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ABSTRACT

Graph neural networks have been widely used on modeling graph data, achiev-
ing impressive results on node classification and link prediction tasks. Yet, ob-
taining an accurate representation for a graph further requires a pooling function
that maps a set of node representations into a compact form. A simple sum or
average over all node representations considers all node features equally with-
out consideration of their task relevance, and any structural dependencies among
them. Recently proposed hierarchical graph pooling methods, on the other hand,
may yield the same representation for two different graphs that are distinguished
by the Weisfeiler-Lehman test, as they suboptimally preserve information from
the node features. To tackle these limitations of existing graph pooling meth-
ods, we first formulate the graph pooling problem as a multiset encoding problem
with auxiliary information about the graph structure, and propose a Graph Multi-
set Transformer (GMT) which is a multi-head attention based global pooling layer
that captures the interaction between nodes according to their structural dependen-
cies. We show that GMT satisfies both injectiveness and permutation invariance,
such that it is at most as powerful as the Weisfeiler-Lehman graph isomorphism
test. Moreover, our methods can be easily extended to the previous node cluster-
ing approaches for hierarchical graph pooling. Our experimental results show that
GMT significantly outperforms state-of-the-art graph pooling methods on graph
classification benchmarks with high memory and time efficiency, and obtains even
larger performance gain on graph reconstruction and generation tasks.1

1 INTRODUCTION

Graph neural networks (GNNs) (Zhou et al., 2018; Wu et al., 2019), which work with graph struc-
tured data, have recently attracted considerable attention, as they can learn expressive representations
for various graph-related tasks such as node classification, link prediction, and graph classification.
While the majority of the existing works on GNNs focus on the message passing strategies for neigh-
borhood aggregation (Kipf & Welling, 2017; Hamilton et al., 2017), which aims to encode the nodes
in a graph accurately, graph pooling (Zhang et al., 2018; Ying et al., 2018) that maps the set of nodes
into a compact representation is crucial in capturing a meaningful structure of an entire graph.

As a simplest approach for graph pooling, we can average or sum all node features in the given
graph (Atwood & Towsley, 2016; Xu et al., 2019) (Figure 1 (B)). However, since such simple ag-
gregation schemes treat all nodes equally without considering their relative importance on the given
tasks, they can not generate a meaningful graph representation in a task-specific manner. Their flat
architecture designs also restrict their capability toward the hierarchical pooling or graph compres-
sion into few nodes. To tackle these limitations, several differentiable pooling operations have been
proposed to condense the given graph. There are two dominant approaches to pooling a graph. Node
drop methods (Zhang et al., 2018; Lee et al., 2019b) (Figure 1 (C)) obtain a score of each node using
information from graph convolutional layers, and then drop unnecessary nodes with lower scores at
each pooling step. Node clustering methods (Ying et al., 2018; Bianchi et al., 2019) (Figure 1 (D)),
on the other hand, cluster similar nodes into a single node by exploiting their hierarchical structure.

∗Equal contribution
1Code is available at https://github.com/JinheonBaek/GMT
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Figure 1: Concepts (Left): Conceptual comparison of graph pooling methods. Grey box indicates the readout
layer, which is compatible with our method. Also, green check icon indicates the model that can be as powerful
as the WL test. (Right): An illustration of set, multiset, and graph multiset encoding for graph representation.

Both graph pooling approaches have obvious drawbacks. First, node drop methods unnecessarily
drop some nodes at every pooling step, leading to information loss on those discarded nodes. On the
other hand, node clustering methods compute the dense cluster assignment matrix with an adjacency
matrix. This prevents them from exploiting sparsity in the graph topology, leading to excessively
high computational complexity (Lee et al., 2019b). Furthermore, to accurately represent the graph,
the GNNs should obtain a representation that is as powerful as the Weisfeiler-Lehman (WL) graph
isomorphism test (Weisfeiler & Leman, 1968), such that it can map two different graphs onto two
distinct embeddings. While recent message-passing operations satisfy this constraint (Morris et al.,
2019; Xu et al., 2019), most deep graph pooling works (Ying et al., 2018; Lee et al., 2019b; Gao &
Ji, 2019; Bianchi et al., 2019) overlook graph isomorphism except for a few (Zhang et al., 2018).

To obtain accurate representations of graphs, we need a graph pooling function that is as powerful
as the WL test in distinguishing two different graphs. To this end, we first focus on that the graph
representation learning can be regarded as a multiset encoding problem, which allows for possibly
repeating elements, since a graph may have redundant node representations (See Figure 1, right).
However, since a graph is more than a multiset due to its structural constraint, we further define
the problem as a graph multiset encoding, whose goal is to encode two different graphs, given as
multisets of node features with auxiliary structural dependencies among them (See Figure 1, right),
into two unique embeddings. We tackle this problem by utilizing a graph-structured attention unit.
By leveraging this unit as a fundamental building block, we propose the Graph Multiset Transformer
(GMT), a pooling mechanism that condenses the given graph into the set of representative nodes,
and then further encodes relationships between them to enhance the representation power of a graph.
We theoretically analyze the connection between our pooling operations and WL test, and further
show that our graph multiset pooling function can be easily extended to node clustering methods.

We then experimentally validate the graph classification performance of GMT on 10 benchmark
datasets from biochemical and social domains, on which it significantly outperforms existing meth-
ods on most of them. However, since graph classification tasks only require discriminative informa-
tion, to better quantify the amount of information about the graph in condensed nodes after pooling,
we further validate it on graph reconstruction of synthetic and molecule graphs, and also on two
graph generation tasks, namely molecule generation and retrosynthesis. Notably, GMT outper-
forms baselines with even larger performance gap on graph reconstruction, which demonstrates that
it learns meaningful information without forgetting original graph structure. Finally, it improves the
graph generation performance on two tasks, which shows that GMT can be well coupled with other
GNNs for graph representation learning. In sum, our main contributions are summarized as follows:

• We treat a graph pooling problem as a multiset encoding problem, under which we consider
relationships among nodes in a set with several attention units, to make a compact representation
of an entire graph only with one global function, without additional message-passing operations.

• We show that existing GNN with our parametric pooling operation can be as powerful as the WL
test, and also be easily extended to the node clustering approaches with learnable clusters.

• We extensively validate GMT for graph classification, reconstruction, and generation tasks on
synthetic and real-world graphs, on which it largely outperforms most graph pooling baselines.
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2 RELATED WORK

Graph Neural Network Existing graph neural network (GNN) models generally encode the
nodes by aggregating the features from the neighbors (Kipf & Welling, 2017; Hamilton et al., 2017;
Velickovic et al., 2018; You et al., 2019), and have achieved a large success on node classification
and link prediction tasks. Recently, there also exist transformer-based GNNs (Nguyen et al., 2019;
Rong et al., 2020) that further consider the relatedness between nodes in learning the node embed-
dings. However, accurately representing the given graph as a whole remains challenging. While
using mean or max over the node embeddings allow to represent the entire graph for graph clas-
sification (Duvenaud et al., 2015; Dai et al., 2016), they are mostly suboptimal, and may output
the same representation for two different graphs. To resolve this problem, recent GNN models (Xu
et al., 2019; Morris et al., 2019) aim to make the GNNs to be as powerful as the Weisfeiler-Lehman
test (Weisfeiler & Leman, 1968) in distinguishing graph structures. Yet, they also rely on simple
operations, and we need a more sophisticated method to represent the entire graph.

Graph Pooling Graph pooling methods play an essential role of representing the entire graph.
While averaging all node features is directly used as simplest pooling methods (Atwood & Towsley,
2016; Simonovsky & Komodakis, 2017), they result in a loss of information since they consider all
node information equally without considering key features for graphs. To overcome this limitation,
there have been recent studies on graph pooling to compress the given graph in a task specific
manner. Node drop methods use learnable scoring functions to drop nodes with lower scores (Zhang
et al., 2018; Gao & Ji, 2019; Lee et al., 2019b). Moreover, node clustering methods cast the graph
pooling problem into the node clustering problem to map the nodes into a set of clusters (Ying
et al., 2018; Ma et al., 2019; Wang et al., 2019; Bianchi et al., 2019; Yuan & Ji, 2020). Some
methods combine these two approaches by first locally clustering the neighboring nodes, and then
dropping unimportant clusters (Ranjan et al., 2020). Meanwhile, edge clustering gradually merges
nodes by contracting high-scoring edges between them (Diehl, 2019). In addition, Ahmadi et al.
(2020) model the memory layer to aggregate nodes without utilizing message-passing after pooling.
Finally, there exists a semi-supervised pooling method (Li et al., 2019) that scores nodes with an
attention scheme (Bahdanau et al., 2015), to weight more on the important nodes on pooling.

(Multi-)Set Representation Learning Note that a set of nodes in a graph forms a multiset (Xu
et al., 2019); a set that allows possibly repeating elements. Therefore, contrary to the previous set-
encoding methods, which mainly consider non-graph problems (Qi et al., 2017a; Yi et al., 2019;
Snell et al., 2017), we regard the graph representation learning as a multi-set encoding problem.
Mathematically, Zaheer et al. (2017); Qi et al. (2017b) provide the theoretical grounds on permuta-
tion invariant functions for the set encoding. Further, Lee et al. (2019a) propose Set Transformer,
which uses attention mechanism on the set encoding. Building on top of these theoretical grounds
on set, we propose the multiset encoding function that explicitly considers the graph structures.

3 GRAPH MULTISET POOLING

We posit the graph representation learning problem as a multiset encoding problem, and then utilize
the graph-structured attention to consider the global graph structure when encoding the given graph.

3.1 PRELIMINARIES

We begin with the general descriptions of graph neural network, and graph pooling.

Graph Neural Network A graph G can be represented by its adjacency matrix A ∈ {0, 1}n×n
and the node set V with |V| = n nodes, along with the c dimensional node features X ∈ Rn×c.
Graph Neural Networks (GNNs) learn feature representation for different nodes using neighborhood
aggregation schemes, which are formalized as the following Message-Passing function:

H(l+1)
u = UPDATE(l)

(
H(l)

u ,AGGREGATE(l)
({

H(l)
v ,∀v ∈ N (u)

}))
, (1)

where H(l+1) ∈ Rn×d is the node features computed after l-steps of the GNN simplified as follows:
H(l+1) = GNN(l)(H(l),A(l)), UPDATE and AGGREGATE are arbitrary differentiable functions,
N (u) denotes a set of neighboring nodes of u, and H

(1)
u is initialized as the input node features Xu.
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Graph Pooling While message-passing functions can produce a set of node representations, we
need an additional READOUT function to obtain an entire graph representation hG ∈ Rd as follows:

hG = READOUT ({Hv | v ∈ V}) . (2)

As a READOUT function, we can simply use the average or sum over all node features Hv,∀v ∈ V
from the given graph (Atwood & Towsley, 2016; Xu et al., 2019). However, since such aggrega-
tion schemes take all node information equally without considering the graph structures, they lose
structural information that is necessary for accurately representing a graph. To tackle this limitation,
Node Drop methods (Gao & Ji, 2019; Lee et al., 2019b) select the high scored nodes i(l+1) ∈ Rnl+1

with learnable score function s at layer l, to drop the unnecessary nodes, denoted as follows:

y(l) = s(H(l),A(l)); i(l+1) = topk(y(l)), (3)

where function s depends on specific implementations, and topk function samples the top k nodes
by dropping nodes with low scores y(l) ∈ Rnl . Whereas Node Clustering methods (Ying et al.,
2018; Bianchi et al., 2019) learn a cluster assignment matrix C(l) ∈ Rnl×nl+1 with node features
H(l) ∈ Rnl×d, to coarsen the nodes and the adjacency matrix A(l) ∈ Rnl×nl at layer l as follows:

H(l+1) = C(l)TH(l); A(l+1) = C(l)TA(l)C(l), (4)

where generating an assignment matrix C(l) depends on specific implementations. While these
two approaches obtain decent performances on graph classification tasks, they are suboptimal since
node drop methods unnecessarily drop arbitrary nodes, and node clustering methods have limited
scalability to large graphs (Cangea et al., 2018; Lee et al., 2019b). Therefore, we need a sophisticated
graph pooling layer that coarsens the graph with sparse implementation without discarding nodes.

3.2 GRAPH MULTISET TRANSFORMER

We now describe the Graph Multiset Transformer (GMT) architecture, which can accurately rep-
resent the entire graph, given a multiset of node features. We first introduce a multiset encoding
scheme that allows to embed two different graphs into distinct embeddings, and then describe the
graph multi-head attention that reflects the graph topology in the attention-based multiset encoding.

Multiset Encoding The input of the graph pooling function READOUT consists of nodes in a
graph, and they form a multiset (i.e. a set that allows for repeating elements) since different nodes
can have identical feature vectors. To design a graph pooling function that is as powerful as the
WL test, it needs to satisfy the permutation invariance and injectiveness over the multiset, since two
non-isomorphic graphs should be embedded differently through the injective function. While the
simple sum pooling satisfies the injectiveness over a multiset (Xu et al., 2019), it may treat all node
embeddings equally without consideration of their relevance to the task. To resolve this issue, we
consider attention mechanism on the multiset pooling function to capture structural dependencies
among nodes within a graph, in which we can provably enjoy the expressive power of the WL test.

Graph Multi-head Attention To overcome the inability of simple pooling methods (e.g. sum)
on distinguishing important nodes, we use the attention mechanism as the main component in our
pooling scheme. Assume that we have n node vectors, and the input of the attention function (Att)
consists of query Q ∈ Rnq×dk , key K ∈ Rn×dk and value V ∈ Rn×dv , where nq is the number of
query vectors, n is the number of input nodes, dk is the dimensionlity of the key vector, and dv is the
dimensionality of the value vector. Then we compute the dot product of the query with all keys, to
put more weights on the relevant values, namely nodes, as follows: Att(Q,K,V ) = w(QKT )V ,
where w is an activation function. Instead of computing a single attention, we can further use a
multi-head attention (Vaswani et al., 2017), by linearly projecting the query Q, key K, and value
V h times respectively to yield h different representation subspaces. The output of the multi-head
attention function (MH) then can be denoted as follows:

MH(Q,K,V ) = [O1, ..., Oh]WO; Oi = Att(QWQ
i ,KWK

i ,V W V
i ), (5)

where the operations for h parallel projections are parameter matrices WQ
i ∈ Rdk×dk , WK

i ∈
Rdk×dk , and W V

i ∈ Rdv×dv . Also, the output projection matrix is WO ∈ Rhdv×dmodel , where
dmodel is the output dimensionality for the multi-head attention (MH) function.

While multi-head attention is superior to trivial pooling methods such as sum or mean as it considers
global dependencies among nodes, the MH function suboptimally generates the key K and value
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Figure 2: Graph Multiset Transformer. Given a graph passed through several message passing layers, we
use an attention-based pooling block (GMPool) and a self-attention block (SelfAtt) to compress the nodes into
few important nodes and consider the interaction among them respectively, within a multiset framework.

V for Att, since it linearly projects the obtained node embeddings H from equation 1 to further
obtain the key and value pairs. To tackle this limitation, we newly define a novel graph multi-head
attention block (GMH). Formally, given node features H ∈ Rn×d with their adjacency information
A, we construct the key and value using GNNs, to explicitly leverage the graph structure as follows:

GMH(Q,H,A) = [O1, ..., Oh]WO; Oi = Att(QWQ
i ,GNNK

i (H,A),GNNV
i (H,A)), (6)

where the output of GNNi contains neighboring information of the graph, compared to the linearly
projected node embeddings KWK

i and V W V
i in equation 5, for key and value matrices in Att.

Graph Multiset Pooling with Graph Multi-head Attention Using the ingredients above, we
now propose a graph pooling function that satisfies the injectiveness and permutation invariance,
such that the overall architecture can be at most as powerful as the WL test, while taking the graph
structure into account. Given node features H ∈ Rn×d from GNNs, we define a Graph Multiset
Pooling (GMPool), which is inspired by the Transformer (Vaswani et al., 2017; Lee et al., 2019a), to
compress the n nodes into the k typical nodes, with a parameterized seed matrix S ∈ Rk×d for the
pooling operation that is directly optimized in an end-to-end fashion, as follows (Figure 2-GMPool):

GMPoolk(H,A) = LN(Z + rFF(Z)); Z = LN(S + GMH(S,H,A)), (7)
where rFF is any row-wise feedforward layer that processes each individual row independently
and identically, and LN is a layer normalization (Ba et al., 2016). Note that the GMH function in
equation 7 considers interactions between k seed vectors (queries) in S and n nodes (keys) in H , to
compress n nodes into k clusters with their attention similarities between queries and keys. Also, to
extend the pooling scheme from set to multiset, we simply consider redundant node representations.

Self-Attention for Inter-node Relationship While previously described GMPool condenses en-
tire nodes into k representative nodes, a major drawback of this scheme is that it does not consider
relationships between nodes. To tackle this limitation, one should further consider the interactions
among n or condensed k different nodes. To this end, we propose a Self-Attention function (SelfAtt),
inspired by the Transformer (Vaswani et al., 2017; Lee et al., 2019a), as follows (Figure 2-SelfAtt):

SelfAtt(H) = LN(Z + rFF(Z)); Z = LN(H + MH(H,H,H)), (8)
where, compared to GMH in equation 7 that considers interactions between k vectors and n nodes,
SelfAtt captures inter-relationships among n nodes by putting node embeddings H on both query
and key locations in MH of equation 8. To satisfy the injectiveness property of SelfAtt, it might not
consider interactions among n nodes, which we discuss in Proposition 3 of Appendix A.1.

Overall Architecture We now describe the full structure of Graph Multiset Transformer (GMT)
consisting of GNN and pooling layers using ingredients above (See Figure 2). For a graph G with
node features X and an adjacency matrix A, the Encoder : G 7→H ∈ Rn×d is denoted as follows:

Encoder(X,A) = GNN2(GNN1(X,A),A), (9)
where we can stack several GNNs to construct the deep structures. After obtaining a set of node
features H from an encoder, the pooling layer aggregates the features into a single vector form;
Pooling : H,A 7→ hG ∈ Rd. To deal with a large number of nodes, we first condense the entire
graph into k representative nodes with Graph Multiset Pooling (GMPool), which is also adaptable
to the varying size of nodes, and then utilize the interaction among them with Self-Attention Block
(SelfAtt). Finally, we get the entire graph representation by using GMPool with k = 1 as follows:

Pooling(H,A) = GMPool1(SelfAtt(GMPoolk(H,A)),A′), (10)
where A′ ∈ Rk×k is the identity or coarsened adjacency matrix since adjacency information should
be adjusted after compressing the nodes from n to k with GMPoolk (See Appendix B for detail).
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3.3 CONNECTION WITH WEISFEILER-LEHMAN GRAPH ISOMORPHISM TEST

Weisfeiler-Lehman (WL) test (Weisfeiler & Leman, 1968) is known for its ability to efficiently
distinguish two different graphs. Recent studies (Morris et al., 2019; Xu et al., 2019) show that
GNNs can be made to be as powerful as the WL test, by using an injective function over a multiset
to map two different graphs into distinct spaces. Building on previous powerful GNNs, if our graph
pooling function is injective, then our overall architecture can be at most as powerful as the WL test.
To do so, we first recount the theorem from Xu et al. (2019), as formalized in Theorem 1.

Theorem 1 (Non-isomorphic Graphs to Different Embeddings). LetA : G → Rd be a GNN, and
Weisfeiler-Lehman test decides two graphs G1 ∈ G and G2 ∈ G as non-isomorphic. Then, A maps
two different graphs G1 and G2 to distinct vectors if node aggregation and update functions are
injective, and graph-level readout, which operates on a multiset of node features {Hi}, is injective.

Since we focus on the representation of graphs through pooling, we deal with the injectiveness of the
READOUT function. Our next Lemma 2 states that GMPool can represent the injective function.

Lemma 2 (Injectiveness on Graph Multiset Pooling). Assume the input feature space H is a
countable set. Then the output of GMPoolik(H,A) with GMH(Si,H,A) for a seed vector Si can
be unique for each multiset H ⊂ H of bounded size. Further, the output of full GMPoolk(H,A)
constructs a multiset with k elements, which are also unique on the input multiset H .

All proofs for the WL test are provided in Appendix A.1. Based upon the injectiveness of GM-
Pool, we show injectiveness of SelfAtt, to make an overall architecture (sequence of GMPool and
SelfAtt with GNNs) as powerful as the WL test, formalized in Proposition 3. To satisfy the injective-
ness of SelfAtt, we might not care about interactions among multiset elements (See Appendix A.1).

Proposition 3 (Injectiveness on Pooling Function). The overall Graph Multiset Transformer with
multiple GMPool and SelfAtt can map two different graphsG1 andG2 to distinct embedding spaces,
such that the resulting GNN with proposed pooling functions can be as powerful as the WL test.

3.4 CONNECTION WITH NODE CLUSTERING APPROACHES

Node clustering is widely used for coarsening a graph in a hierarchical manner, as described in the
equation 4. However, since they require to store and even multiply the adjacency matrix A with the
soft assignment matrix C: A(l+1) = C(l)TA(l)C(l), they need a quadratic spaceO(n2) for n nodes,
which is problematic for large graphs. Meanwhile, our GMPool does not compute a coarsened
adjacency matrix A(l+1), such that graph pooling is possible only with a sparse implementation, as
formalized in Theorem 4. All proofs regarding node clustering are provided in Appendix A.2.

Theorem 4 (Space Complexity of Graph Multiset Pooling). Graph Multiset Pooling condsense a
graph with n nodes to k nodes in O(nk) space complexity, which can be further optimized to O(n).

In spite of this huge strength on space complexity, our GMPool can be further approximated to the
node clustering methods by manipulating an adjacency matrix, as formalized in Proposition 5.

Proposition 5 (Approximation to Node Clustering). Graph Multiset Pooling GMPoolk can per-
form hierarchical node clustering with learnable k cluster centroids by Seed Vector S in equation 7.

Note that, contrary to previous node clusterings (Ying et al., 2018; Bianchi et al., 2019), GMPool
learns data dependent k cluster centroids that might be more meaningful to capture graph structures.

4 EXPERIMENT

To validate the proposed Graph Multiset Transformer (GMT) for graph representation learning, we
evaluate it on classification, reconstruction and generation tasks of synthetic and real-world graphs.

4.1 GRAPH CLASSIFICATION

Objective The goal of graph classification is to predict a label yi ∈ Y of a given graph Gi ∈ G,
with a mapping function f : G → Y . To this end, we use a set of node representations {Hv | v ∈ V}
to obtain an entire graph representation hG that is used to classify a label f(G) = ŷ. We then learn f
with a cross-entropy loss, to minimize the negative log likelihood as follows: min

∑
i=1−yi log ŷi.
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Table 1: Graph classification results on test sets. The reported results are mean and standard deviation over
10 different runs. Best performance and its comparable results (p > 0.05) from the t-test are marked in bold.
Hyphen (-) denotes out-of-resources that take more than 10 days (See Figure 4 for the time efficiency analysis).

Biochemical Domain Social Domain Significance
D&D PROTEINS MUTAG HIV Tox21 ToxCast BBBP IMDB-B IMDB-M COLLAB

# graphs 1,178 1,113 188 41,127 7,831 8,576 2,039 1,000 1,500 5,000 -
# classes 2 2 2 2 12 617 2 2 3 3 -
Avg # nodes 284.32 39.06 17.93 25.51 18.57 18.78 24.06 19.77 13.00 74.49 -

GCN 72.05 ± 0.55 73.24 ± 0.73 69.50 ± 1.78 76.81 ± 1.01 75.04 ± 0.80 60.63 ± 0.51 65.47 ± 1.73 73.26 ± 0.46 50.39 ± 0.41 80.59 ± 0.27 3 / 10
GIN 70.79 ± 1.17 71.46 ± 1.66 81.39 ± 1.53 75.95 ± 1.35 73.27 ± 0.84 60.83 ± 0.46 67.65 ± 3.00 72.78 ± 0.86 48.13 ± 1.36 78.19 ± 0.63 2 / 10

Set2Set 71.94 ± 0.56 73.27 ± 0.85 69.89 ± 1.94 74.70 ± 1.65 74.10 ± 1.13 59.70 ± 1.04 66.79 ± 1.05 72.90 ± 0.75 50.19 ± 0.39 79.55 ± 0.39 1 / 10
SortPool 75.58 ± 0.72 73.17 ± 0.88 71.94 ± 3.55 71.82 ± 1.63 69.54 ± 0.75 58.69 ± 1.71 65.98 ± 1.70 72.12 ± 1.12 48.18 ± 0.83 77.87 ± 0.47 0 / 10
DiffPool 77.56 ± 0.41 73.03 ± 1.00 79.22 ± 1.02 75.64 ± 1.86 74.88 ± 0.81 62.28 ± 0.56 68.25 ± 0.96 73.14 ± 0.70 51.31 ± 0.72 78.68 ± 0.43 3 / 10
SAGPool(G) 71.54 ± 0.91 72.02 ± 1.08 76.78 ± 2.12 74.56 ± 1.69 71.10 ± 1.06 59.88 ± 0.79 65.16 ± 1.93 72.16 ± 0.88 49.47 ± 0.56 78.85 ± 0.56 0 / 10
SAGPool(H) 74.72 ± 0.82 71.56 ± 1.49 73.67 ± 4.28 71.44 ± 1.67 69.81 ± 1.75 58.91 ± 0.80 63.94 ± 2.59 72.55 ± 1.28 50.23 ± 0.44 78.03 ± 0.31 1 / 10
TopKPool 73.63 ± 0.55 70.48 ± 1.01 67.61 ± 3.36 72.27 ± 0.91 69.39 ± 2.02 58.42 ± 0.91 65.19 ± 2.30 71.58 ± 0.95 48.59 ± 0.72 77.58 ± 0.85 0 / 10
MinCutPool 78.22 ± 0.54 74.72 ± 0.48 79.17 ± 1.64 75.37 ± 2.05 75.11 ± 0.69 62.48 ± 1.33 65.97 ± 1.13 72.65 ± 0.75 51.04 ± 0.70 80.87 ± 0.34 4 / 10
StructPool 78.45 ± 0.40 75.16 ± 0.86 79.50 ± 1.75 75.85 ± 1.81 75.43 ± 0.79 62.17 ± 1.61 67.01 ± 2.65 72.06 ± 0.64 50.23 ± 0.53 77.27 ± 0.51 3 / 10
ASAP 76.58 ± 1.04 73.92 ± 0.63 77.83± 1.49 72.86 ± 1.40 72.24 ± 1.66 58.09 ± 1.62 63.50 ± 2.47 72.81 ± 0.50 50.78 ± 0.75 78.64 ± 0.50 1 / 10
EdgePool 75.85 ± 0.58 75.12 ± 0.76 74.17± 1.82 72.66 ± 1.70 73.77 ± 0.68 60.70 ± 0.92 67.18 ± 1.97 72.46 ± 0.74 50.79 ± 0.59 - 3 / 9
HaarPool - - 66.11± 1.50 - - - 66.11 ± 0.82 73.29 ± 0.34 49.98 ± 0.57 - 1 / 5

GMT (Ours) 78.72 ± 0.59 75.09 ± 0.59 83.44 ± 1.33 77.56 ± 1.25 77.30 ± 0.59 65.44 ± 0.58 68.31 ± 1.62 73.48 ± 0.76 50.66 ± 0.82 80.74 ± 0.54 10 / 10

Model D&D PROTEINS BBBP

GMT 78.72 75.09 68.31

w/o message passing 78.06 75.07 65.26

w/o graph attention 78.08 74.50 66.21
w/o self-attention 75.13 74.22 64.53
mean pooling 72.05 73.24 65.47

Table 2: Ablation Study of GMT
on the D&D, PROTEINS, and BBBP
datasets for graph classification.
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Datasets Among TU datasets (Morris et al., 2020), we select 6 datasets including 3 datasets (D&D,
PROTEINS, and MUTAG) on Biochemical domain, and 3 datasets (IMDB-B, IMDB-M, and COL-
LAB) on Social domain with accuracy for evaluation metric. Also, we use 4 molecule datasets (HIV,
Tox21, ToxCast, BBBP) from the OGB datasets (Hu et al., 2020) with ROC-AUC for evaluation
metric. Statistics are reported in the Table 1, and more details are described in the Appendix C.2.

Models 1) GCN. 2) GIN. GNNs with mean or sum pooling (Kipf & Welling, 2017; Xu et al.,
2019). 3) Set2Set. Set pooling baseline (Vinyals et al., 2016). 4) SortPool. 5) SAGPool. 6)
TopKPool. 7) ASAP. The methods (Zhang et al., 2018; Lee et al., 2019b; Gao & Ji, 2019; Ranjan
et al., 2020) that use the node drop, by dropping nodes (or clusters) with lower scores using scoring
functions. 8) DiffPool. 9) MinCutPool. 10) HaarPool. 11) StructPool. The methods (Ying et al.,
2018; Bianchi et al., 2019; Wang et al., 2019; Yuan & Ji, 2020) that use the node clustering, by
grouping a set of nodes into a set of clusters using a cluster assignment matrix. 12) EdgePool. The
method (Diehl, 2019) that gradually merges two adjacent nodes that have a high score edge. 13)
GMT. The proposed Graph Multiset Transformer (See Appendix C.1 for detailed descriptions).

Implementation Details For a fair comparison of pooling baselines (Lee et al., 2019b), we fix the
GCN (Kipf & Welling, 2017) as a message passing layer. We evaluate the model performance on
TU datasets for 10-fold cross validation (Zhang et al., 2018; Xu et al., 2019) with LIBSVM (Chang
& Lin, 2011). Also, we use the initial node features following the fair comparison setup (Errica
et al., 2020). We evaluate the performance on OGB datasets with their original feature extraction
and data split settings (Hu et al., 2020). Experimental details are described in the Appendix C.2.

Classification Results Table 1 shows that our GMT outperforms most baselines, or achieves com-
parable performance to the best baseline results. These results demonstrate that our method is simple
yet powerful as it only performs a single global operation at the final layer, unlike several baselines
that use multiple pooling with a sequence of message passing (See Figure 9 for the detailed model
architectures). Note that, since graph classification tasks mostly require the discriminative informa-
tion to predict the labels of a graph, GNN baselines without parametric pooling, such as GCN and
GIN, sometimes outperform pooling baselines on some datasets. In addition, recent work (Mesquita
et al., 2020), which reveals that message-passing layers are dominant in the graph classification,
supports this phenomenon. Therefore, we conduct experiments on graph reconstruction to directly
quantify the amount of retained information after pooling, which we describe in the next subsection.
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(e) GMPool(d) MinCutPool(c) DiffPool(b) TopKPool(a) Original

Figure 5: Reconstruction results of ring and grid
synthetic graphs, compared to node drop and clus-
tering methods. See Figure 10 for high resolution.
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Figure 6: Reconstruction results on the ZINC molecule
dataset by varying the compression ratio. Solid lines de-
note the mean, and shaded areas denote the variance.

Ablation Study To see where the performance improvement comes from, we conduct an ablation
study on GMT by removing graph attention, self attention, and message-passing operations. Table 2
shows that using graph attention with self-attention helps significantly improve the performances
from the mean pooling. Further, performances of the GMT without message-passing layers indicate
that our pooling layer well captures the graph multiset structure only with pooling without GNNs.

Efficiency While node clustering methods achieve decent performances in Table 1, they are known
to suffer from large memory usage since they cannot work with sparse graph implementations. To
compare the GPU Memory Efficiency of GMT with baseline models, we test it on the Erdos-Renyi
graphs (Erdős & Rényi, 1960) (See Appendix C.2 for detail setup). Figure 3 shows that our GMT is
highly efficient in terms of memory thanks to its compatibility with sparse graphs, making it more
practical over memory-heavy pooling baselines. In addition to this, we measure the Time Efficiency
to further validate the practicality of GMT in terms of time complexity. We validate it with the same
Erdos-Renyi graphs (See Appendix C.2 for detail setup). Figure 4 shows that GMT takes less than
(or nearly about) a second even for large graphs, compared to the slowly working models such as
HaarPool and EdgePool. This result further confirms that our GMT is practically efficient.

4.2 GRAPH RECONSTRUCTION

Graph classification does not directly measure the expressiveness of GNNs since identifying dis-
criminative features may be more important than accurately representing graphs. Meanwhile, graph
reconstruction directly quantifies the graph information retained by condensed nodes after pooling.

Objective For graph reconstruction, we train an autoencoder to reconstruct the input node features
X ∈ Rn×c from their pooled representations Xpool ∈ Rk×c. The learning objective to minimize
the discrepancy between the original graph X and the reconstructed graph Xrec with a cluster
assignment matrix C ∈ Rn×k is denoted as follows: min‖X −Xrec‖, where Xrec = CXpool.

Experimental Setup We first experiment with Synthetic Graph, such as ring and grid (Bianchi
et al., 2019), that can be represented in a 2-D Euclidean space, where the goal is to restore the
location of each node from pooled features, with an adjacency matrix. We further experiment with
real-world Molecule Graph, namely ZINC datasets (Irwin et al., 2012), which consists of 12K
molecular graphs. See Appendix C.3 for the experimental details including model descriptions.

(A.1)

A. MinCutPool

B. GMT

(1) Ground Truth with Clusters

(B.1)

(A.2)

(B.2)

(2) Predicted [     : failure]

Figure 7: Reconstruction example
with assigned clusters as colors on left
and reconstructed molecules on right.

Reconstruction Results Figure 5 shows the original and the
reconstructed graphs for Synthetic Graph of ring and grid
structures. The noisy results of baselines indicate that the con-
densed node features do not fully capture the original graph
structure. Whereas our GMPool yields almost perfect re-
construction, which demonstrates that our pooling operation
learns meaningful representation without discarding the orig-
inal graph information. We further validate the reconstruc-
tion performance of the proposed GMPool on the real-world
Molecule Graph, namely ZINC, by varying the compression
ratio. Figure 6 shows reconstruction results on the molecule graph, on which GMPool largely outper-
forms all compared baselines in terms of validity, exact match, and accuracy (High score indicates
the better, and see Appendix C.3 for the detailed description of evaluation metrics). With given re-
sults, we demonstrate that our GMPool can be easily extended to the node clustering schemes, while
it is powerful enough to encode meaningful information to reconstruct the graph.
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Figure 8: Validity curve for molecule generation
on QM9 dataset from MolGAN. Solid lines denote
the mean and shaded areas denote the variance.

Top-k accuracy: 1 3 5 10 20 50

Reaction GLN 51.41 67.55 74.92 83.48 88.64 92.37
Class MinCutPool 51.17 67.47 75.59 83.68 89.31 92.31

Unknown GMT (Ours) 51.83 68.20 75.17 83.20 89.33 92.47
Reaction GLN 63.53 78.27 84.32 89.51 92.17 93.17

Class MinCutPool 63.91 79.19 84.76 89.69 92.13 93.23
as Prior GMT (Ours) 64.17 79.61 85.32 89.97 92.31 93.25

Table 3: Top-k accuracy for Retrosynthesis experiment
on USPTO-50k data, for cases where the reaction class is
given as prior information (Bottom) and not given (Top).

Qualitative Analysis We visualize the reconstruction examples from ZINC in Figure 7, where
colors in the left figure indicate the assigned clusters on each atoms, and red dashed circles indicate
the incorrectly predicted atoms on the reconstructed molecule. As shown in Figure 7, GMPool yields
more calibrated clustering than MinCutPool, capturing the detailed substructures, which results in
the successful reconstruction (See Figure 11 in Appendix D for more reconstruction examples).

4.3 GRAPH GENERATION

Objective Graph generation is used to generate a valid graph that satisfies the desired properties,
in which graph encoding is used to improve the generation performances. Formally, given a graphG
with graph encoding function f , the goal here is to generate a valid graph Ḡ ∈ G of desired property
y with graph decoding function g as follows: min d(y, Ḡ),where Ḡ = g(f(G)). d is a distance
metric between the generated graph and desired properties, to guarantee that the graph has them.

Experimental Setup To evaluate the applicability of our model, we experiment on Molecule Gen-
eration to stably generate the valid molecules with MolGAN (Cao & Kipf, 2018), and Retrosynthe-
sis to empower the synthesis performances with Graph Logic Network (GLN) (Dai et al., 2019), by
replacing their graph embedding function f(G) to ours. In both experiments, we replace the average
pooling to either the MinCutPool or GMT. See Appendix C.4 for more experimental details.

Generation Results The power of a discriminator distinguishing whether a molecule is real or
fake is highly important to create a valid molecule in MolGAN. Figure 8 shows the validity curve on
the early stage of MolGAN training for Molecule Generation, and the representation power of GMT
significantly leads to the stabilized generation of valid molecules than baselines. Further, Table 3
shows Retrosynthesis results, where we use the GLN as a backbone architecture. Similar to the
molecule generation, retrosynthesis with GMT further improves the performances, which suggests
that GMT can replace existing pooling methods for improved performances on diverse graph tasks.

5 CONCLUSION

In this work, we pointed out that existing graph pooling approaches either do not consider the task
relevance of each node (sum or mean) or may not satisfy the injectiveness (node drop and clustering
methods). To overcome such limitations, we proposed a novel graph pooling method, Graph Mul-
tiset Transformer (GMT), which not only encodes the given set of node embeddings as a multiset
to uniquely embed two different graphs into two distinct embeddings, but also considers both the
global structure of the graph and their task relevance in compressing the node features. We theoreti-
cally justified that the proposed pooling function is as powerful as the WL test, and can be extended
to the node clustering schemes. We validated the proposed GMT on 10 graph classification datasets,
and our method outperformed state-of-the-art graph pooling models on most of them. We further
showed that our method is superior to the existing graph pooling approaches on graph reconstruction
and generation tasks, which require more accurate representations of the graph than classification
tasks. We strongly believe that the proposed pooling method will bring substantial practical impact,
as it is generally applicable to many graph-learning tasks that are becoming increasingly important.
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holm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp.
5449–5458. PMLR, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural net-
works? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Li Yi, Wang Zhao, He Wang, Minhyuk Sung, and Leonidas J. Guibas. GSPN: generative shape
proposal network for 3d instance segmentation in point cloud. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 3947–
3956. Computer Vision Foundation / IEEE, 2019.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Advances in Neural In-
formation Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pp. 4805–4815, 2018.
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A PROOFS

A.1 PROOFS REGARDING WEISFEILER-LEHMAN TEST

We first recount the theorem of Xu et al. (2019) to define a GNN that is injective over a multiset
(Theorem 1). We then prove that the proposed Graph Multiset Pooling (GMPool) can map two
different graphs to distinct spaces (Lemma 2). Finally, we show that our overall architecture Graph
Multiset Transformer (GMT) with a sequence of proposed Graph Multiset Pooling (GMPool) and
Self-Attention (SelfAtt) can represent the injective function over the input multiset (Proposition 3).

Theorem 1 (Non-isomorphic Graphs to Different Embeddings). LetA : G → Rd be a GNN, and
Weisfeiler-Lehman test decides two graphs G1 ∈ G and G2 ∈ G as non-isomorphic. Then, A maps
two different graphs G1 and G2 to distinct vectors if node aggregation and update functions are
injective, and graph-level readout, which operates on a multiset of node features {Hi}, is injective.

Proof. To map two non-isomorphic graphs to distinct embedding spaces with GNNs, we recount
the theorem on Graph Isomorphism Network. See Appendix B of Xu et al. (2019) for details.

Lemma 2 (Uniqueness on Graph Multiset Pooling). Assume the input feature spaceH is a count-
able set. Then the output of the GMPoolik(H,A) with GMH(Si,H,A) for a seed vector Si can be
unique for each multiset H ⊂ H of bounded size. Further, the output of the full GMPoolk(H,A)
constructs a multiset with k elements, which are also unique on the input multiset H .

Proof. We first state that the GNNs of the Graph Multi-head Attention (GMH) in a GMPool can
represent the injective function over the multiset H with an adjacency information A, by se-
lecting proper message-passing functions that satisfy the WL test (Xu et al., 2019; Morris et al.,
2019), denoted as follows: H ′ = GNN(H,A), where H ′ ⊂ H. Then, given enough ele-
ments, a GMPoolik(H,A) can express the sum pooling over the multiset H ′ defined as follows:
ρ(
∑

h∈H′ f(h)), where f and ρ are mapping functions (see the proof of PMA in Lee et al. (2019a)).

Since H is a countable set, there is a mapping from the elements to prime numbers denoted by
p(h) : H → P. If we let f(h) = − log p(h), then

∑
h∈H′ f(h) = log

∏
h∈H′

1
p(h) which

constitutes an unique mapping for every multiset H ′ ⊂ H (see Wagstaff et al. (2019)). In
other words,

∑
h∈H′ f(h) is injective. Also, we can easily construct a function ρ, such that

GMPoolik(H,A) = ρ(
∑

h∈H′ f(h)) = ρ(log
∏

h∈H′
1

p(h) ) is the injective function for every mul-
tiset H ⊂ H, where H ′ is derived from the GNN component in the GMPool; H ′ = GNN(H,A).

Furthermore, since a GMPool considers multiset elements without any order, it satisfies the permu-
tation invariance condition for the multiset function.

Finally, each GMPool block has k components such that the output of it consists of k elements
as follows: GMPool =

{
GMPoolik(H,A)

}k
i=1

, which allows multiple instances for its elements.
Then, since each GMPoolik(H,A) is unique on the input multiset H , the output of the GMPool
that consists of k outputs is also unique on the input multiset H .

Thanks to the universal approximation theorem (Hornik et al., 1989), we can construct such func-
tions p and ρ using multi-layer perceptrons (MLPs).

Proposition 3 (Injectiveness on Pooling Function). The overall Graph Multiset Transformer with
multiple GMPool and SelfAtt can map two different graphsG1 andG2 to distinct embedding spaces,
such that the resulting GNN with proposed pooling functions can be as powerful as the WL test.

Proof. By Lemma 2, we know that a Graph Multiset Pooling (GMPool) can represent the injective
function over the input multiset H ⊂ H. If we can also show that a Self-Attention (SelfAtt) can
represent the injective function over the multiset, then the sequence of the GMPool and SelfAtt
blocks can satisfy the injectiveness.

Let WO be a zero matrix in SelfAtt function. SelfAtt(H) then can be approximated to the any
instance-wise feed-forward network denoted as follows: SelfAtt(H) = rFF(H). Therefore, this
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rFF is a suitable transformation φ : Rd → Rd that can be easily constructed over the multiset
elements h ∈H , to satisfy the injectiveness.

To maximize the discriminative power of the Graph Multiset Transformer (GMT) by satisfying the
WL test, we assume that SelfAtt does not consider the interactions among multiset elements, namely
nodes. While proper GNNs with the proposed pooling function can be at most as powerful as the WL
test with this assumption, our experimental results with the ablation study show that the interaction
among nodes is significantly important to distinguish the broad classes of graphs (See Table 2).

A.2 PROOFS REGRADING NODE CLUSTERING

We first prove that the space complexity of the Graph Multiset Pooling (GMPool) without GNNs
can be approximated to the O(n) with n nodes (Theorem 4). After that, we show that the GMPool
can be extended to the node clustering approaches with learnable cluster centroids (Proposition 5).

Theorem 4 (Space Complexity of Graph Multiset Pooling). Graph Multiset Pooling condsense a
graph with n nodes to k nodes in O(nk) space complexity, which can be further optimized to O(n).

Proof. Assume that we have key K ∈ Rn×dk and value V ∈ Rn×dv matrices in the Att function of
Graph Multi-head Attention (GMH) for the simplicity, which is described in the equation 6. Also,
Q is defined as a seed vector S ∈ Rk×d in the GMPool function of the equation 7. To obtain the
weights on the values V , we multiply the query Q with key K: QKT . This matrix multiplication
then maps a set of n nodes into a set of k nodes, such that it requiresO(nk) space complexity. Also,
we can further drop the constant term k: O(n), by properly setting the small k values; k � n.

The multiplication of the attention weights QKT with value V also takes the same complexity, such
that the overall space complexity of GMPool isO(nk), which can be further optimized toO(n).

The space complexity of GNNs with sparse implementation requires O(n + m) space complexity,
where n is the number of nodes, and m is the number of edges in a graph. Therefore, multiple
GNNs followed by our GMPool require the total space complexity of O(n + m) due to the space
complexity of the GNN operations. However, GNNs with our GMPool are more efficient than node
clustering methods, since node clustering approaches need O(n2) space complexity.

Proposition 5 (Approximation to Node Clustering). Graph Multiset Pooling GMPoolk can per-
form hierarchical node clustering with learnable k cluster centroids by Seed Vector S in equation 7.

Proof. Node clustering approaches are widely used to coarsen a given large graph in a hierarchical
manner with several message-passing functions. The core part of the node clustering schemes is to
generate a cluster assignment matrix C, to coarsen nodes and adjacency matrix as in an equation 4.
Therefore, if our Graph Multiset Pooling (GMPool) can generate a cluster assignment matrix C,
then the proposed GMPool can be directly approximated to the node clustering approaches.

In the proposed GMPool, query Q is generated from a learnable set of k seed vectors S, and key
K and value V are generated from node features H with GNNs in the Graph Multi-head Atten-
tion (GMH) block, as in an equation 6. In this function, if we decompose the attention function
Att(Q,K,V ) = w(QKT )V into the dot products of the query with all keys, and the correspond-
ing weighted sum of values, then the first dot product term inherently generates a soft assignment
matrix as follows: C = w(QKT ). Therefore, the proposed GMPool can be easily extended to the
node clustering schemes, with the inherently generated cluster assignment matrix; C = w(QKT ),
where one of the proper choices for the activation function w is the softmax function as follows:

w(QKT )i,j =
exp(QiK

T
j )∑k

n=1 exp(QnKT
j )
. (11)

Furthermore, through the learnable seed vectors S for the query Q, we can learn data dependent k
different cluster centroids in an end-to-end fashion.

Note that, as shown in the section 4.2 of the main paper, the proposed GMPool significantly out-
performs the previous node clustering approaches (Ying et al., 2018; Bianchi et al., 2019). This
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is because, contrary to them, the proposed GMPool can explicitly learn data dependent k cluster
centroids by learnable seed vectors S.

B DETAILS FOR GRAPH MULTISET TRANSFORMER COMPONENTS

In this section, we describe the Graph Multiset Pooling (GMPool) and Self-Attention (SelfAtt),
which are the components of the proposed Graph Multiset Transformer, in detail.

Graph Multiset Pooling The core components of the Graph Multiset Pooling (GMPool) is the
Graph Multi-head Attention (GMH) that considers the graph structure into account, by constructing
the key K and value V using GNNs, as described in the equation 6. As shown in the Table 2 of the
main paper, this graph multi-head attention significantly outperforms the naive multi-head attention
(MH in equation 5). However, after compressing the n nodes into the k nodes with GMPoolk,
we can not directly perform further GNNs since the original adjacency information is useless after
pooling. To tackle this limitation, we can generate the new adjacency matrix A′ for the compressed
nodes, by performing node clustering as described in Proposition 5 of the main paper as follows:

GMPool1(GMPoolk(H,A),A′); A′ = CTAC, (12)

where C is the generated cluster assignment matrix, and A′ is the coarsened adjacency matrix as
described in the equation 4. However, this approach is well known for their scalability issues (Lee
et al., 2019b; Cangea et al., 2018), since they require quadratic space O(n2) to store and even
multiply the adjacency matrix A with the soft assignment matrix C. Therefore, we leave doing this
as a future work, and use the following trick. By replacing the adjacency matrix A with the identity
matrix I in the GMPool except for the first block, we can easily perform multiple GMPools without
any constraints, which is approximated to the GMPool with MH in the equation 5, rather than GMH
in the equation 6, as follows:

GMPool1(GMPoolk(H,A),A′); A′ = I. (13)

Self-Attention The Self-Attention (SelfAtt) function can consider the inter-relationships between
nodes in a set, which helps the network to take the global graph structure into account. Because of
this advantage, the self-attention function significantly improves the proposed model performance
on the graph classification tasks, as shown in the Table 2 of the main paper. From a different perspec-
tive, we can regard the Self-Attention function as a graph neural network (GNN) with a complete
graph. Specifically, given k nodes from the previous layer, the Multi-head Attention (MH) of the
Self-Attention function first constructs the adjacency matrix among all nodes with their similarities,
through the matrix multiplication of the query with key: QKT , and then computes the outputs with
the sum of the obtained weights on the value. In other words, the self-attention function can be
considered as one message passing function with a soft adjacency matrix, which might be further
connected to the Graph Attention Network (Velickovic et al., 2018).

C EXPERIMENTAL SETUP

In this section, we first introduce the baselines and our model, and then describe the experimental
details about graph classification, reconstruction, and generation tasks respectively.

C.1 BASELINES AND OUR MODEL

1) GCN. This method (Kipf & Welling, 2017) is the mean pooling baseline with Graph Convolu-
tional Network (GCN) as a message passing layer.

2) GIN. This method (Xu et al., 2019) is the sum pooling baseline with Graph Isomorphism Network
(GIN) as a message passing layer.

3) Set2Set. This method (Vinyals et al., 2016) is the set pooling baseline that uses a recurrent neural
network to encode a set of all nodes, with content-based attention over them.

4) SortPool. This method (Zhang et al., 2018) is the node drop baseline that drops unimportant
nodes by sorting their representations, which are directly generated from the previous GNN layers.
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Figure 9: Illustration of High-level Model Architectures. (Top): Global Graph Classification; GCN, GIN,
Set2Set, SortPool, SAGPool(G), StructPool, GMT. (Middle:) Hierarchical Graph Classification; DiffPool,
SAGPool(H), TopKPool, MinCutPool, ASAP, EdgePool, HaarPool. (Bottom:) Graph Reconstruction; Diff-
Pool, TopKPool, MinCutPool, GMT. MP denotes the message passing layer.

5) SAGPool. This method (Lee et al., 2019b) is the node drop baseline that selects the important
nodes, by dropping unimportant nodes with lower scores that are generated by the another graph
convolutional layer, instead of using scores from the previously passed layers. Particularly, this
method has two variants. 6.1) SAGPool(G) is the global node drop method that drops unimportant
nodes one time at the end of their architecture. 6.2) SAGPool(H) is the hierarchical node drop
method that drops unimportant nodes sequentially with multiple graph convolutional layers.

6) TopkPool. This method (Gao & Ji, 2019) is the node drop baseline that selects the top-ranked
nodes using a learnable scoring function.

7) ASAP. This method (Ranjan et al., 2020) is the node drop baseline that first locally generates the
clusters with neighboring nodes, and then drops the lower score clusters using a scoring function.

8) DiffPool. This method (Ying et al., 2018) is the node clustering baseline that produces the hier-
archical representation of the graphs in an end-to-end fashion, by clustering similar nodes into the
few nodes through graph convolutional layers.

9) MinCutPool. This method (Bianchi et al., 2019) is the node clustering baseline that applies the
spectral clustering with GNNs, to coarsen the nodes and the adjacency matrix of a graph.

10) HaarPool. This method (Wang et al., 2019) is the spectral-based pooling baseline that com-
presses the node features with a nonlinear transformation in a Haar wavelet domain. Since it directly
uses the spectral clustering to generate a coarsened matrix, the time complexity cost is relatively
higher than other pooling methods.

11) StructPool. This method (Yuan & Ji, 2020) is the node clustering baseline that integrates the
concept of the conditional random field into the graph pooling. While this method can be used with a
hierarchical scheme, we use it with a global scheme following their original implementation, which
is similar to the SortPool (Zhang et al., 2018).

12) EdgePool. This method (Diehl, 2019) is the edge clustering baseline that gradually merges the
nodes, by contracting the high score edge between two adjacent nodes.

13) GMT. Our Graph Multiset Transformer that first condenses all nodes into the important nodes
by GMPool, and then considers interactions between nodes in a set. Since it operates on the global
READOUT layer, it can be coupled with hierarchical pooling methods by replacing their last layer.

C.2 GRAPH CLASSIFICATION

Dataset Among TU datasets (Morris et al., 2020), we select the 6 datasets including 3 datasets
(D&D, PROTEINS, and MUTAG) on Biochemical domain, and 3 datasets (IMDB-B, IMDB-M,
and COLLAB) on Social domain. We use the classification accuracy as an evaluation metric. As
suggested by Errica et al. (2020) for a fair comparison, we use the one-hot encoding of their atom
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types as initial node features in the bio-chemical datasets, and the one-hot encoding of node degrees
as initial node features in the social datasets. Moreover, we use the recently suggested 4 molecule
graphs (HIV, Tox21, ToxCast, BBBP) from the OGB datasets (Hu et al., 2020). We use the ROC-
AUC for an evaluation metric, and use the additional atom and bond features, as suggested by Hu
et al. (2020). Dataset statistics are reported in the Table 1 of the main paper.

Implementation Details on Classification Experiments For all experiments on TU datasets, we
evaluate the model performance with a 10-fold cross validation setting, where the dataset split is
based on the conventionally used training/test splits (Niepert et al., 2016; Zhang et al., 2018; Xu
et al., 2019), with LIBSVM (Chang & Lin, 2011). In addition, we use the 10 percent of the training
data as a validation data following the fair comparison setup (Errica et al., 2020). For all experiments
on OGB datasets, we evaluate the model performance following the original training/validation/test
dataset splits (Hu et al., 2020). We use the early stopping criterion, where we stop the training
if there is no further improvement on the validation loss during 50 epochs, for the TU datasets.
Further, the maximum number of epochs is set to 500. We then report the average performances on
the validation and test sets, by performing overall experiments 10 times with different seeds.

For all experiments on TU datasets except the D&D, the learning rate is set to 5× 10−4, hidden size
is set to 128, batch size is set to 128, weight decay is set to 1× 10−4, and dropout rate is set to 0.5.
Since the D&D dataset has a large number of nodes (See Table 1 in the main paper), node clustering
methods can not perform clustering operations on large graphs with large batch sizes, such that the
hidden size is set to 32, and batch size is set to 10 on the D&D dataset. For all experiments on OGB
datasets except the HIV, the learning rate is set to 1×10−3, hidden size is set to 128, batch size is set
to 128, weight decay is set to 1×10−4, and dropout rate is set to 0.5. Since the HIV dataset contains
a large number of graphs compared to others (See Table 1 in the main paper), the batch size is set
to 512 for fast training. Then we optimize the network with Adam optimizer (Kingma & Ba, 2014).
For a fair comparison of baselines (Lee et al., 2019b), we use the three GCN layers (Kipf & Welling,
2017) as a message passing function for all models with jumping knowledge strategies (Xu et al.,
2018), and only change the pooling architecture throughout all models, as illustrated in Figure 9.
Also, we set the pooling ratio as 25% in each pooling layer for both baselines and our models.

Implementation Details on Efficiency Experiments To compare the GPU memory efficiency
of GMT against baseline models including node drop and node clustering methods, we first generate
the Erdos-Renyi graphs (Erdős & Rényi, 1960) by varying the number of nodes n, where the edge
size m is twice the number of nodes: m = 2n. For all models, we compress the given n nodes into
the k = 4 nodes at the first pooling function.

To compare the time efficiency of GMT against baseline models, we first generate the Erdos-Renyi
graphs (Erdős & Rényi, 1960) by varying the number of nodes n with m = n2/10 edges, following
the setting of HaarPool (Wang et al., 2019). For all models, we set the pooling ratio as 25% except
for HaarPool, since it compresses the nodes according to the coarse-grained chain of a graph. We
measure the forward time, including CPU and GPU, for all models with 50 graphs over one batch.

C.3 GRAPH RECONSTRUCTION

Dataset We first experiment with synthetic graphs represented in a 2-D Euclidean space, such as
ring and grid structures. The node features of a graph consist of their location in a 2-D coordinate
space, and the adjacency matrix indicates the connectivity pattern of nodes. The goal here is to
restore all node locations from compressed features after pooling, with the intact adjacency matrix.

While synthetic graphs are appropriate choices for the qualitative analysis, we further do the quan-
titative evaluation of models with real-world molecular graphs. Specifically, we use the sub-
set (Dwivedi et al., 2020) of the ZINC dataset (Irwin et al., 2012), which consists of 12K real-world
molecular graphs, to further conduct a graph reconstruction on the large number of various graphs.
The goal of the molecule reconstruction task is to restore the exact atom types of all nodes in the
given graph, from the compressed representations after pooling.

Common Implementation Details Following Bianchi et al. (2019), we use the two message pass-
ing layers both right before the pooling operation and right after the unpooling operation. Also, both
pooling and unpooling operations are performed once and sequentially connected, as illustrated in
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(e) GMPool(d) MinCutPool(c) DiffPool(b) Top-K(a) Original

Figure 10: High resolution images for synthetic graph reconstruction results in Figure 5.

the Figure 9. We compare our methods against both the node drop (TopKPool (Gao & Ji, 2019))
and node clustering (DiffPool (Ying et al., 2018) and MinCutPool (Bianchi et al., 2019)) methods.
For the node drop method, we use the unpooling operation proposed in the graph U-net (Gao &
Ji, 2019). For the node clustering methods, we use the graph coarsening schemes described in the
equation 4, with their specific implementations on generating an assignment matrix. For our pro-
posed method, we only use the one Graph Multiset Pooling (GMPool) without SelfAtt, where we
follow the node clustering approaches as described in the subsection 3.4 by generating a single soft
assignment matrix with one head h = 1 in the multi-head attention function. For experiments of
both synthetic and molecule reconstructions, the learning rate is set to 5× 10−3, and hidden size is
set to 32. We then optimize the network with Adam optimizer (Kingma & Ba, 2014).

Implementation Details on Synthetic Graph We set the pooling ratio of all models as 25%. For
the loss function, we use the Mean Squared Error (MSE) to train models. We use the early stopping
criterion, where we stop the training if there is no further improvement on the training loss during
1,000 epochs. Further, the maximum number of epochs is set to 10,000. Note that, there is no other
available graphs for validation of the synthetic graph, such that we train and test the models only
with the given graph in the Figure 10. The baseline results are adopted from Bianchi et al. (2019).

Implementation Details on Molecule Graph We set the pooling ratio of all models as 5%, 10%,
15%, and 25%, and plot all results in the Figure 6 of the main paper. Note that, in the case of
molecule graph reconstruction, a softmax layer is appended at the last layer of the model architecture
to classify the original atom types of all nodes. For the loss function, we use the cross entropy loss
to train models. We use the early stopping criterion, where we stop the training if there is no further
improvement on the validation loss during 50 epochs. Further, the maximum number of epochs is
set to 500, and batch size is set to 128. Note that, in the case of molecule graph reconstruction on
the ZINC dataset, we strictly separate the training, validation and test sets, as suggested by Dwivedi
et al. (2020). We perform all experiments 5 times with 5 different random seeds, and then report
the averaged result with the standard deviation. Note that, in addition to baselines mentioned in the
common implementation details paragraph, we compare two more baselines: GCN with a random
assignment matrix for pooling, which is adopted from Mesquita et al. (2020), and StructPool (Yuan
& Ji, 2020), for the real-world molecule graph reconstruction.

Evaluation Metrics for Molecule Reconstruction For quantitative evaluations, we use the three
metrics as follows: 1) validity indicates the number of reconstructed molecules that are chemically
valid, 2) exact match indicates the number of reconstructed molecules that are exactly same as the
original molecules, and 3) accuracy indicates the classification accuracy of atom types of all nodes.

C.4 GRAPH GENERATION

Common Implementation Details In the graph generation experiments, we replace the graph
embedding function f(G) from existing graph generation models to the proposed Graph Multiset
Transformer (GMT), to evaluate the applicability of our model on generation tasks, as described
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Table 4: Graph classification results on validation sets with standard deviations. All results are averaged over
10 different runs. Best performance and its comparable results (p > 0.05) from the t-test are marked in blod.
Hyphen (-) denotes out-of-resources that take more than 10 days (See Figure 4 for the time efficiency analysis).

Biochemical Domain Social Domain
D&D PROTEINS MUTAG HIV Tox21 ToxCast BBBP IMDB-B IMDB-M COLLAB

# graphs 1,178 1,113 188 41,127 7,831 8,576 2,039 1,000 1,500 5,000
# classes 2 2 2 2 12 617 2 2 3 3
Avg # nodes 284.32 39.06 17.93 25.51 18.57 18.78 24.06 19.77 13.00 74.49

GCN 76.17 ± 0.65 77.13 ± 0.44 76.56 ± 1.75 81.27 ± 0.92 78.80 ± 0.40 65.66 ± 0.40 93.35 ± 1.08 77.93 ± 0.28 54.29 ± 0.23 83.08 ± 0.13
GIN 76.85 ± 0.61 78.43 ± 0.45 94.44 ± 0.52 82.10 ± 1.01 78.20 ± 0.45 66.29 ± 0.42 94.64 ± 0.36 78.38 ± 0.26 54.04 ± 0.29 82.19 ± 0.25

Set2Set 76.32 ± 0.40 77.64 ± 0.41 79.72 ± 2.40 80.07 ± 0.93 79.13 ± 0.75 66.39 ± 0.49 91.89 ± 1.48 78.13 ± 0.30 54.39 ± 0.19 82.34 ± 0.23
SortPool 80.68 ± 0.59 77.92 ± 0.42 81.33 ± 3.00 81.17 ± 2.30 75.97 ± 0.76 64.26 ± 1.17 94.21 ± 1.04 77.46 ± 0.60 52.95 ± 0.62 80.58 ± 0.25
DiffPool 81.33 ± 0.33 79.09 ± 0.36 87.94 ± 1.93 83.16 ± 0.44 80.02 ± 0.38 69.73 ± 0.79 96.32 ± 0.36 77.86 ± 0.39 54.77 ± 0.19 81.69 ± 0.31
SAGPool(G) 76.73 ± 0.80 77.01 ± 0.58 88.11 ± 1.21 80.55 ± 1.89 77.03 ± 0.76 65.51 ± 0.91 95.59 ± 1.22 78.09 ± 0.58 53.73 ± 0.42 81.91 ± 0.45
SAGPool(H) 79.56 ± 0.67 77.24 ± 0.56 86.06 ± 2.07 79.21 ± 1.50 75.36 ± 2.63 64.05 ± 0.83 93.05 ± 3.00 77.11 ± 0.46 53.49 ± 0.65 80.55 ± 0.56
TopKPool 78.54 ± 0.73 75.47 ± 0.90 75.06 ± 2.12 79.24 ± 1.84 75.06 ± 2.30 64.56 ± 0.56 93.31 ± 2.32 76.12 ± 0.79 52.75 ± 0.58 79.94 ± 0.86
MinCutPool 81.96 ± 0.39 79.23 ± 0.66 87.22 ± 1.72 83.12 ± 1.27 81.10 ± 0.42 69.09 ± 1.12 95.99 ± 0.47 77.76 ± 0.36 54.94 ± 0.19 83.37 ± 0.18
StructPool 82.56 ± 0.37 80.00 ± 0.27 91.5 ± 0.95 81.09 ± 1.26 79.61 ± 0.70 66.49 ± 1.59 95.18 ± 0.59 77.14 ± 0.31 54.13 ± 0.39 79.90 ± 0.18
ASAP 81.58 ± 0.38 78.71 ± 0.45 91.33± 0.65 79.80 ± 1.88 77.33 ± 1.34 63.82 ± 0.75 92.96 ± 1.09 77.89 ± 0.51 55.17 ± 0.33 82.11 ± 0.33
EdgePool 80.32 ± 0.44 79.61 ± 0.25 87.28± 1.18 81.84 ± 1.32 78.92 ± 0.29 66.21 ± 0.64 94.98 ± 0.62 77.50 ± 0.25 54.69 ± 0.40 -
HaarPool - - 68.22± 0.86 - - - 89.98 ± 0.58 76.72 ± 0.60 53.03 ± 0.14 -

GMT (Ours) 82.19 ± 0.40 80.01 ± 0.21 91.00 ± 0.82 83.54 ± 0.78 80.91 ± 0.41 69.77 ± 0.67 95.14 ± 0.48 78.43 ± 0.22 55.14 ± 0.25 83.37 ± 0.11

in the subsection 4.3 of the main paper. As baselines, we first use the original models with their
implementations. Specifically, we use the MolGAN2 (Cao & Kipf, 2018) for molecule generation,
and Graph Logic Network (GLN)3 (Dai et al., 2019) for retrosynthesis. For both experiments, we
directly follow the experimental details of original papers (Cao & Kipf, 2018; Dai et al., 2019) for a
fair comparison. Furthermore, to compare our models with another strong pooling method, we use
the MinCutPool (Bianchi et al., 2019) as an additional baseline for generation tasks, since it shows
the best performance among baselines in the previous two classification and reconstruction tasks.

For MinCutPool, since it cannot directly compress the all n nodes into the 1 cluster to represent the
entire graph, we use the following trick to replace the simple pooling operation (e.g. sum or mean)
with it. We first condense the graph into the k clusters (k = 4) using one MinCutPool layer, and
then average the condensed nodes to get a single representation of the given graph. However, our
proposed Graph Multiset Transformer (GMT) can directly compress the all n nodes into the 1 node
with one learnable seed vector, by using the single GMPool1 block. In other words, we use the
one GMPool1 to represent the entire graph by replacing their simple pooling (e.g. sum or mean), in
which we use the following softmax activation function for computing attention weights:

w(QKT )i,j =
exp(QiK

T
j )∑n

k=1 exp(QiKT
k )
. (14)

Implementation Details on Molecule Generation For the molecule generation experiment with
the MolGAN, we replace the average pooling in the discriminator with GMPool1. We use the QM9
dataset (Ramakrishnan et al., 2014) following the original MolGAN paper (Cao & Kipf, 2018). To
evaluate the models, we report the validity of 13,319 generated molecules at the early stage of the
MolGAN training, over 4 different runs. As depicted in Figure 8 of the main paper, each solid curve
indicates the average validity of each model with 4 different runs, and the shaded area indicates the
half of the standard deviation for 4 different runs.

Implementation Details on Retrosynthesis For the retrosynthesis experiment with the Graph
Logic Network (GLN), we replace the average pooling in the template and subgraph encoding func-
tions with GMPool1. We use the USPTO-50k dataset following the original paper (Dai et al., 2019).
For an evaluation metric, we use the Top-k accuracy for both reaction class is not given and given
cases, following the original paper (Dai et al., 2019). We reproduce all results in Table 3 with
published codes from the original paper.

D ADDITIONAL EXPERIMENTAL RESULTS

Validation Results on Graph Classification We additionally provide the graph classification re-
sults on validation sets. As shown in Table 4, the proposed GMT outperforms most baselines, or

2https://github.com/yongqyu/MolGAN-pytorch
3https://github.com/Hanjun-Dai/GLN
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Table 6: Quantitative results of the graph reconstruction task on reconstructing the node features and the
adjacency matrix for synthetic graphs, with two different minimization objectives and error calculation metrics:
X −Xrec and A−Arec. * indicates the model without using adjacency normalization.

Data: Grid Graph Ring Graph

Objective: min‖X −Xrec‖ min‖A−Arec‖ min‖X −Xrec‖ min‖A−Arec‖
Error Calculation: ‖X −Xrec‖ ‖A−Arec‖ ‖X −Xrec‖ ‖A−Arec‖ ‖X −Xrec‖ ‖A−Arec‖ ‖X −Xrec‖ ‖A−Arec‖
DiffPool 0.0833 12110194 0.3908 0.0856 0.0032 617.7706 0.6208 0.0948
MinCutPool 0.0001 0.0092 1.2883 0.0051 0.0005 0.0424 0.5026 0.0128
MinCutPool* 0.0002 201.7619 2.0261 0.0616 0.0003 68.23 0.5211 0.0725
GMT (Ours) 0.0001 0.0102 0.2353 0.0084 0.0000 0.0331 0.5475 0.0324

achieves comparable performances to the best baseline results even in the validation sets. While val-
idation results can not directly measure the generalization performance of the model for unseen data,
these results further confirm that our method is powerful enough, compared to baselines. Regarding
the results of test sets on the graph classification task, please see Table 1 in the main paper.

Table 5: Graph classification results for
OGB test datasets with standard deviations.

Model HIV Tox21

Leaderboard GCN 76.06 ± 0.97 75.29 ± 0.69
GIN 75.58 ± 1.40 74.91 ± 0.51

Reproduced GCN 76.81 ± 1.01 75.04 ± 0.80
GIN 75.95 ± 1.35 73.27 ± 0.84

Ours GMT 77.56 ± 1.25 77.30 ± 0.59

Leaderboard Results on Graph Classification For a
fair comparison, we experiment with all baselines and our
models in the same setting, as described in the implemen-
tation details of Appendix C.2. Specifically, we average
the results over 10 different runs with the same hidden di-
mension (128, while leaderboard uses 300), and the same
number of message-passing layers (3, while leaderboard
uses 5) with 10 different seeds for all models. Therefore,
the reproduced results can be slightly different from the leaderboard results, as shown in Table 5,
since the leaderboard uses different hyper-parameters with different random seeds (See Hu et al.
(2020) for more details). However, our reproduction results are almost the same as the leaderboard
results, and sometimes outperform the leaderboard results (See the GCN results for the HIV dataset
in Table 5). Therefore, while we conduct all experiments under the same setting for a fair compari-
son, where specific hyperparameter choices are slightly different from the leaderboard setting, these
results indicate that there is no significant difference between reproduced and leaderboard results.

Quantitative Results on Graph Reconstruction for Synthetic Graphs While we conduct ex-
periments on reconstructing node features on the given graph, to quantify the retained information
on the condensed nodes after pooling (See Section 4.2 for experiments on the graph reconstruction
task), we further reconstruct the adjacency matrix to see if the pooling layer can also condense the
adjacency structure without loss of information. The learning objective to minimize the discrepancy
between the original adjacency matrix A and the reconstructed adjacency matrix Arec with a cluster
assignment matrix C ∈ Rn×k is defined as follows: min‖A−Arec‖, where Arec = CApoolCT .

Then we design the following two experiments. First, pooling layers are trained to minimize the
objective in Section 4.2: min‖X − Xrec‖. After that, we measure the discrepancy between the
original and the reconstructed node features: ‖X −Xrec‖, and also measure the discrepancy be-
tween the original and the reconstructed adjacency matrix: ‖A−Arec‖. Second, pooling layers are
trained to minimize the objective described in the previous paragraph: min‖A −Arec‖, and then
we measure the aforementioned two discrepancies in the same way.

We experiment with synthetic grid and ring graphs, illustrated in Figure 10. Table 6 shows that the
error is large when the objective and the error metric are different, which indicates that there is a high
discrepancy between the required information for condensing node and the required information for
condensing adjacency matrix. In other words, the compression for node and the compression for
adjacency matrix might be differently performed to reconstruct the whole graph information.

Also, Table 6 shows that there are some cases where there is no significant difference in the cal-
culated adjacency error (‖A −Arec‖), when minimizing nodes discrepancies and minimizing ad-
jacency discrepancies (See 0.0331 and 0.0324 for the proposed GMT on the Ring Graph). Fur-
thermore, calculated errors for the adjacency matrix when minimizing adjacency discrepancies are
generally larger than the calculated errors for node features when minimizing nodes discrepancies.
These results indicate that the adjacency matrix is difficult to reconstruct after pooling. This might
be because the reconstructed adjacency matrix should be further transformed from continuous values

21



Published as a conference paper at ICLR 2021

to discrete values (0 or 1 for the undirected simple graph), while the reconstructed node features can
be directly represented as continuous values. We leave further reconstructing adjacency matrices
and visualizing them as a future work.

Additional Examples for Molecule Reconstruction We visualize the additional examples for
molecule reconstruction on the ZINC dataset in Figure 11. Molecules on the left side indicate the
original molecule, where the transparent color denotes the assigned cluster for each node, which is
obtained by the cluster assignment matrix C with node (atom) representations in a graph (molecule)
(See Proposition 5 for more detail on generating the cluster assignment matrix). Also, molecules on
the right side indicate the reconstructed molecules with failure cases denoted as a red dotted circle.

As visualized in Figure 11, we can see that the same atom or the similarly connected atoms obtain
the same cluster (color). For example, the atom type O mostly obtains the yellow cluster, and the
atom type F obtains the green cluster. Furthermore, ring-shaped substructures that do not contain O
or N mostly receive the blue cluster, whereas ring-shaped substructures that contain O and N receive
the green and yellow clusters respectively.

Figure 11: Molecule Reconstruction Examples (Left): Original molecules with the assigned clus-
ter on each node represented as color, where cluster is generated from Graph Multiset Pooling (GM-
Pool). (Right): Reconstructed molecules. Red dotted circle indicates the incorrect atom prediction.
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