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ABSTRACT

Out-of-distribution (OOD) detection is indispensable for safely deploying ma-
chine learning models in the wild. One of the key challenges is that models
lack supervision signals from unknown data, and as a result, can produce over-
confident predictions on OOD data. Recent work on outlier synthesis modeled
the feature space as parametric Gaussian distribution, a strong and restrictive as-
sumption that might not hold in reality. In this paper, we propose a novel frame-
work, non-parametric outlier synthesis (NPOS), which generates artificial OOD
training data and facilitates learning a reliable decision boundary between ID
and OOD data. Importantly, our proposed synthesis approach does not make
any distributional assumption on the ID embeddings, thereby offering strong
flexibility and generality. We show that our synthesis approach can be mathe-
matically interpreted as a rejection sampling framework. Extensive experiments
show that NPOS can achieve superior OOD detection performance, outperform-
ing the competitive rivals by a significant margin. Code is publicly available at
https://github.com/deeplearning-wisc/npos.

1 INTRODUCTION

When deploying machine learning models in the open and non-stationary world, their reliability is
often challenged by the presence of out-of-distribution (OOD) samples. As the trained models have
not been exposed to the unknown distribution during training, identifying OOD inputs has become a
vital and challenging problem in machine learning. There is an increasing awareness in the research
community that the source-trained models should not only perform well on the In-Distribution (ID)
samples, but also be capable of distinguishing the ID vs. OOD samples.

To achieve this goal, a promising learning framework is to jointly optimize for both (1) accurate
classification of samples from Pin, and (2) reliable detection of data from outside Pin. This frame-
work thus integrates distributional uncertainty as a first-class construct in the learning process. In
particular, an uncertainty loss term aims to perform a level-set estimation that separates ID vs. OOD
data, in addition to performing ID classification. Despite the promise, a key challenge is how to
provide OOD data for training without explicit knowledge about unknowns. A recent work by Du
et al. (2022c) proposed synthesizing virtual outliers from the low-likelihood region in the feature
space of ID data, and showed strong efficacy for discriminating the boundaries between known and
unknown data. However, they modeled the feature space as class-conditional Gaussian distribution
— a strong and restrictive assumption that might not always hold in practice when facing complex
distributions in the open world. Our work mitigates the limitations.

In this paper, we propose a novel learning framework, Non-Parametric Outlier Synthesis (NPOS),
that enables the models learning the unknowns. Importantly, our proposed synthesis approach does
not make any distributional assumption on the ID embeddings, thereby offering strong flexibility
and generality especially when the embedding does not conform to a parametric distribution. Our
framework is illustrated in Figure 1. To synthesize outliers, our key idea is to “spray” around the
low-likelihood ID embeddings, which lie on the boundary between ID and OOD data. These bound-
ary points are identified by non-parametric density estimation with the nearest neighbor distance.
Then, the artificial outliers are sampled from the Gaussian kernel centered at the embedding of the
boundary ID samples. Rejection sampling is done by only keeping synthesized outliers with low
likelihood. Leveraging the synthesized outliers, our uncertainty loss effectively performs the level-
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separates ID vs. synthesized outliers

(a) ID embeddings (b) Boundary samples (c) Non-parametric outlier synthesis
Synthesized outliers
ID samples

Figure 1: Illustration of our non-parametric outlier synthesis (NPOS). (a) Embeddings of ID data are opti-
mized using Equation 8, which facilitates learning distinguishable representations. (b) Boundary ID embed-
dings are selected based on the non-parametric k-NN distance. (c) Outliers are synthesized by sampling from a
multivariate Gaussian distribution centered around the boundary embeddings. Rejection sampling is performed
by keeping the synthesized outliers (orange) with the lowest likelihood. The risk term Ropen performs level-set
estimation, learning to separate the synthesized outliers and ID embeddings (Equation 6). Best view in color.

set estimation, learning to separate data between two sets (ID vs. outliers). This loss term is crucial
to learn a compact decision boundary, and preventing overconfident predictions for unknown data.

Our uncertainty loss is trained in tandem with another loss that optimizes the ID classification and
embedding quality. In particular, the loss encourages learning highly distinguishable ID representa-
tions where ID samples are close to the class centroids. Such compact representations are desirable
and beneficial for non-parametric outlier synthesis, where the density estimation can depend on the
quality of learned features. Our learning framework is end-to-end trainable and converges when
both ID classification and ID/outlier separation perform satisfactorily.

Extensive experiments show that NPOS achieves superior OOD detection performance, outperform-
ing the competitive rivals by a large margin. In particular, Fort et al. (2021) recently exploited large
pre-trained models for OOD detection. They fine-tuned the model using standard cross-entropy
loss and then applied the maximum softmax probability (MSP) score in testing. Under the same
pre-trained model weights (i.e., CLIP-B/16 (Radford et al., 2021)) and the same number of fine-
tuning configuration, NPOS reduces the FPR95 from 41.87% (Fort et al., 2021) to 5.76% — a direct
36.11% improvement. Since both methods employ MSP in testing, the performance gap signifies the
efficacy of our training loss using outlier synthesis for model regularization. Moreover, we contrast
NPOS with the most relevant baseline VOS (Du et al., 2022c) using parametric outlier synthesis,
where NPOS outperforms by 13.40% in FPR95. The comparison directly confirms the advantage of
our proposed non-parametric outlier synthesis approach.

To summarize our key contributions:

1. We propose a new learning framework, non-parametric outlier synthesis (NPOS), which
automatically generates outlier data for effective model regularization and improving test-
time OOD detection. Compared to a recent method VOS that relies on parametric distribu-
tion assumption (Du et al., 2022b), NPOS offers both stronger performance and generality.

2. We mathematically formulate our outlier synthesis approach as a rejection sampling proce-
dure. By non-parametric density estimation, our training process approximates the level-set
distinguishing ID and OOD data.

3. We conduct comprehensive ablations to understand the efficacy of NPOS, and further verify
its scalability to a large dataset, including ImageNet. These results provide insights on the
non-parametric approach for OOD detection, shedding light on future research.

2 PRELIMINARIES

Background and notations. Over the last few decades, machine learning has been primarily op-
erating in the closed-world setting, where the classes are assumed the same between training and test
data. Formally, let X = Rd denote the input space and Yin = {1, . . . , C} denote the label space, with
C being the number of classes. The learner has access to the labeled training set Din = {(xi, yi)}ni=1,
drawn i.i.d. from the joint data distribution PXYin . Let Pin denote the marginal distribution on X ,
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which is also referred to as the in-distribution. Let f : X 7→ RC denote a function for the classi-
fication task, which predicts the label of an input sample. To obtain an optimal classifier, a classic
approach is called empirical risk minimization (ERM) (Vapnik, 1999): f∗ = argminf∈FRclosed(f),
where Rclosed(f) =

1
n

∑n
i=1 ℓ(f(xi), yi) and ℓ is the loss function and F is the hypothesis space.

Out-of-distribution detection. The closed-world assumption rarely holds for models deployed in
the open world, where data from unknown classes can naturally emerge (Bendale & Boult, 2015).
Formally, our framework concerns a common real-world scenario in which the algorithm is trained
on the ID data with classes Yin = {1, ..., C}, but will then be deployed in environments containing
out-of-distribution samples from unknown class y /∈ Yin and therefore should not be predicted by
f . At its core, OOD detection estimates the lower level set L := {x : Pin(x) ≤ β}. Given any
x, it classifies x as OOD if and only if x ∈ L. The threshold β is chosen by controlling the
false detection rate:

∫
L Pin(x)dx = 0.05. The false rate can be chosen as a typical (e.g., 0.05) or

another value appropriate for the application. As in classic statistics (see (Chen et al., 2017) and the
references therein), we estimate the lower level set L from the ID dataset Din.

3 METHOD

Framework overview. Machine learning models deployed in the wild must operate with both
classification accuracy and safety performance. We use safety to characterize the model’s ability to
detect OOD data. This safety performance is lacking for off-the-shelf machine learning algorithms
— which typically focus on minimizing error only on the in-distribution data from Pin, but does not
account for the uncertainty that could arise outside Pin. For example, recall that empirical risk min-
imization (ERM) (Vapnik, 1999), a long-established method that is commonly used today, operates
under the closed-world assumption (i.e., no distribution shift between training vs. testing). Models
optimized with ERM are known to produce overconfidence predictions on OOD data (Nguyen et al.,
2015), since the decision boundary is not conservative.

To address the challenges, our learning framework jointly optimizes for both: (1) accurate classifi-
cation of samples from Pin, and (2) reliable detection of data from outside Pin. Given a weighting
factor α, the risk can be formalized as follows:

argmin [ Rclosed(f)︸ ︷︷ ︸
Classification error on ID

+ α · Ropen(g)︸ ︷︷ ︸
Error of OOD detector

], (1)

where Rclosed(f) aims to classify ID samples into known classes, and Ropen(g) aims to distinguish
ID vs. OOD. This framework thus integrates distributional uncertainty as a first-class construct. Our
newly introduced risk term Ropen(g) is crucial to prevent overconfident predictions for unknown
data, and to improve test-time detection of unknowns. In the sequel, we introduce the two risks
Ropen(g) (Section 3.1) and Rclosed(f) (Section 3.2) in detail, with emphasis placed on the former.

3.1 FORMALIZE ROPEN(g)

OOD detection via level-set estimation. To formalize Ropen(g), we can explicitly perform a β-
level set estimation, i.e., binary classification in realization, between ID and OOD data. Concretely,
the decision boundary is the empirical β level set {x : P̂in(x) = β}. Consider the following OOD
conditional distribution:

Q(x | OOD) =
1[P̂in(x) ≤ β]P̂in(x)

Zout
, Zout =

∫
1[P̂in(x) ≤ β]P̂in(x)dx. (2)

where 1[·] is the indicator function. Q(x | OOD) is P̂in restricted to L̂ := {x : P̂in(x) ≤ β} and
renormalized. Similarly, define an ID conditional distribution:

Q(x | ID) =
1[P̂in(x) > β]P̂in(x)

1−Zout
. (3)

Note Q(x | OOD) and Q(x | ID) have disjoint support that partition h(X), where h : X 7→ Rd

is a feature encoder, which maps an input to the penultimate layer with d dimensions. In particular,
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for any non-degenerate prior Q(OOD) = 1 − Q(ID), the Bayes decision boundary for the joint
distribution Q is precisely the empirical β level set.

Since we only have access to the ID training data, a critical consideration is how to provide OOD
data for training. A recent work by Du et al. (2022c) proposed synthesizing virtual outliers from the
low-likelihood region in the feature space h(x), which is more tractable than synthesizing x in the
input space X . However, they modeled the feature space as class-conditional Gaussian distribution
— a strong assumption that might not always hold in practice. To circumvent this limitation, our
new idea is to perform non-parametric outlier synthesis, which does not make any distributional as-
sumption on the ID embeddings. Our proposed synthesis approach thereby offers stronger flexibility
and generality.

To synthesize outlier data, we formalize our idea by rejection sampling (Rubinstein & Kroese, 2016)
with P̂in as the proposal distribution. In a nutshell, the rejection sampling can be done in three steps:

1. Draw an index in Din by i ∼ uniform[n] where n is the number of training samples.

2. Draw sample v (candidate synthesized outlier) in the feature space from a Gaussian kernel
centered at h(xi) with covariance σ2I: v ∼ N (h(xi), σ

2I).

3. Accept v with probability Q(h(x)|OOD)

M P̂in
where M is an upper bound on the likelihood ratio

Q(h(x) | OOD)/P̂in. Since Q(h(x) | OOD) is truncated P̂in, one can choose M = 1/Zout.
Equivalently, accept v if P̂in(v) < β.

Despite the soundness of the mathematical framework, the realization in modern neural networks is
non-trivial. A salient challenge is the computational efficiency — drawing samples uniformly from
P̂in in step 1 is expensive since the majority of samples will have a high density that is easily rejected
by step 3. To realize our framework efficiently, we propose the following procedures: (1) identify
boundary ID samples, and (2) synthesize outliers based on the boundary samples.

Identify ID samples near the boundary. We leverage the non-parametric nearest neighbor dis-
tance as a heuristic surrogate for approximating P̂in, and select the ID data with the highest k-NN dis-
tances as the boundary samples. We illustrate this step in the middle panel of Figure 1. Specifically,
denote the embedding set of training data as Z = (z1, z2, ..., zn), where zi is the L2-normalized
penultimate feature zi = h(xi)/∥h(xi)∥2. For any embedding z′ ∈ Z, we calculate the k-NN
distance w.r.t. Z:

dk(z
′,Z) = ∥z′ − z(k)∥2, (4)

where z(k) is the k-th nearest neighbor in Z. If an embedding has a large k-NN distance, it is
likely to be on the boundary in the feature space. Thus, according to the k-NN distance, we select
embeddings with the largest k-NN distances. We denote the set of boundary samples as B.

Synthesize outliers based on boundary samples. Now we have obtained a set of ID embeddings
near the boundary in the feature space, we synthesize outliers by sampling from a multivariate
Gaussian distribution centered around the selected ID embedding h(xi) ∈ B:

v ∼ N (h(xi), σ
2I), (5)

where the v denotes the synthesized outliers around h(xi), and σ2 modulates the variance. For
each boundary ID sample, we can repeatedly sample p different outliers using Equation 5, which
produces a set Vi = (v1,v2, ...,vp). To ensure that the outliers are sufficiently far away from the
ID data, we further perform a filtering process by selecting the virtual outlier in Vi with the highest
k-NN distance w.r.t. Z, as illustrated in the right panel of Figure 1 (dark orange points).

The final collection of accepted virtual outliers will be used for the binary training objective:

Ropen = Ev∼V

[
− log

1

1 + expϕ(v)

]
+ Ex∼Pin

[
− log

expϕ(h(x))

1 + expϕ(h(x))

]
, (6)

where ϕ(·) is a nonlinear MLP function and h(x) denotes the ID embeddings. In other words, the
loss function takes both the ID and synthesized outlier embeddings and aims to estimate the level
set through the binary cross-entropy loss.
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Table 1: OOD detection performance on ImageNet-100 (Deng et al., 2009) as ID. All methods
are trained on the same backbone. Values are percentages. Bold numbers are superior results. ↑
indicates larger values are better, and ↓ indicates smaller values are better.

Methods

OOD Datasets

ID ACC↑iNaturalist SUN Places Textures Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MCM (zero-shot) 15.23 97.30 25.05 95.95 24.91 95.66 33.68 94.11 24.72 95.76 89.32

(Fine-tuned)
Fort et al./MSP 49.48 93.72 38.56 93.16 41.30 91.53 38.16 93.53 41.87 92.98 94.64

ODIN 7.32 98.09 29.05 92.63 32.58 92.60 15.50 96.58 21.11 94.98 94.64
Energy 20.95 95.94 18.42 94.77 22.35 93.08 15.36 96.19 19.27 94.99 94.64

GradNorm 28.72 91.14 54.41 73.08 43.02 81.13 28.28 91.29 38.61 84.16 94.64
ViM 13.75 96.67 31.68 93.31 39.61 88.95 26.94 94.13 28.00 93.27 94.64
KNN 6.77 98.21 26.72 92.87 23.13 92.81 15.02 96.73 17.91 95.16 94.64
VOS 8.05 98.03 29.54 92.91 29.54 92.91 13.79 97.28 19.16 95.69 94.14

VOS+ 8.44 98.00 17.58 96.69 17.46 95.95 16.85 96.43 15.08 96.77 94.38
NPOS (ours) 0.70 99.14 9.22 98.48 5.12 98.86 8.01 98.47 5.76 98.74 94.76

3.2 OPTIMIZING ID EMBEDDINGS WITH RCLOSED(f)

Now we discuss the design of Rclosed, which minimizes the risk on the in-distribution data. We aim
to produce highly distinguishable ID representations, which non-parametric outlier synthesis (cf.
Section 3.1) depends on. In a nutshell, the model aims to learn compact representations that align
ID samples with their class prototypes. Specifically, we denote by µ1,µ2, . . . ,µC the prototype
embeddings for the ID classes c ∈ {1, 2, .., C}. The prototype for each sample is assigned based on
the ground-truth class label. For any input x with corresponding embedding h(x), we can calculate
the cosine similarity between h(x) and prototype vector µj :

fj (x) =
h(x) · µj

∥h(x)∥ · ∥µj∥
, (7)

which can be viewed as the j-th logit output. A larger fj(x) indicates a stronger association with
the j-th class. The classification loss is the cross-entropy applied to the softmax output:

Rclosed = − log

(
efy(x)/(τ ·∥f∥)∑C
j=1 e

fj(x)/(τ ·∥f∥)

)
, (8)

where τ is the temperature, and fy(x) is the logit output corresponding to the ground truth label y.

Our training framework is end-to-end trainable, where the two losses Ropen (cf. Section 3.1) and
Rclosed work in a synergistic fashion. First, as the classification loss (Equation 8) shapes ID embed-
dings, our non-parametric outlier synthesis module benefits from the highly distinguishable repre-
sentations. Second, our uncertainty loss in Equation 6 would facilitate learning a compact decision
boundary between ID and OOD, which provides a reliable estimation for OOD uncertainty that can
arise. The entire training process converges when the two components perform satisfactorily.

3.3 TEST-TIME OOD DETECTION

In testing, we use the same scoring function as Ming et al. (2022a) for OOD detection S(x) =

maxj
efj(x)/τ∑C

c=1 efc(x)/τ , where fj (x) =
h(x)·µj

∥h(x)∥·∥µj∥ . The rationale is that, for ID data, it will be
matched to one of the prototype vectors with a high score and vice versa. Based on the scoring
function, the OOD detector is Gλ(x) = 1{S(x) ≥ λ}, where by convention, 1 represents the pos-
itive class (ID), and 0 indicates OOD. λ is chosen so that a high fraction of ID data (e.g., 95%) is
above the threshold. Our algorithm is summarized in Algorithm 1 (Appendix C).

4 EXPERIMENTS

In this section, we present empirical evidence to validate the effectiveness of our method on real-
world classification tasks. We describe the setup in Section 4.1, followed by the results and compre-
hensive analysis in Section 4.2–Section 4.5.

4.1 SETUP

Datasets. We use both standard CIFAR-100 benchmark (Krizhevsky et al., 2009) and the large-
scale ImageNet dataset (Deng et al., 2009) as the in-distribution data. Our main results and ablation
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Table 2: OOD detection performance for ImageNet-1k (Deng et al., 2009) as ID.

Methods

OOD Datasets

ID ACC ↑iNaturalist SUN Places Textures Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MCM (zero-shot) 32.08 94.41 39.21 92.28 44.88 89.83 58.05 85.96 43.55 90.62 68.53

(Fine-tuned)
Fort et al./MSP 54.05 87.43 73.37 78.03 72.98 78.03 68.85 79.06 67.31 80.64 79.64

ODIN 30.22 94.65 54.04 87.17 55.06 85.54 51.67 87.85 47.75 88.80 79.64
Energy 29.75 94.68 53.18 87.33 56.40 85.60 51.35 88.00 47.67 88.90 79.64

GradNorm 81.50 72.56 82.00 72.86 80.41 73.70 79.36 70.26 80.82 72.35 79.64
ViM 32.19 93.16 54.01 87.19 60.67 83.75 53.94 87.18 50.20 87.82 79.64
KNN 29.17 94.52 35.62 92.67 39.61 91.02 64.35 85.67 42.19 90.97 79.64
VOS 31.65 94.53 43.03 91.92 41.62 90.23 56.67 86.74 43.24 90.86 79.64

VOS+ 28.99 94.62 36.88 92.57 38.39 91.23 61.02 86.33 41.32 91.19 79.58
NPOS (ours) 16.58 96.19 43.77 90.44 45.27 89.44 46.12 88.80 37.93 91.22 79.42

studies are based on ImageNet-100, which consists of 100 randomly selected classes from the orig-
inal ImageNet-1k dataset. For completeness, we also conduct experiments on the full ImageNet-1k
dataset (Section 4.2). For OOD datasets, we adopt the same ones as in (Huang & Li, 2021), includ-
ing subsets of iNaturalist (Van Horn et al., 2018), SUN (Xiao et al., 2010), PLACES (Zhou
et al., 2017), and TEXTURE (Cimpoi et al., 2014). For each OOD dataset, the categories are disjoint
from the ID dataset. We provide details of the datasets and categories in Appendix A.

Model. In our main experiments, we perform training by fine-tuning the CLIP model (Radford
et al., 2021), which is one of the most popular and publicly available pre-trained models. CLIP
aligns an image with its corresponding textual description in the feature space by a self-supervised
contrastive objective. Concretely, it adopts a simple dual-stream architecture with one image en-
coder I : x → Rd (e.g., ViT (Dosovitskiy et al., 2021)), and one text encoder T : t → Rd (e.g.,
Transformer (Vaswani et al., 2017)). We fine-tune the last two blocks of CLIP’s image encoder, using
our proposed training objective in Section 3. To indicate input patch size in ViT models, we append
“/x” to model names. We prepend -B, -L to indicate Base and Large versions of the corresponding
architecture. For instance, ViT-B/16 implies the Base variant with an input patch resolution of 16 ×
16. We mainly use CLIP-B/16, which contains a ViT-B/16 Transformer as the image encoder. We
utilize the pre-extracted text embeddings from a masked self-attention Transformer as the prototypes
for each class, where µi = T (ti) and ti is the text prompt for a label yi. The text encoder is not
needed in the training process. We additionally conduct ablations on alternative backbone architec-
ture including ResNet in Section 4.3. Note that our method is not limited to pre-trained models; it
can generally be applicable for models trained from scratch, as we will later show in Section 4.4.

Experimental details. We employ a two-layer MLP with a ReLU nonlinearity for ϕ, with a hidden
layer dimension of 16. We train the model using stochastic gradient descent with a momentum of
0.9, and weight decay of 10−4. For ImageNet-100, we train the model for a total of 20 epochs,
where we only use Equation 8 for representation learning for the first ten epochs. We train the
model jointly with our outlier synthesis loss (Equation 6) in the last 10 epochs. We set the learning
rate to be 0.1 for the Rclosed branch, and 0.01 for the MLP in the Ropen branch. For the ImageNet-1k
dataset, we train the model for 60 epochs, where the first 20 epochs are trained with Equation 8.
Extensive ablations on the hyperparameters are conducted in Section 4.3 and Appendix F.

Evaluation metrics. We report the following metrics: (1) the false positive rate (FPR95) of OOD
samples when the true positive rate of ID samples is 95%, (2) the area under the receiver operating
characteristic curve (AUROC), and (3) ID classification error rate (ID ERR).

4.2 MAIN RESULTS

NPOS significantly improves OOD detection performance. As shown in the Table 1, we com-
pare the proposed NPOS with competitive OOD detection methods. For a fair comparison, all the
methods only use ID data without using auxiliary outlier datasets. We compare our methods with the
following recent competitive baselines, including (1) Maximum Concept Matching (MCM) (Ming
et al., 2022a), (2) Maximum Softmax Probability (Hendrycks & Gimpel, 2017; Fort et al., 2021), (3)
ODIN score (Liang et al., 2018), (4) Energy score (Liu et al., 2020b), (5) GradNorm score (Huang
et al., 2021), (6) ViM score (Wang et al., 2022), (7) KNN distance (Sun et al., 2022), and (8) VOS
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Table 3: Ablation on model capacity and architecture. ID dataset is ImageNet-100.

Model Methods

OOD Datasets

ID ACCiNaturalist SUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

RN50x4
Fort et al. 66.14 87.19 61.90 87.34 60.50 87.16 47.54 90.51 59.02 88.05 92.26

MCM 20.15 96.61 22.52 95.92 27.04 94.54 28.39 93.97 24.54 95.26 87.84
Ours 3.12 99.15 4.75 98.30 12.87 98.75 11.02 97.93 7.94 98.53 92.32

ViT-B/16
Fort et al. 49.48 93.72 38.56 93.16 41.30 91.53 38.16 93.53 41.87 92.98 94.64

MCM 15.23 97.30 25.05 95.95 24.91 95.66 33.68 94.11 24.72 95.76 89.32
Ours 0.70 99.14 9.22 98.48 5.12 98.86 8.01 98.47 5.76 98.74 94.76

ViT-L/14
Fort et al. 26.63 93.34 34.75 93.62 33.75 92.13 32.95 91.95 32.02 92.76 96.39

MCM 15.09 97.49 14.25 97.42 16.72 96.75 27.02 94.34 18.27 96.50 92.30
Ours 0.13 99.43 4.79 99.10 6.36 98.42 7.63 98.19 4.73 98.79 96.28

(Du et al., 2022b) which synthesizes outliers by modeling the ID embeddings as a mixture of Gaus-
sian distribution and sampling from the low-likelihood region of the feature space. MCM is the
latest zero-shot OOD detection approach for vision-language models. All the other baseline meth-
ods are fine-tuned using the same pre-trained model weights (i.e., CLIP-B/16) and the same number
of layers as ours. We added a fully connected layer to the model backbone, which produces the clas-
sification output. In particular, Fort et al. (2021) fine-tuned the model using cross-entropy loss and
then applied the MSP score in testing. KNN distance is calculated using features from the penulti-
mate layer of the same fine-tuned model as Fort et al. (2021). For VOS, we follow the original loss
function and OOD score defined in Du et al. (2022b).

We show that NPOS can achieve superior OOD detection performance, outperforming the compet-
itive rivals by a large margin. In particular, NPOS reduces the FPR95 from 41.87% (Fort et al.
(2021)) to 5.76% (ours) — a direct 36.11% improvement. The performance gap signifies the ef-
fectiveness of our training loss using outlier synthesis for model regularization. By incorporating
the synthesized outliers, our risk term Ropen is crucial to prevent overconfident predictions for OOD
data, and improve test-time OOD detection.

Non-parametric outlier synthesis outperforms VOS. We contrast NPOS with the most relevant
baseline VOS, where NPOS outperforms by 13.40% in FPR95. A major difference between the
two approaches lies in how outliers are synthesized: parametric approach (VOS) vs. non-parametric
approach (ours). Compared to VOS, our method does not make any distributional assumption on
the ID embeddings, hence offering stronger flexibility and generality. Another difference lies in
the ID classification loss: VOS employs the softmax cross-entropy loss while our method utilizes
a different loss (cf. Equation 8) to learn distinguishable ID embeddings. To clearly isolate the
effect, we further enhance VOS by using the same classification loss as defined in Equation 8 and
endow VOS with a stronger representation space. This resulting method dubbed VOS+ and its
corresponding performance is also shown in Table 1. Note that VOS+ and NPOS only differ in how
outliers are synthesized. While VOS+ indeed performs better compared to the original VOS, the
FPR95 is still worse than our method. This experiment directly and fairly confirms the superiority
of our proposed non-parametric outlier synthesis approach. Computationally, the training time using
NPOS is 30.8 minutes on ImageNet-100, which is comparable to VOS (30.0 minutes).

NPOS scales effectively to large datasets. To examine the scalability of NPOS, we also evaluate
on the ImageNet-1k dataset (ID) in Table 2. Recently, Fort et al. (2021) explored small-scale OOD
detection by fine-tuning the ViT model, and then applying the MSP score in testing. When extending
to large-scale tasks, we find that NPOS yields superior performance under the same image encoder
configuration (ViT-B/16). In particular, NPOS reduces the FPR95 from 67.31% to 37.93%. This
highlights the advantage of utilizing non-parametric outlier synthesis to learn a conservative decision
boundary for OOD detection. Our results also confirm that NPOS can indeed scale to large datasets
with complex visual diversity.

Learning compact ID representation benefits NPOS. We investigate the importance of optimiz-
ing ID embeddings for non-parametric outlier synthesis. Recall that our loss function in Equation 8
facilitates learning a compact representation for ID data. To isolate its effect, we replace the loss
function with the cross-entropy loss while keeping everything else the same. On ImageNet-100, this
yields an average FPR95 of 17.94%, and AUROC 95.75%. The worsened OOD detection perfor-
mance signifies the importance of our ID classification loss that optimizes ID embedding quality.
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Figure 2: (a) Ablation study on the regularization weight α on Ropen. (b) Ablation on the variance
σ2 for synthesizing outliers in Equation 5. (c) Ablation on the k for the k-NN distance. The numbers
are FPR95. The ID training dataset is ImageNet-100.

4.3 ABLATION STUDY

Ablation on model capacity and architecture. To show the effectiveness of the ResNet-based
architecture, we replace the CLIP image encoder with RN50x4 (178.3M), which shares a similar
number of parameters as CLIP-B/16 (149.6M). The OOD detection performance of NPOS for the
ImageNet-100 dataset (ID) is shown in Figure 3. It can be seen that NPOS still shows promising
results with the ResNet-based backbone, and the performance is comparable between RN50x4 and
CLIP-B/16 (7.94 vs. 5.76 in FPR95). Moreover, we observe that a larger model capacity indeed
leads to stronger performance. Compared with CLIP-B, NPOS based on CLIP-L/14 reduces FPR95
to 4.73%. This suggests that larger models are endowed with a better representation quality which
benefits outlier synthesis and OOD detection. Our findings corroborate the observations in Du et al.
(2022c) that a higher-capacity model is correlated with stronger OOD detection performance.

Ablation on the loss weight. Recall that our training objective consists of two risks Rclosed and
Ropen. The two losses are combined with a weight α on Ropen, and constant 1 on Rclosed. In Fig-
ure 2 (a), we ablate the effect of weight α on the OOD detection performance. Here the ID data is
ImageNet-100. When α reduces to a small value (e.g., 0.01), the performance becomes closer to the
MSP baseline trained with Rclosed only. In contrast, under a mild weighting, such as α = 0.1, the
OOD detection performance is significantly improved. Too excessive regularization using synthe-
sized outliers ultimately degrades the performance.

Ablation on the variance σ2 in sampling. A proper variance σ2 in sampling virtual outliers
is critical to our method. Recall in Equation 5 that σ2 modulates the variance when synthesizing
outliers around boundary samples. In Figure 2 (b), we systematically analyze the effect of σ2 on
OOD detection performance. We vary σ2 = {0.01, 0.1, 0.5, 1.0, 10}. We observe that the perfor-
mance of NPOS is insensitive under a moderate variance. In the extreme case when σ2 becomes too
large, the sampled virtual outliers might suffer from severe overlapping with ID data, which leads to
performance degradation as expected.

Ablation on k in calculating KNN distance. In Figure 2 (c), we analyze the effect of k, i.e.,
the number of nearest neighbors for non-parametric density estimation. In particular, we vary k =
{100, 200, 300, 400, 500}. We observe that our method is not sensitive to this hyperparameter, as k
varies from 100 to 500.

4.4 ADDITIONAL RESULTS WITHOUT PRE-TRAINED MODEL

Going beyond fine-tuning with the large pre-trained model, we show that NPOS is also applicable
and effective when training from scratch. This setting allows us to evaluate our algorithm itself
without the impact of strong model initialization. Appendix D showcases the performance of NPOS
trained on three datasets: CIFAR-10, CIFAR-100, and ImageNet-100 datasets. We substitute the text
embeddings µi in vision-language models with the class-conditional image embeddings estimated
in an exponential-moving-average (EMA) manner (Li et al., 2021): µc := Normalize(γµc + (1 −
γ)z), ∀c ∈ {1, 2, . . . , C}, where the prototype µc for class c is updated during training as the
moving average of all embeddings with label c, and z denotes the normalized embedding of samples
in class c. The EMA style update avoids the costly alternating training and prototype estimation
over the entire training set as in the conventional approach (Zhe et al., 2019).
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We evaluate on six OOD datasets: TEXTURES (Cimpoi et al., 2014), SVHN (Netzer et al., 2011),
PLACES365 (Zhou et al., 2017), LSUN-RESIZE & LSUN-C (Yu et al., 2015), and ISUN (Xu et al.,
2015). The comparison is shown in Table 4, Table 5, and Table 6. NPOS consistently improves
OOD detection performance over all the published baselines. For example, on CIFAR-100, NPOS
outperforms the most relevant baseline VOS by 27.41% in FPR95.

4.5 VISUALIZATION ON THE SYNTHESIZED OUTLIERS

(a) VOS (b)    NPOSFigure 3: t-SNE visu-
alization of synthesized
outliers by NPOS.

Qualitatively, we show the t-SNE visualization (Van der Maaten & Hin-
ton, 2008) of the synthesized outliers by our proposed method NPOS in
Figure 3. The ID features (colored in purple) are extracted from the penul-
timate layer of a model trained on ImageNet-100 (class name: HERMIT
CRAB). Without making any distributional assumption on the embedding
space, NPOS is able to synthesize outliers (colored in orange) in the low-
likelihood region, thereby offering strong flexibility and generality.

5 RELATED WORK

OOD detection has attracted a surge of interest since the overconfidence
phenomenon in OOD data is first revealed in Nguyen et al. (2015). One line of work performs OOD
detection by devising scoring functions, including confidence-based methods (Bendale & Boult,
2016; Hendrycks & Gimpel, 2017; Liang et al., 2018), energy-based score (Liu et al., 2020b; Wang
et al., 2021), distance-based approaches (Lee et al., 2018b; Tack et al., 2020; Sehwag et al., 2021;
Sun et al., 2022; Du et al., 2022a; Ming et al., 2023), gradient-based score (Huang et al., 2021),
and Bayesian approaches (Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017; Maddox et al.,
2019; Malinin & Gales, 2019; Wen et al., 2020; Kristiadi et al., 2020).

Another promising line of work addressed OOD detection by training-time regularization (Bevandić
et al., 2018; Malinin & Gales, 2018; Geifman & El-Yaniv, 2019; Hein et al., 2019; Meinke & Hein,
2020; Mohseni et al., 2020; Jeong & Kim, 2020; van Amersfoort et al., 2020; Yang et al., 2021; Wei
et al., 2022). For example, the model is regularized to produce lower confidence (Lee et al., 2018a;
Hendrycks et al., 2019) or higher energy (Du et al., 2022c; Liu et al., 2020b; Katz-Samuels et al.,
2022; Ming et al., 2022b) on the outlier data. Most regularization methods require the availability
of auxiliary OOD data. Among methods utilizing ID data only, Hsu et al. (2020) proposed to de-
compose confidence scoring during training with a modified input pre-processing method. Liu et al.
(2020a) proposed a spectral-normalized neural Gaussian process by optimizing the network design
for uncertainty estimation. Closest to our work, VOS (Du et al., 2022c) synthesizes virtual outliers
using multivariate Gaussian distributions, and regularizes the model’s decision boundary between
ID and OOD data during training. In this paper, we propose a novel non-parametric outlier synthesis
approach, mitigating the distributional assumption made in VOS.

Large-scale OOD detection. Recent works have advocated for OOD detection in large-scale set-
tings, which are closer to real-world applications. Research efforts include scaling OOD detection
to large semantic label space (Huang & Li, 2021) and exploiting large pre-trained models (Fort
et al., 2021). Recently, powerful pre-trained vision-language models have achieved strong re-
sults on zero-shot OOD detection (Ming et al., 2022a). Different from prior works, we propose
a new training/fine-tuning procedure with non-parametric outlier synthesis for model regularization.
Our learning framework renders a conservative decision boundary between ID and OOD data, and
thereby improves OOD detection.

6 CONCLUSION

In this paper, we propose a novel framework NPOS, which tackles ID classification and OOD uncer-
tainty estimation in one coherent framework. NPOS mitigates the key shortcomings of the previous
outlier synthesis-based OOD detection approach, and synthesizes outliers without imposing any dis-
tributional assumption. To the best of our knowledge, NPOS makes the first attempt to employ a
non-parametric outlier synthesis for OOD detection and can be formally interpreted as a rejection
sampling framework. NPOS establishes competitive performance on challenging real-world OOD
detection tasks, evaluated broadly under both the recent vision-language models and models that are
trained from scratch. Our in-depth ablations provide further insights on the efficacy of NPOS. We
hope our work inspires future research on OOD detection based on non-parametric outlier synthesis.
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REPRODUCIBILITY STATEMENT

We summarize our efforts below to facilitate reproducible results:

1. Datasets. We use publicly available datasets, which are described in detail in Section 4.1,
Section 4.4, and Appendix A.

2. Baselines. The description and hyperparameters of the OOD detection baselines are ex-
plained in Section 4.2, and Appendix B.

3. Methodology. Our method is fully documented in Section 3, with the pseudo algorithm
detailed in Algorithm 1. Hyperparamters are specified in Section 4.1, with a thorough
ablation study provided in Section 4.3 and Appendix F.

4. Open Source. Code, datasets and model checkpoints are publicly available at https:
//github.com/deeplearning-wisc/npos.
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Non-parametric Outlier Synthesis
(Appendix)

A DETAILS OF DATASETS

ImageNet-100. We randomly sample 100 classes from ImageNet-1k (Deng et al., 2009) to create
ImageNet-100. The dataset contains the following categories: n01986214, n04200800, n03680355, n03208938,

n02963159, n03874293, n02058221, n04612504, n02841315, n02099712, n02093754, n03649909, n02114712, n03733281, n02319095,

n01978455, n04127249, n07614500, n03595614, n04542943, n02391049, n04540053, n03483316, n03146219, n02091134, n02870880,

n04479046, n03347037, n02090379, n10148035, n07717556, n04487081, n04192698, n02268853, n02883205, n02002556, n04273569,

n02443114, n03544143, n03697007, n04557648, n02510455, n03633091, n02174001, n02077923, n03085013, n03888605, n02279972,

n04311174, n01748264, n02837789, n07613480, n02113712, n02137549, n02111129, n01689811, n02099601, n02085620, n03786901,

n04476259, n12998815, n04371774, n02814533, n02009229, n02500267, n04592741, n02119789, n02090622, n02132136, n02797295,

n01740131, n02951358, n04141975, n02169497, n01774750, n02128757, n02097298, n02085782, n03476684, n03095699, n04326547,

n02107142, n02641379, n04081281, n06596364, n03444034, n07745940, n03876231, n09421951, n02672831, n03467068, n01530575,

n03388043, n03991062, n02777292, n03710193, n09256479, n02443484, n01728572, n03903868.

OOD datasets. Huang & Li curated a diverse collection of subsets from iNaturalist (Van Horn
et al., 2018), SUN (Xiao et al., 2010), Places (Zhou et al., 2017), and Texture (Cimpoi et al., 2014)
as large-scale OOD datasets for ImageNet-1k, where the classes of the test sets do not overlap with
ImageNet-1k. We provide a brief introduction for each dataset as follows.

iNaturalist contains images of natural world (Van Horn et al., 2018). It has 13 super-categories and
5,089 sub-categories covering plants, insects, birds, mammals, and so on. We use the subset that
contains 110 plant classes which are not overlapping with ImageNet-1k.

SUN stands for the Scene UNderstanding Dataset (Xiao et al., 2010). SUN contains 899 categories
that cover more than indoor, urban, and natural places with or without human beings appearing in
them. We use the subset which contains 50 natural objects not in ImageNet-1k.

Places is a large scene photographs dataset (Zhou et al., 2017). It contains photos that are labeled
with scene semantic categories from three macro-classes: Indoor, Nature, and Urban. The subset we
use contains 50 categories that are not present in ImageNet-1k.

Texture stands for the Describable Textures Dataset (Cimpoi et al., 2014). It contains images of
textures and abstracted patterns. As no categories overlap with ImageNet-1k, we use the entire
dataset as in Huang & Li (2021).

B BASELINES

To evaluate the baselines, we follow the original definition in MSP (Hendrycks & Gimpel, 2017;
Fort et al., 2021), ODIN score (Liang et al., 2018), Energy score (Liu et al., 2020b), GradNorm
score (Huang et al., 2021), ViM score (Wang et al., 2022), KNN distance (Sun et al., 2022) and
VOS (Du et al., 2022b).

• For ODIN, we follow the original setting in the work and set the temperature T as 1000.
• For both Energy and GradNorm scores, the temperature is set to be T = 1.
• For ViM, we follow the original implementation according to the released code.
• For VOS, we ensure that the number of negative samples is consistent with our method —

for each class, we sample 60k points after estimating the distribution and select six outliers
with the lowest likelihood. For the OOD score, we adopt the uncertainty proposed in the
original method.

• For VOS+, we use the same loss function as defined in Section 3, but only replace the sam-
pling method to be parametric. The way VOS+ synthesizes outliers is the same as VOS
(first modeling the feature embedding as a mixture of multivariate Gaussian distribution,
and then sample virtual outliers from the low-likelihood region in the embedding space).
For a fair comparison, we also use the textual embedding extracted from CLIP as the pro-
totype for VOS+. Note that VOS+ and NPOS only differs in how outliers are synthesized.
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C ALGORITHM OF NPOS

We summarize our algorithm in implementation. Following (Du et al., 2022c), we construct a class-
conditional in-distribution sample queue {Qc}Cc=1, which is periodically updated as new batches of
training samples arrive.

Algorithm 1 NPOS: Non-parametric Outlier Synthesis
Input: ID training data Din = {(xi,yi)}ni=1, initial model parameters θ for backbone, nonlinear
MLP layer ϕ and class-conditional prototypes µ.
Output: Learned classifier f(x), and OOD detector G(x).
while train do

1. Update class-conditional queue {Qc}Cc=1 with the feature embeddings h(x) of training sam-
ples in the current batch.
2. Select a set of boundary samples Bc consisting of top-m embeddings with the largest k-NN
distances using Equation 4.
3. Synthesize a set of outliers Vi around each boundary sample xi ∈ B1 ∪ B2 ∪ ...BC using
Equation 5.
4. Accept the outliers in each Vi with large k-NN distances.
5. Calculate level-set estimation loss Ropen and ID embedding optimization loss Rclosed using
Equations 6 and 8, respectively, update the parameters θ, ϕ based on loss in Equation 1.
6. Update prototypes using µc := Normalize(γµc + (1− γ)z), ∀c ∈ {1, 2, . . . , C}.

end
while eval do

1. Calculate the OOD score defined in Section 3.3.
2. Perform OOD detection by thresholding comparison.

end

D EXPERIMENTAL DETAILS AND RESULTS ON TRAINING FROM SCRATCH

In this section, we provide the implementation details and the experimental results for NPOS trained
from scratch. We evaluate on three datasets: CIFAR-10, CIFAR-100, and ImageNet-100. We sum-
marize the training configurations of NPOS in Table 7.

CIFAR-10 and CIFAR-100. The results on CIFAR-10 are shown in Table 4. All methods are
trained on ResNet-18. We consider the same set of baselines as in the main paper. For the post-hoc
OOD detection methods (MSP, ODIN, Energy score, GradNorm, ViM, KNN), we report the results
by training the model with the cross-entropy loss for 100 epochs using stochastic gradient descent
with momentum 0.9. The start learning rate is 0.1 and decays by a factor of 10 at epochs 50, 75, and
90 respectively. The batch size is set to 256. The average FPR95 of NPOS is 10.16%, significantly
outperforming the best baseline VOS (27.88%). The results on CIFAR-100 are shown in Table 5,
where the strong performance of NPOS holds.

Table 4: OOD detection performance on CIFAR-10 as ID. All methods are trained on ResNet-18.
Values are percentages. Bold numbers are superior results.

Methods

OOD Datasets

ID ACCSVHN LSUN iSUN Texture Places365 Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

MSP 59.66 91.25 45.21 93.80 54.57 92.12 66.45 88.50 62.46 88.64 57.67 90.86 94.21
ODIN 20.93 95.55 7.26 98.53 33.17 94.65 56.40 86.21 63.04 86.57 36.16 92.30 94.21
Energy 54.41 91.22 10.19 98.05 27.52 95.59 55.23 89.37 42.77 91.02 38.02 93.05 94.21

GradNorm 80.86 81.41 53.87 88.39 60.32 88.00 71.66 80.79 80.71 72.57 69.49 82.23 94.21
ViM 24.95 95.36 18.80 96.63 29.25 95.10 24.35 95.20 44.70 90.71 28.41 94.60 94.21
KNN 24.53 95.96 25.29 95.69 25.55 95.26 27.57 94.71 50.90 89.14 30.77 94.15 94.21
VOS 15.69 96.37 27.64 93.82 30.42 94.87 32.68 93.68 37.95 91.78 27.88 94.10 93.96

NPOS 5.61 97.64 4.08 97.52 14.13 94.92 8.39 94.67 18.57 91.35 10.16 95.22 93.86

ImageNet-100. The results are shown in Table 6. All methods are trained on ResNet-101 using
the ImageNet-100 dataset. We use a slightly larger model capacity to accommodate for the larger-
scale dataset with high-solution images. NPOS significantly outperforms the best baseline KNN by
18.96% in FPR95. For the post-hoc OOD detection methods, we report the results by training the
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Table 5: OOD detection performance on CIFAR-100 as ID. All methods are trained on ResNet-34.
Values are percentages. Bold numbers are superior results.

Methods

OOD Datasets

ID ACCSVHN Places365 LSUN iSUN Texture Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

MSP 85.30 72.41 73.40 81.09 85.55 74.00 88.55 68.59 86.45 71.32 83.85 73.48 73.12
ODIN 89.50 76.13 41.50 91.60 74.70 83.93 90.20 68.27 85.75 73.17 76.33 78.62 73.12
Energy 89.15 78.16 44.15 90.85 81.85 80.57 90.35 68.18 84.30 73.86 77.96 78.32 73.12

GradNorm 91.05 67.13 55.72 86.09 97.80 44.21 89.71 58.23 96.20 52.17 86.10 61.57 73.12
ViM 54.30 88.85 84.70 74.64 57.15 88.17 56.65 87.13 86.00 71.95 67.76 82.15 73.12
KNN 66.38 83.76 79.17 71.91 70.96 83.71 77.83 78.85 88.00 67.19 76.47 77.08 73.12
VOS 76.55 75.68 29.95 94.02 75.61 76.84 83.64 71.46 76.94 76.23 68.18 78.95 73.69

NPOS 17.98 96.43 80.41 73.74 28.90 92.99 43.50 89.56 33.07 92.86 40.77 89.12 73.78

Table 6: OOD detection performance on ImageNet-100 as ID. All methods are trained on ResNet-
101. Values are percentages. Bold numbers are superior results.

Methods

OOD Datasets

ID ACCiNaturalist Places SUN Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

MSP 76.30 82.20 81.90 77.54 82.70 78.35 75.30 80.01 79.05 79.52 84.16
ODIN 53.00 89.52 70.40 82.77 66.90 85.01 48.40 89.19 59.67 86.62 84.16
Energy 72.60 85.31 69.80 83.15 74.40 83.96 63.40 84.80 70.05 84.31 84.16

GradNorm 50.82 84.86 68.27 74.46 65.77 77.11 40.48 88.17 56.33 81.15 84.16
ViM 72.40 84.88 76.20 81.54 73.80 83.99 22.20 95.63 61.15 86.51 84.16
KNN 56.96 86.98 64.54 83.68 63.04 85.37 15.83 96.24 50.09 88.07 84.16
VOS 54.68 89.74 63.71 88.97 41.67 91.54 67.92 84.34 56.99 88.65 84.39

NPOS 19.49 96.43 56.17 88.47 44.91 91.62 3.97 99.18 31.13 93.93 84.23

model with the cross-entropy loss for 100 epochs using stochastic gradient descent with momentum
0.9. The start learning rate is 0.1 and decays by a factor of 10 at epochs 50, 75, and 90 respectively.
The batch size is set to 512.

Our results above demonstrate that NPOS can achieve strong OOD detection performance with-
out necessarily relying on the pre-trained models. Thus, our framework provides strong generality
across both scenarios: training from scratch or fine-tuning on pre-trained models.

Table 7: Configurations of NPOS: training from scratch
CIFAR-10 CIFAR-100 ImageNet-100

Training epochs 500 500 500
Momentum 0.9 0.9 0.9
Batch size 256 256 512
Weight decay 0.0001 0.0001 0.0001
Classification branch initial LR 0.5 0.5 0.1
Initial LR for Ropen(g) 0.05 0.05 0.01
LR schedule cosine cosine cosine
Prototype update factor γ 0.95 0.95 0.95
Regularization weight α 0.1 0.1 0.1
starting epoch of regularization 200 200 200
Queue size (per class) |Qc| 600 600 1000
k in nearest neighbor distance 300 300 400
Number of boundary samples (per class) m 200 200 300
σ2 0.1 0.1 0.1
Temperature τ 0.1 0.1 0.1

E ADDITIONAL EXPERIMENTS ON MODEL CALIBRATION AND DATA-SHIFT
ROBUSTNESS

Data-shift robustness. We evaluate the NPOS-trained model (from scratch with 5 random seeds)
on different test data with distribution shifts in Table 8. Specifically, we report the mean classi-
fication accuracy and the standard deviation for measuring data-shift robustness. The number in
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the bracket of the first column indicates clean accuracy on the in-distribution test data. The results
demonstrate that compared to the vanilla classifier trained with the cross-entropy loss only, NPOS
does not incur substantial change in distributional robustness.

Table 8: Evaluations on data-shift robustness (numbers are in %).
ID data Original test ACC shifted dataset CE-OOD ACC (Rclosed(g)) NPOS-OOD ACC (Rclosed(g) +Ropen(g))

CIFAR-10 94.06 CIFAR-10-C 72.97 ± 0.36 72.63 ± 0.52
CIFAR-100 74.86 CIFAR-100-C 46.68 ± 0.24 46.93 ± 0.64

ImageNet-100 84.22 ImageNet-C 33.49 ± 0.34 34.29 ± 0.76
ImageNet-100 84.22 ImageNet-R 28.98 ± 0.62 29.50 ± 1.43
ImageNet-100 84.22 ImageNet-A 13.92 ± 1.46 12.16 ± 2.24
ImageNet-100 84.22 ImageNet-v2 72.17 ± 0.95 71.67 ± 1.54
ImageNet-100 84.22 ImageNet-Sketch 18.83 ± 0.24 17.94 ± 1.54

Model calibration. In Table 9, we also measure the calibration error of NPOS (with 5 random
seeds) on different datasets using Expected Calibration Error (ECE, in %) (Guo et al., 2017). In
the implementation, we adopt the codebase1 for metric calculation. The results suggest that NPOS
maintains an overall comparable (in some cases even better) calibration performance, while achiev-
ing a much stronger performance of OOD uncertainty estimation.

Table 9: Calibration performance (numbers are in %).
Model Dataset Method ECE

training from scratch

CIFAR-10 CE(Rclosed(g)) 0.62± 0.04
NPOS (Rclosed(g) +Ropen(g)) 0.27± 0.06

CIFAR-100 CE 3.19± 0.05
NPOS 4.02± 0.13

ImageNet-100 CE 7.17± 0.07
NPOS 7.52± 0.29

w/ pre-trained model
ImageNet-100 CE 2.34± 0.01

NPOS 1.06± 0.03

ImageNet-1K CE 3.42± 0.02
NPOS 2.66± 0.07

F ADDITIONAL ABLATIONS ON HYPERPARAMETERS AND DESIGNS

In this section, we provide additional analysis of the hyperparameters and designs of NPOS. For all
the ablations, we use the ImageNet-100 dataset as the in-distribution training data, and fine-tune on
ViT-B/16.

Ablation on the number of boundary samples. We show in Table 10 the effect of m — the
number of boundary samples selected per class. We vary m ∈ {100, 150, 200, 250, 300, 350, 400}.
We observe that NPOS is not sensitive to this hyperparameter.

Table 10: Ablation study on the number of boundary samples (per class).
m FPR95 AUROC AUPR ID ACC

100 10.63 98.14 97.56 93.97
150 9.94 98.21 97.75 94.02
200 8.52 98.34 97.93 93.78
250 7.41 98.49 98.25 94.42
300 6.12 98.70 98.49 94.46
350 8.77 98.15 97.75 94.00
400 7.43 98.51 98.21 94.52

Ablation on the number of samples in the class-conditional queue. In Table 11, we investigate
the effect of ID queue size |Qc| ∈ {1000, 1500, 2000, 2500, 3000}. Overall, the OOD detection
performance of NPOS is not sensitive to the size of the class-conditional queue. A sufficiently large
|Qc| is desirable since the non-parametric density estimation can be more accurate.

1https://github.com/gpleiss/temperature_scaling
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Table 11: Ablation study on the size of ID queue (per class).
|Qc| FPR95 AUROC AUPR ID ACC

1000 7.18 98.51 98.24 94.40
1500 5.76 98.74 98.73 94.76
2000 6.76 98.64 98.35 94.76
2500 8.75 98.28 97.89 94.36
3000 7.57 98.45 98.19 94.28

Ablation on the number of candidate outliers sampled from the Gaussian kernel (per bound-
ary ID sample). As shown in Table 12, we analyze the effect of p — the number of syn-
thesized candidate outliers using Equation 5 around each ID boundary sample. We vary p ∈
{600, 800, 1000, 1200, 1400}. A reasonably large p helps provide a meaningful set of candidate
outliers to be selected.

Table 12: Ablation on the number of candidate outliers drawn from the Gaussian kernel.
p FPR95 AUROC AUPR ID ACC

600 19.26 96.25 94.66 94.20
800 10.75 97.96 97.44 94.24

1000 5.76 98.74 98.73 94.76
1200 8.72 98.28 97.90 94.34
1400 10.59 98.12 97.61 94.38

Ablation on the temperature for ID embedding optimization. In Table 13, we ablate the effect
of temperature τ used for the ID embedding optimization loss (cf. Equation 8).

Table 13: Ablation study on the temperature τ .
τ FPR95 AUROC AUPR ID ACC

5 13.83 97.33 96.65 94.80
6 10.32 98.12 97.32 94.64
7 6.26 98.61 98.40 94.58
8 5.76 98.74 98.73 94.76
9 9.99 98.09 97.59 93.58
10 8.92 98.96 97.96 93.30

Ablation on the starting epoch of adding Ropen(g). In Table 14, we ablate on the effect of the
starting epoch of adding Ropen(g) in training. The table shows that adding Ropen(g) at the beginning
of the training yields a slightly worse OOD detection performance. The reason might be that the
representations are still not well-formed at the early stage of training. Instead, adding regularization
in the middle of training yields more desirable performance.

Table 14: Ablation study on the starting epoch of adding Ropen(g).
epoch FPR95 AUROC ID ACC

0 9.36 98.03 94.06
5 5.79 98.61 94.21

10 5.76 98.74 94.76
15 16.21 97.34 94.39
20 32.68 94.62 94.16

Ablation on the density estimation implementation. NPOS adopts a class-conditional approach
for outlier synthesis. For instance, it identifies the boundary ID samples by calculating the k-NN
distance between sample pairs holding the same class label. After synthesizing the outliers in the
feature space, it rejects synthesized outliers that have lower k-NN distance, which is also imple-
mented in a class-conditional way. In this ablation, we contrast with an alternative class-agnostic
implementation, i.e., we calculate the k-NN distance between samples across all classes in the train-
ing set. Under the same training and inference setting, the class-agnostic NPOS gives a similar OOD
detection performance compared to the class-conditional NPOS (Table 15).
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Table 15: Ablation on different implementations of the non-parametric density estimation.

Methods

OOD Datasets

ID ACCiNaturalist SUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

Class-conditional 0.70 99.14 9.22 98.48 5.12 98.86 8.01 98.47 5.76 98.74 94.76
Class-agnostic 2.46 99.32 11.63 98.06 8.43 97.69 9.43 98.45 7.99 98.38 94.61

G ADDITIONAL RESULTS ON THE MEAN AND STANDARD DEVIATIONS

We repeat the training of our method on ImageNet-100 with pre-trained ViT-B/16 for 5 different
times. We report the mean and standard deviations for both NPOS (ours) and the most relevant
baseline VOS in Table 16. NPOS is relatively stable, and outperforms VOS by a significant margin.

Table 16: Results on the mean and standard deviations after 5 runs.
Method FPR95 AUROC ID ACC

VOS 18.26±1.1 95.76±0.7 94.51±0.3
NPOS 7.43±0.8 98.34±0.6 94.38±0.2

H SOFTWARE AND HARDWARE

We use Python 3.8.5 and PyTorch 1.11.0, and 8 NVIDIA GeForce RTX 2080Ti GPUs.
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