columns generated from a sampling method and use the selected columns to con-
struct an integer solution. Our method is computationally fast compared to the
traditional methods that generate columns by repeatedly solving a pricing prob-
lem. We demonstrate the efficacy of our method on the vertex coloring problem,
by empirically showing that the columns selected by our ML model are signifi-
cantly better, in terms of the integer solution that can be constructed from them,
than those selected randomly or based only on their reduced cost. Further, we
show that the columns generated by our method can be used as a warm start to
boost the performance of a column generation-based heuristic.

1 INTRODUCTION

Machine Learning (ML) has been increasingly used to tackle combinatorial optimization problems
(Bengio et al., 2020), such as learning to branch in Mixed Integer Program (MIP) solvers (Khalil
et al., 2016; Balcan et al., 2018; Gupta et al., 2020), learning heuristic search algorithms (Dai et al.,
2017; Li et al., 2018), and learning to prune the search space of optimization problems (Lauri &
Dutta, 2019; Sun et al., 2021b; Hao et al., 2020). Given a large amount of historical data to learn
from, ML techniques can often outperform random approaches and hand-crafted methods typically
used in the existing exact and heuristic algorithms.

Predicting optimal solutions for combinatorial optimization problems via ML has attracted much
attention recently. A series of studies (Li et al., 2018; Lauri & Dutta, 2019; Sun et al., 2021b;
Grassia et al., 2019; Fischetti & Fraccaro, 2019; Lauri et al., 2020; Sun et al., 2021a; 2022; Ding
et al., 2020; Abbasi et al., 2020; Zhang et al., 2020) have demonstrated that predicting optimal
solution values for individual variables can achieve a reasonable accuracy. The predicted solution
can be used in various ways (e.g., to prune the search space of a problem (Lauri & Dutta, 2019; Sun
et al., 2021b; Hao et al., 2020) or warm-start a search method (Li et al., 2018; Zhang et al., 2020;
Sun et al., 2022)) to facilitate the solving of combinatorial optimization problems.

However, for a symmetric optimization problem, predicting optimal values for individual decision
variables does not provide much benefit for solving the problem. For example, in the vertex coloring
problem (VCP) (See Section 2 for a formal problem definition), a random permutation of the colors
in an optimal solution results in an alternative optimal solution, and thus predicting the optimal
colors for individual vertices is not very useful. On the other hand, predicting a complete optimal
solution for a problem directly is too difficult. This is partially due to the NP-hardness of a problem
and the difficulty in designing a generic representation for solutions of different sizes.

In this paper, we take an intermediate step by developing an effective ML model to predict columns
(or fragments (Alyasiry et al., 2019)) that belong to an optimal solution of a combinatorial opti-
mization problem. To illustrate our method, we use the VCP as an example, in which a column is a
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Maximal Independent Set (MIS) (Tarjan & Trojanowski, 1977), whose vertices can share the same
color in a feasible solution. The aim of our ML model is to predict which MISs belong to an optimal
solution for a given problem instance.

To train our ML model, we construct a training set using solved problem instances with known
optimal solutions, where each training instance corresponds to a column in a training graph. Three
categories of features are designed to represent a column, including 1) problem-specific features
computed from the graph data, 2) statistical measures computed from sample solutions, and 3) linear
program (LP) features (e.g., reduced cost) computed from the LP relaxation of the MIP model. A
training instance is labeled as positive if the corresponding column belongs to an optimal solution;
otherwise it is labeled as negative. This is then a standard binary classification problem and any
existing classification algorithm can be used for this task.

We use the trained ML model to evaluate the quality of columns, and combine it with a sampling
method to generate high-quality columns for unseen problem instances. Specifically, our method
starts by randomly generating a subset of columns. It then computes the features for each column in
the current subset and uses the trained ML model to evaluate the quality of the columns. The low-
quality columns predicted by ML are replaced by the new ones generated by a sampling method.
This process is repeated for multiple iterations with low-quality columns filtered out and high-quality
columns remaining. A subproblem formed by the selected columns is then solved to generate an
integer solution. We call this method Machine Learning-based Column Generation (MLCG).

Our MLCG method is a significant departure from the traditional CG methods (Lübbecke &
Desrosiers, 2005; Mehrotra & Trick, 1996). Firstly, the traditional methods typically generate
columns to solve the LP relaxation of the MIP, while our MLCG method aims at generating columns
that are included in a high-quality integer solution. Secondly, the traditional methods select columns
only based on their reduced cost, while our method learns a more robust criterion via ML based on
a set of features for selecting columns. Thirdly, the traditional methods typically generate columns
by repeatedly solving a pricing problem, while our method samples columns on the fly and uses the
trained ML model to filter out low-quality columns.

To demonstrate the effectiveness of our MLCG method, we evaluate it on the VCP, though the
same idea is generally applicable to other combinatorial optimization problems. We empirically
show that our ML model can achieve a high accuracy in predicting which columns are part of an
optimal solution on the problem instances considered. The columns selected by our ML model are
significantly better, in terms of the integer solution that can be constructed from them, than those
selected randomly or based purely on their reduced cost. Furthermore, we use the subset of columns
generated by our method to warm-start a CG-based heuristic, the Restricted Master Heuristic (RMH)
(Taillard, 1999; Bianchessi et al., 2014), and the results show that our method combined with RMH
significantly outperforms RMH alone in terms of both solution quality and run time.

2 BACKGROUND AND RELATED WORK

Vertex Coloring Problem Formulation. Given an undirected graph G(V,E), where V is the set
of vertices and E is the set of edges, the objective of VCP is to assign a color to each vertex, such
that the adjacent vertices have different colors and the total number of colors used is minimized.
Since adjacent vertices cannot share the same color by the problem definition, the vertices that are
of the same color in any feasible solution must form an Independent Set. Therefore, the VCP is
equivalent to a set partitioning problem which aims to select the minimum number of Independent
Sets from a graph such that each vertex is covered exactly once. This is also equivalent to a set
covering problem, the objective of which is to minimize the number of Maximal Independent Sets
(MISs) selected such that each vertex in the graph is covered at least once (Mehrotra & Trick, 1996).

Let S denote a MIS, S denote the set of all MISs of a graph G,
and Sv denote the set of MISs that contain vertex v ∈ V . We use
a binary variable xS to denote whether a MIS S is selected. The
set covering formulation of VCP is defined in (1)-(3) (Mehrotra
& Trick, 1996). A variable xS corresponds to a MIS in the graph
and also a column of the constraint matrix of the MIP. As the
number of MISs in a graph is potentially exponential in |V |, the

min
x

∑
S∈S

xS , (1)

s.t.
∑
S∈Sv

xS ≥ 1, v ∈ V ; (2)

xS ∈ {0, 1}, S ∈ S. (3)

number of columns of the MIP can be very large. It can be shown that the LP relaxation of (1)-(3)
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provides a bound at least as good as that of the compact MIP formulation (Mehrotra & Trick, 1996).
Although the set covering formulation has a tight LP relaxation, solving the large LP relaxation
is difficult. The traditional CG and branch-and-price (B&P) algorithms (Mehrotra & Trick, 1996;
Barnhart et al., 1998; Gualandi & Malucelli, 2012) resolve this by generating a subset of columns
on the fly, instead of enumerating all the columns upfront, which will be described in the following.

Column Generation. Let S̃ ⊂ S denote an arbitrary
subset of MISs based on which at least one feasible
LP solution can be generated, and S̃v denote the set of
MISs in S̃ that contain vertex v ∈ V . To solve the LP
relaxation of (1)–(3), CG starts by solving a restricted
master problem (4)-(6) with S̃. The dual solution for
constraint (5) can be obtained after solving the restricted

min
x

∑
S∈S̃

xS , (4)

s.t.
∑
S∈S̃v

xS ≥ 1, v ∈ V ; (5)

0 ≤ xS ≤ 1, S ∈ S̃. (6)

master problem: π = {π1, π2, . . . , π|V |} (π ≥ 0), which can be used to compute the reduced cost
of a variable xS for any S ∈ S. Let u = {u1, u2, . . . , u|V |} be the binary string representation of a
MIS S, where ui = 1 if the vertex vi ∈ S, otherwise ui = 0. The reduced cost of xS (for MIS S)
is computed as 1 −

∑|V |
i=1 πi · ui. The reduced cost computes the amount by which the objective

function coefficient of xS would have to be reduced before S would be cost-effective to use (i.e.,
xS would take a non-zero value in the optimal LP solution). In other words, if the reduced cost
of a variable xS is negative, adding S into the subset S̃ and solving the restricted master problem
again would lead to a better LP solution assuming nondegeneracy. If the reduced cost of xS is
non-negative for every S ∈ S, adding any other MIS into S̃ would not improve the LP solution.
Hence, the LP has been solved to optimality with the current subset S̃.

However, as the number of MISs in a graph may be
exponentially large, explicitly computing the reduced
cost for every decision variable xS is often impractical.
CG resolves this issue by optimizing a pricing problem
(7)-(9) to compute the minimum reduced cost among
all variables. The constraints (8) and (9) ensure that
the solution u is a valid MIS in the graph G. The obje-

min
u

1−
|V |∑
i=1

πi · ui, (7)

s.t. ui + uj ≤ 1, (vi, vj) ∈ E; (8)
ui ∈ {0, 1}, vi ∈ V. (9)

ctive (7) minimizes the reduced cost among all possible MISs in the graph. This is equivalent to
solving a maximum weighted independent set problem with the dual value πi being the weight of
the vertex vi (for i = 1, · · · , |V |) (Sakai et al., 2003). If the minimum objective value of the pricing
problem is negative, the optimal solution generated u∗ (which is a MIS) will be added into S̃, and
the above process is repeated. If the minimum objective value of the pricing problem is zero, the
LP relaxation of (1)–(3) has been solved to optimality with the current S̃, and the optimal objective
value of the restricted master problem provides a valid lower bound for (1)–(3).

To generate an integer solution to the MIP (1)–(3), a sub-problem with the subset of MISs S̃ can
be solved by a MIP solver. This approach is known as RMH (Taillard, 1999; Bianchessi et al.,
2014). Alternatively, CG can be applied at each node of the branch-and-bound tree to compute an
LP bound, resulting in a B&P algorithm (Mehrotra & Trick, 1996; Gualandi & Malucelli, 2012).

A potential issue of the CG approach is that it may require to solve many instances of the pricing
problem, which may be NP-hard itself. Further, the columns are generated only based on the reduced
cost. Although it guarantees the optimality of the LP relaxation, the integer solution contained in
the subset may not be of high quality. This motivates us to use ML to learn a better rule from a set of
features (including reduced cost), to predict which columns belong to an optimal integer solution.

There have been only a few studies that use ML to improve CG and B&P algorithms. Václavı́k et al.
(2018) developed a regression model to predict an upper bound on the optimal objective value of
the pricing problem, which was then used to prune the search space of the pricing problem. Morabit
et al. (2020) developed a supervised learning model to select the minimum number of columns that
could lead to the best LP solution at each iteration of CG. Shen et al. (2022) developed an ML-based
pricing heuristic to boost the solving of pricing problems. These methods are still within the scope
of the traditional CG framework, which is significantly different from our method, as explained
earlier. The ML model designed in (Furian et al., 2021) was used to configure the variable selection
and node selection in a B&P algorithm, but not about to improve CG.
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3 PREDICTING OPTIMAL COLUMNS

In this section, we develop an effective ML model to predict which columns (i.e., MISs) are part of
an optimal solution for the VCP.

3.1 FEATURE EXTRACTION

Let S̃ denote a subset of MISs generated from a graph G(V,E), which contains at least one feasible
solution. We extract three categories of features to characterize each MIS in S̃. Note that if the graph
is small, we can easily enumerate all the MISs in it, and S̃ in this case is the full set of MISs.

Problem-specific features. Let S be a MIS in S̃, and |S| be the size of S. The first problem-specific
feature designed to characterize S is f1(S) = |S|/maxS′∈S̃ |S′|. Generally, the larger a MIS is, the
more likely it belongs to an optimal solution. This is simply because a larger MIS contains more
vertices, and therefore it potentially requires fewer MISs to cover all vertices in a graph. Let S̃v ⊂ S̃
denote the set of MISs that contain vertex v ∈ V , and αv denote the maximum size of MISs that
contain vertex v: αv = maxS∈S̃v |S|. The ratio |S|/αv computes the relative ‘payoff’ of using the
set S to cover vertex v, compared to using the largest MIS in S̃v that can cover vertex v. The next
four problem-specific features compute the maximum (f2), minimum (f3), average (f4) and standard
deviation (f5) of |S|/αv across the vertices in S. Let deg(v) be the degree of vertex v ∈ V , i.e., the
number of neighbours of v, and ∆ be the maximum degree of vertices in V : ∆ = maxv∈V deg(v).
The next four features designed to characterize S are the maximum (f6), minimum (f7), average
(f8) and standard deviation (f9) of the normalized degree (deg(v)/∆) across the vertices in S.

Statistical features. Let x ∈ {0, 1}|S̃| be the binary string representation of a sample solution to
the VCP, where a binary variable xS = 1 if and only if the corresponding MIS S is in the solution,
for each S ∈ S̃. We first use the method presented in Appendix A.1 to efficiently generate n sample
solutions {x1,x2, · · · ,xn}, where xi

S = 1 if and only if S is in the ith sample solution. Let
y = {y1, y2, · · · , yn} be the objective values of the n solutions. The first statistical feature is an
objective-based measure, which accumulates the ‘payoff’ of using S to construct solutions in terms
of the objective values fobm(S) =

∑n
i=1 x

i
S/y

i. Because the vertex coloring is a minimization
problem, a MIS that frequently appears in high-quality sample solutions is expected to have a larger
accumulated score. Let r = {r1, r2, · · · , rn} denote the ranking of the n sample solutions in terms
of their objective values. The next statistical feature used is the ranking-based measure originally
proposed in (Sun et al., 2021b): frbm(S) =

∑n
i=1 x

i
S/r

i. If S frequently appears in high-quality
sample solutions (with a smaller rank), it is more likely to have a larger ranking-based score. The
objective-based score and ranking-based score are normalized by their maximum values across S̃. In
addition, we compute the Pearson correlation coefficient and Spearman’s rank correlation coefficient
between the values of the binary decision variable xS and the objective values y over the sample
solutions. If xS is highly negatively correlated with y, it means the sample solutions containing S
generally have a smaller objective value than those not having S. We present an efficient method to
compute these statsitical features in Appendix A.2.

Linear programming features. The LP relaxation of a MIP is typically much more efficient than
the MIP itself to solve. Solving the LP relaxation can provide very useful information about the
importance of a decision variable. Specifically, we solve the restricted master problem (4)–(6) with
the subset of MISs S̃ using the Gurobi solver. The first LP feature extracted for a MIS S ∈ S̃ is its
value in the optimal LP solution. The optimal LP solution value of xS is a good indication of which
binary value xS takes in the optimal integer solution, as shown in Appendix B.2 that the mutual
information between the LP and integer solutions is noticeable. In general, if xS has a fractional
value closer to 1 in the optimal LP solution, it is more likely to be 1 in the optimal integer solution
to the sub-MIP. The next LP feature extracted for S ∈ S̃ is the reduced cost (See Section 2) of the
corresponding variable xS . When the restricted master problem is solved to optimality for S̃, the
reduced cost of the decision variable xS is non-negative for every S ∈ S̃. Furthermore, if the value
of xS in the optimal LP solution is greater than 0, the reduced cost of xS must be 0. In general, the
larger the reduced cost of xS , the less cost-effective S is to construct solutions.

The three categories of features are designed carefully, each capturing different characteristics of a
MIS. The problem specific features focus on the local characteristics of a MIS such as the number
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of vertices that a MIS can cover. Our statistical features are motivated by the observation that many
optimization problems have a “backbone” structure (Wu & Hao, 2015). In other words, high-quality
solutions potentially share some components with the optimal solution. The goal of our statistical
features is to extract the shared components from high-quality solutions. The LP features are based
on the LP theory, which is widely used by state-of-the-art MIP solvers. The relevance of each
category of features is investigated in Appendix B.2 due to the page limit.

3.2 CLASS LABELING

To construct a training set, we need to compute the optimal solutions for a set of problem instances
for class labeling. We use small graphs in which all the MISs can be enumerated upfront as our
training problem instances. For each training graph G(V,E), we first use the method proposed by
(Tsukiyama et al., 1977) to list all MISs (S) in the graph. This method is based on vertex sequencing
and backtracking, and has a time complexity of O(|V | |E| |S|). An exact solver Gurobi is then
used to compute the optimal solutions for the problem instance by solving the MIP formulation
(1)–(3). The existing optimal solution prediction approaches in literature typically compute only
one optimal solution of an optimization problem to supervise the training of an ML model (Li et al.,
2018; Sun et al., 2021b; Ding et al., 2020; Sun et al., 2021a). However, this is insufficient in our case,
because there often exist multiple optimal solutions in the VCP. For example, in some of the training
graphs used in our experiments, more than 90% of MISs are part of optimal solutions, indicating the
existence of multiple optimal solutions. To tackle this, we present in Appendix A.3 a brute-force
approach to compute for each MIS in a graph whether it belongs to any optimal solution. A MIS is
assigned with a class label of 1 if it belongs to any optimal solution; otherwise 0.

3.3 TRAINING AND TESTING

We use multiple graphs to construct a training set. The training graphs are small, so that all the MISs
in the graphs can be enumerated easily (Tsukiyama et al., 1977; Csardi & Nepusz, 2006). Each MIS
in a training graph is used as a training instance. The features and class label of a MIS are computed
as above. After the training set is constructed, an off-the-shelf classification algorithm can be trained
to classify optimal and non-optimal MISs (i.e., classifying whether a MIS belongs to an optimal so-
lution or not). We will test multiple classification algorithms including K-Nearest Neighbor (KNN)
(Cover & Hart, 1967), Decision Tree (DT) (Breiman et al.; Loh, 2011), and Support Vector Machine
(SVM) (Boser et al., 1992; Cortes & Vapnik, 1995) in our experiments. Given an unseen test prob-
lem instance, if all the MISs in the corresponding graph can be enumerated upfront, our ML model
can be used as a problem reduction technique to prune the search space of the problem (Lauri &
Dutta, 2019; Sun et al., 2021b). However, the number of MISs in a test graph may be exponentially
large, and hence it is often impossible to enumerate all MISs upfront, especially for large graphs.
To tackle this, we develop a search method in the next section to generate a subset of high-quality
MISs (without the need of listing all MISs), guided by our ML model.

4 GENERATING COLUMNS

This section describes our MLCG method. Our MLCG method starts with a randomly generated
subset of columns (i.e., MISs) S̃, which contains at least one feasible solution. It then goes through
nit number of iterations, and at each iteration it computes the features (designed in Section 3.1) for
each MIS S ∈ S̃, and uses the trained ML model to evaluate the quality of each MIS. The low-
quality MISs in S̃ predicted by ML are replaced by the newly generated ones. Finally, the MISs
remain in the subset S̃ are returned. In this sense, our MLCG method is significantly different from
the traditional CG methods that typically generate columns by repeatedly solving a pricing problem.

Initializing a subset of MISs. The initial subset of MISs S̃ is generated randomly. To increase the
diversity of S̃, we generate an equal number of MISs starting from each vertex v ∈ V . This also
ensures that S̃ contains at least one feasible solution, since all vertices in V can be covered by S̃. To
generate a MIS starting from a vertex v, we initialize the set S as v and the candidate vertex set C
as the set of vertices excluding v and v’s neighbors. The set S is then randomly expanded to a MIS.
In each step of expansion, we randomly select a vertex vs from C and add vs into S. The candidate
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vertex set C is then updated by removing vs and vs’s neighbors (due to the definition of independent
set). This process is repeated until the candidate vertex set C is empty.

Evaluating the quality of MISs. We use the ML model developed in Section 3 to evaluate the
quality of the MISs in the subset S̃. To do this, we first extract the features designed in Section 3.1
for each MIS in S̃. Note that we do not need to enumerate all the MISs in a graph, because the
features can be computed only based on the subset S̃. The ML model should be computationally
efficient, as the time used in prediction should be counted as part of the total run time in solving the
problem. Therefore, we only consider linear SVM and DT here, since KNN and non-linear SVM
are slow in our case where the number of training instances is large. Let w be the vector of optimal
weights learned by linear SVM. The quality score predicted by linear SVM for a given MIS with a
feature vector f can be computed by pSVM(f) =

∑|f |
i=1 wifi. Generally, a MIS with a larger quality

score is of better quality. For a trained DT, we use the proportion of positive training instances in a
leaf node as an indication of the quality of MISs belonging to that leaf node. The quality score of a
MIS with a feature vector f can be computed as pDT(f) = n1(f)/(n0(f) + n1(f)), where n1(f)
and n0(f) are the number of positive and negative training instances in the leaf node that f belongs
to. The score pDT is in the range of 0 and 1, with 1 indicating the best quality predicted by DT.

Updating the MIS subset. We rank the MISs in S̃ based on their quality scores predicted by the ML
model. The top κ percentage of MISs are kept and the remaining low-quality MISs are replaced by
newly generated MISs. We investigate the following two different methods to generate new MISs.
The first method is a random approach. To replace a low-quality MIS S∗ whose first vertex is v∗,
the random approach starts from the same vertex v∗ and randomly expands it to a MIS. The random
approach has the merit of maintaining the diversity of the MIS subset S̃, but on the other hand it may
require many iterations to generate high-quality MISs. The second method is a crossover approach
inspired by the Genetic Algorithm (Golberg, 1989), which randomly selects two high-quality MISs
to create a new one. More specifically, it initializes the set S as the common vertices of the two
high-quality MISs selected, and then randomly expands the set S to a MIS.

Generating an integer solution. With the subset of MISs obtained, we can use an existing opti-
mization algorithm such as the Gurobi solver to construct a complete integer solution. To be specific,
we can form a subproblem by using the subset of MISs generated by our MLCG method as inputs
to the MIP formulation (1)–(3), and solve the subproblem using Gurobi. The size of the subproblem
is significantly smaller than the original problem, and thus solving the subproblem is a lot easier. In
addition, the integer solution generated from the subproblem is likely to be of high-quality, which
will be shown in our experiments. Directly solving the subproblem does not provide any optimal-
ity guarantee. Alternatively, we can use the subset of MISs generated by our MLCG method to
warm-start RMH. Specifically, we can use the MISs generated by our method as the initial subset
of columns for the restricted master problem, and solve the LP relaxation of (1)–(3) using a tradi-
tional CG approach (see Section 2). The optimal LP objective value provides a valid lower bound
for the objective value of integer solutions. We then form a subproblem with the columns generated
by our MLCG method and the traditional CG method, and solve the subproblem using an existing
algorithm. By doing this, we can obtain a high-quality integer solution with a valid optimality gap.
We will evaluate the efficacy of our MLPR method for seeding RMH in our experiments.

5 EXPERIMENTS

This section presents the experimental results to show the efficacy of our MLCG method in generat-
ing columns for the VCP. Our algorithms are implemented in C++, and the source code is publicly
available at https://github.com/yuansuny/mlcg.git. Our experiments are conducted
on a high performance computing server with multiple CPUs @2.70GHz, each with 4GB memory.

5.1 PREDICTION ACCURACY

We use the first 100 problem instances (g001-g100) from MATILDA (Smith-Miles & Bowly, 2015)
to construct a training set. These graphs are evolved using Genetic Algorithm to acquire controllable
characteristics such as density, algebraic connectivity, energy, and standard deviation of eigenvalues
of adjacency matrix. For each instance (|V | = 100), we use the algorithm implemented in the
igraph library (Tsukiyama et al., 1977; Csardi & Nepusz, 2006) to enumerate all MISs (S) in the
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corresponding graph. The Gurobi solver with the default parameter setting, 4 CPUs and 16GB
memory is then used to compute the optimal solution value (i.e., class label) for each S ∈ S. The
constructed training set consists of 94, 553 positive (with a class label 1) and 94, 093 negative (with
a class label 0) training instances (i.e., MISs). The training set is reasonably balanced, indicating
that there often exist multiple optimal solutions in the VCP. The distribution of the training instances
in the 2D feature space created by PCA is presented in Appendix B.1.

We test multiple classifiers for this classification task, including KNN (k = 3), DT (depth = 20),
linear SVM (C = 1) and nonlinear SVM with the RBF kernel (C = 1000). The implementations
of KNN and DT are from the scikit-learn library (Pedregosa et al., 2011); the nonlinear SVM is
from the LIBSVM library (Chang & Lin, 2011); and the linear SVM is from the LIBLINEAR
library (Fan et al., 2008). The parameters of these classification algorithms are tuned by hand. All
the algorithms and datasets used are publicly available. We train each classification algorithm on
the training set with fifteen features, and the ten-fold cross-validation accuracy of KNN, DT, linear
SVM, and nonlinear SVM are 91%, 90%, 78% and 85%, respectively. The correlation between each
feature and the class label, the feature weights learned by the linear SVM, and a trained simple DT
are presented and discussed in Appendix B.2.

5.2 THE EFFICACY OF GENERATING MISS

Test instances. We use 33 problem instances from MATILDA (Smith-Miles & Bowly, 2015) as
our test instances, which cannot be optimally solved by Gurobi (with 4 CPUs) in 10 seconds. The
number of vertices in those graphs are all 100. For each test instance, we use our MLCG method to
generate a subset of MISs, and use Gurobi to solve a sub-problem formed by the generated MISs.
The quality of the best integer solution found in the sub-problem is an indication of the quality of
the MISs generated by our MLCG method.

Parameter setting. The size of the MIS subset |S̃| is set to 20|V |, where |V | is the number of
vertices in a graph. In general, a larger |S̃| leads to a better integer solution, but at an expense of
longer runtime. The number of iterations nit is set to 10 for now, and will be tuned later. In each
iteration of our MLCG method, 50% of MISs are replaced: κ = 50.

Linear SVM versus Decision Tree. We test two efficient classification algorithms, linear SVM and
DT, for evaluating the quality of MISs. The average optimality gap generated by our MLCG method
with linear SVM is 2.49%, which is significantly better than that with DT 7.95% (See Appendix B.3).
This indicates that linear SVM is more effective than DT in evaluating the quality of MISs, which
is somewhat surprising because the classification accuracy of DT is much higher than that of linear
SVM. In the rest of our experiments, we will only use linear SVM to evaluate MISs.

Random update versus crossover update. We test two approaches (random and crossover) for
generating new MISs to replace low-quality MISs in each iteration of our algorithm. The two ap-
proaches perform similarly, with the average optimality gap generated by the random approach
2.49% and that of the crossover approach 2.68% (See Appendix B.4). The reason why the crossover
approach is not more effective may be that the diversity of the generated MISs is important. In par-
ticular, having more high-quality but similar MISs in the subset is not expected to result in a better
integer solution. In the rest of the paper, we simply use the random approach to generate new MISs.

Number of iterations. We vary the number of iterations (nit) from 1 to 100, and record the optimal-
ity gap generated by our MLCG method. The solution quality generated by our method improves
dramatically in the first several iterations, and the improvement slows down later on. The smallest
optimality gap is generated at around the 50th iteration, and cannot be further reduced afterwards
(See Appendix B.5 for the detailed results). Hence, we set nit = 50 hereafter.

Baselines. We compare our MLCG method to four baselines for generating columns: 1) Random,
which randomly generates 10 MISs starting from each vertex in a graph, resulting in 10|V | in total
(the same number as our method 20|V | × 50%); 2) RC, which replaces linear SVM with a simple
criterion of using the reduced cost to evaluate MISs; 3) MLF, which enumerates all MISs in a graph
and uses linear SVM to select the top 10 MISs for each vertex, thus 10|V | in total; and 4) Full, which
simply enumerates and uses all MISs in a graph. The MISs generated by each method are used to
construct a (sub-)problem, which is then solved by Gurobi with 4 CPUs and a one-hour cutoff time.
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Table 1: The experimental results generated by each algorithm for solving the test problem instances.
The last row presents the p-value of the t-tests between the results generated by our MLCG method
and each of the other methods. The ones with statistical significance (p-value < 0.05) are in bold.

Graph Density Optimality Gap (%) Runtime
MLCG MLF RC Rand Full MLCG MLF RC Rand Full

g134 0.34 10.00 11.20 10.00 22.40 10.00 137.04 81.27 122.99 130.11 3605.50
g135 0.33 0.67 8.33 8.33 13.00 0.00 50.80 10.78 7.61 28.27 47.73
g144 0.37 10.00 13.20 10.40 12.40 0.00 5.10 6.74 6.12 1.53 20.92
g171 0.28 0.00 0.00 0.00 11.50 0.00 5.29 11.61 5.20 0.32 14.55
g173 0.36 0.00 12.50 1.00 12.50 0.00 6.29 9.70 4.84 0.52 14.39
g175 0.32 0.00 12.50 0.00 12.00 0.00 5.44 31.58 5.50 0.54 40.09
g214 0.26 0.00 0.00 0.00 12.00 0.00 4.38 15.12 4.24 0.18 26.15
g243 0.30 10.00 18.00 20.00 20.00 20.00 33.63 27.41 13.93 29.33 3611.80
g263 0.23 0.00 20.00 13.60 17.60 0.00 5.11 5.48 4.52 0.20 20.97
g324 0.38 0.00 0.00 0.00 5.00 0.00 6.52 17.90 4.63 0.62 25.08
g329 0.21 0.00 4.00 1.60 6.40 0.00 4.44 8.31 4.65 0.32 16.61
g348 0.21 0.00 0.00 0.00 10.29 0.00 4.99 9.80 4.80 0.16 17.17
g417 0.40 2.00 12.50 1.00 24.00 0.00 5.51 12.63 5.42 1.17 12.89
g420 0.41 0.00 0.00 0.00 0.00 0.00 4.46 7.89 6.04 0.11 107.48
g474 0.34 11.11 22.22 14.67 22.22 0.00 6.40 21.75 12.71 1.54 489.22
g479 0.23 0.00 0.00 0.00 6.67 0.00 4.78 18.48 4.81 0.65 34.95
g486 0.67 0.19 0.00 3.62 4.76 0.00 21.66 20.88 20.58 3.24 11.32
g487 0.41 0.00 0.00 0.00 8.92 0.00 20.84 13.14 13.26 31.06 864.33
g493 0.24 0.00 0.00 1.33 10.67 0.00 4.59 4.92 5.52 0.30 12.52
g496 0.30 7.43 0.00 1.14 3.43 0.00 6.16 7.05 4.40 0.21 46.25
g498 0.35 0.00 0.00 3.43 12.00 0.00 4.75 14.54 4.04 0.13 45.18
g508 0.53 0.00 0.00 0.89 0.00 0.00 3.98 9.66 5.65 0.14 10.19
g509 0.52 8.44 11.11 6.67 10.67 0.00 4.46 20.59 3.72 0.22 31.21
g511 0.50 0.00 0.00 0.00 0.00 0.00 4.57 10.51 4.54 0.17 15.31
g530 0.51 0.00 0.00 0.84 8.84 0.00 6.85 14.13 6.60 0.40 15.03
g556 0.35 0.00 0.36 0.00 14.55 0.00 94.60 72.03 84.98 144.22 2753.70
g557 0.56 0.00 0.00 0.00 5.65 0.00 37.01 40.85 17.67 16.26 200.79
g597 0.46 0.00 0.00 0.00 7.14 0.00 115.78 61.61 38.31 96.75 814.56
g598 0.48 0.00 0.57 0.00 14.00 0.00 110.11 80.31 67.73 11.59 748.36
g617 0.29 0.00 0.00 0.00 1.50 0.00 4.15 20.98 4.15 0.16 23.40
g876 0.43 1.71 14.29 13.71 14.29 0.00 5.33 4.48 4.77 0.34 22.78
g894 0.43 0.00 12.57 0.57 9.14 0.00 6.26 8.24 5.28 0.41 12.10
g913 0.44 0.00 0.00 7.43 14.29 0.00 4.38 7.45 6.25 0.18 29.17

Mean 1.87 5.25 3.64 10.54 0.91 22.60 21.45 15.62 15.19 417.02
P-value - - 2.23e-03 1.69e-02 5.14e-10 1.42e-01 - 7.29e-01 2.45e-02 4.06e-02 2.26e-02

Comparison results. The optimality gap (with respect to the lower bound produced by Full) of
each algorithm for each test problem instance and the runtime of the algorithms are presented in
Table 1. The results are averaged over 25 independent runs. Comparing our MLCG method with
Full (which is an exact approach), we can clearly see that MLCG consistently generates an optimal
or near-optimal solution using a much less runtime. On average, our MLCG method reduces 95%
of the runtime of Full, and only increases the optimality gap from 0.91% to 1.87%. Notably on
g243, the full problem cannot be solved to optimality by Gurobi in a one-hour cutoff time. In
contrast, using the columns generated by our MLCG method to construct a sub-problem, Gurobi
is able to find a better integer solution in only 33.63 seconds. Compared to Random, our MLCG
method consistently generates a better solution for the test problem instances except g496. The
average optimality gap generated by our MLCG method is about 5 times better (smaller) than that
of Random. Furthermore, our MLCG method significantly outperforms the RC method in terms of
the optimality gap generated (with p-value = 0.0169). This clearly demonstrates that our ML model
has learned a more useful rule than the reduced cost for evaluating the quality of MISs. Surprisingly,
the MLF method does not perform as well as the MLCG method in terms of the optimality gap. The
reason for this is that the aim of CG is to select a diverse set of high-quality MISs to cover each
vertex at least once. The ML model can evaluate the quality of MISs, but it cannot measure the
diversity of MISs selected. In the MLF approach where all MISs are listed, multiple high-quality
but similar MISs (i.e., sharing many common vertices) are likely to be selected. Although those
selected MISs are individually of high-quality, when combined it loses diversity. Hence, the MLF
method does not perform well compared to the MLCG method.

5.3 SEEDING RESTRICTED MASTER HEURISTIC

We use the columns generated by our MLCG method to warm-start RMH, namely MLRMH, com-
pared to RMH with the typical random initialization. The number of initial MISs is set to 10|V |.
The restricted master problem and the pricing problem are both solved by Gurobi. Apart from the
33 MATILDA problem instances used above, we include 30 other MATILDA problem instances, in
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Table 2: The comparison between the MLRMH and RMH algorithms for solving the three sets of
test problem instances. The results are averaged across the instances in each problem set.

Graphs Optimality Gap (%) CG Iterations LP Runtime Total Runtime
MLRMH RMH MLRMH RMH MLRMH RMH MLRMH RMH

MATILDA (33) 3.89 8.21 7.08 69.63 9.25 49.61 28.08 74.35
MATILDA (30) 8.96 12.53 59.38 156.28 37.39 74.77 58.30 84.99
DIMACS (12) 24.56 27.03 84.21 168.54 198.34 656.74 12439.00 12668.00

which the number of MISs is so large that they cannot be enumerated with 16GB memory. In addi-
tion, we evaluate the generalization of our method on a set of larger DIMACS problem instances, in
which the number of vertices vary from 125 to 1000.

The experimental results are summarized in Table 2, and the detailed experimental settings and
results are shown in Appendix B.6. Note that the optimal LP objective obtained is a valid lower
bound (LB) for the objective value of integer solutions, and is used to compute the optimality gap.
The LB generated by MLRMH (or RMH) is very tight for most of the problem instances tested.
Our MLRMH algorithm is able to prove optimality for many of the problem instances and provide
an optimality gap for the remainder, making it a quasi-exact method. The average optimality gap
generated by MLRMH is significantly smaller than that of RMH. Interestingly, by using the columns
generated by our MLCG method to warm-start RMH, the number of CG iterations is substantially
reduced. This also leads to a significant reduction in the runtime of solving the LP. Note that the
time used by our MLCG method to generate columns is counted as part of the LP solving time.

Our method is not confined to solving problem instances generated from a similar distribution.
In fact, the MATILDA graphs we used are evolved using Genetic Algorithm to acquire various
characteristics such as density, algebraic connectivity, energy, and standard deviation of eigenvalues
of adjacency matrix etc (Smith-Miles & Bowly, 2015), and the DIMACS graphs are a collection
of hard problem instances from multiple resources with very different problem characteristics and
sizes. Our experimental results showed that our method trained on a subset of MATILDA graphs
performs well across the MATILDA and DIMACS graphs.

6 CONCLUSION

In this paper, we have developed an effective CG method based on ML for the VCP. We defined a
column as a Maximal Independent Set whose vertices can share the same color in a feasible solution,
and developed an ML model to predict which column belongs to an optimal solution. Novel features
were designed to characterize a column, including those computed from the graph data, sample
solutions and the LP relaxation. We then used the ML model to evaluate the quality of columns, and
incorporated it into a search method to generate a subset of high-quality columns without the need of
enumerating all columns in a problem instance. We empirically showed that our ML model achieved
a high accuracy in predicting which columns are optimal on the datasets considered. Furthermore,
we showed that the columns generated by our method were significantly better than those generated
randomly or via the reduced cost. Finally, we showed that the columns generated by our method can
be used to boost the performance of a CG-based heuristic as a warm start.

Our proposed MLCG method is generic. Although we have only demonstrated the efficacy of this
approach on the VCP, the same idea can be applied to other combinatorial optimization problems.
Taking the vehicle routing problem as an example, in which a column is a resource constrained
shortest path, an ML model can be built to predict which path is likely to be part of the optimal
solution. This will require the design of problem specific features to characterize a path and a
specialized sampling method to efficiently generate paths. Our paper has focussed on using CG as
part of a heuristic approach, where only a restricted master problem is solved to obtain a final integer
solution, as is commonly found in many papers applying CG to large scale problems. However, the
same approach could easily be applied in the context of an exact B&P method, where CG would
be done predominantly using the ML approach with reduced-cost based pricing of columns only
completed at the end to prove optimality of the LP at each node. Our results are indicative that such
an ML boosted approach may be expected to have a positive impact on the performance of a B&P
approach as well. However a rigorous investigation of this is beyond the scope of the current paper.
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A APPENDIX

A.1 AN EFFICIENT RANDOM SAMPLING METHOD

We describe an efficient random sampling method to generate sample solutions to the VCP in Al-
gorithm A.1. The inputs to the algorithm are the graph G(V,E) and the set of MISs S̃v containing
vertex v, for each v ∈ V . The output is a set of MISs selected which can cover all the vertices
in V at least once (i.e., a feasible solution denoted as Sx). The random sampling method starts by
initializing the solution Sx as empty and marking each vertex v ∈ V as not covered. It then iterates
through each vertex v ∈ V , and if v has not been covered, it randomly selects a MIS S from S̃v and
adds S to the solution Sx. The vertices in S are then marked as covered. A feasible solution Sx is
obtained when all vertices in V have been covered.

Algorithm A.1 Random Sampling

Input: graph G(V,E), MISs sets S̃v for each v ∈ V .
Output: a sample solution Sx.
Initialize Sx ← {}.
Initialize covered[v]← 0, for each v ∈ V .
for each v ∈ V do

if covered[v] = 0 then
randomly select a MIS S from S̃v .
add S into Sx.
for each ṽ ∈ S do

covered[ṽ]← 1.

Lemma A.1. Given a graph G(V,E), the time complexity of generating a sample solution to the
VCP using Algorithm A.1 is O(|V |) in the best case, and O(α|V |) in the worst case, where α =

maxS∈S̃ |S| is the maximum size of the MISs in S̃.

Proof. In the best case, the MISs selected do not share any common vertex. In other words, each
vertex in the graph is covered exactly once. In this case, the number of basic operations (e.g.,
comparison and assignment) performed in Algorithm A.1 is about 3|V |, which is in O(|V |). In
contrast, the MISs selected may share many common vertices and each vertex in the graph may be
covered multiple times. In the worst case, each MIS selected in Algorithm A.1 can only cover one
new vertex that has not been covered (with other vertices in the MIS already being covered). In
this case, the number of assignments performed in the inner loop of Algorithm A.1 is

∑|V |
i=1 |Si|,

where |Si| is the size of the ith selected MIS. As α denotes the maximum size of the MISs in S̃, we
have |Si| ≤ α and

∑|V |
i=1 |Si| ≤ α|V |. Hence the worst case time complexity of Algorithm A.1 is

O(α|V |).

We run Algorithm A.1 n times to generate n sample solutions {S1x,S2x, · · · ,Snx}. In each run, we
randomly permute the vertex set V to increase the diversity of the generated solutions. The sample
size n should be large enough so that each MIS in S̃ is expected to be sampled at least once. In our
experiments, we set n = |S̃|.

A.2 AN EFFICIENT METHOD FOR COMPUTING STATISTICAL FEATURES

We first describe the statistical features in more detail. Let x ∈ {0, 1}|S̃| be the binary string repre-
sentation of a sample solution, where a binary variable xS = 1 if and only if the corresponding MIS
S is in the solution, for each S ∈ S̃. The n sample solutions can be denoted as {x1,x2, · · · ,xn},
where xi

S = 1 if and only if S is in the ith sample solution. Let y = {y1, y2, · · · , yn} be the
objective values of the n solutions. The first statistical feature is an objective-based measure, which
accumulates the ‘payoff’ of using S to construct solutions in terms of the objective values:

fobm(S) =

n∑
i=1

xi
S/y

i. (10)
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Because the vertex coloring is a minimization problem, a MIS that frequently appears in high-
quality sample solutions (with smaller objective values) is expected to have a larger accumulated
score. As the scale of the objective-based score is sensitive to the scale of objective values and
sample size, we normalize the objective-based scores by the maximum objective-based score in S̃:
f10(S) = fobm(S)/maxS′∈S̃ fobm(S

′).

Let r = {r1, r2, · · · , rn} denote the ranking of the n sample solutions in terms of their objective
values. The next statistical feature used is the ranking-based measure originally proposed by (Sun
et al., 2021b):

frbm(S) =

n∑
i=1

xi
S/r

i. (11)

If S frequently appears in high-quality sample solutions (with a smaller rank), it is more likely to
have a larger ranking-based score. The ranking-based score is normalized by the maximum ranking-
based score in S̃: f11(S) = frbm(S)/max

S′∈S̃
frbm(S

′).

The Pearson correlation coefficient between the values of the binary decision variable xS and the
objective values y over the sample solutions can also be used to quantify the expected benefits of
using S to construct solutions:

f12(S) =

∑n
i=1(x

i
S − x̄S)(y

i − ȳ)√∑n
i=1(x

i
S − x̄S)2

√∑n
i=1(y

i − ȳ)2
, (12)

where x̄S =
∑n

i=1 x
i
S/n and ȳ =

∑n
i=1 y

i/n. If xS is highly negatively correlated with y, it means
the sample solutions containing S generally have a smaller objective value than those not having S.
Thus, using S to construct solutions is expected to result in a smaller objective value.

The last statistical measure computes the Pearson correlation coefficient between the values of the
binary decision variable xS and the ranking of the sample solutions (r):

f13(S) =

∑n
i=1(x

i
S − x̄S)(r

i − r̄)√∑n
i=1(x

i
S − x̄S)2

√∑n
i=1(r

i − r̄)2
, (13)

where x̄S =
∑n

i=1 x
i
S/n and r̄ =

∑n
i=1 r

i/n. This ranking-based correlation score is equivalent
to Spearman’s rank correlation coefficient between xS and y, as the value of xi

S can be interpreted
as its rank (considering tied ranks). A MIS with a high negative ranking-based correlation score is
more likely to appear in high-quality sample solutions.

Computing the statistical features based on the binary string representation of sample solutions (x)
can be achieved in O(n|S̃|). This is computationally slow when the number of samples (n) and the
number MISs (|S̃|) are large. Based on the fact that x is a vector of binary variables, we introduce
an efficient method to compute the statistical features in the following.

Lemma A.2 ((Sun et al., 2021b)). For a binary variable xi
S , the following equality holds:

σx
S =

n∑
i=1

(xi
S − x̄S)

2 = nx̄S(1− x̄S), (14)

where x̄S =
∑n

i=1 x
i
S/n.

Proof. Here, we provide a different proof to the Lemma than (Sun et al., 2021b).

σx
S =

n∑
i=1

(xi
S − x̄S)

2 =

n∑
i=1

(
(xi

S)
2 − x̄2

S

)
=

n∑
i=1

(xi
S)

2 − nx̄2
S . (15)

As xi
S is a binary variable,

∑n
i=1(x

i
S)

2 =
∑n

i=1 x
i
S = nx̄S . Hence,

σx
S = nx̄S − nx̄2

S = nx̄S(1− x̄S). (16)
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Algorithm A.2 Computing Statistical Features

Input: sample solutions {S1x, · · · ,Snx}, objective values {y1, · · · , yn}, rankings {r1, · · · , rn},
MIS subset S̃.
Output: statistical features fobm(S), frbm(S), f12(S) and f13(S), for each S ∈ S̃.
Initialize fobm(S)← 0, frbm(S)← 0, for each S ∈ S̃.
Initialize x̄S ← 0, σxy

S ← 0, σxr
S ← 0, for each S ∈ S̃.

Compute the mean objective value: ȳ ←
∑n

i=1 y
i/n.

Compute the mean objective ranking: r̄ ← (1 + n)/2.
for i = 1 to n do

for each S ∈ Six do
fobm(S)← fobm(S) + 1/yi.
frbm(S)← frbm(S) + 1/ri.
x̄S ← x̄S + 1/n.
σxy
S ← σxy

S + (yi − ȳ).
σxr
S ← σxr

S + (ri − r̄).
Compute the objective variance: σy ←

∑n
i=1(y

i − ȳ)2.
Compute the ranking variance: σr ← n(n+ 1)(n− 1)/12.
for each S ∈ S̃ do

σx
S ← x̄S(1− x̄S)n.

f12(S)← σxy
S /

√
σx
Sσy .

f13(S)← σxr
S /

√
σx
Sσr.

Lemma A.3. For a binary variable xi
S and any variable yi, the following equality holds:

σxy
S =

n∑
i=1

(xi
S − x̄S)(y

i − ȳ) =
∑

i∈{1,··· ,n}∧xi
S=1

(yi − ȳ), (17)

where x̄S =
∑n

i=1 x
i
S/n and ȳ =

∑n
i=1 y

i/n.

Proof. By making use of the fact that
∑n

i=1(y
i − ȳ) = 0, we have

σxy
S =

n∑
i=1

(xi
S − x̄S)(y

i − ȳ) =

n∑
i=1

xi
S(y

i − ȳ)− x̄S

n∑
i=1

(yi − ȳ) =

n∑
i=1

xi
S(y

i − ȳ). (18)

As xi
S is a binary variable,

σxy
S =

∑
i∈{1,··· ,n}∧xi

S=1

1 · (yi− ȳ)+
∑

i∈{1,··· ,n}∧xi
S=0

0 · (yi− ȳ) =
∑

i∈{1,··· ,n}∧xi
S=1

(yi− ȳ). (19)

Lemma A.3 holds for any variable yi. By replacing yi with ri in Lemma A.3, the convariance
between the values of xS and the ranking of objective values r can be computed as

σxr
S =

n∑
i=1

(xi
S − x̄S)(r

i − r̄) =
∑

i∈{1,··· ,n}∧ xi
S=1

(ri − r̄). (20)

Furthermore, as the ranking of the objective values r is from 1 to n, it is not difficult to show that
r̄ =

∑n
i=1 r

i/n = (n+ 1)/2 and σr =
∑n

i=1(r
i − r̄)2 = n(n+ 1)(n− 1)/12.

With this simplification, the statistical features can be computed efficiently using the set repre-
sentation of sample solutions {S1x, · · · ,Snx}. The idea is to iterate through each S in the sample
solutions Six (where i = 1, 2, · · · , n) and accumulate fobm(S), frbm(S), x̄S , σxy

S and σxr
S . The

two correlation-based features can then be easily computed, as shown in Algorithm A.2. The time
complexity of computing the statistical features using Algorithm A.2 is O(|S̃|+

∑n
i=1 |Six|), which

is much smaller than O(n|S̃|), because |Six| is much smaller than |S̃| in general.
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Algorithm A.3 Computing Optimal Solutions for Labeling

Input: a graph G(V,E), the full set of MISs S.
Output: optimal solution value x∗

S for each S ∈ S.
x∗, y∗ ← Gurobi(G,S).
for each S ∈ S do

if x∗
S = 0 then
x̂, ŷ ← Gurobi(G,S, xS ← 1).
if ŷ = y∗ then

for each S ∈ S do
if x̂S = 1 then

x∗
S ← 1.

A.3 COMPUTING CLASS LABELS

We present in Algorithm A.3 a “brute-force” approach to compute for each MIS in a graph whether
it belongs to any optimal solution. The algorithm starts by solving a given problem instance to
optimality using the exact solver Gurobi, with an optimal solution x∗ and the optimal objective
value y∗ obtained. The algorithm then iterates through each S ∈ S. If S does not belong to any
optimal solution found so far, xS is fixed to 1, and the corresponding subproblem is solved by
Gurobi. If the best objective value found (ŷ) is equal to y∗, it means that there exists at least one
alternative optimal solution that includes S; hence all the MISs used in the newly generated optimal
solution (denoted as x̂) are then marked as optimal.

This approach may not be the most efficient method to compute the class label for the MISs in
a graph. There might exist better ways to compute all optimal solutions of a problem instance,
e.g., after an optimal solution is found, a cut can be generated to prune the optimal solution from
the search space, so that a different optimal solution is generated one at a time until all have been
enumerated. However, as training is conducted offline, Algorithm A.3 is sufficient to construct a
training set.

B SUPPLEMENTARY EXPERIMENTS

B.1 VISUALIZING TRAINING SET

To visualize the distribution of the training instances (i.e., MIS), we create a 2-D feature space via
principal component analysis in Figure B.1. We can observe that the positive and negative training
instances are separated to some extent. Most of the negative training instances are located in the left
region, while the positive training instances are mainly in the middle of the reduced feature space.

B.2 FEATURE IMPORTANCE

To investigate the relevance of the features, we compute the Pearson correlation coefficient between
each feature and the class label, which is shown in Table B.1. The reduced cost (f15) has the highest
correlation with the class label, indicating it is one of the most important features. The size of a MIS
(f1) and the maximum, minimum and average relative sizes of a MIS (f2 to f4) have a noticeable
correlation with the class label. As expected, the objective-based measure (f10) and the ranking-
based measure (f11) are positively correlated with the class label, whilst the two correlation-based
measures (f12 and f13) are negatively correlated with the class label.

We also compute the mutual information between each feature and the class label to capture any
non-linear relationships between them. Since mutual information can be only computed for discrete
variables, we discretize the values of each feature into five bins. The mutual information is normal-
ized by the minimum entropy of the corresponding feature and the class label, so that it is in the
range of 0 and 1. The LP features (f14 and f15) have the highest nonlinear correlation with the class
label, as shown in Table B.1.

In addition, we present in Table B.1 the optimal weights (w) of the features learned by the linear
SVM classifier, which can be directly used to evaluate the quality of MISs.
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Figure B.1: The distribution of training instances in the reduced feature space, where Z1 and Z2 are
the first two principal components of the feature vectors. Each dot represents a training instance.

Table B.1: The Pearson correlation coefficient (PCC) and normalized mutual information (NMI)
between each feature and the class label, and the weight learned by linear SVM for each feature.

Feature Name PCC NMI weight

f1 size 0.2402 0.0389 −0.0169
f2 max relative size 0.2417 0.0441 1.1620
f3 min relative size 0.2524 0.0450 −0.9010
f4 ave relative size 0.2726 0.0470 0.2562
f5 std relative size −0.0494 0.0011 −2.7004
f6 max degree −0.0249 0.0135 −2.2259
f7 min degree 0.1372 0.0058 2.7940
f8 ave degree 0.0915 0.0084 −0.0505
f9 std degree −0.1369 0.0361 2.9416
f10 obj-based measure 0.1225 0.0236 1.6858
f11 rank-based measure 0.1167 0.0209 −0.4886
f12 obj correlation −0.0915 0.0084 −2.7936
f13 rank correlation −0.0895 0.0082 1.0901
f14 LP solution value 0.1086 0.0934 0.9035
f15 reduced cost −0.5676 0.2603 −2.1902

Finally, we investigate the trained Decision Tree (DT) to identify which features are important.
When the depth of tree is set to 5, DT achieves an accuracy of 80% with all features used except the
min relative size (f3), obj correlation (f12) and rank correlation (f13). When the depth of tree is set
to 3, DT achieves an accuracy of 78% with three features used: reduced cost (f15), max degree (f6)
and min degree (f7). Hence, the reduced cost (f15), max degree (f6) and min degree (f7) are the
most important features identified by DT. The trained DT with depth = 3 is presented in Figure B.2.
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reduced cost ≤ 0.5

min degree ≤ 0.238 reduced cost ≤ 0.751

max degree ≤ 0.974 reduced cost ≤ 0.104 reduced cost ≤ 0.75 reduced cost ≤ 0.778

negative positive positive negative negative positive negative negative
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Y N Y N

Y N Y

N
Y N Y

N

Figure B.2: The trained decision tree (with depth = 3) for predicting which MISs belonging to the
optimal solutions.

Table B.2: The experimental results of our MLCG method when using different classifiers to eval-
uate the quality of columns on the test problem instances. The results are averaged across 25 inde-
pendent runs. The last row presents the p-value of the t-tests between the results generated by linear
SVM (with C = 1) and DT with different depths. The ones with statistical significance (p-value
< 0.05) are highlighted in bold.

Graph Optimality Gap (%) Runtime
SVM DT (d=5) DT (d=10) DT (d=15) DT (d=20) SVM DT (d=5) DT (d=10) DT (d=15) DT (d=20)

g134 10.00 10.00 45.60 20.00 20.00 661.32 744.72 1.49 34.24 34.69
g135 5.00 8.33 25.67 16.33 16.33 93.39 7.65 1.73 28.08 11.74
g144 10.00 10.00 11.20 10.00 10.40 1.48 1.79 1.92 2.36 2.17
g171 0.00 0.00 16.00 10.50 7.00 1.07 1.07 1.27 1.48 1.27
g173 0.00 10.50 7.00 10.00 12.50 1.21 1.08 1.79 1.21 1.06
g175 0.00 0.50 1.00 9.50 6.50 1.32 1.66 1.68 1.36 1.27
g214 0.00 0.00 0.00 1.14 1.14 0.89 0.92 0.86 0.90 0.95
g243 10.00 10.40 20.00 20.00 20.00 41.83 33.00 29.30 37.69 42.36
g263 0.80 1.60 0.00 14.40 16.00 1.15 1.10 1.03 1.02 0.94
g324 0.00 2.50 20.50 12.00 4.50 1.48 1.13 1.17 1.28 2.36
g329 0.00 0.00 3.20 0.80 1.60 0.98 0.98 1.12 1.15 1.53
g348 0.00 0.00 0.00 0.00 0.57 0.94 1.08 1.04 0.89 1.08
g417 11.00 9.50 12.00 12.50 12.50 1.57 1.29 1.81 1.47 2.11
g420 0.00 0.00 4.57 0.00 0.00 1.07 1.12 1.11 0.88 0.95
g474 11.11 11.56 11.56 20.00 21.33 1.81 3.73 4.71 1.76 2.33
g479 0.00 0.00 0.00 0.00 0.67 1.08 1.07 1.13 1.04 1.60
g486 0.00 3.24 8.38 4.76 4.76 15.45 13.12 1.37 2.52 3.72
g487 0.00 0.00 4.31 7.69 7.69 30.89 19.69 15.42 9.95 17.45
g493 0.00 35.33 14.67 10.67 14.00 1.42 0.92 1.09 1.31 1.10
g496 8.00 0.00 0.57 0.00 4.00 0.99 0.96 1.11 1.12 1.15
g498 0.00 0.00 0.00 4.57 4.57 0.90 0.85 0.97 0.85 0.90
g508 0.00 10.67 8.00 2.22 0.00 1.14 1.42 0.89 0.82 0.88
g509 9.78 17.33 23.11 17.78 13.33 1.12 1.01 1.04 0.85 1.08
g511 0.00 12.89 12.00 10.22 0.89 0.87 0.90 0.90 0.81 0.93
g530 0.00 0.63 19.58 12.00 9.05 1.53 1.67 0.93 1.35 1.25
g556 0.00 3.03 9.09 7.64 9.09 350.30 325.36 9.36 43.85 46.08
g557 0.00 0.00 3.06 0.00 5.88 26.26 17.71 4.70 8.93 3.21
g597 0.00 0.00 18.00 6.43 7.14 86.31 53.01 1.62 112.95 46.83
g598 0.29 0.60 15.14 7.14 8.00 133.16 90.77 1.79 8.09 8.74
g617 0.00 0.00 0.50 0.50 0.00 0.98 0.84 0.98 0.92 0.97
g876 5.14 25.71 17.14 14.29 14.86 1.32 1.08 1.08 1.21 1.13
g894 0.00 1.14 0.00 0.00 0.00 1.06 1.06 1.12 1.12 1.52
g913 1.14 20.57 14.29 14.29 8.00 1.13 0.88 1.10 0.90 1.48

Mean 2.49 6.24 10.49 8.41 7.95 44.47 40.44 2.99 9.53 7.48
P-value - 1.28e-02 1.22e-05 3.01e-07 2.31e-07 - 3.31e-01 7.30e-02 1.06e-01 8.73e-02

B.3 COMPARISON BETWEEN DIFFERENT CLASSIFIERS

We test two efficient classification algorithms, linear SVM and DT, for evaluating the quality of
MISs, and the results are presented in Table B.2. The optimality gap is computed based on the lower
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Table B.3: The experimental results of our MLCG method when using different methods to generate
columns on the test problem instances. The results are averaged across 25 independent runs. The
last row presents the p-value of the t-tests between the results generated by the two methods.

Graph Optimality Gap (%) Runtime
Random Crossover Random Crossover

g134 10.00 10.00 661.32 268.08
g135 5.00 4.00 93.39 105.96
g144 10.00 10.00 1.48 1.57
g171 0.00 0.00 1.07 1.28
g173 0.00 0.00 1.21 1.33
g175 0.00 0.00 1.32 1.16
g214 0.00 0.00 0.89 0.83
g243 10.00 10.00 41.83 28.37
g263 0.80 5.60 1.15 1.08
g324 0.00 0.00 1.48 1.18
g329 0.00 0.00 0.98 1.00
g348 0.00 3.43 0.94 0.95
g417 11.00 10.00 1.57 1.35
g420 0.00 0.00 1.07 1.06
g474 11.11 11.11 1.81 3.84
g479 0.00 0.00 1.08 1.03
g486 0.00 0.00 15.45 17.66
g487 0.00 0.00 30.89 36.33
g493 0.00 0.00 1.42 1.21
g496 8.00 5.14 0.99 0.81
g498 0.00 2.29 0.90 0.73
g508 0.00 0.44 1.14 0.82
g509 9.78 11.11 1.12 0.90
g511 0.00 0.89 0.87 0.85
g530 0.00 0.00 1.53 1.71
g556 0.00 0.00 350.30 294.19
g557 0.00 0.00 26.26 28.94
g597 0.00 0.00 86.31 80.82
g598 0.29 0.29 133.16 141.79
g617 0.00 0.00 0.98 0.90
g876 5.14 3.43 1.32 1.11
g894 0.00 0.00 1.06 0.92
g913 1.14 0.57 1.13 0.92

Mean 2.49 2.68 44.47 31.23
P-value - 4.29e-01 - 2.79e-01

bound generated by Gurobi with 4 CPUs and a one-hour cutoff time. We can clearly see that our
method using linear SVM generates a significantly better (smaller) optimality gap than that using
DT, indicating linear SVM is more effective than DT in evaluating the quality of MISs. This is
somewhat surprising, because the classification accuracy of DT is much higher than that of linear
SVM. Further, DT with a larger depth (d) may perform even worse in evaluating the quality of
MISs, although the classification accuracy improves. This indicates that DT with a large depth may
be overfitted. The other reason for this may be that the decision function used may not the most
appropriate criterion to evaluate the quality of MISs. For example, in a large decision tree, many
leaf nodes have a score of 1, and DT cannot distinguish the MISs in those nodes, resulting in a poor
performance. This issue can possibly be resolved by using a different criterion to evaluate the quality
of MISs, such as using the “distance” from the feature vector of a MIS to the decision boundary of
DT. However, as our aim is not to compare which classification algorithm performs the best in this
task, a further investigation along this line is beyond the scope of this paper.

B.4 COMPARISON BETWEEN RANDOM AND CROSSOVER UPDATE

We test two approaches (random and crossover) for generating new MISs to replace low-quality
MISs in each iteration of our MLCG method. The experimental results on the test problem in-
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Figure B.3: The optimality gap (%) generated by our MLCG method at different iterations (nit).
The results are averaged over 25 independent runs and 33 MATILDA test problem instances.

stances are presented in Table B.3. The two approaches perform equally well (without statistically
significant difference), with the average optimality gap generated by the random approach 2.49%
and that of the crossover approach 2.68%. The reason why the crossover approach is not more
effective may be that the diversity of the generated MISs is important. In particular, having more
high-quality but similar MISs in the subset is not expected to result in a better integer solution. In
the rest of the paper, we simply use the random approach to generate new MISs.

B.5 EFFECTS OF NUMBER OF ITERATIONS

We investigate the effect of the number of iterations (nit) on the performance of our MLCG method.
To do so, we vary the number of iterations from 1 to 100, and present the average optimality gap
generated by our method in Figure B.3. We can observe that the solution quality generated by our
method improves (i.e., optimality gap decreases) dramatically in the first several iterations, and the
improvement slows down later on. The best (smallest) optimality gap is generated at around the
50th iteration, and the solution quality cannot be further improved afterwards. Note that the result
presented in Figure B.3 is the best optimality gap generated at each iteration, instead of the best
optimality gap found so far. Therefore, the curve in Figure B.3 does not monotonically decrease due
to randomness. The detailed results for each test problem instance are presented in Table B.4.

B.6 DETAILED EXPERIMENTS FOR SEEDING RESTRICTED MASTER HEURISTIC

We use the columns generated by our MLCG method to warm-start RMH, namely MLRMH, com-
pared to RMH with the typical random initialization. The number of initial MISs is set to 10|V |.
The restricted master problem and the pricing problem are both solved by Gurobi. The detailed
experimental results for the 33 MATILDA test problem instances are presented in Table B.5. Note
that the optimal LP objective is a valid lower bound (LB) for the objective value of integer solutions,
and is used to compute the optimality gap in Table B.5. We can observe that the LB generated by
MLRMH is very tight for most of the problem instances tested. Significantly, our MLRMH algo-
rithm is able to prove optimality for many of the problem instances and provide an optimality gap
for the remainder, making it a quasi-exact method. MLRMH consistently generates an equally-well
or significantly better solution than RMH for the test problem instances except g496. The mean
optimality gap generated by MLRMH is much smaller than that of RMH. Interestingly, by using
the columns generated by our MLCG method to warm-start RMH, the number of CG iterations is
significantly reduced from 69.63 to 7.08 on average. This also leads to a significant reduction in
the runtime of solving the LP and MIP. Note that the time used by our MLCG method to generate
columns is counted as part of the LP solving time.
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Table B.4: The average optimality gap (%) generated by our MLCG method at different iterations
on the test problem instances. The optimality gap is averaged over 25 independent runs. The last
row presents the p-value of the t-tests between the results generated at the first iteration and each of
the other iterations. The ones with statistical significance (p-value < 0.05) are highlighted in bold.

Graph Iter 1 Iter 10 Iter 20 Iter 30 Iter 40 Iter 50 Iter 60 Iter 70 Iter 80 Iter 90 Iter 100

g134 22.40 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
g135 13.00 5.00 1.33 0.00 0.00 0.67 0.33 0.33 1.00 0.67 1.00
g144 12.40 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
g171 11.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g173 12.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g175 12.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g214 12.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g243 20.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
g263 17.60 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g324 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g329 6.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g348 10.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g417 24.00 11.00 8.00 7.00 5.50 2.00 3.00 2.50 2.00 4.00 3.50
g420 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g474 22.22 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11
g479 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g486 4.76 0.00 0.00 0.19 0.00 0.19 0.00 0.19 0.00 0.00 0.00
g487 8.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g493 10.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g496 3.43 8.00 6.29 8.00 6.29 7.43 5.71 11.43 6.29 9.14 6.29
g498 12.00 0.00 0.00 0.00 0.00 0.00 0.57 0.00 1.14 0.00 0.00
g508 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g509 10.67 9.78 10.67 10.22 10.67 8.44 10.22 9.33 9.78 9.33 10.67
g511 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g530 8.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g556 14.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g557 5.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g597 7.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g598 14.00 0.29 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00
g617 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g876 14.29 5.14 2.29 0.57 1.14 1.71 0.00 1.14 2.29 0.00 2.29
g894 9.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g913 14.29 1.14 0.00 0.00 0.00 0.00 0.00 1.71 0.00 0.00 0.00

Mean 10.54 2.49 2.11 2.03 1.97 1.87 1.85 2.05 1.93 1.95 1.97

P-value - 2.59e-10 2.12e-10 4.42e-10 3.04e-10 5.14e-10 3.65e-10 2.51e-09 4.68e-10 8.27e-10 4.26e-10

So far, we have only used the 33 MATILDA problem instances from (Smith-Miles & Bowly, 2015)
as our test problem instances. The MISs in those graphs can be enumerated using 16GB memory.
Here, we include 30 other MATILDA problem instances from (Smith-Miles & Bowly, 2015), in
which the number of MISs is so large that they cannot be enumerated with 16GB memory. We
evaluate the efficacy of our MLRMH method on these problem instances. Table B.6 presents the
experimental results of our MLRMH algorithm compared against the RMH algorithm for solving
the 30 MATILDA test problem instances. Our MLRMH algorithm is able to prove optimality for 11
problem instances, while the RMH algorithm is only able to prove optimality for 8 instances. Fur-
ther, the average optimality gap generated by our MLRMH method (8.96%) is statistically signifi-
cantly better than that generated by the RMH algorithm (12.53%). By using the columns generated
by our method to warm-start RMH, the average number of CG iterations is significantly reduced
from 156.28 to 59.38. This also leads to a significant reduction in the runtime of solving the LP and
MIP. This clearly demonstrates that the RMH algorithm using the columns generated by our method
as a warm start performs significantly better than the RMH alone.

Finally, we use a set of larger DIMACS graphs, the number of vertices in which varies from 125
to 1, 000, to evaluate the generalization capability of our ML model. The cutoff time of MLRMH
or RMH for solving each problem instance is set to ten hours. Table B.7 presents the experimental
results (averaged over two independent runs) of the problem instances, whose LP relaxation can
be optimally solved via CG within the cutoff time. Note that Gurobi with a ten-hour cutoff time
may not be able to solve the reduced MIPs for large problem instances (e.g., r1000.1), resulting in a
large optimality gap. Further, the time used by our MLCG method in generating columns for large
problem instances may be non-negligible, because the computation of features requires solving the
restricted master problem in each iteration of our algorithm. However, overall the RMH algorithm
using the columns generated by our MLCG method as a warm start performs better than RMH alone.
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Table B.5: The experimental results of MLRMH and RMH for solving the 33 MATILDA test prob-
lem instances. The last row presents the p-value of the t-tests between the results generated by
MLRMH and RMH. The ones with statistical significance (p-value < 0.05) are in bold.

Graph Density LB Optimality Gap (%) CG Iterations LP Runtime Total Runtime
MLRMH RMH MLRMH RMH MLRMH RMH MLRMH RMH

g134 0.34 10 10.00 16.40 28.52 206.88 45.55 258.56 236.12 544.03
g135 0.33 12 0.00 8.33 1.00 31.12 5.60 11.96 42.99 39.68
g144 0.37 10 10.00 10.00 1.00 18.36 4.21 4.04 4.72 5.92
g171 0.28 7 14.29 14.29 34.56 196.28 9.87 35.41 10.01 35.74
g173 0.36 8 0.00 7.00 4.92 110.28 4.59 15.37 4.81 16.67
g175 0.32 8 0.00 10.50 3.24 14.24 4.15 1.49 4.46 2.21
g214 0.26 7 0.00 2.29 1.04 22.56 3.96 1.84 4.06 2.14
g243 0.30 10 10.00 20.00 3.04 96.60 7.58 46.05 25.36 60.95
g263 0.23 5 0.00 17.60 1.00 1.56 4.79 0.08 5.13 0.35
g324 0.38 8 0.00 0.00 7.52 31.16 5.25 4.14 5.47 5.05
g329 0.21 5 0.00 7.20 1.00 1.00 4.71 0.05 4.88 0.33
g348 0.21 7 0.00 0.00 11.40 98.04 4.57 7.36 4.65 7.48
g417 0.40 8 3.50 12.00 22.36 254.72 14.86 159.33 15.39 159.68
g420 0.41 6 16.67 16.67 2.28 55.24 4.39 13.96 4.53 14.36
g474 0.34 9 11.11 20.00 1.00 25.76 5.07 6.20 6.35 7.86
g479 0.23 6 0.00 0.00 11.08 59.12 5.06 6.26 5.22 6.63
g486 0.67 21 0.00 4.57 1.04 44.08 6.79 53.19 28.63 58.79
g487 0.41 12 8.33 8.33 25.24 180.68 45.98 165.59 69.10 196.42
g493 0.24 6 0.00 3.33 1.04 8.80 5.11 0.79 5.35 1.18
g496 0.30 7 2.29 0.00 14.88 11.16 4.64 0.79 4.92 1.03
g498 0.35 7 0.00 2.86 1.00 4.00 4.51 0.22 4.69 0.36
g508 0.53 9 0.00 0.00 1.00 1.04 3.56 0.06 3.63 0.21
g509 0.52 9 8.89 10.22 1.00 1.08 3.42 0.08 3.54 0.25
g511 0.50 9 0.00 0.00 2.44 3.00 4.15 0.23 4.27 0.36
g530 0.51 19 0.00 2.53 1.00 79.16 5.96 49.58 6.24 50.45
g556 0.35 10 10.00 16.80 20.68 203.88 29.53 247.74 145.90 436.49
g557 0.56 16 6.25 6.25 2.00 91.92 8.61 169.56 35.38 201.48
g597 0.46 13 7.69 8.00 7.60 136.44 19.83 182.19 108.05 385.99
g598 0.48 13 7.69 15.39 3.04 145.08 9.02 173.66 102.27 188.43
g617 0.29 8 0.00 0.00 7.52 59.56 4.82 5.15 4.88 5.23
g876 0.43 7 1.71 14.29 1.00 7.32 5.41 0.90 5.79 1.17
g894 0.43 7 0.00 1.71 6.68 93.92 5.24 14.97 5.39 16.17
g913 0.44 7 0.00 14.29 1.48 3.60 4.40 0.31 4.53 0.52

Mean - - 3.89 8.21 7.08 69.63 9.25 49.61 28.08 74.35
P-value - - - 2.18e-05 - 5.42e-06 - 2.60e-02 - 6.20e-03
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Table B.6: The experimental results of the MLRMH and RMH algorithms for solving the 30
MATILDA test problem instances, in which the number of MISs is so large that they cannot be
enumerated upfront using 16GB memory. The last row presents the p-values of the t-tests.

Graph LB Optimality Gap (%) CG Iterations LP Runtime Total Runtime
MLRMH RMH MLRMH RMH MLRMH RMH MLRMH RMH

g115 25 0.00 0.00 1.20 52.84 6.35 55.32 6.44 55.46
g133 6 23.33 32.00 178.32 348.72 162.23 244.24 306.22 276.87
g136 5 20.00 20.00 227.00 365.52 74.26 168.27 90.59 239.98
g140 8 12.50 12.50 73.04 277.60 25.51 87.73 27.92 92.32
g169 6 16.67 16.67 229.40 407.84 92.99 151.73 103.00 180.35
g245 9 0.00 10.22 1.48 80.36 5.49 14.79 6.65 17.15
g249 3 33.33 37.33 34.80 155.16 9.71 16.34 14.87 41.23
g256 8 12.50 12.50 156.04 314.60 131.82 236.40 157.90 250.02
g296 7 14.29 14.29 175.24 337.32 169.35 269.26 252.70 286.23
g323 7 25.71 28.57 137.08 328.36 156.79 248.59 321.03 271.67
g326 9 7.11 11.11 120.84 307.28 66.12 119.24 85.43 124.04
g327 6 16.67 32.67 1.88 78.64 5.18 16.49 6.86 26.44
g347 6 2.00 16.67 1.00 19.04 5.55 3.06 5.88 3.84
g407 7 0.00 0.00 1.52 1.20 4.47 0.07 4.59 0.20
g416 21 0.00 0.00 1.52 13.88 5.55 7.72 5.74 7.99
g457 5 20.00 20.00 310.80 471.80 95.59 130.67 100.79 136.83
g460 5 20.00 20.00 67.88 284.68 15.99 53.69 16.28 54.33
g472 12 8.33 16.00 7.20 155.80 17.78 195.43 155.58 250.68
g475 6 9.33 16.67 1.00 4.56 4.44 0.36 4.76 0.60
g476 6 13.33 16.67 1.16 53.56 4.59 8.70 10.53 10.34
g477 8 0.00 5.00 27.04 171.84 11.09 39.85 11.67 43.84
g488 8 0.00 10.00 5.36 127.32 6.97 34.05 8.22 35.89
g490 6 1.33 14.67 1.00 2.76 5.33 0.16 5.78 0.63
g494 22 4.55 4.55 1.00 1.92 4.20 0.45 4.30 0.59
g499 7 0.00 0.00 1.00 1.00 4.42 0.05 4.55 0.15
g600 24 0.00 0.00 1.08 28.20 6.88 36.31 7.11 36.70
g623 14 0.00 0.00 3.08 53.32 5.46 17.32 5.53 17.48
g625 13 7.69 7.69 1.68 54.20 5.89 19.65 6.11 20.00
g647 14 0.00 0.00 1.84 80.24 5.31 43.87 5.50 44.28
g883 7 0.00 0.00 9.84 108.72 6.35 23.17 6.49 23.65

Mean - 8.96 12.53 59.38 156.28 37.39 74.77 58.30 84.99
P-value - - 5.49e-04 - 3.53e-08 - 5.58e-05 - 9.46e-04

Table B.7: The experimental results of the MLRMH and RMH algorithms for solving a set of larger
DIMACS problem instances. The last row presents the p-values of the t-tests.

Graph |V | LB Optimality Gap (%) CG Iterations LP Runtime Total Runtime
MLRMH RMH MLRMH RMH MLRMH RMH MLRMH RMH

dsjc125.1 125 5 20.00 20.00 589.50 794.00 507.17 609.36 680.51 910.71
dsjc125.5 125 16 12.50 12.50 6.50 188.00 43.09 690.24 4363.00 2618.90
dsjc125.9 125 43 2.33 2.33 1.00 5.00 15.55 40.52 15.73 40.88
r125.1 125 5 20.00 20.00 1.00 1.00 6.62 0.09 29.61 27.95
r125.1c 125 46 0.00 0.00 1.00 1.00 5.83 0.73 5.87 0.78
r125.5 125 36 0.00 2.78 1.00 8.50 7.72 7.46 7.86 7.71
r250.1c 250 64 0.00 0.00 1.00 1.00 27.90 9.33 27.94 9.49
dsjc250.9 250 71 1.41 1.41 1.00 71.50 102.12 4304.90 119.71 4378.50

le450 15a 450 15 66.67 73.33 207.00 510.00 571.17 1091.20 36005.00 36006.00
le450 15b 450 15 63.33 70.00 199.50 437.00 483.72 1112.40 36004.00 36008.00
le450 25b 450 25 26.00 32.00 1.00 2.00 104.13 3.08 36003.00 36009.00
r1000.1 1000 20 82.50 90.00 1.00 3.50 505.08 11.46 36002.00 36002.00

Mean - - 24.56 27.03 84.21 168.54 198.34 656.74 12439.00 12668.00
P-value - - - 2.22e-02 - 2.63e-02 - 2.21e-01 - 5.73e-01
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