
Reversible Action Design for Combinatorial Optimization with Reinforcement
Learning

Fan Yao1, Renqin Cai1, Hongning Wang1

1 Department of Computer Science, University of Virginia, USA
fy4bc@virginia.edu, rc7ne@virginia.edu, hw5x@virginia.edu,

Abstract

Combinatorial optimization problem (COP) over graphs is a
fundamental challenge in optimization. Reinforcement learn-
ing (RL) has recently emerged as a new framework to
tackle these problems and has demonstrated promising re-
sults. However, most RL solutions employ a greedy manner
to construct the solution incrementally, thus inevitably pose
unnecessary dependency on action sequences and need a lot
of problem-specific designs. We propose a general RL frame-
work that not only exhibits state-of-the-art empirical perfor-
mance but also generalizes to a variety class of COPs. Specif-
ically, we define state as a solution to a problem instance and
action as a perturbation to this solution. We utilize graph neu-
ral networks (GNN) to extract latent representations for given
problem instances for state-action encoding, and then apply
deep Q-learning to obtain a policy that gradually refines the
solution by flipping or swapping vertex labels. Experiments
are conducted on Maximum k-Cut and Traveling Salesman
Problem and performance improvement is achieved against a
set of learning-based and heuristic baselines.

1. Introduction
Combinatorial optimization problems (COP) have attracted
extensive interest from both machine learning and opera-
tion research communities in decades because of its perva-
sive application scenarios (Grötschel, Jünger, and Reinelt
1991; Plante, Lowe, and Chandrasekaran 1987; Wald-
spurger, d’Aspremont, and Mallat 2015; Candes et al. 2015).
Most of these problems are known to be NP-hard (Karp
1972) and extremely challenging for their combinatorial na-
ture: the optimization is performed over a discrete structure
(e.g. a weighted graph) and is often associated with expo-
nentially sized feasible solution space. To give a concrete
example, consider Maximum k-Cut: given a weighted graph
G = (V,E), find a partition of V that divides G into k dis-
joint sets which maximize the sum of edge weights among
each pair of partitions. Another popular example is Travel-
ing Salesman Problem (TSP), in which the goal is to search
for the shortest possible route that visits each node on a
graph once and only once and returns to the origin node.

Since the solution domain of COP is prohibitively large,
exact methods, such as enumeration based approaches are

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

simply intractable. Therefore, classical solutions for COPs
mainly focused on heuristics for decades; such methods in-
clude simulated annealing (Patel, Mah, and Karimi 1991)
and genetic algorithms (Dedieu et al. 2003). However, these
heuristics often suffer from arduous case-specific design
and redundant computation because common combinato-
rial structures have to be addressed repeatedly across sim-
ilar problem instances. Recently, learning-based methods
have emerged as an effective tool to provide generalizability
across similar problems by exploiting the structure of the tar-
get problem. In particular, reinforcement learning (RL) has
been identified as a powerful end-to-end framework (Bello
et al. 2016; Ma et al. 2019; Kool, Van Hoof, and Welling
2018; Abe et al. 2019; Barrett et al. 2019), because it does
not rely on ground-truth solutions compared to supervised
methods (Vinyals, Fortunato, and Jaitly 2015; Li, Chen, and
Koltun 2018; Mittal et al. 2019; Nowak et al. 2017; Joshi,
Laurent, and Bresson 2019). However, most RL-based at-
tempts are tailored for a single class of COPs and require
a lot of domain-specific designs. For instance, Bello et al.
(2016) adopt the Pointer Network structure (Vinyals, For-
tunato, and Jaitly 2015) to encode a permutation of vertex
set for TSP, but it is specifically designed to tackle COPs
for which the output depends on the length of the input.
Ma et al. (2019) resort to a hierarchical RL structure to ad-
dress TSP with time-window constraints, but such design
is only tailored for TSP and can hardly generalize to other
COPs. To alleviate the issue, Khalil et al. (2017) proposed
a general framework, S2V-DQN, to cope with a wide range
of COPs by combining graph neural network (GNN) and
deep Q-learning. However, S2V-DQN’s node selection strat-
egy is greedy in nature, which prevents it from yielding
high-quality solutions since the learned policy cannot revoke
its previous decisions based on the observations afterward.
Moreover, this greedy node selection strategy suffers when
the target COPs have non-sequential structured solutions,
e.g., Maximum k-Cut with k > 2, because a sequence of
irreversible node selections is not an effective way to form
graph partitions.

We propose a new general RL framework for COPs with
reversible action design. Similar to S2V-DQN, our method
also consists of a GNN encoder for state-action encoding
and a deep Q-network for policy learning. However, unlike
S2V-DQN and other similar approaches in which the agent

builds solutions with irreversible actions, our formulation al-
lows RL agents to explore the whole solution space start-
ing from an arbitrary solution and keep improving it. An-
other strength of our framework is the ability to handle a
wider range of COPs with different solution structures. Our
method precludes any ad-hoc designs in the RL formulation
and leaves problem-specific properties to the state-action en-
coding networks. As a result, it can easily transfer to differ-
ent COPs by applying different state-action encoders while
maintaining all other essential designs in the RL module.
We tested our framework on two extensively studied COPs,
Maximum k-Cut and TSP, on both synthetic and real-world
datasets and obtained competitive performance compared to
both learning-based methods and heuristic baselines. In ad-
dition to the encouraging performance, we also observed
that the trained agent has learned to approach the optimal so-
lution with the ability to jump out of the local minima along
the way, which is the key bottleneck of greedy or heuristic
based solutions.

2. Related Works

The recent success of applying machine learning to solve
COPs can be traced back to Vinyals, Fortunato, and Jaitly
(2015), where pointer networks are used to solve TSP via
supervised learning. Then Bello et al. (2016) further devel-
oped an RL solution for TSP based on pointer networks us-
ing policy gradient. After that, a number of follow-up works
emerged to focus on various COPs with different challenges.
For example, Kool, Van Hoof, and Welling (2018) applied
the Transformer architecture as the state encoder and re-
ported state-of-the-art results on vehicle routing problems.
Ma et al. (2019) resorted to a hierarchical RL structure to
address TSP with time-window constraints. And Abe et al.
(2019) trained a GCN with Monte-Carlo tree search to en-
hance its generalizability on five NP-hard COPs. Besides
these attempts, S2V-DQN (Khalil et al. 2017), to the best
of our knowledge, is the first general RL-based solution for
COPs. It combines a graph neural network (GNN) and deep
Q-network and is demonstrated to be effective across three
classes of COPs (i.e. Minimum Vertex Cover, TSP, and Max-
imum 2-Cut).

All the aforementioned RL-based methods employ a
greedy node selection strategy to construct solutions, i.e.,
classifying one unlabeled node at a time until all nodes are
labeled. Instead of constructing the solution in an incremen-
tal manner, Barrett et al. (2019) proposed ECO-DQN for
Max Cut, an exploratory method that allows the RL agent
to continuously improve any given solution via local search
(Johnson, Papadimitriou, and Yannakakis 1988), by model-
ing the actions as vertex-flipping. This distinctive reversible
action design enables the agent to access any valid solution
during planning. The reported empirical improvement from
this reversible action design suggests its advantage over its
irreversible counterpart. However, ECO-DQN involves sev-
eral ad-hoc designs in its modeling pipeline (such as reward
shaping and input feature engineering), which makes it less
applicable to other COPs.

3. Method
Problem Formulation
In this work, we focus on the COPs where the problem in-
stances impose a weighted graph structure. With a slight
abuse of terminology, we use COP to denote combinatorial
optimization problems on graphs. In this case, we can spec-
ify the essential components of a COP as follows:

1. A problem instance, i.e. a weighted graph G= (V,E,w)
sampled from some underlying distribution D, where
V = (v1, · · · , vn), E = (e1, · · · , em) and w =
{w(vi, vj)} represent the vertex set, the edge set and the
weights associated with each edge, respectively. For sim-
plicity, we denote wij = w(vi, vj) and simply assign
wij = 0, if vi and vj are not directly connected. In this
case,G can be fully expressed by the weighted adjacency
matrix w.

2. A solution to a problem instance G given by a mapping
l from V to N, which assigns an integer-valued label to
each vertex. For simplicity, we denote the solution as L=
(l(v1), · · · , l(vn)).

3. An objective function O(G,L) ∈ R that takes a prob-
lem instance G and a solution L as input and outputs
the evaluation on (G,L). The goal of a COP is to find
a global optimal solution L∗G = argminLO(G,L) under
certain constraints to L.

Since the solution space on a finite graph G is also finite, its
global optimum L∗G always exists if the problem is feasible.
But in most cases, as the solution space of l is formidably
large, trivial enumeration-based solutions are not feasible.

Given the abstract formulation above, we can instantiate
some popular COPs by specifying different G, L and O. For
example, consider Maximum k-Cut, where G is an arbitrary
weighted graph, L is an element from L={(l1, · · · , ln)|li∈
{1, 2, · · · , k}}, and O =

∑k
c=1

∑
(i,j)∈{i,j|li=lj=c} wij .

Similarly we can formulate TSP as: G is a complete graph
characterized by a weighted adjacency matrix w, L is an el-
ement in the set of all permutations of {1, 2, · · · , n}, and
O = wl1ln +

∑n−1
k=1 wlklk+1

. In this paper, we illustrate
our solution framework using Maximum k-Cut and TSP,
because they represent two typical classes of COPs in a
broad sense. TSP represents COPs with sequentially struc-
tured solutions, such as vehicle routing problem (Dantzig
and Ramser 1959); and Maximum k-Cut represents COPs
that fall into the category of node classification, such as Min-
imum Vertex Cover and Maximal Independent Set. By de-
signing meta-algorithms for solving Maximum k-Cut and
TSP, we demonstrate how our methodology can shed light
on finding solutions for a wide range of related COPs.

Reinforcement Learning Solution Design
We apply reinforcement learning to design a meta-algorithm
that minimizes the discrete objective function O(G,L). Un-
like the greedy strategy employed by S2V-DQN (Khalil et al.
2017), in which the agent is trained to construct the solution
sequentially by adding nodes to a partial solution, our design
allows the agent to gradually improve a given solution L by

adding small perturbations to it at each step. Specifically,
we define the primitive components in our RL formulation
as follows:
1. State space. The state space S={s=(G,L)|G ∈ D, L ∈
LG} (L may depend on G) is defined as the set of all
the valid graph-solution pairs. Note that the distribution
D might contain graphs with different sizes.

2. Action space. The action space A(s) is designed as all
valid perturbations on L given a state s= (G,L), plus a
dummy action ∅ which terminates further actions. A(s)
includes those perturbations such that the perturbed L is
still a valid solution in L for G. In particular, we define
two types of perturbations on L:

(a) Flipping Aflip, in which an action a flips the label li
for node vi into a different one.

(b) SwappingAswap, in which an action a swaps the label
li and lj for node pair (vi, vj).

3. Reward. The reward function r(s, a) is defined as the
negative value change for the objective function O af-
ter taking action a at state s = (G,L), i.e., r(s, a) =
O(G,L)−O(G, a ◦ L).

4. Policy. We adopt the Q-learning framework to fit a
Q-function Q(s, a) that evaluates the accumulated re-
ward given any state-action pair. According to the
learned q-value, we apply a deterministic policy π(s) =
arg maxa∈A(s)Q(s, a).

5. Termination. An episode is terminated when the agent
decides to take the dummy action ∅, or the maximum
number of actions M have been executed, where M is
a hyper-parameter and grows with the graph size n.

Apart from the difference in action design, another distinc-
tion between our work and S2V-DQN lies in the construction
of states: in S2V-DQN, the state is a graph with a partial
solution; while in our framework the state is a graph with
a complete solution. As a result, our solution can always
exploit the complete structure of a solution at each step,
while S2V-DQN struggles with incomplete information to
take the next action, especially in the first few steps when
the partial solution only consists of a few scattered nodes.
Another advantage of our framework is its flexibility when
dealing with inherent or additional constraints, e.g., the per-
mutation constraint in TSP (i.e. no duplicated nodes on a
route), or the cut-size constraints in Maximum k-Cut (i.e.
given size of each subgraph induced by the cut). To address
these constraints, we only need to pose restrictions on the
action space to guarantee that each perturbed solution also
satisfies the constraints. But in S2V-DQN and other works,
such as (Bello et al. 2016) which also adopts S2V-DQN’s
greedy design pattern, ad-hoc changes to the architecture of
the Q-network have to be made to handle the constraints.

State/Action Representation and the Q-function
To apply Q-learning for solving COPs, we need to obtain
a continuous representation of any state-action pair (s, a).
This representation should incorporate both the combinato-
rial nature of graphG and the structure of a solution L. Con-
sidering these factors, we adopt the message passing neural

networks (MPNN) architecture (Gilmer et al. 2017), which
is a general graph neural network framework to obtain node
representations by collecting information iteratively from lo-
cal graph structures. In detail, we first initialize an embed-
ding vector µ0

v = 0 ∈ Rd for each node v; then at round k,
{µk

v} is updated by leveraging information from its neigh-
bors by:

µk+1
v = relu

(
θ0xv + θ1

1

|N(v)|
∑

u∈N(v)

wuvµ
k
u

+θ2
1

|N(v)|
∑

u∈N(v)

relu(θ3wuv)
)
,

(1)

where θ0, θ2 ∈ Rd×p, θ1 ∈ Rd×d and θ3 ∈ Rp are model pa-
rameters,N(v) is the set of node v’s neighbors and |N(v)| is
its cardinality. In the first term, xv ∈ Rp is the static feature
vector for vertex v that incorporates additional node infor-
mation from a problem instance. For instance, in Maximum
k-Cut, xv can take the form of a one-hot label vector of v
to encode the current cut information; and in TSP, xv can be
the initial coordinates of v if given. The second term in Eq
(1) aims to aggregate information from v’s neighbors by tak-
ing a weighted average over the neighbors’ embeddings pro-
portional to the edge-weights. This encodes neighborhood
information together with their edge weight defined related-
ness. And the third term is served to emphasize if v is closely
connected to its neighbors based on the given edge weights.

The final node embeddings {µT
v } are obtained by iter-

ating this procedure for T rounds, such that they are ex-
pected to carry T -hop information among the nodes based
on the graph topology. The state and action representations
can thus be constructed based on the computed node embed-
dings {µT

v }. For different COPs, we need different readout
functions to compute the graph embedding from node em-
beddings. Take Maximum k-Cut and TSP as two examples
to illustrate this process.
•Maximum k-Cut, suppose the current graph cut given by
state s = (G,L) is (V1, · · · , Vk), where each Vi corresponds
to a cluster of nodes. We first define the cluster representa-
tion by averaging all the node vectors within the cluster as
Hc(i) = 1

|Vi|
∑

v∈Vi
µT
v . For the action embedding, we rep-

resent a flipping action (i.e., to flip u’s label from i to j)
as the concatenation Hflip

a = [µT
u ;Hc(j)], where µT

u is the
representation of vertex u, which is expected to carry infor-
mation about vertex u and cluster i, and Hc(j) is the repre-
sentation of the target cluster j. Similarly, we can also define
the representation of the swapping action (i.e., to swap the
labels of u and v) as Ha = [µT

u ;µT
v ;Hc(l(u));Hc(l(v))],

where l(u) and l(v) correspond to u and v’s current labels.
Finally, we use attention to construct the state representation
over cluster embeddings. The attention weight is computed
by taking cluster embeddings as the reference and the action
embedding as the query: w(i) = softmaxi(H>c (i)WaHa),
where Hc(i) ∈ Rd, Ha ∈ R4d, and Wa ∈ Rd×4d is a
trainable parameter matrix. Then the state representation is
formed by Hs =

∑k
i=1 w(i)Hc(i).

• TSP, its solution exhibits a sequential structure instead of
a clustered one. Therefore, we adopt an RNN encoder to

get the state embedding: Hs = RNN({µT
i }ni=1; ΘRNN),

where {µT
i }ni=1 is the sequential input of RNN defined by

the node permutation in solution L, ΘRNN is the weights
of RNN, and the output Hs is taken as the RNN hidden
state at step n. Because of the constraint in TSP, i.e., no
repeated nodes on a tour, flipping action does not apply.
To specify the swapping action, we define the sequential-
swap (i, j), i < j, for TSP as to swap the sub-sequence
(Li, Li+1, · · · , Lj) in L to (Lj , Lj−1, · · · , Li). Because a
sequential-swap action (i, j) only changes edge-weights as-
sociated with vi−1, vi, vj , vj+1 in the TSP tour (i.e., change
edges from vi−1,i, vj,j+1 to vi−1,j , vi,j+1), we represent it
byHa = [µT

i ;µT
j ;µT

i−1;µT
j+1], where 1 ≤ i < j ≤ n, µT

0 =

µT
n , µ

T
n+1 = µT

1 .
Based on the state and action representations, we

establish the parameterized Q-function as Q(s, a) =
W0 · relu([W1Hs;W2Ha]), where W0 ∈ R1×2d,W1 ∈
Rd×ds ,W2 ∈ Rd×da are trainable parameters, ds and da are
the dimensions of state and action embeddings respectively.
We use swap action design in Maximum k-Cut as an exam-
ple in Algorithm 1 to illustrate the procedure of applying our
proposed RL solution framework for COPs.

End-to-End Training
We apply N -step off-policy TD method (Sutton and Barto
2018), i.e., N -step Q-learning to train Q(s, a), which
has been demonstrated to be effective when dealing with
delayed rewards. By evaluating the value function N -step
ahead, we encourage the agent to be less myopic by
avoiding eagerly punishing an action which induces a
negative immediate reward. At each training step, we first
sample a random batch of state-action-reward tuples B ={

(s01, {a
j
1}Nj=1, {r

j
1}Nj=1, s

N
1), · · · , (s0b , {a

j
b}Nj=1, {r

j
b}Nj=1, s

N
b)
}

from the replay buffer M, where the index j = 1, · · · , N
denotes the observations at the j-th step from the
corresponding state s0. The q-loss is given by∑b

i=1

(
yi − Q(si, ai; Θ)

)2
, where the target yi is com-

puted as the accumulated reward in N steps starting from s0i
and plus the estimated long-term rewards starting from sNi :

yi =

N∑
j=1

γj−1rji + γN arg max
a

Q(sNi , a; Θ̂), (2)

where γ ∈ (0, 1) is the discounting factor and Θ̂ is the cur-
rently estimated parameter in the target Q-net.

The main challenge for Algorithm 1 lies in the evaluation
of optimal action in planning: computing the maximum of
Q(s, a) over all actions in Eq (2) could be extremely expen-
sive, especially when we adopt the swapping action space
Aswap design, which is of size O(n2) and n is the num-
ber of nodes. In this case, the time and space complexity for
a single forward operation is O(n2d2) and O(n2d) respec-
tively, where d is the hidden dimension of state representa-
tion. Inspired by (Van de Wiele et al. 2020; Dulac-Arnold
et al. 2015), we introduce an auxiliary action-proposal net-
work to perform action elimination. The idea is that after the
state embeddingHs is obtained for the current state s, we di-

Algorithm 1: Q-learning for swap search

Input: Training epochs E, episode maximum length M ,
exploration constant ε.
Initialization: Set experience replay bufferM = ∅.
for epoch← 1 to E do

Sample a graph G(V,w) from D.
Initialize a random solution L0.
for t← 0 to T do

with probability ε, select a random node
pair at = (vi, vj); othereise, at =
argmax(i,j)Q(st, (vi, vj); Θ).
Swap the i-th and j-th elements in Lt to give Lt+1,
assign st+1 = (G,Lt+1).
Execute the evaluation function O(G,Lt+1) to ob-
serve reward rt.
if t ≥ N then

Add tuple (st−N , at−N , rt−N,t, st) toM.
Sample a batch B fromM.
Update Θ for B via gradient descent.

Output: Model parameter Θ.

rectly propose a pseudo action ã(s) in Rd from the auxiliary
network: ã(s)=AP (Hs; Θap).

Although ã(s) might not directly map to a real action,
ã(s) is expected to lie around the optimal action in state
s. Therefore, we can generate a distribution πprop(a) over
the whole action space by leveraging the similarity between
ã(s) and each node’s embedding µT

v . For example, for swap-
ping actions, we set πprop(vi, vj) ∝ exp

(
s(vi) + s(vj) +

θ0s(vi)s(vj)
)
, where s(v) = ã(s)>µT

v and θ0 ∈ R is a
trainable parameter. To perform action elimination, we first
choose an action reserve ratio ε∈ (0, 1], then draw a subset
Aswap

prop of size ε|Aswap| ∝ O(n) from Aswap according to
πprop(a), and restrict the search space of actions in Eq (2)
to Aswap

prop . By deploying the auxiliary action proposal net-
work, we reduce the time and space complexity for a single
forward operation to O(n2+nd2) and O(n2+nd). In prac-
tice, we observe that the hidden dimension d should always
increase proportionally to n in order to guarantee good em-
pirical performance. And this action elimination technique
is essential to make the RL framework applicable to large-
scale COPs.

To train the action proposal network, we introduce a reg-
ularized loss function:

L(Θap; s) = − log πprop(a∗(s)|Θap)−λH(πprop(a|Θap)),
(3)

where a∗(s) = arg maxa∈Aswap
prop

Q(s, a; Θ̂) is the action se-
lected by the Q-net among the proposed action set Aswap

prop .
The first term in Eq (3) is to minimize the negative log-
likelihood for the selected action, which makes the action
with the highest Q-value more likely to be proposed. The
second term is the negative entropy of the proposal distri-
bution, and minimizing it would encourage uncertainty in
πprop throughout training and prevents it from collapsing to
a deterministic distribution.

4. Experiments
Problem Setups We evaluate our proposed solution
framework on Maximum k-Cut and TSP. For Maximum k-
Cut, we consider two settings: Maximum Cut (i.e., k=2) and
Maximum k-Cut with size constraint (i.e., k > 2 and the
sizes of the graph cut are given). For the training, valida-
tion and test set of Maximum Cut, we use complete graphs
whose weighted adjacency matrices are given by the pair-
wise Euclidean distances among n nodes uniformly sam-
pled from [0, 1]h. For Maximum k-Cut, we use a synthetic
dataset generated by k-clustered graph, where each prob-
lem instance G = (V,E,w) is a complete graph gener-
ated by first sampling k centroids {c1, · · · , ck} uniformly
from [0, 1]h, and then sample m nodes {xij}mj=1 for each
centroid ci from Gaussian distribution N(ci, σ

2
i Ih), where

m,h, σi are hyper-parameters and Ih is the identity matrix
of size h. The weighted adjacency matrix w is then com-
puted as the Euclidean distances between each pair of nodes,
i.e., wij = ||xi − xj ||2. For TSP, we draw training graphs
from a distribution where each node xi is uniformly sampled
from a 2-D square {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1} and the
weighted adjacency matrix w is computed by Euclidean dis-
tances accordingly, i.e., wij = ||xi − xj ||2. For the testing
set of TSP, we resort to a public benchmark TSPLIB derived
from real-world instances (Reinelt 1991).

Note that in our settings all training and validation graphs
are complete graphs, which is computationally cumbersome
when n becomes large. To scale up for larger n (e.g., n >
50), we use the K-nearest neighbor graph (K = 50) to re-
place the complete graph, i.e., reserve top-K nearest neigh-
bors in the weighted adjacency matrix. We used two types
of synthetic graphs and a real-world dataset from TSPLIB
(Reinelt 1991) in the experiment. For more detail of our con-
figuration and the hyper-parameter setting, please refer to
our full arxiv version https://arxiv.org/pdf/2102.07210.pdf.

Metrics and baselines For Maximum Cut, we consider
two RL-based baselines S2V-DQN (Khalil et al. 2017) and
ECO-DQN (Barrett et al. 2019). In addition, we consider
several popular heuristic-based methods including semidef-
inite programming (SDP) (Goemans and Williamson 1995),
genetic programming (GP) (Kim, Kim, and Moon 2001),
and greedy algorithm. SDP is a non-greedy algorithm that
gives a solution by relaxing the discrete problem to a con-
tinuous one and then applying semidefinite programming to
address the resulting optimization problem. GP is an evolu-
tionary computation method that imitates biological evolu-
tion by iteratively improving a set of solutions through mu-
tations and selections. The greedy algorithm we use here is
an iterative method that starts with a random cut and flips
or swaps the label of a vertex at each step with the greatest
immediate increase in the cut value until no further improve-
ment can be made, which corresponds to a RL agent in our
framework that always follows the one-step reward.

For Maximum k-Cut (k > 2) with size constraint, S2V-
DQN and ECO-DQN cannot directly apply. As a result, we
use three heuristic baselines, i.e., SDP, GP, greedy algorithm
for benchmarking. Note that the greedy algorithm we use
here takes swapping as an action to guarantee the size con-

straints.
For the baselines of TSP, we include S2V-DQN and

two approximation algorithms Farthest insertion (Farthest)
and 2-opt, which are reported as the two best-performing
approximation methods on TSPLIB dataset (Khalil et al.
2017). The implementation details for these two approxima-
tion algorithms can be found in (Applegate et al. 2006). Note
that the 2-opt method is essentially the greedy algorithm that
takes the swapping action as we designed for TSP.

We use the approximation ratio Rapp = O∗/Oopt as a
metric to evaluate the quality of solutions, where O∗ is the
best objective value given by an algorithm, and Oopt is the
true optimal objective value. For Maximum k-Cut problems
with large sizes, we do not have access to Oopt. Considering
that the greedy algorithm demonstrates itself as the strongest
baseline for large-scale Maximum k-Cut problems, we ap-
ply it multiple times with different initial solutions and take
its best result as the alternative forOopt. For the test problem
instances of TSP, Oopt is provided in the TSPLIB dataset.

Solution quality comparison To compare the quality of
solutions, we train our algorithm with problem instances up
to 200 nodes and test it on 100 held-out graphs of the same
size. The maximum episode length is set to twice the size of
the graph; and during each training epoch, the training batch
is sampled uniformly fromD with a randomly initialized so-
lution, with the batch sizes ranging from 50 to 500 to meet
the memory limitation posed by a single graphic card. The
agent starts planning from a randomly initialized solution
on each test instance. Table 3 and 4 summarize the results
on the average approximation ratio across Maximum Cut,
Maximum k-Cut, and TSP with variance over multiple tri-
als (i.e. different trials are the trajectories starting from ran-
domly drawn initial states) shown on the superscripts and
subscripts. Our algorithm is denoted by the name LS-DQN
(i.e. Local Search DQN).

For Maximum Cut with k = 2, the flipping action de-
sign is employed in our solution. As shown in Table 3, LS-
DQN performed as good as ECO-DQN and outperformed
S2V-DQN on larger test graphs. Compared to approxima-
tion heuristics such as SDP and GP, LS-DQN showed a bet-
ter and more stable performance, and the gain became more
significant as the test graph size increases. It is not a surprise
to observe the greedy baseline has strong performance, be-
cause it can always guarantee a local minimum (i.e., there is
no flipping that generates immediate improvement); and in
Maximum Cut, local minima were close to the global mini-
mum with very high probability based on our observations.
The performance gain of LS-DQN mainly comes from its
ability to jump out of those local minima during planning.
For Maximum k-Cut, we test our model on three different
graph scales: (k,m) = (5, 6), (10, 10), (10, 20). As shown
in the bottom of Table 3, LS-DQN performed significantly
better than SDP and GP, and slightly better than the greedy
algorithm. Table 4 shows the result for TSP. The Farthest
and 2-opt algorithms are the two strongest baselines for the
TSPLIB dataset according to the results reported in (Khalil
et al. 2017). As the graph sizes in TSPLIB are not identical
to our training size, we train our RL agent on graphs with

Table 1: Evaluation of generalization of LS-DQN (LS) and
comparison with S2V-DQN (S2V). Models are trained on
graphs with 50 nodes, and tested on larger sizes up to 300.
The average approximation ratio over different testsets is re-
ported.

Test Size 51-100 101-150
Algorithm LS S2V LS S2V
MAXCUT 0.984 0.988 0.974 0.971

TSP 1.034 1.075 1.054 1.089
Test Size 151-200 200-300

Algorithm LS S2V LS S2V
MAXCUT 0.972 0.975 0.978 0.981

TSP 1.088 1.087 1.094 1.095

fixed sizes and test it on-the-fly on a batch of graphs whose
sizes fall in a certain range, and report the result on the best
tour encountered over the training epochs, like it was done in
(Khalil et al. 2017). Our LS-DQN reaches the best approxi-
mation ratio on graph sizes up to 200 compared to S2V-DQN
and the other two heuristics.

Generalization to larger graphs To investigate the gen-
eralization ability of our solution on both Maximum Cut and
TSP, we train our RL agent on small graphs of a fixed size
(n = 50) and test it on larger graphs with sizes up to 300.
Table 1 summarizes the results with the comparison to S2V-
DQN, where the reported values are the approximation ra-
tios averaged over 100 test graphs. As we can see, LS-DQN
achieved encouraging and consistent approximation ratios
across different test graph sizes on both tasks. LS-DQN gen-
eralizes as good as S2V-DQN on Maximum k-Cut, and has
shown some advantage on TSP tasks. This confirms the gen-
eralization of our proposed RL solution framework and the
applicability of learned agents across distinct problem in-
stances.

Trade-off between efficiency and accuracy As we have
discussed in the End-to-End Training subsection, the de-
ployment of the action-proposal network (AP-net) is essen-
tial to enable our method to scale to large graphs. In the
AP-net, the action reserve ratio ε ∈ (0, 1] controls the pro-
portion of actions being evaluated at each state: a large ε
allows the agent to evaluate q-values on more state-action
pairs, which enhances the quality of planning but also in-
creases the time and space complexity. We investigate the
trade-off between efficiency and approximation ratio in our
solution. Figure 1 shows the training curve for Maximum
k-Cut and TSP under different action reserve ratios. We
choose ε ∈ {1.0, 0.5, 0.01, 0.05, 0.01}, and a baseline that
randomly samples 10% actions without using the AP-net.
As we can find, the performance gap is nearly negligible
when ε ≥ 0.1. When ε ≤ 0.05, the performance drop be-
comes sensible, but the approximation ratio when reserving
only 1% actions proposed by the AP-net is still better than
randomly selecting 10% actions. Table 2 lists the relative
running time and memory cost when applying different ε.
It shows that we can maintain 99% performance in terms
of the approximation ratio while only consuming approxi-
mately 10% time and space for Maximum k-Cut. For TSP,

Table 2: Trade-off between time/space complexity and the
Approx. ratio (A.R.) with different action reserve ratios ε in
the AP-net. The value shown in the table is scaled according
to the result at ε = 1.0.

ε k-Cut TSP
A.R. Time Space A.R. Time Space

0.5 1.00 0.51 0.53 1.00 0.68 0.51
0.1 0.99 0.11 0.14 0.98 0.29 0.12
0.05 0.95 0.06 0.10 0.93 0.23 0.09
0.01 0.82 0.02 0.06 0.80 0.19 0.06

0 2000 4000 6000 8000 10000
Training Epochs

0.2

0.4

0.6

0.8

1.0

Te
st

 A
pp

ro
x.

 R
at

io

A.R. ratio=1.0
A.R. ratio=0.5
A.R. ratio=0.1
A.R. ratio=0.05
A.R. ratio=0.01
Random 0.1

(a) Maximum k-Cut

0 10000 20000 30000 40000 50000
Training Epochs

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Te
st

 A
pp

ro
x.

 R
at

io

A.R. ratio=1.0
A.R. ratio=0.5
A.R. ratio=0.1
A.R. ratio=0.05
A.R. ratio=0.01
Random 0.1

(b) TSP

Figure 1: Learning curves for Maximum k-Cut and TSP with
different action reserve ratios. The test performance is eval-
uated every 200 epochs in Maximum k-Cut and every 100
epochs in TSP.

since we adopt an RNN structure in the Q-net, the time and
space savings are acceptable but not as significant as in Max-
imum k-Cut.

5. Visualization
To better understand the RL agent’s behavior in solving
COPs, we visualize the results obtained from our model.

Trajectory Statistics We compare the intra-episode be-
havior of our proposed method, LS-DQN, with the greedy
algorithm equipped with the same action space to illustrate
how our LS-DQN agent provides better solutions. We chose
greedy algorithm for comparison due to its strong perfor-
mance in our empirical results reported in the main paper.

Figure 2 shows the traces of the improvement in terms
of the approximation ratio metric during test episodes for
Maximum k-Cut and TSP, respectively. Each episode is ter-
minated at the step where the maximum objective value
is reached before hitting the maximum episode length
(i.e., 100) or the dummy action was chosen. The traces
for LS-DQN (blue star curve) and greedy algorithm (red
square curve) are averaged over 200 test instances of size
(k,m)=50 for Maximum k-Cut and n=50 for TSP. We nor-
malize episode length to [0, 1] in order to calculate the
average approximation ratio across episodes with different
lengths. In addition, at each timestep, we use the green dots
to illustrate how frequently a greedy move (the action with
the maximum immediate reward) is taken by LS-DQN, and
the purple dots to show how often the agent encounters a
local-minimum state (the state where no action with positive
immediate reward is available).

As we can find, in both problems, the trained agent chose
greedy actions at a lower frequency at the early stage and
it tended to take more greedy actions later in the episode.
It indicates that the trained agent learns to explore the so-
lution space at the beginning so that it can benefit more

(a) Maximum k-Cut (b) TSP

Figure 2: Averaged behavior of LS-DQN over 200 instances
of graph size (k,m)=50 for Maximum k-Cut and n=50 for
TSP. Timesteps are scaled to the range of [0, 1], where 0
and 1 represent the first state (i.e., a randomly initialized
one) and the last state (i.e. where the best solution is ob-
tained within the maximum episode length), respectively.
The purple and green dots represent the frequency of LS-
DQN stepping into a local minimum and the frequency of
taking a greedy move at each time step. The red square and
blue star track the improvement of the approximation ratio
metric from the greedy algorithm and LS-DQN. The result
demonstrates the strength of LS-DQN lies in two aspects:
1. it encourages exploration in the initial stage and exploits
greedy move more often at the end; 2. it is able to jump out
of the local minimum by taking currently less promising ac-
tions.

in the future. We should note that in LS-DQN a state en-
codes a particular solution to the problem instance. When
the state (i.e., the current solution) gets closer to the opti-
mal, the LS-DQN agent takes more greedy actions; and that
is when the performance of LS-DQN started to surpass the
greedy algorithm. The purple dots suggest that although an
LS-DQN agent may run into local-minimum states along the
way, however, it manages to jump out and land at a better
local minimum. For example, in the later stage more and
more states have no action with positive immediate reward.
A greedy algorithm typically will terminate by then; but the
LS-DQN agent managed to take a series of (currently less
promising) actions to keep improving the quality of its ob-
tained solution. In our evaluations, the agent secured a good
local-minimum state with a high probability of around 80%.
For those cases where an episode ends up in a non-local-
minimum state, they are caused by the approximation error
of Q-function: the absolute value of theQ estimation shrinks
and gets close to zero as the agent approaches the optimal
state, therefore the approximation error is more likely to ob-
scure the positive Q-value to a negative one, which results in
an early stop.

Visualization of Learned Strategy We illustrate two ex-
amples of the search trajectory from a trained LS-DQN
agent for Maximum k-Cut and TSP, respectively.

Figure 3 and 4 show the comparison between greedy al-
gorithm and our LS-DQN on a Maximum k-Cut instance
of size (k,m)=(5,4). For the ease of presentation, we plot
the complementary graph instead of the entire cut and re-
vise the objective valueO as the sum of edge-weights within
each cluster. The graph cut result is visualized by 5 different
colors on vertices and the chosen swapping action at each

step is marked by stars. In Figure 3, the greedy algorithm
starts from an initial solution with O = 13.74 and stops
at O = 8.04 in five steps, as no further swapping actions
can immediately improve the current solution. Clearly this
greedy strategy is trapped by the locally stable clusters (e.g.,
the green and blue cluster in Figure 3 at step 6), which look
optimal in the local region but are not necessarily globally
optimal. As a contrast to the greedy heuristic, Figure 4 shows
how LS-DQN arrives at a better solution from the same ini-
tial state. It chose not to take any greedy action in the first
5 steps to avoid the formation of locally stable clusters and
then started to exploit greedy actions to refine the cut locally
from the 6th step. As a result, it yielded a better solution at
the end.

Figure 5 and 6 report the same comparison on TSP of size
n=15. The TSP tour is visualized by the dashed lines be-
tween vertices, the swapping action is marked by stars on
vertices, and the solid lines colored in red and blue suggest
the two red lines will be replaced by the two blue lines after
the swapping action. Figure 5 shows the greedy algorithm
(i.e., 2-opt) that starts from a tour with O = 8.63 and stops
at O = 4.16 in five steps, yielding a locally optimal solu-
tion. Interestingly, Figure 6 shows how LS-DQN got a bet-
ter solution by a different search trajectory. Starting from the
same solution as in Figure 5, the LS-DQN agent behaved ex-
actly the same as the greedy heuristic in the first 5 steps and
arrives at the same local minimum. However, it managed
to take an aggressive move which increases the tour length
from O = 4.16 to O = 4.35. After taking this seemingly
bad action, the agent made two consecutive greedy actions to
further reduce the tour length from O = 4.35 to O = 3.86.
This example demonstrates LS-DQN’s ability to jump out of
local minima by making farsighted decisions.

6. Conclusions and Future Work
In this paper, we introduced a general end-to-end RL frame-
work for solving combinatorial optimization problems on
graphs. The key idea behind our design is to view a so-
lution to a problem instance as state and reversible pertur-
bation to this solution as action. We introduce graph neu-
ral networks to extract latent representations of graphs for
state-action encoding, and apply deep Q-learning to obtain a
policy that gradually improves the solution. We instantiated
the meta-algorithm for Maximum k-Cut and TSP, where ex-
tensive experiment results demonstrate the solution’s com-
petitive performance and generalization across problem in-
stances. The major obstacle that prevents its application to
large graphs is the formidable size of swapping action space,
which has been successfully addressed by introducing an
auxiliary action-proposal network. One important direction
of this work is the refinement of the state representation,
since our current design does not fully consider the com-
binatorial structure of the solution: we use one-hot labels on
vertices to represent a graph cut and a sequence to represent
a tour in TSP. Although they work well empirically, to de-
sign a network architecture that encodes various nontrivial
combinatorial structures remains a challenging yet promis-
ing direction.

Table 3: Approximation ratio comparison for Maximum k-Cut (k = 2). Larger is better.

Train/Test Size LS-DQN S2V-DQN ECO-DQN SDP GP Greedy
n = 20 0.98+0.02

−0.02 0.98+0.01
−0.01 0.99+0.01

−0.02 0.98 0.96+0.03
−0.03 0.98+0.02

−0.02
n = 50 0.98+0.02

−0.02 0.97+0.02
−0.02 0.98+0.02

−0.02 0.97 0.96+0.03
−0.03 0.97+0.02

−0.02
n = 100 0.97+0.01

−0.01 0.94+0.02
−0.02 0.97+0.02

−0.02 0.95 0.92+0.03
−0.03 0.94+0.02

−0.02
n = 200 0.95+0.01

−0.01 0.94+0.02
−0.02 0.96+0.01

−0.01 0.89 0.85+0.02
−0.02 0.93+0.02

−0.02
(k,m) = (5, 6) 0.98+0.02

−0.02 - - 0.92 0.67+0.05
−0.05 0.98+0.02

−0.02
(k,m) = (10, 10) 0.97+0.02

−0.02 - - 0.89 0.42+0.05
−0.05 0.96+0.02

−0.02
(k,m) = (10, 20) 0.95+0.02

−0.02 - - 0.86 0.34+0.04
−0.04 0.94+0.02

−0.02
Table 4: Approximation ratio comparison for TSP. Smaller is better.

Train Size Test Size LS-DQN S2V-DQN Farthest 2-opt
n = 50 51-100 1.04+0.01

−0.01 1.05+0.01
−0.01 1.07+0.01

−0.01 1.07+0.01
−0.01

n = 100 101-150 1.05+0.01
−0.01 1.05+0.01

−0.01 1.08+0.01
−0.01 1.09+0.01

−0.01
n = 150 151-200 1.06+0.01

−0.01 1.07+0.01
−0.01 1.08+0.01

−0.01 1.09+0.01
−0.01

(a) O=13.74 (b) O=12.18 (c) O=10.53 (d) O=8.89 (e) O=8.07 (f) O=8.04

Figure 3: Sample episode of greedy algorithm for Maximum k-Cut

(a) O=13.74 (b) O=12.25 (c) O=10.38 (d) O=9.19 (e) O=8.05 (f) O=7.38 (g) O=6.54 (h) O=6.33 (i) O=6.19

Figure 4: Sample episode of LS-DQN for k-Cut

(a) O=8.63 (b) O=7.34 (c) O=6.31 (d) O=5.36 (e) O=4.22 (f) O=4.16

Figure 5: Sample episode of greedy heuristic for TSP

(a) O=8.63 (b) O=7.34 (c) O=6.31 (d) O=5.36 (e) O=4.22 (f) O=4.16 (g) O=4.35 (h) O=3.88 (i) O=3.86

Figure 6: Sample episode of LS-DQN for TSP

References
Abe, K.; Xu, Z.; Sato, I.; and Sugiyama, M. 2019.
Solving NP-Hard Problems on Graphs by Reinforcement
Learning without Domain Knowledge. arXiv preprint
arXiv:1905.11623.
Applegate, D. L.; Bixby, R. E.; Chvatal, V.; and Cook, W. J.
2006. The traveling salesman problem: a computational
study. Princeton university press.
Barrett, T. D.; Clements, W. R.; Foerster, J. N.; and Lvovsky,
A. I. 2019. Exploratory combinatorial optimization with re-
inforcement learning. arXiv preprint arXiv:1909.04063.
Bello, I.; Pham, H.; Le, Q. V.; Norouzi, M.; and Bengio,
S. 2016. Neural combinatorial optimization with reinforce-
ment learning. arXiv preprint arXiv:1611.09940.
Candes, E. J.; Eldar, Y. C.; Strohmer, T.; and Voroninski, V.
2015. Phase retrieval via matrix completion. SIAM review,
57(2): 225–251.
Dantzig, G. B.; and Ramser, J. H. 1959. The truck dispatch-
ing problem. Management science, 6(1): 80–91.
Dedieu, S.; Pibouleau, L.; Azzaro-Pantel, C.; and
Domenech, S. 2003. Design and retrofit of multiob-
jective batch plants via a multicriteria genetic algorithm.
Computers & Chemical Engineering, 27(12): 1723–1740.
Dulac-Arnold, G.; Evans, R.; van Hasselt, H.; Sunehag, P.;
Lillicrap, T.; Hunt, J.; Mann, T.; Weber, T.; Degris, T.; and
Coppin, B. 2015. Deep reinforcement learning in large dis-
crete action spaces. arXiv preprint arXiv:1512.07679.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, 1263–1272. JMLR.
org.
Goemans, M. X.; and Williamson, D. P. 1995. Improved ap-
proximation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of the
ACM (JACM), 42(6): 1115–1145.
Grötschel, M.; Jünger, M.; and Reinelt, G. 1991. Opti-
mal control of plotting and drilling machines: a case study.
Zeitschrift für Operations Research, 35(1): 61–84.
Johnson, D. S.; Papadimitriou, C. H.; and Yannakakis, M.
1988. How easy is local search? Journal of computer and
system sciences, 37(1): 79–100.
Joshi, C. K.; Laurent, T.; and Bresson, X. 2019. An effi-
cient graph convolutional network technique for the travel-
ling salesman problem. arXiv preprint arXiv:1906.01227.
Karp, R. M. 1972. Reducibility among combinatorial prob-
lems. In Complexity of computer computations, 85–103.
Springer.
Khalil, E.; Dai, H.; Zhang, Y.; Dilkina, B.; and Song, L.
2017. Learning combinatorial optimization algorithms over
graphs. In Advances in Neural Information Processing Sys-
tems, 6348–6358.
Kim, S.-H.; Kim, Y.-H.; and Moon, B.-R. 2001. A Hybrid
Genetic Algorithm for the MAX CUT Problem. In Pro-
ceedings of the 3rd Annual Conference on Genetic and Evo-

lutionary Computation, GECCO’01, 416–423. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc. ISBN
1558607749.
Kool, W.; Van Hoof, H.; and Welling, M. 2018. At-
tention, learn to solve routing problems! arXiv preprint
arXiv:1803.08475.
Li, Z.; Chen, Q.; and Koltun, V. 2018. Combinatorial opti-
mization with graph convolutional networks and guided tree
search. In Advances in Neural Information Processing Sys-
tems, 539–548.
Ma, Q.; Ge, S.; He, D.; Thaker, D.; and Drori, I. 2019.
Combinatorial Optimization by Graph Pointer Networks
and Hierarchical Reinforcement Learning. arXiv preprint
arXiv:1911.04936.
Mittal, A.; Dhawan, A.; Manchanda, S.; Medya, S.; Ranu,
S.; and Singh, A. 2019. Learning heuristics over large
graphs via deep reinforcement learning. arXiv preprint
arXiv:1903.03332.
Nowak, A.; Villar, S.; Bandeira, A. S.; and Bruna, J. 2017.
A note on learning algorithms for quadratic assignment with
graph neural networks. stat, 1050: 22.
Patel, A.; Mah, R.; and Karimi, I. 1991. Preliminary de-
sign of multiproduct noncontinuous plants using simulated
annealing. Computers & chemical engineering, 15(7): 451–
469.
Plante, R. D.; Lowe, T. J.; and Chandrasekaran, R. 1987. The
product matrix traveling salesman problem: an application
and solution heuristic. Operations Research, 35(5): 772–
783.
Reinelt, G. 1991. TSPLIB—A Traveling Salesman Problem
Library. INFORMS Journal on Computing, 3(4): 376–384.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Van de Wiele, T.; Warde-Farley, D.; Mnih, A.; and Mnih,
V. 2020. Q-Learning in enormous action spaces via
amortized approximate maximization. arXiv preprint
arXiv:2001.08116.
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer net-
works. In Advances in neural information processing sys-
tems, 2692–2700.
Waldspurger, I.; d’Aspremont, A.; and Mallat, S. 2015.
Phase recovery, maxcut and complex semidefinite program-
ming. Mathematical Programming, 149(1-2): 47–81.

