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ABSTRACT

Recent advances in 6D pose estimation primarily rely on CNNs, but they strug-
gle to grasp long-range dependencies and the global context, which are essential
for precise pose determination. Although deeper or expanded networks are com-
monly used to tackle this, they lead to significant computational burdens without
fully addressing these constraints. To overcome these challenges, we present CT-
Net, a hybrid network that fuses the strengths of CNN and Transformer, aiming
for accurate 6D pose estimation from a solitary RGB-D image. CTNet employs
Transformer to capture elusive long-range dependencies and the global context,
while lightweight CNNs adeptly extract detailed local features. This complemen-
tary approach offers a comprehensive feature representation, eliminating the ne-
cessity for excessively deep networks. To further bolster the CNNs’ efficiency,
we introduce the Hierarchical Feature Extractor (HFE), which enhances the C2f
and ELAN modules for optimal feature extraction. Additionally, we integrate
a CNN-based PointNet module, designed to extract vital spatial data from the
point cloud. The Transformer element captures global contextual insights, which
are then seamlessly integrated with the local and spatial features extracted by the
CNNs to ensure precise 6D pose estimation. Experiments demonstrate that CT-
Net achieves high accuracy with nearly half the FLOPs of current methods on the
LineMOD and YCB-Video datasets. Furthermore, the HFE is highly adaptable,
showing excellent transferability across other 6D pose estimation architectures.

1 INTRODUCTION

6D pose estimation aims to determine the position and orientation of objects in 3D space (Xiang
et al., 2014), with significant applications in complex robotic manipulation tasks (Tremblay et al.,
2018; Collet et al., 2011), immersive augmented reality experiences (Marchand et al., 2015), and
advanced autonomous driving systems (Chen et al., 2017; Geiger et al., 2012). In order to fulfill
the real-time demands of these applications, pose estimation often needs to be processed on mobile
computing platforms (Yang et al., 2024). However, the high computational complexity of current
models poses challenges for efficient performance within such resource-constrained environments.

To tackle 6D pose estimation, researchers explore diverse approaches, leveraging CNNs and PCNs
(Zhang & Liu, 2023; Yuan et al., 2018). Methods relying on texture information from RGB images
(Peng et al., 2019; Tekin et al., 2018b; Kehl et al., 2017; Kendall et al., 2015) encounter difficulties
such as decreased accuracy with weakly textured images and sensitivity to lighting variations. Alter-
natively, methods using geometric information from point clouds (Qi et al., 2017a;b) struggle with
high redundancy, unstructured data, and sensitivity to occlusion and spatial deformation. To over-
come these obstacles, methods fusing RGB images with point cloud data (Mo et al., 2022; He et al.,
2021; 2020; Wang et al., 2019) exhibit robustness in handling complex occlusions and textureless
objects, surpassing earlier techniques in accuracy and adaptability.

Despite these advancements, existing methods still face two significant challenges. Firstly, tradi-
tional CNNs struggle to capture long-range dependencies and global context, which are crucial for
accurate 6D pose estimation, as they require a deep understanding of the complex relationships be-
tween object parts. Secondly, dense fusion networks (Hua et al., 2021; He et al., 2020; Wang et al.,
2019) encounter computational redundancy during multimodal data processing, stemming from their
inherent intricacy in integrating diverse modal information.
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Figure 1: Comparison of CNNs, Transformers, and their combination (our method) by Grad-CAM
(Selvaraju et al., 2017). The Grad-CAM images feature bright regions that highlight the areas con-
tributing most to the network’s predictions. The CNNs primarily focuses on local features, such
as edges and textures, whereas the Transformers captures a wider global context. In contrast, our
method achieves a more balanced extraction of both local details and global relationships.

To address these challenges, we propose two targeted approaches: 1) We explore the combination
of Transformer and CNN in a hybrid architecture. Transformer excel in capturing long-range de-
pendencies and overall context, whereas CNN specialize in extracting detailed local features. By
balancing their strengths in information capture, the network achieves comprehensive feature rep-
resentation and precise accuracy without the need for deep layers. 2) We design 2D convolutional
networks to concurrently process RGB images and point cloud data, enabling efficient integration
of local features while avoiding the complexities of dense fusion networks.

Based on these approaches, we introduce CTNet, a hybrid network designed to estimate 6D poses
from RGB-D data. Its remarkable efficacy is apparent in Figure 1. We transform the depth image
into an XYZ map that is aligned with the corresponding RGB image. As shown in Figure 2, the ar-
chitecture of CTNet is as follows: First, we enhance the C2f (Jocher et al., 2023) and ELAN (Wang
et al., 2023) modules to develop the Hierarchical Feature Extractor (HFE). Second, these local fea-
tures are integrated with the XYZ map and subsequently input into a CNN-based PointNet (Qi et al.,
2017a) module, which encodes the spatial information present in the point clouds. Then, a Trans-
former is utilized to establish global dependencies, compensating for the long-range associations
often missed by CNNs. Finally, we aggregate different morphological features for pose estimation.
We evaluate CTNet on LineMOD (Hinterstoisser et al., 2011) and YCB-Video (Xiang et al., 2017)
datasets, which demonstrates its superiority by balancing between accuracy and inference speed.
Our major contributions are as follows:

• We propose CTNet, a hybrid network that integrates CNN and Transformer architectures
for 6D pose estimation, effectively capturing comprehensive feature information without
the need for excessively deep network structures.

• We propose the Hierarchical Feature Extractor (HFE) for extracting local features from
RGB-D data, which achieves both low computational cost and exceptional performance.

• Through comprehensive experiments, we confirm the effectiveness of our method, exhibit-
ing strong performance on the publicly accessible LineMOD and YCB-Video datasets.
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2 RELATED WORK

Pose Estimation Based on RGB-D Data. Previous methods (Hua et al., 2021; He et al., 2021;
2020; Wang et al., 2019) utilize dense fusion networks to integrate RGB and point cloud features,
thereby exploiting both texture and geometry information in RGB-D data. However, dense fusion
networks encounter computational redundancy during multimodal data processing, stemming from
their inherent intricacy in integrating diverse modal information. Another method (Mo et al., 2022)
uses 2D convolutional kernels to extract RGB and point cloud features simultaneously, similar to
our approach. However, it is limited in capturing long-range dependencies due to its exclusive
reliance on CNNs. In contrast, our method surpasses these limitations with a holistic strategy. We
devise a CNN module for extracting local features and integrate a transformer module that captures
global dependencies. By seamlessly merging local and global features, we enhance the utilization
of RGB-D data, ultimately boosting the performance of pose estimation.

Hybrid CNN-Transformer Architectures for 6D Pose Estimation. Vision transformers, origi-
nally developed for NLP (Vaswani et al., 2017), now find widespread use in diverse computer vision
tasks, such as image classification (Dosovitskiy et al., 2020), object detection (Lee et al., 2022; Liu
et al., 2021; Xu et al., 2021), and semantic segmentation (Xie et al., 2021), showing considerable
potential. In our approach, we deviate from methods that rely solely on visual transformers (San-
dler et al., 2018). Instead, we opt to leverage transformer for capturing long-range dependencies
in sequences and integrating them into the feature information for 6D pose estimation. This differs
from traditional backbone networks, such as transformer-only architectures (e.g., PVT (Wang et al.,
2021) and swin transformer (Liu et al., 2021)) and those entirely based on CNNs (e.g., ResNet (He
et al., 2016)). Our hybrid network efficiently balances local and global feature extraction with a
lightweight network, leading to a more efficient network design.

3 METHODS

3.1 NETWORK ARCHITECTURE

This paper aims to recognize rigid objects and determine their rotations R ∈ SO(3) and translations
t ∈ R3 within the camera coordinate system, utilizing a RGB-D image. To achieve this, we develop
a network called CTNet, which is illustrated in Figure 2. Refer to Appendix A for input preparation
and preprocessing details.

3.2 LOCAL FEATURE EXTRACTION

To boost efficiency and minimize parameters, we develop the Hierarchical Feature Extractor (HFE)
by enhancing both the C2f (Jocher et al., 2023) and ELAN (Wang et al., 2023) architectures. This
module substitutes the traditional CNN-based ResNet employed in earlier methods for local feature
extraction. The network is organized into two primary segments for processing: initial feature
extraction (comprising layers 1 and 2) and advanced feature extraction (comprising layers 3 and 4).

Initial Feature Extraction. The initial stage utilizes PConv (Chen et al., 2023) combined with an
enhanced C2f module to enable efficient feature extraction, as shown in Figure 2. PConv selectively
processes channels, significantly lowering memory usage and computational overhead. The channel
ratio r (cp: c) determines this load. Given a feature map with dimensions h×w and a kernel size of k,
the computational and memory access loads are minimized, as illustrated in the following equations:

l1 = c2p × h× w × k2, (1)

l2 = cp × h× w + c2p × k2 ≈ cp × h× w. (2)

By setting r to 1
64 , PConv reduces these loads to just 0.02% and 1.56% of that required by regular

convolution, rendering them nearly negligible.

The C2f module improves feature representation by efficiently splitting, processing, and merging
the feature map back together. It employs Bottleneck structures that reduce parameters while main-
taining gradient flow, enabling the network to capture diverse feature scales. When combined with
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Figure 2: CTNet Overview. First, RGB-XYZ data is produced from the RGB-D image by combining
color and depth information. The HFE processes the RGB-XYZ data, utilizing shallow layers for
initial local feature extraction and deep layers for more complex local feature extraction. The output
from the deep layers, along with the XYZ map, is fed into a PointNet-like module to extract spatial
features from the point cloud. Meanwhile, the RGB-XYZ data is passed through a Pyramid Vision
Transformer (PVT) to capture global features that complement those extracted by the CNNs. Finally,
aggregated features are formed by amalgamating the local, spatial, and global features, and these
are subsequently employed for 6D pose estimation. The pose that exhibits the maximum confidence
score is chosen as the final result.

PConv, this approach yields two significant advantages: 1) richer input retention from PConv, boost-
ing feature extraction efficiency; 2) reduced computational costs, enabling a more lightweight net-
work without compromising accuracy.

Building on the integration of C2f and PConv, we further enhance the Bottleneck structure. We
introduce two layers: a Depthwise Separable Convolution (DSC) layer and a Channel Attention
Mechanism (CAM) (Woo et al., 2018) layer. Both layers incorporate normalization and activation
functions to enhance feature representation. The number of Bottleneck structures is also increased
to further improve feature extraction. Assuming input and output channels of Cin and Cout, a fea-
ture map size of h × w, and a kernel size of k × k, the computational loads for DSC and regular
convolution, denoted as l3 and l4, are calculated as follows:

l3 = Cin

(
n∑

i=1

h× w × k2i + n× h× w × Cout

)
, (3)

l4 = h× w × Cin × Cout × k2, (4)

where ki is the size of the i-th convolutional kernel, and n is the number of kernels. The computa-
tional load ratio between DSC and regular convolution is:

l3
l4

=
Cin

(∑n
i=1 h× w × k2i + n× h× w × Cout

)
h× w × Cin × Cout × k2

=

∑n
i=1 k

2
i

Cout × k2
+

n

k2
. (5)

With 64 input channels, 32 output channels, and a 3×3 kernel, the computational load of DSC is
only 14.24% of that of a standard 3×3 convolution. The redesigned Bottleneck structure offers
several benefits: 1) the combination of DSC and CAM provides a lightweight yet effective structure
for stacking within the C2f module; 2) in shallow layers, where feature maps have high resolution,
the CAM amplifies feature correlations, improving early-stage feature extraction; 3) increasing the
number of Bottleneck structures enhances the network’s ability to capture features across various
scales, thereby improving overall feature extraction. For a detailed overview of the C2f module
structure and the improved Bottleneck design, refer to Appendix B.
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Advanced Feature Extraction. We optimize the original ELAN architecture into a lightweight
variant, referred to as L-ELAN. ELAN first reduces the input data channels Fin to F2 via the CBS
submodule M2 (1×1 convolution). It then gathers local features using four CBS submodules (M3

to M6, each with 3×3 convolutions) and utilizes multiple shortcut connections to output multi-
scale information F2, F3, and F4. The ELAN module achieves strong performance by reducing
parameters through channel shrinking and extracting rich features via residual connections.

In deeper layers, where channels double and features become more abstract, we design the L-ELAN
to further lighten the structure. We remove the submodule M4 to reduce overhead and replace the
M2 kernel from 1×1 to 3×3, increasing feature diversity by making F1 and F2 scales different.
F3 and F4 maintain their levels with two and four 3×3 convolutions. Finally, F1, F2, F3, and F4

are concatenated and fitted by M7 to produce Fout. These adjustments preserve multi-scale feature
integration while reducing parameters without performance loss. Details of the ELAN and L-ELAN
structures are provided in Appendix B.

3.3 SPATIAL FEATURE EXTRACTION FOR POINT CLOUDS

Following the extraction of local features, we utilize a CNN-based PointNet module, as referenced
in (Qi et al., 2017a), to encode the spatial information inherent in the point cloud. This encoding
process involves the use of 1× 1 convolutions, which effectively capture both the local features and
the point coordinates. To derive the spatial features of the point cloud, we subject the convolved data
to max pooling and then pad it to match the size of the local features, using average pooling as our
padding method.

In comparison, the method outlined in (Li et al., 2018b) relies on 2D convolutional networks to
extract features from XYZ maps of point clouds. However, this approach proves less effective
than heterogeneous structure methods, as documented in (Wang et al., 2019; He et al., 2020). The
primary reason for this underperformance lies in the loss of spatial information that occurs during
the 2D convolution operations applied to XYZ maps, as highlighted in (Mo et al., 2022).

3.4 GLOBAL FEATURE EXTRACTION

To address the CNN network’s global perception limitations, we incorporate a Pyramid Vision
Transformer (PVT) (Wang et al., 2021) to capture long-range dependencies, thereby enhancing
global feature extraction.

PVT employs a pyramid-like architecture, systematically reducing spatial resolution across four
stages to learn multi-level features. Each stage consists of a Spatial Reduction Attention (SRA)
layer and a Feed-Forward Network (FFN). The SRA utilizes a multi-head self-attention mechanism
to effectively model long-distance dependencies while minimizing computational complexity by
decreasing pixel count.

To process an input feature map F ∈ RHi×Wi×C at the ith stage with dimensions of height Hi,
width Wi, and C channels), we first perform Layer Normalization (LN) (Ba et al., 2016). The
features are then rearranged into a flattened format, generating vector tokens X ∈ RN×C , where
N = Hi ×Wi, signifies the total pixel count of the feature map. The tokens X are mapped to their
corresponding query Q, key K, and value V ∈ RN×C vectors using trained linear mappings WQ,
WK , and WV ∈ RC×C . To optimize memory usage, the spatial extents of K and V are trimmed
down before applying self-attention, calculated as:

Attention(Q,K, V ) = Softmax
(

QKT

√
Chead

)
V, (6)

where Chead denotes the channel depth per attention head in SRA. As stated in Equation 6, every
token in the entire input space F can interact with any other token, including itself. The global
feature extraction benefits from the dual self-attention mechanism in PVT: 1) The self-attention in
each transformer layer expands the network’s receptive field to cover the entire image, enabling
interaction between distant pixels and enhancing long-range dependency capture; 2) By embedding
both depth and RGB data into each token, the self-attention mechanism evaluates pixel similarities
and depth information together, allowing depth data to propagate and correct pixel errors for more
accurate feature extraction.
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3.5 6D POSE REGRESSION

The local features, spatial features of the point cloud, and global features are concatenated to form
the aggregated features F = {fi}Ni=o,fi ∈ d. Following the method in (Mo et al., 2022), we estimate
rotation Ri ∈ SO(3) and translation ti ∈ R3 using the aggregated features fi and the corresponding
visible points ṗi ∈ Ṗ . Three 1x1 convolution heads (BT , BQ, BC) are employed to regress the
translation offsets △ṫi ∈ R3, quaternions (qi ∈ R4, ∥qi∥ = 1) and confidences ci ∈ [0, 1], as shown
in Figure 2. Detailed formulas and processes are provided in Appendix C.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

The RGB image and XYZ map are resized to 128×128. Dataset-specific training protocols are used.
For LineMOD, the batch size is 8, it runs for 100 epochs, and the learning rate ranges from 5×10−4

to 5 × 10−6. As for YCB-Video, the batch size is 64, it goes through 30 epochs, and the learning
rate ranges from 1.8× 10−4 to 1.8× 10−5. Details are provided in Appendix D.

4.2 DATASETS

LineMOD (Hinterstoisser et al., 2011) comprises 13 video sequences, each showcasing a unique
low-textured object, serving as a benchmark for evaluating 6D object pose estimation methods
(Wang et al., 2019; Vidal et al., 2018; Sundermeyer et al., 2018; Tekin et al., 2018a; Li et al., 2018c;
Buch et al., 2017; Drost et al., 2010). Following segmentation practices outlined in the literature
(Wang et al., 2019; Peng et al., 2019; Xiang et al., 2017), we allocate 15% of the RGB-D images
for each object to the training set and reserve the remainder for testing, without incorporating any
additional synthetic data.
YCB-Video (Xiang et al., 2017) features 21 objects captured in 92 RGB-D videos, highlighting
a diverse range of object shapes and textures under various occlusion conditions. Consistent with
previous studies (He et al., 2020; Wang et al., 2019; Xiang et al., 2017), we utilize 80 videos for
training and select 2,949 keyframes from the remaining 12 videos as our test set, augmenting our
training data with 80,000 synthetic images provided by (Xiang et al., 2017).

4.3 METRICS

In accordance with established practices (He et al., 2021; Wang et al., 2019; Xiang et al., 2017), we
employ the ADD and ADD-S metrics for accuracy evaluation, designating ADD for non-symmetric
objects and ADD-S for symmetric ones. For the LineMOD dataset, accuracy is assessed based on
an ADD(S) value of less than 10% of the model’s diameter, and we calculate the corresponding
percentage accuracy. For the YCB-Video dataset, we utilize the area under the curve (AUC) of the
ADD-S and ADD(S) metrics, varying the distance threshold from 0 cm to 10 cm to generate the
accuracy-threshold curve, from which we then compute the area between this curve and the XY
axes (Mo et al., 2022). Additional details regarding the ADD and ADD-S metrics are provided in
Appendix E.

4.4 COMPARISON WITH SOTA METHODS

In this section, we comprehensively evaluate the performance of CTNet against state-of-the-art
(SOTA) methods on the LineMOD and YCB-Video datasets. To provide a thorough analysis, we
present both quantitative and qualitative results.

Results on LineMOD. The visualization results of a sample comparison between our method and
ES6D on the LineMOD dataset are shown in Figure 3. The LineMOD dataset estimates the pose of
objects centered on a marked board, where colored dots represent sampled points of the 3D model
of the object. After pose estimation, the sampled points are projected onto the image; the closer
the projected points match the target object, the more accurate the pose estimation. The highlighted
areas indicate objects with significant differences between the results of the two algorithms. The

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) ES6D

(b) Ours

Figure 3: The visualization results on LineMOD.

Table 1: Comparison of ADD(S) accuracy on LineMOD dataset.

Object DenseFusion PVN3D ES6D Ours

ape 92.3 95.5 91.4 95.2
benchvise 93.2 94.5 96.1 99.0
camera 94.4 94.2 98.0 99.0
can 93.1 94.3 96.0 100.0
cat 96.5 95.5 99.0 100.0
driller 87.0 93.3 97.0 100.0
duck 92.3 94.6 96.2 95.3
eggbox 99.8 100.0 99.1 100.0
glue 100.0 100.0 100.0 100.0
holepuncher 92.1 95.1 99.1 100.0
iron 97.0 92.1 99.0 97.9
lamp 95.3 93.7 99.0 99.0
phone 92.8 93.6 97.1 99.0

MEAN 94.3 95.1 97.5 98.8

visualization results demonstrate that our method generates denser and more accurate sampled points
compared with ES6D.

The performance comparison of different methods on the LineMOD dataset is presented in Table 1.
DenseFusion (Wang et al., 2019), PVN3D (He et al., 2020), and ES6D (Mo et al., 2022) are the cur-
rent mainstream pose estimation networks. As shown, our algorithm achieves 100% or near 100%
accuracy for most objects, with an average accuracy improvement of 4.5%, 3.7%, and 1.3% over
DenseFusion (iterative), PVN3D, and ES6D, respectively, across the 13 objects. Notably, DenseFu-
sion (iterative) includes an iterative refinement post-processing step, while our algorithm does not
use any post-processing or refinement. This demonstrates the effectiveness of the hybrid architecture
of CNN and Transformer in CTNet.

Results on YCB-Video The visualization results of a sample comparison between our method
and ES6D on the YCB-Video dataset are depicted in Figure 4. The YCB-Video dataset estimates
the pose of all objects in the scene, where colored dots represent the sampled points of each object.
The highlighted areas indicate objects with significant differences between the results of the two al-
gorithms. The visualization results demonstrate that our method generates denser and more accurate
sampled points compared with ES6D.
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(a) ES6D

(b) Ours

Figure 4: The visualization results on YCB-Video.

Table 2: Comparison of ADD-S and ADD(S) accuracy on YCB-Video dataset.

Object DenseFusion PVN3D ES6D Ours
ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S)

master chef can 95.9 77.2 96.2 79.2 96.1 70.6 97.2 76.9
cracker box 95.4 94.2 95.9 94.7 95.3 94.8 96.2 95.9
sugar box 96.7 96.5 97.4 96.4 98.2 98.2 98.2 98.2
tomato soup can 97.5 97.4 96.6 88.5 95.0 90.2 96.7 92.4
mustard bottle 97.9 94.3 97.4 96.3 97.9 97.9 98.2 97.8
tuna fish can 95.7 76.3 96.2 88.6 96.2 92.6 96.5 93.0
pudding box 97.6 96.5 96.7 95.2 97.9 97.9 97.7 97.7
gelatin box 99.0 97.6 97.8 96.2 98.6 98.6 98.9 98.9
potted meat can 90.1 83.7 93.6 88.3 92.4 86.0 93.5 87.0
banana 98.0 85.2 96.7 93.6 96.7 95.8 97.3 96.4
pitcher base 97.1 96.3 97.1 96.5 97.6 97.6 97.3 97.3
bleach cleanser 96.9 92.7 96.1 93.1 96.0 91.3 97.1 94.1
bowl 91.4 91.4 88.7 88.7 95.5 95.5 95.9 95.9
mug 96.2 91.0 97.5 95.5 96.5 94.0 96.7 94.5
power drill 95.8 95.0 96.8 95.3 97.2 97.1 97.3 97.2
wood block 92.6 92.6 91.5 91.5 93.7 93.7 94.1 94.1
scissors 86.6 64.4 96.9 93.5 90.3 79.2 90.1 78.2
large marker 97.7 91.9 96.7 91.8 97.8 92.4 97.9 92.9
large clamp 89.5 89.5 94.4 94.4 96.2 96.2 96.5 96.5
extra large clamp 93.3 93.3 91.1 91.1 95.2 95.2 95.2 95.2
foam brick 92.6 92.6 96.8 96.8 95.9 95.9 97.0 97.0

MEAN 94.9 90.0 95.4 92.6 96.0 92.9 96.5 93.7

Table 2 displays the ADD-S and ADD(S) AUC values, as well as their averages, for 21 objects
(with symmetrical objects highlighted in bold) in the YCB-Video dataset across various methods.
The experimental outcomes demonstrate that our algorithm outperforms DenseFusion, PVN3D, and
ES6D by an average accuracy improvement of 3.7%, 1.1%, and 0.8% on ADD(S), and by 1.6%,
1.1%, and 0.5% on ADD-S, respectively. Given the challenging occluded scenarios in the YCB-
Video dataset, these results indicate that CTNet exhibits strong robustness in handling such cases.
The accuracy results for both datasets are presented as line graphs in Appendix F.

4.5 ABLATION STUDIES

We further analyze the contribution of individual modules in CTNet by comparing six different
network configurations, as detailed in Table 3. The results show that the complete architecture,
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Table 3: Ablation studies of CTNet. IFEL: initial feature extraction layers, including PConv and
C2f modules; AFEL: advanced feature extraction layers, featuring the L-ELAN module; SIE: spatial
information encoding; PVT: pyramid vision transformer.

Method IFEL AFEL SIE PVT LineMOD YCB Time FLOPs Parameters
PConv C2f L-ELAN ADD(S) ADD(S) (ms) (G) (M)

Unified like (Li et al., 2018a) 96.0 91.5 20.3 7.39 17.85
CTNet 1 ✓ 97.5 92.9 15.7 6.5 14.9
CTNet 2 ✓ ✓ 97.6 93.0 14.3 6.3 14.9
CTNet 3 ✓ ✓ ✓ 97.9 93.1 11.3 2.3 5.7
CTNet 4 ✓ ✓ ✓ ✓ 98.3 93.4 11.1 2.7 6.1
CTNet 5 ✓ ✓ ✓ ✓ ✓ 98.8 93.7 12.5 3.6 6.4

CTNet 5, which integrates IFEL, AFEL, SIE, and PVT, achieves the best overall performance. In
contrast, the Unified like (Li et al., 2018a) underperforms in both accuracy and inference speed.
Notably, CTNet 2, which introduces PConv layers, demonstrates a substantial improvement over
CTNet 1, highlighting the positive interaction between PConv and C2f. Furthermore, CTNet 3,
which adds the AFEL, significantly reduces FLOPs while maintaining accuracy, highlighting the
efficiency of the L-ELAN design. Although the inclusion of SIE in CTNet 4 and PVT in CTNet 5
slightly increases FLOPs compared to CTNet 3, the gains in accuracy outweigh these additions.
This confirms the complementary nature of local, spatial, and global feature extraction, reinforcing
the robustness of CTNet’s hybrid architecture.

Table 4: Practical effects of applying the HFE to other 6D pose estimation frames.

Method ADD-S ADD(S) Time(ms) FLOPs(G) Parameters(M)

DenseFusion (origin) 94.8 90.1 39.9 11.8 17.2
DenseFusion (HFE) 96.4 93.1 14.1 2.7 5.4
PVN3D (origin) 95.4 92.6 199.6 190.8 31.1
PVN3D (HFE) 96.5 92.8 82.6 90.5 9.0
ES6D (origin) 97.5 92.9 15.8 6.7 15.1
ES6D (HFE) 98.5 93.2 12.6 3.7 7.0

To showcase the adaptability of HFE within CTNet, we substituted the CNN components of three
prominent algorithms with our novel HFE and carried out experiments on the YCB-Video dataset.
The outcomes, detailed in Table 4, reveal that incorporating HFE boosts inference speed by 64.7%,
58.6%, and 20.3% for DenseFusion, PVN3D, and ES6D, respectively. Furthermore, FLOPs are
decreased by 77.1%, 52.6%, and 44.8%, and parameter counts are reduced by 68.6%, 71.1%, and
53.6% for these respective frameworks. Notably, accuracy also improves across all three systems.
These findings highlight HFE’s exceptional transferability and efficiency, establishing it as a versa-
tile and effective component for 6D pose estimation networks.

5 CONCLUSIONS

This paper introduces CTNet, a hybrid architecture combining CNN and Transformer components
for 6D pose estimation. The CNN-based Hierarchical Feature Extractor (HFE) optimizes local fea-
ture extraction, and the Pyramid Vision Transformer (PVT) captures a broader global context. Along
with CNN-based PointNet spatial encoding, this design achieves superior pose estimation perfor-
mance. Experiments on the LineMOD and YCB-Video datasets show that CTNet balances accuracy
and efficiency, surpassing current models. Furthermore, HFE enhances other architectures when
integrated, proving its robustness and adaptability.
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A INPUT PREPARATION AND PREPROCESSING

Following the method in (Mo et al., 2022), we use the segmentation network from PoseCNN (Xiang
et al., 2017) to obtain masks and bounding boxes for target objects. Each mask and RGB-D image
patch, cropped by the bounding boxes, is used as input. TThe masked depth pixels are normalized,
converted into an XYZ map, and concatenated with the RGB patch to form a 6-channel input.

B DETAILED STRUCTURES OF KEY MODULES

In this section, we introduce the specific designs of C2f, its Bottleneck structures, as well as ELAN
and L-ELAN modules.

C2f Module The C2f module (Jocher et al., 2023) is a component for extracting features at mul-
tiple levels. As depicted in Figure 5, the initial phase involves passing the feature map through a
CBS submodule, which integrates Conv, BatchNorm, and SiLU elements. This submodule contains
a 1 × 1 convolutional kernel, a normalization layer, and an activation layer. Following this, the
module incorporates the CSP design, dividing the feature map into two paths. One path is directly
forwarded to the Concat module, while the other undergoes Bottleneck processing before merging
with the first path in the Concat module.

Figure 5: The framework of C2f module.

Bottleneck Structure within C2f The Bottleneck structure is composed of two convolutional
layers linked by a residual connection. As shown in Figure 6, this structure initially decreases the
channel count and subsequently reinstates it. In our implementation, we replace the traditional con-
volutional layers in the compression and expansion phases with depthwise separable convolutional
layers and channel attention mechanism layers, respectively.

ELAN and L-ELAN Modules The differences between ELAN (Wang et al., 2023) and L-ELAN
are clearly visible in Figure 7. Specifically, in L-ELAN, we replace the 1 × 1 convolutional kernel
in component M3 with 3 × 3 kernel, enhancing its ability to capture spatial context. Addition-
ally, we remove component M4 entirely, simplifying the architecture and improving computational
efficiency. These modifications enhance the practicality of the L-ELAN module.
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Figure 6: Improved Bottleneck structure in the C2f module.

(a) ELAN (b) L-ELAN

Figure 7: The frameworks of ELAN and L-ELAN module.

C 6D POSE REGRESSION

Following the method in (Mo et al., 2022), we estimate rotation Ri ∈ SO(3) and translation ti ∈ R3

using the aggregated features fi and the corresponding visible points ṗi ∈ Ṗ . Three 1x1 con-
volution heads (BT , BQ, BC) are used to regress the translation offsets △ṫi ∈ R3, quaternions
(qi ∈ R4, ∥qi∥ = 1) and confidences ci ∈ [0, 1], as shown in Figure 2.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

3D translation regression. Treating the origin of the normalized object coordinate system as a
virtual keypoint, the translation ti can be obtained by calculating the offset △ṫi between the visible
points ṗi and the origin. This equation can be expressed as:

ṫi = BT (fi), (7)

ti =
(ṗi +△ṫi)

γ
+ pc, (8)

here the offset distribution of the visible points ṗi is within a specific sphere.

3D rotation regression. We use quaternions as the rotation representation following (Xiang et al.,
2017; Wang et al., 2019). The rotation matrix we obtain is as follows:

Ri = Quaternion matrix(Norm(BQ}(fi)), (9)

Norm(qi) =
qi

∥qi∥
, (10)

where Quaternion matrix(·) represents the function that converts quaternions into a rotation ma-
trix (Sarabandi & Thomas, 2019).

Confidence regression. To determine the optimal regression results, we set up a confidence esti-
mation head to evaluate the confidence ci of each feature. The equation is as follows:

ci = Sigmoid(BC(fi)), (11)
where we used the self-supervised method mentioned in (Wang et al., 2019) to train the confidence
branch BC .

D IMPLEMENTATION DETAIL

The RGB image and XYZ map are uniformly resized to 128×128. The training protocol varies by
dataset. For the LineMOD dataset, we use a batch size of 8 and train the model for 100 epochs,
starting with an initial learning rate of 5× 10−4, which decays to 5× 10−6 using a cosine annealing
schedule from the 90th epoch onward. A linear warm-up is applied during the first epoch, gradually
increasing the learning rate from 5×10−6 to 5×10−4. For the YCB-Video dataset, we set the batch
size to 64 and train the model for 30 epochs, beginning with an initial learning rate of 1.8 × 10−4,
which decays using a cosine annealing schedule and is maintained at 1.8 × 10−5 from the 20th
epoch until the end of training. A linear warm-up phase increases the learning rate from 1.8× 10−6

to 1.8 × 10−4 during the first epoch. These training strategies ensure efficient convergence and
optimal performance of the model across different datasets.

E METRICS

We follow the evaluation methods used in (Xiang et al., 2017; Wang et al., 2019; He et al., 2021),
employing the average distance metrics ADD and ADD-S to assess the accuracy of the algorithm.
The ADD metric is calculated by computing the average distance between the transformed object
vertices using the predicted pose [R, T ] and the ground truth pose [R∗, T ∗]:

ADD =
1

m

∑
x∈O

||(Rx+ T )− (R∗x+ T ∗)||, (12)

where x is a point in the object point cloud O and m is the number of points in the point cloud.
However, the ADD metric can only be applied to non-symmetric objects with unique true values.
For symmetric objects, which have multiple equivalent true poses, we use the ADD-S, which is
invariant to symmetry. The ADD-S calculation is as follows:

ADD − S =
1

m

∑
x1∈O

min
x2∈O

||(Rx1 + T )− (R∗x2 + T ∗)||. (13)

To comprehensively evaluate the performance of our algorithm, we consider an ADD(S) less than
10% of the model diameter as the criterion for a correct estimation on the LineMOD dataset and
calculate the percentage accuracy. For the YCB-Video dataset, we employ the AUC of the ADD-S
and ADD(S) metrics, adjusting the distance threshold from 0 cm to 10 cm to generate the accuracy-
threshold curve and subsequently calculate the area between this curve and the XY axes (Mo et al.,
2022).
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F ACCURACY RESULTS ON BOTH DATASETS

Figure 8 compares the performance of CTNet with three other advanced methods on the LineMOD
and YCB-Video datasets. In this comparison, the X-axis represents the object categories in the
datasets, along with the average performance across all categories (MEAN). The Y-axis signifies the
ADD(s) metric, which quantifies the accuracy of object recognition. Evidently, the red line, which
represents CTNet, demonstrates superior recognition accuracy for most objects in comparison to the
other three methods. This notable difference underscores the precision advantage that our approach
offers.

Figure 8: Performance comparison on LineMOD and YCB-Video datasets.

16


	Introduction
	Related Work
	Methods
	Network Architecture
	Local Feature Extraction
	Spatial feature extraction for point clouds
	Global Feature Extraction
	6D pose regression

	Experiments
	Implementation Details
	Datasets
	Metrics
	Comparison with SOTA methods
	Ablation studies

	Conclusions
	Input Preparation and Preprocessing
	Detailed Structures of Key Modules
	6D pose regression
	Implementation Detail
	Metrics
	Accuracy Results on Both Datasets

