
A self-supervised framework
for learning whole slide representations

Xinhai Hou* Cheng Jiang* Akhil Kondepudi Yiwei Lyu
Asadur Chowdury Honglak Lee Todd Hollon

University of Michigan *Equal Contribution

{xinhaih, chengjia, tocho}@umich.edu https://mlins.org/spt/

Abstract

Whole slide imaging is fundamental to biomedical microscopy and computational
pathology. Previously, learning representations for gigapixel-sized whole slide
images (WSIs) has relied on multiple instance learning with weak labels, which do
not capture the diverse morphologic features and spatial heterogeneity of WSIs. A
high-quality self-supervised learning method for WSIs would provide transferable
visual representations for downstream computational pathology tasks, without the
need for dense annotations. We present Slide Pre-trained Transformers (SPT), a
self-supervised learning framework for gigapixel-scale self-supervision of WSIs.
Treating WSI patches as tokens, SPT combines data transformation strategies from
language and vision modeling into a general and unified framework to generate
views of WSIs for self-supervised pretraining. SPT leverages the inherent regional
heterogeneity, histologic feature variability, and information redundancy within
WSIs to learn high-quality whole slide representations. We benchmark SPT visual
representations on five diagnostic tasks across three biomedical microscopy datasets.
SPT significantly outperforms baselines for histopathologic diagnosis, cancer
subtyping, and genetic mutation prediction. Finally, we demonstrate that SPT
consistently improves whole slide representations when using off-the-shelf, in-
domain, and foundational patch encoders for whole slide multiple instance learning.
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Figure 1: Self-supervised whole slide learning. Previous work in computational pathology relies on
multiple instance learning with weak supervision from slide or patient-level labels to learn whole slide
representations [1, 2, 3, 4, 5, 6, 7]. We present a self-supervised framework for learning whole slide
representations, called Slide Pre-trained Transformers (SPT), by combining data transformations
from vision and language modeling to generate high-quality paired views.

1 Introduction

Whole slide imaging is an integral part of tissue diagnosis and laboratory medicine. Computational
pathology can provide rapid tissue analysis of complex WSIs, such as cancer detection, subtyping,
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and grading. Developing scalable and efficient foundation models at the WSI level is crucial for
advancing diagnosis, prognosis, and treatment planning in clinical settings. Traditional multiple
instance learning (MIL) methods, including ABMIL [2], CLAM [3], DSMIL [8], TransMIL [4], can
achieve good performance on the above diagnostic tasks. Unfortunately, these methods rely on slide
annotations which are weak, sparse, incomplete, and expensive to obtain [9]. Moreover, WSIs are
gigapixel-size and contain diverse morphologic and histopathologic features with extensive spatial
heterogeneity. Weak slide labels may annotate only a small region within WSIs, demonstrating
the limitation of relying on weak supervision to achieve high-quality and transferable whole slide
representations.

To compensate for weak whole slide labels, self-supervised foundation models have been increasingly
used in computational pathology. The majority of previous foundation models, such as UNI [7] and
Virchow [10], have focused on the local patch level. However, few previous studies have investigated
how to extend these foundation models to learn whole slide representations that captures tumor
heterogeneity and global super-cellular structures [11, 5]. A general and unified framework for whole
slide SSL would enable transferable whole slide feature learning and generalize to a wide range of
downstream pathology tasks with minimal to no annotations required.

In this paper, we present Slide Pre-trained Transformers (SPT) for self-supervised whole slide
representation learning. SPT treats gigapixel WSIs as a sequence of patch tokens and applies a
domain-informed set of vision-language transformations, including splitting, cropping, and masking,
to generate distinct views for self-supervised training. Over a range of patch encoders, including
state-of-the-art foundation models, SPT learns high-quality patch feature aggregation and whole slide
representations compared to the state-of-the-art baselines. The main contributions are:

• We introduce SPT, a general, flexible, and unified learning framework for WSIs at scale and
benchmark on five computational pathology tasks.

• SPT outperforms previous state-of-the-art self-supervised and supervised methods for WSI
representation learning.

• SPT offers a consistent performance boost across a wide range of patch encoders.

2 Related Work

2.1 Computational pathology

Computational pathology combines whole slide imaging and computer vision methods for the analysis
of biomedical tissues. Cancer diagnosis, prognostication, and response-to-treatment are some of
the most common computer vision tasks within computational pathology. WSIs pose a unique
computer vision challenge due to image sizes ranging up to 150K × 150K pixels. Data annotations
are often limited to whole slide or patient-level labels [9]. Moreover, WSIs have a unique data
structure compared to natural images, such as being non-object-centric and containing regional
heterogeneity and visual feature redundancy. Despite these challenges, significant progress has been
made over the last decade due to more accessible slide scanners and modern deep-learning methods.
Cancer diagnosis [9, 16, 3, 17], molecular classification [18, 19], and prognostication [20] with WSIs
represent how computational pathology can be used to improve diagnostic medicine and patient
care. Whole slide representation learning for gigapixel WSI search and public WSI-natural language
supervision represent future directions in computational pathology [21, 22].

2.2 Multiple instance learning

Multiple instance learning (MIL) is a type of supervised learning such that labels are available only
for bags of instances, rather than individual instances [23]. Learning to classify WSIs has generally
been regarded as a MIL task, where each patch is an instance and the WSI is a bag of patches [2].
There are two main components in MIL for WSI: the patch encoder and aggregator. Early works
directly train the patch encoder in a weakly supervised fashion with WSI labels and generate a whole
slide representation with mean pooling [1, 24]. Many works have used ResNet or related architectures
for patch encoders, often pre-trained on ImageNet [25, 26, 9, 27, 3, 4]. Attention-based multiple
instance learning (ABMIL) was first introduced in 2018 for WSI classification [2]. Subsequently,
clustering-constrained attention multiple instance learning (CLAM) was used for large-scale weakly
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Figure 2: SPT overview. A. The SPT framework consists of a two-stage model architecture: 1)
a pre-trained patch encoder E and 2) a transformer whole slide encoder f . WSIs are first divided
into small patches, and the patch encoder extracts patch-level features. We then apply whole slide
transformations to the patch tokens to create two views of the same WSI. The transformations combine
splitting, cropping, and masking, which are informed by the structure and unique properties of WSIs.
The transformed views are encoded by the transformer whole slide encoder, and the slide-level feature
learning can use any paradigm. B. Example learning paradigms. In our experiments, we focus on
three representative self-supervised paradigms, including SimCLR [12], BYOL [13], and VICReg
[14], and supervised contrastive learning [15].

supervised computational pathology. Subsequent MIL work has used variations of attention and more
powerful transformer-based aggregation models, such as TransMIL [27, 26, 8, 3, 4, 28, 29, 30].

2.3 Self-supervised learning and foundation models

Self-supervised learning (SSL) is a method of learning representations that does not require labels or
annotations. SSL defines pretext learning tasks, such as instance discrimination or reconstruction,
as training objectives and is typically evaluated by the performance of the learned representations
on downstream tasks [31]. SSL has shown success in natural images [12, 13, 14], natural language
processing [32, 33, 34, 35], and multimodal learning [22, 36]. SSL has been used for patch encoding
in WSIs. DSMIL [8] applied SimCLR to learn patch representations. Most recently, PLIP [22]
leverages histology images and comments posted to Twitter for a self-supervised vision-language
foundation model. UNI [7] and Virchow[10] are general-purpose foundational H&E patch encoders
for a wide range of tissue types and downstream tasks trained on a large-scale institutional dataset.

While there have been attempts at learning whole slide representations in an end-to-end manner with
supervision [37], or enhancing them with a supervised contrastive loss [38], few works have focused
on self-supervision beyond patches. HiDisc [39] uses a data hierarchy to learn patch representations
that are invariant to slide and patient membership. HIPT [5] uses a self-supervised patch encoder and
an encoder for local regions, but weak supervision is used for learning WSI representations. Giga-
SSL [11] and SS-MIL [40] attempted to learn whole slide representations using self-supervision by
masking patch tokens. Giga-SSL also emulates slide augmentations using pre-computed augmented
patch representations. However, this strategy is memory intensive, does not span all combinations of
possible random augmentations, and is infeasible for large-scale datasets.

3 Methods

3.1 The SPT framework

WSIs are partitioned into smaller non-overlapping fields-of-view or patches. Let I = {Ii}ni=1 be a
WSI, where n is the number of patches in a WSI, and each Ii ∈ R3×H×W , with coordinate pi ∈ Z2.
p = {pi}ni=1 are the coordinates of all patches in the WSI. SPT is a two-stage learning framework
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to learn WSI representations: 1) a pre-trained patch encoder E ; and 2) a transformer whole slide
encoder f . The pre-trained patch encoder E can have the architecture of any visual feature extractor.
The overall model architecture of SPT is illustrated in Figure 2.

In the SPT framework, the patch encoder E encodes each Ii into a patch token, xi = E(Ii). We
represent all patch tokens in a WSI as x = {xi}ni=1 = E(I). The whole-slide encoder f serves as
an aggregation function that learns a whole-slide representation using patch tokens and their corre-
sponding coordinates: h = f(x,p) = f(E(I),p). f can be any learned aggregation architecture,
such as in ABMIL [2] or a transformer [4, 41]. Due to the scale of WSIs, it is infeasible to both train
the patch encoder E and whole-slide encoder f jointly in an end-to-end manner. Thus, we freeze the
patch encoder E to allow for large mini-batch training of the whole-slide encoder f . The aim of the
SPT framework is to learn high-quality whole slide representations with f using self-supervision.

Self-supervised methods share a common strategy: apply random transformations to a single data
example to generate distinct views, called positive pairs. We designed our SPT framework to be
compatible with existing SSL objectives, where a WSI undergoes transformations into different
views. With a two-view SSL paradigm, t(I) = [Ii . . . Ik], t(p) = [pi . . . pk], t′(I) = [Ij . . . Iℓ], and
t′(p) = [pj . . . pℓ], where t, t′ ∈ T are randomly drawn from a set of transformations described
in section 3.2. The patches and their corresponding coordinates from these transformed views are
processed through E and f to obtain the whole slide representations:

h = f (E(t(I)), t(p)) , h′ = f (E(t′(I)), t′(p)) .

An SSL loss is used to self-supervise whole slide training:

LSPT (h, h
′) .

In our experiments, we selected representative methods from different SSL families [42], including
SimCLR [12] from contrastive learning, BYOL [13] from self-distillation, and VICReg [14] from
canonical component analysis. We denote the self-supervised SPT as ssSPT.

SPT with supervision. SPT can be adapted to fully supervised training using weak slide- or patient-
level labels, by applying a supervised contrastive loss. Positive pairs for supervised contrastive
learning are defined by class labels [15]. We denote the supervised variant of SPT as suSPT.

3.2 SPT transformation

While previous work focused on pixel space transformations [11], we hypothesized that these
augmentations at patch level are insufficient to generate high-quality views for whole slide SSL. A
patch encoder trained with instance discrimination, for example, should be invariant to pixel-space
augmentations. Thus, pixel space augmentations, such as color jittering, should have minimal effect
on the representation space and resulting similar embeddings, as illustrated with SimCLR in Figure 3,
because it is explicitly enforced as the pretext task. We opt to bypass patch augmentations altogether,
thereby reducing SPT memory and compute burden, and focusing on transformations at WSI level.

SimCLR patch representations
for one WSI

Patch 
encoder

Unaugmented
representations

Representations with
strong augmentations

Original
patches Augmented patches Original

patches Augmented patches

Figure 3: Limited effect of pixel-level patch augmentations. We qualitatively evaluate the effect
of pixel-level augmentation on the patch representations by visualizing the tSNE plot of SimCLR
pre-trained patch representations sampled from a single WSI. We observe that strong augmentations
at the pixel level have a minimal effect on the patch embeddings. The invariant behavior of the patch
encoder is explicitly enforced by the SimCLR pretext task.
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Figure 4: SPT transformation strategy. SPT combines splitting, cropping, and masking to generate
views, and they are motivated by the size, region diversity, and information redundancy of WSIs.
Splitting partitions patches into mutually exclusive sets decreases mutual information between views;
cropping can generate spatially diverse views covering different regions on the WSI; masking reduces
redundant visual features and improves training efficiency. The combination of these transformations
can create optimal positive pairs for whole slide representation learning.

Transformation strategy. WSIs are divided into a sequence of patch tokens. The SPT transfor-
mation strategy, as shown in Figure 4, is inspired by both vision and language modeling, and was
selected to address the domain-specific properties of WSI:

• Splitting to decrease mutual information between views. Reducing mutual information
between SSL views, while keeping task-relevant information intact, improves downstream
performance [43, 44]. The splitting transformation randomly partitions patch tokens into
disjoint sets, ensuring mutually exclusive set membership for each token. Enforcing mutual
exclusion reduces mutual information between SSL views.

• Cropping to capture regional heterogeneity. WSIs contain regional differences in histologic
features. Similar to multi-cropping in visual SSL [12, 45, 46], cropping generates spatially
diverse views of WSI with variable sizes and features.

• Masking to reduce redundant visual features. Due to their gigapixel size, WSIs can contain
large regions of similar histologic features and tissue phenotypes, causing redundancy.
Masking is an effective transformation for vision and language modeling [5, 33, 47]. For
each view, the masking transformation samples a subset of patch tokens without replacement.
Additionally, masking increases training efficiency by reducing sequence lengths.

While splitting, cropping and masking can be used individually, we apply them jointly to generate
versatile and high-quality views for SPT training.

3.3 SPT Implementation

End-to-end whole slide learning with large batch sizes is infeasible due to the gigapixel scale. To
enable efficient training, all unaugmented patch tokens were computed on a frozen patch encoder,
and SPT transformations were then applied to patch tokens. Each whole slide was represented as
an embedding x ∈ Rn×d and a coordinate p ∈ Zn×2. Splitting and masking were implemented as
row-wise partitioning and dropout on x, p, respectively. Cropping was implemented as coordinate
filtering on p. A detailed description of our implementation with pseudocode is in Appendix B.

4 Experiments

4.1 Benchmarks

We evaluated SPT visual representations on five benchmarks across three clinical tasks, including
two different imaging modalities. Additional dataset information and breakdown are in Appendix A.
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SRH CNS benchmark. Stimulated Raman Histology (SRH) is a novel optical microscopy method
that enables fast imaging of unprocessed tissues [48, 49]. The benchmark includes six central nervous
system (CNS) tumors and normal brains, with 2035 and 925 WSIs for training and evaluation,
respectively. These data were collected at [institution redacted for double-blind review], following
the imaging protocol in [50], and were labeled by board-certified pathologists. The study has been
approved by the Institutional Review Board, with informed consent from each patient.

H&E glioma molecular classification benchmark. We also evaluated SPT using publicly available
diffuse glioma H&E stained WSIs from the Cancer Genome Atlas (TCGA) and Digital Brain Tumour
Atlas (DBTA) [51]. We focused on the classification of three molecular subgroups, as defined by
the World Health Organization [52]. Molecular classification is a challenging computer vision task
because the diagnoses are made via molecular testing (such as genetic sequencing), and are not
possible for expert pathologists using H&E images alone. Our glioma dataset is comprised of 2309
training slides and 341 slides from the TCGA dataset set for evaluation.

TCGA BRCA, TCGA NSCLC, and TCGA RCC benchmarks. We further evaluated SPT using
three widely used TCGA H&E classification benchmarks: 1) invasive breast carcinoma (BRCA)
subtyping, 2) non-small cell lung carcinoma (NSCLC) subtyping, and 3) renal cell carcinoma (RCC)
subtyping. For these benchmarks, we followed the well-established study design of [5].

4.2 Implementation details

We trained in-domain ResNet-34 [53] patch encoders to extract features for all patches in each slide.
These patch encoders were trained with SimCLR [12] and HiDisc [39]. Additional off-the-shelf and
foundational patch encoders are described in Figure 5a. SPT slide encoders are six-layer transformers
[41] with four heads, and learnable Fourier positional embeddings [54] (visualized in Appendix
B.2). We used a two-layer projection head for SimCLR and VICReg, and one-layer projection
and prediction heads for BYOL. We used AdamW optimizers and cosine decay schedulers after
warm-up in the initial 10% of the iterations. The learning rate was adjusted between 10-3 and 10-7

to accommodate the training dynamics of different SSL methods and tasks. With our SPT slide
transformation strategy, we adjusted cropping and masking sizes for each experiment and utilized up
to 64 patches per slide for each view. We trained ssSPT and suSPT experiments up to 800 and 100
epochs, respectively, with an effective batch size of up to 1024 WSIs. All models were trained with
mixed-precision on a NVIDIA A40 GPU, taking up to 8 hours.

4.3 Evaluation Protocol

We benchmarked SPT using standard linear evaluation protocols. Since linear classifiers are sensitive
to hyperparameters [46], we also employed k nearest neighbor (kNN) for direct evaluation. H&E
glioma molecular evaluation used only WSI from TCGA. For SRH and H&E Glioma, experiments
were repeated with three random seeds, and for TCGA BRCA, NSCLC, and RCC, we used 10-fold
cross-validation for error bars, following the protocols in previous work [5, 11]. For the baselines,
original embeddings or logits were used when available. We used mean class accuracy (MCA), F1
scores, and area under the receiver operating characteristic (AUC) to evaluate all benchmarks.

5 Results

We first benchmarked ssSPT performance with self-supervised WSI learning strategies in section
5.1. We compared ssSPT and suSPT with supervised WSI MIL strategies in section 5.2. We then
evaluated the ability of SPT to generalize across a wide range of patch encoders in section 5.3. Next,
we showed that SPT improves MIL results with SOTA foundation model patch encoders in section
5.4. Finally, we visualized SPT self-attention heatmaps in section 5.5. Full results with error bars,
ablation studies on the SPT transformations and parameters, and additional visualizations are in
Appendix C.
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5.1 ssSPT learns high-quality whole slide representations

We benchmarked ssSPT with self-supervised baselines using in-domain patch encoders. WSI features
were evaluated directly using a kNN classifier. As shown in Table 1, ssSPT surpasses all baselines
across all self-supervised objectives in all metrics, except for AUC on the highly imbalanced BRCA
benchmark. ssSPT outperforms all existing self-supervised methods by a large margin, outperforming
the previous best self-supervised method with a 10 and 5 points increase in MCA on the SRH CNS
and H&E glioma benchmarks, respectively.

SRH CNS H&E Glioma TCGA BRCA TCGA NSCLC TCGA RCC

MCA F1 AUC MCA F1 AUC MCA F1 AUC MCA F1 AUC MCA F1 AUC

Self-supervised methods

Pooling 72.5 73.2 94.8 68.3 67.9 87.9 58.1 27.4 74.7 75.1 76.5 85.3 84.2 86.3 96.6
HIPT - - - - - - 63.2 39.9 77.5 80.6 80.1 88.9 88.4 89.2 97.4

Giga-SSL 71.2 72.7 94.2 71.6 71.5 89.1 70.4 53.9 85.4 84.3 84.9 92.3 90.0 89.3 97.5
ssSPT (Ours) 82.3 82.3 94.7 76.5 76.1 90.9 72.7 58.3 80.4 86.1 86.1 92.3 91.7 90.5 98.3

Table 1: Self-supervised benchmarks. We use kNN classifier to evaluate ssSPT and baselines. We
report the best performing SSL objective for ssSPT, with additional SSL objectives in Appendix C
Table 11. Mean values are reported here and standard deviations are in Appendix C Table 7.

5.2 SPT outperforms previous fully supervised methods

We benchmarked ssSPT and suSPT with linear evaluation using in-domain patch encoders. As shown
in Table 2, SPT outperforms previous fully supervised methods across all tasks. Remarkably, ssSPT
outperforms or matches previous fully supervised methods on MCA in SRH CNS (+1.0), H&E glioma
(match), TCGA BRCA (+2.2), and TCGA RCC (+1.4) benchmarks. suSPT outperforms existing MIL
methods across all five benchmarks on nearly all metrics. In comparison with the best-performing
baselines on MCA of these five benchmarks, suSPT achieves a performance increase of 1.2, 0.7, 3.4,
2.1, and 0.3 points, respectively. Thus, SPT provides a performance increase for both self-supervised
and supervised learning, generalizing to different tissue types and diagnostic tasks.

SRH CNS H&E Glioma TCGA BRCA TCGA NSCLC TCGA RCC

MCA F1 AUC MCA F1 AUC MCA F1 AUC MCA F1 AUC MCA F1 AUC

Self-supervised methods

Giga-SSL 78.6 75.6 96.1 76.5 73.9 90.7 81.7 62.6 91.2 87.5 87.9 93.7 89.9 87.8 97.7
ssSPT (Ours) 85.4 83.2 97.6 80.0 78.0 91.9 83.0 67.4 89.4 88.0 88.0 94.8 93.4 91.1 98.7

Supervised methods

ABMIL 79.8 78.9 96.0 75.0 74.5 90.2 78.6 62.8 86.1 86.8 86.7 93.7 89.9 89.4 97.8
CLAM 83.5 82.9 96.7 78.9 77.7 88.5 76.8 59.3 85.8 84.3 83.6 92.8 85.6 83.6 97.3
DSMIL - - - - - - 77.0 58.0 83.8 84.9 84.0 92.0 90.1 87.1 97.1

TransMIL 84.4 84.0 84.0 80.0 79.4 91.9 80.8 69.4 90.0 87.4 87.5 95.3 87.4 87.5 95.3
HIPT - - - - - - 75.8 60.2 87.4 88.2 88.2 95.2 92.0 92.1 98.0

suSPT (Ours) 85.6 84.4 97.2 80.7 80.3 93.7 84.2 70.4 90.5 90.3 90.4 95.7 92.3 91.0 98.6

Table 2: SPT benchmarks. We report linear evaluation results on five histology benchmarks. We
report the best performing SSL objective for ssSPT, with additional SSL objectives in Appendix C
Table 11. Mean values are reported here and standard deviations are in Appendix C Table 8.

5.3 SPT offers performance boost across a range of patch encoders

We explored the generalizability of SPT to different patch encoders using the more challenging H&E
Glioma benchmark. As described in Table 5a, we tested ImageNet, HIPT [5], PLIP [22], and UNI
[7], in addition to in-domain patch encoders trained with SimCLR and HiDisc. The ImageNet patch
encoder is off-the-shelf and out-of-distribution (OOD). HIPT [5] is near-domain since it was trained
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with H&E WSIs from TCGA, including multiple organ systems and institutions. PLIP [22] and UNI
[7] are visual foundational models for histology, trained with OpenPath and large-scale institutional
datasets, respectively. SPT performance is shown in Figure 5b, with additional results for SRH CNS
benchmark in Appendix C Figure 8, and extended metrics with error bars are in Table 9.

For all patch encoders, SPT training significantly improves whole slide representations over pooling
baselines. This improvement is the most significant for ImageNet and HIPT patch encoders. As
expected, the performance boost is smaller for in-domain patch encoders, especially HiDisc, where
slide discrimination was learned during patch training. SPT also achieves a large performance boost
using PLIP patch encoders, as it bridges the domain gap between our benchmark and the pre-training
dataset OpenPath which is collected on Twitter. As for the state-of-the-art UNI foundational patch
encoder, we still observed a large performance boost achieving MCA near 90 points for suSPT.
Overall, these results demonstrate that SPT can enhance whole-slide representation learning using
encoders from different domains, thereby reducing the reliance on a specialized in-domain patch
encoder. SPT training time ranges from 6-8 GPU hours, while the patch encoder is computationally
intensive and usually took over 80 GPU hours to train.

Patch
encoder Architecture Training

dataset

ImageNet [53] ResNet34 ImageNet

HIPT [5] ViT-S/16 All of TCGA
SimCLR [12] ResNet34 In-domain (see 4.2)
HiDisc [39] ResNet34 In-domain (see 4.2)

PLIP [22] ViT-B/32 OpenPath
UNI [7] ViT-L/16 Mass-100K + GTEx

(a) Patch encoders. ImageNet is an off-the-shelf model
trained on OOD data. HIPT is near-domain for H&E
glioma. SimCLR and HiDisc patch encoders are trained
with in-domain data. PLIP and UNI are SOTA founda-
tional patch encoders. ImageNet

HIPT
SimCLR

HiDisc
PLIP UNI
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(b) SPT results on H&E Glioma.

Figure 5: SPT benchmarks with different patch encoders. ssSPT and suSPT offer performance
boosts with a wide range of patch encoders. ssSPT approaches supervised performance upperbound.
Additional metrics with error bars are in Appendix C Table 9.

5.4 SPT improves the state-of-the-art foundation model

Most recently, foundation models have been developed for computational pathology, promising
a general approach for WSI diagnostic tasks. UNI is a foundational patch encoder that achieves
state-of-the-art results [7]. The UNI authors found that “ABMIL with UNI features outperforms
many sophisticated MIL architectures” [7]. We benchmarked suSPT using UNI patch features, in
comparison to ABMIL in Table 3. suSPT outperforms ABMIL in all benchmarks with UNI features,
improving upon the previous state-of-the-art performance on these tasks. This showcases that SPT is
complementary to the innovative medical foundation models for learning patch representations.

SRH CNS H&E Glioma TCGA BRCA TCGA NSCLC TCGA RCC

MCA F1 AUC MCA F1 AUC MCA F1 AUC MCA F1 AUC MCA F1 AUC

UNI + ABMIL 86.3 86.3 96.3 86.8 85.2 95.5 88.6 79.1 88.8 93.6 90.6 93.4 95.2 93.3 98.5
UNI + suSPT 86.4 86.8 98.4 89.1 88.7 97.3 89.6 82.2 94.7 95.5 95.6 97.6 96.2 94.9 98.9

Table 3: suSPT improves state-of-the-art MIL results with UNI patch features. Mean values are
reported here, and standard deviations are in Appendix C Table 10.
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5.5 Self-attention visualizations reveal tissue phenotypes in full gigapixel WSIs

Finally, we adopted the strategy in [46] and evaluated ssSPT qualitatively by visualizing self-attention
on the full WSI. As illustrated in Figure 6, self-attention maps on H&E WSI can distinguish different
tissue phenotypes such as blood, dense tumor, and necrosis. The CLS token attends to dense
tumor regions instead of non-diagnostic regions such as blood and necrosis for slide representations.
This observation is consistent with existing literature on self-supervised vision transformers, where
attention maps can serve as unsupervised segmentation [46, 5]. To our knowledge, our work is the
first to generate self-supervised transformer-based attention maps on full gigapixel WSIs, instead
of localized regions, showing the strong representation capacity, flexibility, and efficiency of ssSPT.
More H&E and SRH attention map visualizations are in Appendix C.6.

Whole slide image Attention heatmap

Blood Dense tumor Necrosis

Attention scores
0 1

Figure 6: Attention heatmap visualization. Self-attention visualization demonstrates ssSPT’s ability
to distinguish between different tissue phenotypes such as blood, dense tumor, and necrosis. To our
knowledge, these are the first self-supervised transformer-based attention maps on full gigapixel
WSIs, instead of localized regions.

6 Conclusion

We present Slide Pre-trained Transformers (SPT), a self-supervised approach for whole slide repre-
sentation learning, in a general, versatile, and lightweight framework. SPT complements existing
foundation patch encoders by enhancing their capability to learn whole slide representation. SPT uses
domain-informed, vision-language transformations for high-quality WSI view generation and self-
supervised learning. SPT achieves superior performance on five computational pathology benchmarks
across three clinical tasks, including histopathologic diagnosis, cancer subtyping, and molecular
genetic prediction. Our work has shown SPT to be a suitable self-supervised strategy for training
scalable and efficient foundation models at the whole slide level.

Limitations. Our experimentation was limited to two biomedical microscopy modalities and three
major self-supervised learning paradigms. Future work includes validating SPT on additional datasets,
including WSIs from different microscopy modalities, such as fluorescent microscopy, as well as
different SSL paradigms such as generative SSL. Another limitation of SPT is hyperparameter tuning
for different configurations of SPT transformations, which are domain and dataset-specific. An
important future direction of our work is to train a largescale whole-slide foundation model using
publicly available and institutional datasets.

Broader impact. This paper aims to advance the field of whole slide representation learning
and computational pathology. Our work builds toward an automated diagnostic support system
for biomedical microscopy and histopathology, paving the way for more accurate diagnoses and
personalized treatment recommendations. Moreover, we strive to develop self-supervised learning
frameworks in order to promote and maintain data privacy and ethical use of patient data within
healthcare AI systems. Additionally, SSL is essential for developing medical foundation models.
We hope that SPT can serve as a potential foundation model training strategy within computational
pathology. While our experiments are in medical applications, there is a potential for impact on other
similar gigapixel image modalities, such as geospatial and astronomical images.
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A Data Details

The five benchmarks used in our experimentation are described in Table 4.

Benchmark # clases Tissue organ Imaging modality Task

SRH CNS 7 Brain SRH Histological classification
H&E Glioma 3 Brain H&E stained Molecular classification
TCGA BRCA 2 Breast H&E stained Tumor subtyping
TCGA NSCLC 2 Lung H&E stained Tumor subtyping

TCGA RCC 3 Kidney H&E stained Tumor subtyping

Table 4: Benchmark overview. Our benchmarks span four different organs and two different
microscopy modalities.

A.1 SRH CNS benchmark

Our SRH benchmark includes common brain tumors and normal brain tissues. Our data collection
and processing follows the protocol in [50], where each specimen is scanned with a commercially
available stimulated Raman histology microscope manufactured by Invenio Imaging. Each specimen
is diagnosed by a board-certified neuropathologist. The number of slides in each class is in Table 5.

Class Training Validation

HGG 407 132
LGG 210 107

Mening. 434 204
Metast. 236 114

Pit. 448 194
Schwan. 47 22
Normal 253 152

Unlabeled 2919 -

Table 5: SRH dataset breakdown. Number of slides in the training and validation set for supervised
training and evaluation. HGG, high grade glioma, LGG, low grade glioma, mening., meningioma,
metast., metastasis, pit., pituitary adenoma, schwan., schwannoma, normal, normal brain tissue.

A.2 H&E Glioma benchmark

Our H&E benchmark includes glioma specimens from the Cancer Genome Atlas Program (TCGA)
and the Digital Brain Tumour Atlas (DBTA) [51]. These publicly available datasets feature H&E
images collected in both the United States and Europe. Slides are divided into three classes based on
molecular labels as defined by the World Health Organization [52], using IDH and 1p/19q co-deletion
status included in both datasets. At training time, both DBTA and TCGA training set is used, and a
separate, held-out validation set from the TCGA dataset is used for benchmarking. A detailed number
of slides per class is in Table 6. Our H&E data processing pipeline follows [39]. Each WSI is divided
into 300 × 300 patches, and blank / background regions are excluded. All patches used in training
are stain-normalized using the Macenko algorithm [55].

Class Molecular label Training Validation
DBTA TCGA TCGA

Oligodendroglioma IDH mutant, 1p/19q co-deleted 176 265 62
Astrocytoma IDH mutant 157 360 88
Glioblastoma IDH wildtype 619 732 191

Table 6: H&E glioma dataset breakdown. Number of slides from both datasets.
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B Methods and Implementation

B.1 SPT transformation details

As described in section 3.3, we implement our SPT transformations with pre-computed embeddings
and patch coordinates. Recall that each whole slide is represented as a (x,p) tuple, where x ∈ Rn×d

is the embedding tensor and p ∈ Zn×2 is a corresponding coordinate tensor for each patch in the WSI.
Each transformation is implemented by indexing into the rows (corresponding to patches/tokens) of
x and p. A PyTorch style pseudocode is in Algorithm 1.

Splitting. Splitting has one hyperparameter: the ratio of tokens between two views. The ratio
specifies the fraction of tokens in the first view and is used to compute the number of tokens in each
view. Tokens are split randomly between views accordingly, and two disjoint views are returned.

Cropping. Cropping has two sets of hyperparameters: cropping area range, and cropping aspect
ratio range. The cropping area and cropping aspect ratio are randomly chosen from their respective
ranges. A random token in the view with coordinates (rA, cA) is selected to be an anchor as the crop
center of the view. A coordinate range (r0, c0), (r1, c1) is computed based on the area and aspect
ratio:

H =
√

Area/aspect
W = H · aspect
r0 = rA −H/2; r1 = rA +H/2

c0 = cA −W/2; c1 = cA +W/2,

where H,W are the height and width of the crop. Tokens in this coordinate range are included in the
transformed view.

Masking. Masking has two hyperparameters: masking ratio range and max masking token limit.
The masking ratio is randomly drawn from the masking ratio range, and it is used to compute the
number of tokens m to keep in the augmented view. Max masking token limit is a cap of the number
of tokens in each view, i.e. m = min(m,max_token_lim). This parameter may be omitted (set to
∞) when training on datasets with smaller WSIs. Finally, we randomly select m tokens to remain in
the augmented view.
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Algorithm 1 SPT transformations in PyTorch style

# hyperparameters:
# - split_ratio: fraction of token in first view
# - (area_min, area_max): cropping area range
# - (aspect_min, aspect_max): cropping aspect ratio range
# - (mask_min, mask_max): masking ratio range
# - max_token_lim: max masking token limit

@torch.no_grad()
def transform(x, p):

# inputs:
# - x: patch embeddings (n d)
# - p: patch coordinates (n 2)
# output:
# - (x1, p1): patch embs and coords for the first view
# - (x2, p2): patch embs and coords for the second view

(x1, p1), (x2, p2) = split(x, p)
(x1, p1) = mask(crop(x1, p1))
(x2, p2) = mask(crop(x2, p2))
return (x1, p1), (x2, p2)

def split(x, p):
# randomly permute index of all tokens
rand_idx = torch.randperm(len(p))

# determine index for each view
view1_sz = int(split_ratio * len(p))
idx1, idx2 = rand_idx[:view1_sz], rand_idx[view1_sz:]

# filter tokens for each view
return ((x[idx1,:], p[idx1,:]), (x[idx2,:], p[idx2,:]))

def crop(x, p):
# randomly choose an anchor as center of the crop
anchor_id = torch.randint(high=len(p))
anchor = p[anchor_id, :]

# randomly select crop area and aspect ratio
crop_area = torch.randint(low=crop_min, high=crop_max)
aspect = torch.FloatTensor(1).uniform_(aspect_min, aspect_max)

# compute min and max coordinate of the crop
height = torch.sqrt(areas / aspect)
width = (height * aspect)
r0, r1 = anchor[0] - height / 2, anchor[0] + height / 2
c0, c1 = anchor[1] - width / 2, anchor[1] + width / 2

# filter tokens
idx = ((p[:,0] > r0) & (p[:,0] < r1) &

(p[:,1] > c0) & (p[:,1] < c1))
return x[idx,:], p[idx,:]

def mask(x, p):
# randomly select a number of tokens to keep
mask_ratio = torch.randint(low=mask_min, high=mask_max)
size = mask_ratio * len(p)

# optional: set a upper bound on number of tokens
size = torch.minimum(size, max_token_lim)

# randomly generate index and filter tokens
idx = torch.randperm(len(p))[:sizes]
return x[idx,:], p[idx,:]
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B.2 Relative positional embedding

To work with WSIs of different sizes, it is non-trivial to use a fixed-size learnable position embedding
with absolute distance [33]. We adopt the relative positional encoding introduced in [54], which
utilizes the learnable Fourier feature, modulated with a multi-layer perceptron. This positional
encoding uses the coordinates of the patch encoder as input and the output is added directly to the
transformer with the same dimension. We visualize the positional embedding similarity in Figure 7.
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Figure 7: Cosine similarity of learned positional embeddings. Visualization is generated similarly
as in [56]: each patch shows the cosine similarity between the position embedding of the token with
the indicated row and column and the position embeddings of all other tokens.
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C Extended Results

In this section, we present extended results presented in section 5.

C.1 Extended ssSPT evaluation with kNN classifier

We evaluate ssSPT and baselines using a kNN classifier in Table 1. Error bars from the table are
reported in Table 7.

Benchmark Method MCA F1 AUC

SRH CNS

Mean pooling 72.5 73.2 94.8
Max pooling 73.5 75.6 95.0

Giga-SSL 71.2 (0.9) 72.7 (0.5) 94.2 (1.4)
ssSPT (Ours) 82.3 (0.5) 82.3 (0.3) 94.7 (0.1)

H&E Glioma

Mean pooling 68.3 67.9 87.9
Max pooling 68.2 69.2 87.0

Giga-SSL 71.6 (1.3) 71.5 (1.1) 89.1 (0.2)
ssSPT (Ours) 76.5 (0.5) 76.1 (0.4) 90.9 (0.4)

TCGA BRCA

Mean pooling 58.1 (4.0) 27.4 (11.3) 74.7 (7.9)
Max pooling 58.3 (3.8) 29.1 (10.1) 77.6 (10.1)

HIPT 63.2 (6.1) 39.9 (13.7) 77.5 (4.2)
Giga-SSL 70.4 (9.7) 53.9 (17.5) 85.4 (6.7)

ssSPT (Ours) 72.7 (4.9) 58.3 (6.8) 80.4 (7.8)

TCGA NSCLC

Mean pooling 75.1 (3.7) 76.5 (3.4) 85.3 (2.9)
Max pooling 79.3 (3.9) 80.7 (3.2) 88.4 (1.7)

HIPT 80.6 (2.9) 80.1 (3.3) 88.9 (2.7)
Giga-SSL 84.3 (3.0) 84.9 (2.6) 92.3 (2.7)

ssSPT (Ours) 86.1 (2.3) 86.1 (2.6) 92.3 (1.7)

TCGA RCC

Mean pooling 84.2 (3.3) 86.3 (2.8) 96.6 (1.0)
Max pooling 79.4 (4.5) 82.8 (3.7) 96.6 (1.7)

HIPT 88.4 (3.2) 89.2 (3.0) 97.4 (1.6)
Giga-SSL 90.0 (2.5) 89.3 (2.9) 97.5 (1.0)

ssSPT (Ours) 91.7 (2.1) 90.5 (2.7) 98.3 (1.3)

Table 7: Self-supervised benchmarks. We use kNN classifier to evaluate ssSPT and baselines.
Extended Table 1 with standard deviations reported in (parentheses).

C.2 Extended ssSPT and suSPT evaluation with linear classifier

We evaluate ssSPT, suSPT, and baselines using linear evaluation in Table 2. KNN evaluation results
and error bars from the table are reported in Table 8.
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kNN Linear evaluation

Benchmark Method MCA F1 AUC MCA F1 AUC

SRH CNS

Self-supervised methods

Giga-SSL 71.2 (0.9) 72.7 (0.5) 94.2 (1.4) 78.6 (1.8) 75.6 (2.1) 96.1 (0.3)
ssSPT (Ours) 82.3 (0.5) 82.3 (0.3) 94.7 (0.1) 85.4 (0.3) 83.2 (0.3) 97.6 (0.3)

Supervised methods

ABMIL 77.0 (0.9) 76.3 (0.1) 93.1 (0.6) 79.8 (0.4) 78.9 (1.0) 96.0 (0.4)
CLAM - - - 83.5 (1.3) 82.9 (1.2) 96.7 (0.3)

TransMIL 84.8 (0.8) 84.7 (0.3) 92.2 (0.1) 84.4 (1.2) 84.0 (0.7) 84.0 (0.7)
suSPT (Ours) 85.0 (0.5) 84.2 (0.6) 92.8 (0.7) 85.6 (0.5) 84.4 (0.5) 97.2 (0.3)

H&E Glioma

Self-supervised methods

Giga-SSL 71.6 (1.3) 71.5 (1.1) 89.1 (0.2) 76.5 (0.6) 73.9 (0.4) 90.7 (0.3)
ssSPT (Ours) 76.5 (0.5) 76.1 (0.4) 90.9 (0.4) 80.0 (2.4) 78.0 (2.2) 91.9 (0.8)

Supervised methods

ABMIL 75.6 (1.8) 75.7 (1.8) 88.4 (0.4) 75.0 (0.6) 74.5 (0.6) 90.2 (0.3)
CLAM - - - 78.9 (2.2) 77.7 (1.8) 88.5 (1.5)

TransMIL 79.1 (2.5) 78.8 (2.7) 86.5 (0.3) 80.0 (1.4) 79.4 (1.8) 91.9 (1.1)
suSPT (Ours) 80.5 (1.6) 79.9 (1.4) 88.3 (0.5) 80.7 (2.4) 80.3 (1.9) 93.7 (0.3)

TCGA BRCA

Self-supervised methods

Giga-SSL 70.4 (9.7) 53.9 (17.5) 85.4 (6.7) 81.7 (6.5) 62.6 (9.2) 91.2 (5.4)
ssSPT (Ours) 72.7 (4.9) 58.3 (6.8) 80.4 (7.8) 83.0 (7.3) 67.4 (9.9) 89.4 (6.3)

Supervised methods

ABMIL 71.7 (9.7) 56.0 (17.5) 84.9 (9.1) 78.6 (9.1) 62.8 (14.3) 86.1 (7.5)
CLAM - - - 76.8 (8.9) 59.3 (13.8) 85.8 (6.3)
DSMIL - - - 77.0 (6.5) 58.0 (7.8) 83.8 (7.0)

TransMIL 79.0 (8.1) 67.7 (11.2) 84.7 (6.8) 80.8 (8.1) 69.4 (11.3) 90.0 (5.5)
HIPT - - - 75.8 (8.2) 60.2 (11.7) 87.4 (5.7)

suSPT (Ours) 78.2 (9.4) 66.1 (17.1) 86.1 (6.1) 84.2 (5.3) 70.4 (8.2) 90.5 (4.8)

TCGA NSCLC

Self-supervised methods

Giga-SSL 84.3 (3.0) 84.9 (2.6) 92.3 (2.7) 87.5 (2.3) 87.9 (2.2) 93.7 (2.2)
ssSPT (Ours) 86.1 (2.3) 86.1 (2.6) 92.3 (1.7) 88.0 (3.1) 88.0 (3.2) 94.8 (2.1)

Supervised methods

ABMIL 80.1 (4.0) 79.6 (4.5) 89.7 (2.1) 86.8 (2.4) 86.7 (2.3) 93.7 (1.2)
CLAM - - - 84.3 (3.4) 83.6 (4.1) 92.8 (2.0)
DSMIL - - - 84.9 (3.8) 84.0 (4.6) 92.0 (2.3)

TransMIL 88.8 (2.4) 88.9 (2.5) 94.2 (2.6) 87.4 (2.8) 87.5 (2.8) 95.3 (1.5)
HIPT - - - 88.2 (2.5) 88.2 (2.5) 95.2 (2.0)

suSPT (Ours) 90.3 (1.8) 90.4 (2.0) 94.1 (2.6) 90.3 (2.1) 90.4 (2.2) 95.7 (2.4)

TCGA RCC

Self-supervised methods

Giga-SSL 90.0 (2.5) 89.3 (2.9) 97.5 (1.0) 89.9 (2.7) 87.8 (2.6) 97.7 (0.9)
ssSPT (Ours) 91.7 (2.1) 90.5 (2.7) 98.3 (1.3) 93.4 (1.7) 91.1 (2.1) 98.7 (1.1)

Supervised methods

ABMIL 89.5 (6.0) 90.6 (5.2) 97.5 (2.2) 89.9 (2.6) 89.4 (3.2) 97.8 (1.1)
CLAM - - - 85.6 (8.0) 83.6 (7.0) 97.3 (1.7)
DSMIL - - - 90.1 (3.7) 87.1 (4.4) 97.1 (1.5)

TransMIL 90.6 (2.3) 90.0 (2.5) 96.6 (1.3) 87.4 (2.8) 87.5 (2.8) 95.3 (1.5)
HIPT - - - 92.0 (2.0) 92.1 (2.6) 98.0 (1.2)

suSPT (Ours) 92.1 (3.0) 91.1 (3.5) 96.3 (2.1) 92.3 (2.9) 91.0 (3.5) 98.6 (0.7)

Table 8: SPT benchmarks. Extended Table 2 with KNN evaluation results and standard deviations.
Standard deviations are reported in (parentheses).
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C.3 ssSPT results with different patch encoders

In Figure 5b, we compared the ssSPT’s performance to the pooling baseline and suSPT performance
upper bound with the H&E glioma benchmark. Here, we present the same experiment with the SRH
CNS benchmark in Figure 8. In the SRH benchmark, WSI representations improved dramatically in
OOD and foundation patch encoders, which are not trained on SRH data. After training with SPT,
as demonstrated by a maximum 18.6% boost in MCA for ImageNet. We also observe the expected
performance boost for in-domain patch encoder SimCLR and HiDisc. Similar to the H&E glioma
benchmark, ssSPT performance approaches suSPT upperbound on all patch encoders, within 4 points
in MCA for SRH CNS benchmarks.
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Figure 8: SPT results on SRH CNS with a wide range of patch encoders. Publicly available
foundation patch encoders are trained using H&E data and are out-of-distribution (OOD) for SRH.
In-domain patch encoders are trained using SRH data.

In addition, full metrics for each patch encoder for both SRH CNS and H&E glioma are in Table 9.

SRH H&E Gliomas

Patch Encoder Method MCA F1 AUC MCA F1 AUC

Pooling 53.1 53.0 88.1 59.8 74.2 81.7
ImageNet ssSPT 71.7 (0.7) 73.2 (0.4) 93.7 (0.3) 75.3 (2.5) 74.0 (2.5) 89.9 (0.9)

suSPT 75.4 (1.4) 76.1 (0.8) 92.3 (0.5) 76.4 (1.1) 76.4 (1.2) 88.8 (0.6)

Pooling 82.7 82.9 95.9 74.9 74.2 90.4
HiDisc ssSPT 84.2 (1.4) 83.9 (1.2) 95.6 (0.4) 77.5 (1.3) 77.1 (1.3) 91.2 (0.3)

suSPT 87.4 (0.8) 87.5 (0.7) 93.3 (0.3) 83.6 (0.3) 82.4 (0.2) 88.3 (0.3)

Pooling 55.1 56.4 86.6 54.7 55.0 77.7
HIPT ssSPT 70.1 (0.4) 71.9 (0.5) 92.2 (0.4) 74.9 (1.7) 73.9 (1.7) 89.2 (0.2)

suSPT 72.5 (1.1) 73.7 (0.9) 90.9 (0.3) 76.6 (1.8) 76.1 (1.6) 90.6 (0.7)

Pooling 51.7 51.9 86.8 66.8 66.3 88.0
PLIP ssSPT 68.2 (0.4) 69.7 (0.4) 92.0 (0.4) 76.2 (2.0) 75.5 (2.2) 91.4 (0.4)

suSPT 72.1 (1.4) 72.6 (1.2) 91.3 (0.4) 82.6 (0.7) 81.5 (0.9) 92.5 (0.2)

Pooling 71.1 73.4 93.6 80.3 78.3 93.5
UNI ssSPT 84.8 (1.7) 85.7 (1.5) 96.2 (0.3) 82.8 (2.1) 82.3 (2.2) 94.2 (0.5)

suSPT 86.5 (0.9) 86.9 (0.6) 92.4 (0.5) 89.1 (0.9) 88.8 (0.7) 92.5 (0.5)

Table 9: SPT results with different patch encoder. Metrics reported for results in Figure 5b.
Standard deviations are in (parentheses).
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C.4 suSPT benchmarks with UNI patch features

We evaluated suSPT with UNI patch features in Table 3. Error bars are reported in Table 10.

kNN Linear evaluation

Benchmark Method MCA F1 AUC MCA F1 AUC

SRH CNS ABMIL 84.1 (0.9) 84.7 (0.8) 95.4 (0.2) 86.3 (0.9) 86.3 (0.7) 96.3 (0.0)
suSPT 86.5 (0.9) 86.9 (0.6) 92.4 (0.5) 86.4 (0.8) 86.8 (0.5) 98.4 (0.3)

H&E Glioma ABMIL 86.4 (1.5) 85.6 (1.4) 94.7 (1.1) 86.8 (0.6) 85.2 (0.8) 95.5 (0.6)
suSPT 89.1 (0.9) 88.8 (0.7) 92.5 (0.5) 89.1 (1.0) 88.7 (0.7) 97.3 (0.3)

TCGA BRCA ABMIL 85.7 (6.8) 78.8 (9.5) 91.7 (4.7) 88.6 (6.3) 79.1 (6.5) 88.8 (7.6)
suSPT 90.1 (6.4) 84.2 (9.8) 90.3 (5.8) 89.6 (6.3) 82.2 (9.2) 94.7 (3.5)

TCGA NSCLC ABMIL 95.6 (1.2) 95.7 (1.1) 97.3 (2.0) 93.6 (1.7) 90.6 (2.0) 93.4 (2.9)
suSPT 95.4 (2.4) 95.5 (2.3) 95.9 (1.8) 95.5 (2.2) 95.6 (2.2) 97.6 (2.1)

TCGA RCC ABMIL 95.4 (1.3) 93.4 (2.4) 98.3 (0.7) 95.2 (1.1) 93.3 (2.0) 98.5 (0.9)
suSPT 96.3 (2.6) 94.9 (2.9) 97.2 (1.7) 96.2 (2.8) 94.9 (3.1) 98.9 (0.6)

Table 10: suSPT benchmark with UNI features. Extended results for Table 3 with standard
deviations reported in (parentheses).
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C.5 Ablation stuides

In this section, we present ablation studies over SSL paradigms, SPT transformation choices, and
SPT transformation parameters.

C.5.1 SSL paradigms

We examine the effect of different SSL paradigms on ssSPT in table 11. VICReg performs the best on
the SRH CNS benchmark, BYOL performs the best on the TCGA RCC benchmark, while SimCLR
performs the best on H&E glioma, TCGA BRCA, and TCGA NSCLC. These results demonstrate
that the flexibility of SPT allows different algorithms to accommodate different training dynamics of
different diagnostic tasks and image modalities.

kNN Linear evaluation

Benchmark Algorithm MCA F1 AUC MCA F1 AUC

ssSPT-SimCLR 77.3 (0.6) 77.6 (0.3) 94.0 (0.4) 82.7 (0.7) 81.8 (0.5) 97.5 (0.3)
SRH CNS ssSPT-VICReg 82.3 (0.5) 82.3 (0.3) 94.7 (0.1) 85.4 (0.3) 83.2 (0.3) 97.6 (0.3)

ssSPT-BYOL 79.4 (0.4) 78.7 (1.2) 94.3 (0.4) 83.4 (0.5) 81.0 (1.3) 96.9 (0.0)

ssSPT-SimCLR 76.5 (0.5) 76.1 (0.4) 90.9 (0.4) 80.0 (2.4) 78.0 (2.2) 91.9 (0.8)
H&E Glioma ssSPT-VICReg 72.8 (0.7) 72.4 (0.9) 87.9 (0.7) 74.5 (0.8) 73.1 (0.8) 90.9 (0.5)

ssSPT-BYOL 74.6 (0.9) 73.8 (0.9) 89.0 (0.5) 77.8 (0.6) 76.1 (0.8) 92.2 (0.0)
ssSPT-SimCLR 72.7 (4.9) 58.3 (6.8) 80.4 (7.8) 83.0 (7.3) 67.4 (9.9) 89.4 (6.3)

TCGA BRCA ssSPT-VICReg 69.2 (7.9) 51.0 (15.2) 77.4 (9.3) 78.6 (5.4) 59.3 (7.5) 85.3 (7.7)
ssSPT-BYOL 70.0 (8.3) 52.6 (15.8) 81.1 (9.0) 83.6 (5.4) 66.7 (6.7) 90.4 (6.6)

ssSPT-SimCLR 86.1 (2.3) 86.1 (2.6) 92.3 (1.7) 88.0 (3.1) 88.0 (3.2) 94.8 (2.1)
TCGA NSCLC ssSPT-VICReg 80.2 (3.4) 80.7 (3.0) 86.0 (3.4) 87.6 (2.2) 87.9 (2.0) 93.8 (1.6)

ssSPT-BYOL 81.4 (2.4) 81.8 (2.7) 87.2 (2.0) 86.0 (2.8) 86.2 (3.1) 92.7 (2.2)

ssSPT-SimCLR 90.7 (2.9) 90.4 (2.7) 98.3 (1.0) 91.7 (2.1) 89.4 (3.2) 98.2 (0.7)
TCGA RCC ssSPT-VICReg 87.2 (3.9) 87.2 (3.1) 96.0 (1.6) 88.6 (3.3) 86.6 (3.2) 96.9 (0.9)

ssSPT-BYOL 91.7 (2.1) 90.5 (2.7) 98.3 (1.3) 93.4 (1.7) 91.1 (2.1) 98.7 (1.1)

Table 11: SPT benchmark with different SSL paradigms. We compare different SPT training
algorithms. Standard deviations are reported in (parentheses).

C.5.2 SPT transformation choices

Table 12 reports the performance of individual and combinations of slide-level transformations. We
leave out splitting alone since it does not reduce the total number of patch tokens for both views,
making it prohibitive to train. For the masking and cropping alone, we show that cropping performs
better than masking for both SRH CNS and H&E Glioma. Combining cropping and masking shows
similar performance with cropping alone, but is more efficient to train due to the reduced number of
tokens per view. Combining each transformation with splitting improves or maintains performance,
showing the benefit of further decreasing mutual information (MI) between views. Overall, cropping
is the most important transformation, because capturing regional heterogeneity is the most effective
and challenging pre-text task.

SRH CNS H&E Glioma

Splitting Cropping Masking MCA F1 MCA F1

X 75.4 (0.9) 76.0 (0.7) 69.9 (0.5) 69.7 (0.5)
X 81.3 (1.5) 81.5 (1.5) 74.3 (0.2) 74.4 (0.2)

X X 76.1 (0.3) 76.3 (0.8) 69.2 (1.5) 69.3 (1.5)
X X 82.1 (1.4) 82.2 (1.2) 73.6 (0.6) 73.8 (0.4)

X X 81.2 (0.5) 81.8 (0.5) 75.5 (2.1) 75.4 (2.2)
X X X 82.3 (0.5) 82.3 (0.3) 76.5 (0.5) 76.1 (0.4)

Table 12: Ablation over transformations. X stands for transformations used. Standard deviations
reported in (parentheses).
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C.5.3 SPT transformation parameters

We examine the relationship between mutual information (MI) and model performance by combining
and adjusting SPT transformation parameters in the H&E glioma benchmark.

Token limit. We studied the effect of the number of tokens, with splitting + cropping + masking
and only masking. A higher token limit results in a higher likelihood of overlapping area coverage
between views. The results are in Figure 9a. As expected, MI levels can be adjusted to optimize
model performance. Previous studies have concluded that fewer patch tokens resulted in better model
performance [11], but only in the case of using masking transformation alone.

Cropping size. We varied cropping size range in Figure 9b. Cropping also allows us to adjust the
amount of MI between views, where a larger crop size leads to a higher probability of overlapping
regions between views. Our ablation study shows that for SimCLR training on our H&E glioma
benchmark, [100, 400] is the optimal cropping size range, achieving a MCA of 76.5. These results
correspond to the hypothesis in [43], where an optimal amount of MI between views achieves the
best performance.
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Figure 9: SPT transformation parameter ablation for H&E glioma molecular classification. a)
Max token limit ablation. SCM, splitting-cropping-masking transformation. b) Cropping size
range ablation. Cropping size range [min, max cropping size] is on the x-axis. None represent no
cropping applied. The shaded area represents the standard deviation across three different random
seeds.
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C.5.4 SPT model size

We performed additional ablation studies with different SPT model sizes, and the results are reported
in Table 13. The six- and two-layer transformers have the best performance for H&E glioma and SRH
CNS, respectively. Smaller models performed better for SRH CNS, likely because of a smaller slide
size and a relatively more uniform image. All models ranging from two to eight-layer transformers
outperformed previous best self-supervised models.

SRH H&E Glioma

# Layers # Parameters MCA F1 AUC MCA F1 AUC

2 6.7 M 83.5 (0.1) 83.8 (0.3) 95.4 (0.4) 74.9 (0.9) 74.8 (1.0) 91.6 (0.5)
4 13 M 82.2 (0.9) 83.2 (1.6) 95.4 (0.2) 75.5 (0.8) 75.3 (0.5) 91.1 (0.4)
6 19.3 M 82.3 (0.5) 82.3 (0.3) 94.7 (0.1) 76.5 (0.5) 76.1 (0.4) 90.9 (0.4)
8 25.6 M 81.4 (0.2) 82.5 (0.3) 95.2 (0.2) 75.2 (1.2) 75.2 (1.1) 91.7 (0.9)

Table 13: SPT ablation studies on model size. Standard deviations are in (parentheses).

C.6 Extended attention heatmaps

We present extended attention heatmap visualization for SRH and H&E in Figures 10 and 11,
respectively. Recall these attentions are the self-attention of the CLS token from the last layer of
the whole slide encoder. On both SRH and H&E heatmaps, we can see that the whole slide encoder
attends to clinically significant regions such as dense tumors, and regions with tumor infiltration, and
avoids non-diagnostic regions such as blood, tissue processing artifacts, and blood vessels.
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Figure 10: Extended attention heatmap for H&E whole slides. The attention map shows the
ssSPT-trained whole slide transformer can differentiate between different morphologies like dense
tumors, blood, and different artifacts on the gigapixel WSIs. Visualization shows high attention to
varying degrees of tumor infiltration, and low attention to low cellularity, blood, necrotic regions, and
tissue processing artifacts. Oligo, oligodendroglioma, Astro, astrocytoma, GBM, glioblastoma.
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Figure 11: Extended attention heatmap for SRH whole slides. On this SRH WSI, relatively small
compared to H&E, the model shows a strong capacity for unsupervised segmentation of histological
features. Visualization shows high attention values to tumor regions, and low attention values to
non-diagnostic regions such as blood vessels, laser noise, and empty space.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The scope is introduced in the abstract and Section 1 and the contributions are
enumerated at the end of Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are addressed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our work does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimentation details are in Section 4, with training details are in
Section 4.2, the evaluation protocol is in Section 4.3. Pseudocode for SPT transformations
is provided in Algorithm 1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Open source code, model weights, and feature embeddings of publicly available
benchmarks will be released on GitHub with camera-ready version.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimentation details are in Section 4, with dataset split details in 4.1,
hyperparameter, model component details in Section 4.2,
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experiments are reported with error bars included in Appendix C. Detailed
evaluation protocol describes error bars in Section 4.3. Error bars are computed over three
random seeds for SRH CNS and H&E glioma benchmarks. Ten-fold cross validation is
performed for TCGA BRCA, TCGA NSCLC, and TCGA RCC benchmarks, following
previously established protocol in [5].
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computing resources used for our experimentation are described in Section
4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have followed the NeurIPS Code of Ethics during this research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Broader impact section is described in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This research does not involve data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Existing code, data, and models are cited properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Open source code, data, and models will be documented properly upon release
in the camera-ready version.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The study does not involve crowdsourcing. The study used only use previously
collected images and data from human tissues.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: This study has been approved by the Institutional Review Board (IRB #
[redacted for double-blind review]). Informed consents were collected prior to imaging.
Details are described in section 4.1.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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