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Abstract
Novel Class Discovery (NCD) aims at inferring
novel classes in an unlabeled set by leveraging
prior knowledge from a labeled set with known
classes. Despite its importance, there is a lack
of theoretical foundations for NCD. This pa-
per bridges the gap by providing an analytical
framework to formalize and investigate when
and how known classes can help discover novel
classes. Tailored to the NCD problem, we in-
troduce a graph-theoretic representation that can
be learned by a novel NCD Spectral Contrastive
Loss (NSCL). Minimizing this objective is equiv-
alent to factorizing the graph’s adjacency matrix,
which allows us to derive a provable error bound
and provide the sufficient and necessary condi-
tion for NCD. Empirically, NSCL can match or
outperform several strong baselines on common
benchmark datasets, which is appealing for prac-
tical usage while enjoying theoretical guarantees.
Code is available at: https://github.com/
deeplearning-wisc/NSCL.git.

1. Introduction
Though modern machine learning methods have achieved
remarkable success (He et al., 2016; Chen et al., 2020; Song
et al., 2020; Wang et al., 2022), the vast majority of learning
algorithms have been driven by the closed-world setting,
where the classes are assumed stationary and unchanged
between training and testing. However, machine learning
models in the open world will inevitably encounter novel
classes that are outside the existing known categories (Sun
et al., 2021; 2022; Ming et al., 2022; 2023). Novel Class
Discovery (NCD) (Han et al., 2019) has emerged as an
important problem, which aims to cluster similar samples in
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Figure 1. Novel Class Discovery (NCD) aims to cluster similar
samples in unlabeled data (right), by way of utilizing knowledge
from the labeled data (left). We illustrate scenarios where different
known classes could result in different novel clusters (e.g., red
mushrooms or mushrooms with umbrella shapes). This paper aims
to provide a formal understanding.

an unlabeled dataset (of novel classes) by way of utilizing
knowledge from the labeled data (of known classes). Key
to NCD is harnessing the power of labeled data for possible
knowledge sharing and transfer to the unlabeled data (Hsu
et al., 2018; Han et al., 2019; Hsu et al., 2019; Zhong et al.,
2021b; Han et al., 2020a; Yang et al., 2022; Sun & Li, 2023).

One promising approach for NCD is to learn feature repre-
sentation jointly from both labeled and unlabeled data, so
that meaningful cluster structures emerge as novel classes.
We argue that interesting intricacies can arise in this learning
process—the resulting novel clusters may be very different,
depending on the type of known class provided. We exem-
plify the nuances in Figure 1. In one scenario, the novel
class “red mushroom” can be discovered, provided with the
known class “strawberry” of a shared color feature. Alter-
natively, a different novel class can also emerge by group-
ing the bottom two images together (as “mushroom with
umbrella shape” class), if the umbrella-shape images are
given as a known class to the learner. We argue—perhaps
obviously—that a formalized understanding of the intricate
phenomenon is needed. This motivates our research:

When and how does the known class help discover novel
classes?
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Despite the empirical successes in recent years, there is
a limited theoretical understanding and formalization for
novel class discovery. To the best of our knowledge, there is
no prior work that investigated this research question from
a rigorous theoretical standpoint or provided provable error
bound. Our work thus complements the existing works by
filling in the critical blank.

In this paper, we start by formalizing a new learning al-
gorithm that facilitates the understanding of NCD from a
spectral analysis perspective. Our theoretical framework
first introduces a graph-theoretic representation tailored for
NCD, where the vertices are all the labeled and unlabeled
data points, and classes form connected sub-graphs (Sec-
tion 4.1). Based on this graph representation, we then in-
troduce a new loss called NCD Spectral Contrastive Loss
(NSCL) and show that minimizing our loss is equivalent
to performing spectral decomposition on the graph (Sec-
tion 4.2). Such equivalence allows us to derive the formal
error bound for NCD based on the properties of the graph,
which directly encodes the relations between known and
novel classes.

We analyze the NCD quality by the linear probing perfor-
mance on novel data, which is the least error of all possi-
ble linear classifiers with the learned representation. Our
main result (Theorem 5.5) suggests that the linear probing
error can be significantly reduced (even to 0) when the lin-
ear span of known samples’ feature covers the “ignorance
space” of unlabeled data in discovering novel classes. Lastly,
we verify that our theoretical guarantees can translate into
empirical effectiveness. In particular, NSCL establishes
competitive performance on common NCD benchmarks,
outperforming the best baseline by 10.6% on the CIFAR-
100-50 dataset (with 50 novel classes).

Our main contributions are:

1. We provide the first provable framework for the NCD
problem, formalizing it by spectral decomposition of
the graph containing both known and novel data. Our
framework allows the research community to gain in-
sights from a graph-theoretic perspective.

2. We propose a new loss called NCD Spectral Con-
trastive Loss (NSCL) and show that minimizing our
loss is equivalent to performing singular decomposi-
tion on the graph. The loss leads to strong empirical
performance while enjoying theoretical guarantees.

3. We provide theoretical insight by formally defining
the semantic relationship between known and novel
classes. Based on that, we derive an error bound of
novel class discovery and investigate the sufficient and
necessary conditions for the perfect discovery results.

2. Related Work
Novel class discovery. Early works tackled novel category
discovery (NCD) as a transfer learning problem, such as
DTC (Han et al., 2019), KCL (Hsu et al., 2018), MCL (Hsu
et al., 2019). Many subsequent works incorporate represen-
tation learning for NCD, including RankStats (Han et al.,
2020a), NCL (Zhong et al., 2021a) and UNO (Fini et al.,
2021). CompEx (Yang et al., 2022) further uses a novelty
detection module to better separate novel and known. How-
ever, none of the previous works theoretically analyzed the
key question: when and how do known classes help? Li
et al. (2022) try to answer this question from an empirical
perspective by comparing labeled datasets from different
levels of semantic similarity. Chi et al. (2021) directly de-
fine a solvable condition for the NCD problem but do not
investigate the semantic relationship between known and
novel classes. Our paper is the first work that systematically
investigates the “when and how” questions by modeling the
sample relevance from a graph-theoretic perspective and
providing a provable error bound for the NCD problem.

Spectral graph theory. Spectral graph theory is a classic
research problem (Chung, 1997; Cheeger, 2015; Kannan
et al., 2004; Lee et al., 2014; McSherry, 2001), which aims
to partition the graph by studying the eigenspace of the
adjacency matrix. The spectral graph theory is also widely
applied in machine learning (Ng et al., 2001; Shi & Malik,
2000; Blum, 2001; Zhu et al., 2003; Argyriou et al., 2005;
Shaham et al., 2018). Recently, HaoChen et al. (2021)
derive a spectral contrastive loss from the factorization of
the graph’s adjacency matrix which facilitates theoretical
study in unsupervised domain adaptation (Shen et al., 2022;
HaoChen et al., 2022). The graph definition in existing
works is purely formed by the unlabeled data, whereas our
graph and adjacency matrix is uniquely tailored for the
NCD problem setting and consists of both labeled data from
known classes and unlabeled data from novel classes. We
offer new theoretical guarantees and insights based on the
relations between known and novel classes, which has not
been explored in the previous literature.

Theoretical analysis on contrastive learning. Recent
works have advanced contrastive learning with empirical
success (Chen et al., 2020; Khosla et al., 2020; Zhang et al.,
2021; Wang et al., 2022), which necessitates a theoretical
foundation. Arora et al. (2019); Lee et al. (2021); Tosh et al.
(2021a;b); Balestriero & LeCun (2022); Shi et al. (2023) pro-
vided provable guarantees on the representations learned by
contrastive learning for linear probing. Shen et al. (2022);
HaoChen et al. (2021; 2022) further modeled the pairwise
relation from the graphic view and provided error analysis
of the downstream tasks. However, the existing body of
work has mostly focused on unsupervised learning. There
is no prior theoretical work considering the NCD problem
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where both labeled and unlabeled data are presented. In this
paper, we systematically investigate how the label informa-
tion can change the representation manifold and affect the
downstream novel class discovery task.

3. Setup
Formally, we describe the data setup and learning goal for
novel class discovery (NCD).

Data setup. We consider the empirical training set Dl ∪Du

as a union of labeled and unlabeled data. The labeled dataset
is given by Dl = {(x̄1, y1), . . . , (x̄i, yi), . . .}, where yi be-
longs to known class space Yl; and the unlabeled dataset
is Du = {x̄1, . . . , x̄j , . . .}. We assume that each unlabeled
sample x̄ ∈ Du belongs to one of the novel classes, which
do not overlap with the known classes Yl. We use Pl and
Pu to denote the marginal distributions of labeled and unla-
beled data in the input space. Further, we let Pli denote the
distribution of labeled samples with class label i ∈ Yl.

Learning goal. We assume that there exists an underly-
ing class space Yu = {1, ..., |Yu|} for unlabeled data Xu,
which is not revealed to the learner. The goal of novel class
discovery is to learn a clustering for the novel data, which
can be mapped to Yu with low error.

4. Spectral Contrastive Learning for Novel
Class Discovery

In this section, we introduce a new learning algorithm for
NCD, from a graph-theoretic perspective. NCD is inherently
a clustering problem—grouping similar points in unlabeled
data Du into the same cluster, by way of possibly utilizing
helpful information from the labeled data Dl. This clus-
tering process can be fundamentally modeled by a graph,
where the vertices are all the data points and classes form
connected sub-graphs. Our novel framework first introduces
a graph-theoretic representation for NCD, where edges con-
nect similar data points (Section 4.1). We then propose a
new loss that performs spectral decomposition on the sim-
ilarity graph and can be written as a contrastive learning
objective on neural net representations (Section 4.2).

4.1. Graph-Theoretic Representation for NCD

We start by formally defining the augmentation graph and
adjacency matrix. For notation clarity, we use x̄ to indi-
cate the natural sample (raw inputs without augmentation).
Given an x̄, we use T (x|x̄) to denote the probability of x be-
ing augmented from x̄. For instance, when x̄ represents an
image, T (·|x̄) can be the distribution of common augmen-
tations such as Gaussian blur, color distortion, and random
cropping. The augmentation allows us to define a general
population space X , which contains all the original images

along with their augmentations. In our case, X (|X | = N )
is composed of two parts Xl (|Xl| = Nl), Xu (|Xu| = Nu)
which represents the division into labeled data with known
classes and unlabeled data with novel classes respectively.
Unlike unsupervised learning (Chen et al., 2020), NCD has
access to both labeled and unlabeled data. This leads to two
cases where two samples x and x+ form a positive pair if:

(a) x and x+ are augmented from the same unlabeled
image x̄u ∼ Pu.

(b) x and x+ are augmented from two labeled samples x̄l

and x̄′
l with the same known class i. In other words,

both x̄l and x̄′
l are drawn independently from Pli .

We define the graph G(X , w) with vertex set X and edge
weights w. For any two augmented data x, x′ ∈ X , wxx′ is
the marginal probability of generating the pair (x, x′):

wxx′ ≜ α
∑
i∈Yl

Ex̄l∼Pli
Ex̄′

l∼Pli
T (x|x̄l)T (x′|x̄′

l)

+ βEx̄u∼Pu T (x|x̄u)T (x′|x̄u) ,

(1)case (b)

case (a)

where α, β modulates the importance between unlabeled
and labeled data. The magnitude of wxx′ indicates the
“positiveness” or similarity between x and x′. We then
use wx =

∑
x′∈X wxx′ to denote the total edge weights

connected to vertex x.

As a standard technique in graph theory (Chung, 1997), we
use the normalized adjacency matrix:

Ȧ ≜ D−1/2AD−1/2, (2)

where A ∈ RN×N is adjacency matrix with entries Axx′ =
wxx′ and D ∈ RN×N is a diagonal matrix with Dxx = wx.
The normalization balances the degree of each node, reduc-
ing the influence of vertices with very large degrees. The
adjacency matrix defines the probability of x and x′ being
considered as the positive pair from the perspective of aug-
mentation, which helps derive the NCD Spectral Contrastive
Loss as we show next.

4.2. NCD Spectral Contrastive Learning

In this subsection, we propose a formal definition of NCD
Spectral Contrastive Loss, which can be derived from a
spectral decomposition of Ȧ. The derivation of the loss is
inspired by (HaoChen et al., 2021), and allows us to the-
oretically show the equivalence between learning feature
embeddings and the projection on the top-k SVD compo-
nents of Ȧ. Importantly, such equivalence facilitates the
theoretical understanding based on the semantic relation
between known and novel classes encoded in Ȧ.
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Specifically, we consider low-rank matrix approximation:

min
F∈RN×k

Lmf(F,A) ≜
∥∥∥Ȧ− FF⊤

∥∥∥2
F

(3)

According to the Eckart–Young–Mirsky theorem (Eckart &
Young, 1936), the minimizer of this loss function is F ∗ ∈
RN×k such that F ∗F ∗⊤ contains the top-k components of
Ȧ’s SVD decomposition.

Now, if we view each row f⊤x of F as a learned feature
embedding f : X 7→ Rk, the Lmf(F,A) can be written as
a form of the contrastive learning objective. We formalize
this connection in Theorem 4.1 below.

Theorem 4.1. We define fx =
√
wxf(x) for some function

f . Recall α, β are hyper-parameters defined in Eq. (1).
Then minimizing the loss function Lmf(F,A) is equivalent
to minimizing the following loss function for f , which we
term NCD Spectral Contrastive Loss (NSCL):

Lnscl(f) ≜ −2αL1(f)− 2βL2(f)

+ α2L3(f) + 2αβL4(f) + β2L5(f),
(4)

where

L1(f) =
∑
i∈Yl

E
x̄l∼Pli

,x̄′
l∼Pli

,

x∼T (·|x̄l),x
+∼T (·|x̄′

l)

[
f(x)⊤f

(
x+
)]

,

L2(f) = E
x̄u∼Pu,

x∼T (·|x̄u),x
+∼T (·|x̄u)

[
f(x)⊤f

(
x+
)]

,

L3(f) =
∑
i∈Yl

∑
j∈Yl

E
x̄l∼Pli

,x̄′
l∼Plj

,

x∼T (·|x̄l),x
−∼T (·|x̄′

l)

[(
f(x)⊤f

(
x−))2] ,

L4(f) =
∑
i∈Yl

E
x̄l∼Pli

,x̄u∼Pu,

x∼T (·|x̄l),x
−∼T (·|x̄u)

[(
f(x)⊤f

(
x−))2] ,

L5(f) = E
x̄u∼Pu,x̄

′
u∼Pu,

x∼T (·|x̄u),x
−∼T (·|x̄′

u)

[(
f(x)⊤f

(
x−))2] .

Proof. (sketch) We can expand Lmf(F,A) and obtain

Lmf(F,A) =
∑

x,x′∈X

(
wxx′√
wxwx′

− f⊤x fx′

)2

= const+

∑
x,x′∈X

(
−2wxx′f(x)⊤f (x′) + wxwx′

(
f(x)⊤f (x′)

)2)
The form of Lnscl(f) is derived from plugging wxx′ (de-
fined in Eq. (1)) and wx. We include the details in Ap-
pendix A.2.

Interpretation of Lnscl(f). At a high level, L1 and L2

push the embeddings of positive pairs to be closer while
L3, L4 and L5 pull away the embeddings of negative pairs.
In particular, L1 samples two random augmentation views

of two images from labeled data with the same class label,
and L2 samples two views from the same image in Xu. For
negative pairs, L3 uses two augmentation views from two
samples in Xl with any class label. L4 uses two views of
one sample in Xl and another one in Xu. L5 uses two views
from two random samples in Xu.

5. Theoretical Analysis
So far we have presented a spectral approach for NCD based
on the augmentation graph. Under this formulation, we now
formally investigate and analyze: when and how does the
known class help discover novel class? We start by showing
that analyzing the linear probing performance is equivalent
to analyzing the regression residual using singular vectors
of Ȧ in Sec. 3. We then construct a toy example to illustrate
and verify the key insight in Sec. 5.2. We finally provide a
formal theory for the general case in Sec. 5.3.

5.1. Theoretical Setup

Representation for unlabeled data. We apply NCD spec-
tral learning objective Lnscl(f) in Equation 4 and assume
the optimizer is capable to obtain the representation that
minimizes the loss. We can then obtain the F ∗ s.t. F ∗F ∗⊤

are the top-k components of Ȧ’s SVD decomposition. To
ease the analysis, we will focus on the top-k singular vectors
V ∗ ∈ RN×k of Ȧ such that F ∗ = V ∗√Σk, where Σk is
the diagonal matrix with top-k singular values (σ1, ..., σk).

Since we are primarily interested in the unlabeled data, we
split V ∗ into two parts: U∗ ∈ RNu×k for unlabeled data
and L∗ ∈ RNl×k for labeled data, respectively. Assuming
the first Nl rows/columns in Ȧ corresponds to the labeled
data, we can conveniently rewrite V ∗ as:

V ∗ =

[
L∗(labeled part)

U∗(unlabeled part)

]
(5)

Linear probing evaluation. With the learned representa-
tion for the unlabeled data, we can evaluate NCD qual-
ity by the linear probing performance. The strategy is
commonly used in self-supervised learning (Chen et al.,
2020). Specifically, the weight of a linear classifier is de-
noted as M ∈ Rk×|Yu|. The class prediction is given by
h(x; f,M) = argmaxi∈Yu

(f(x)⊤M)i. The linear probing
performance is given by the least error of all possible linear
classifiers:

E(f) ≜ min
M∈Rk×|Yu|

∑
x∈Xu

1 [y(x) ̸= h(x; f,M)] , (6)

where y(x) indicates the ground-truth class of x.

Residual analysis. With defined U∗, we can bound the
linear probing error E(f) by the residual of the regression
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T1 =

Figure 2. An illustrative example for theoretical analysis. (a) The unlabeled data Xu consists of 3D objects of sphere/cube with red/blue
colors. We consider two cases of labeled data: (1) Case 1 uses a red cylinder X ,c1

which is correlated with the target novel class (red).
(2) Case 2 uses gray cylinder X ,c3

which has no correlation with Xu. (b) The augmentation matrices for case 1 and case 2 respectively.
See definition in Eq. (7). Best viewed in color.

error R(U∗) as we show in Lemma 5.1 with proof in Ap-
pendix A.1.

Lemma 5.1. Denote the y(x) ∈ R|Yu| as a one-hot vector
whose y(x)-th position is 1 and 0 elsewhere. Let Y ∈
RNu×|Yu| as a binary mask whose rows are stacked by
y(x). We have:

R(U∗) ≜ min
M∈Rk×|Yu|

∥Y − U∗M∥2F ≥ 1

2
E(f).

Note that we can rewrite R(U∗) as the summation
of individual residual terms R(U∗, y⃗i): R(U∗) =∑

i∈Yu
R(U∗, y⃗i), where

R(U∗, y⃗i) ≜ min
µ⃗i∈Rk

∥y⃗i − U∗µ⃗i∥22,

and y⃗i ∈ RNu is the i-th column of Y and µ⃗i ∈ Rk is
the i-th column of M. Without losing the generality, our
analysis will revolve around the residual term R(U∗, y⃗i) for
specific class i. It is clear that if learned representation U∗

encodes more information of the label vector y⃗i, the residual
R(U∗, y⃗i) becomes smaller1. Such insight can be used to
investigate which type of known class is more helpful for
learning the representation of novel classes.

5.2. An Illustrative Example

We consider a toy example that helps illustrate the core
idea of our theoretical findings. Specifically, the example
aims to cluster 3D objects of different colors and shapes, as

1In an extreme case, if the first column of U∗ is exactly the
same as y⃗i, one can set µ⃗i = [1, 0, 0, ...]⊤ to make residual zero.

shown in Figure 2 (a). These images are generated by a 3D
rendering software (Johnson et al., 2017) with user-defined
properties including colors, shape, size, position, etc.

In what follows, we define two data configurations and
corresponding graphs, where the labeled data is correlated
with the attribute of unlabeled data (case 1) vs. not (case
2). We are interested in contrasting the representations
(in form of singular vectors) and residuals derived from
both scenarios. The proof of all theorems in this section is
provided in Appendix B.

Motivation and data design. For simplicity, we focus on
two main properties: color and shape. Formally, the images
with shape s and color c are sampled from a generation
procedure G:

Xs,c ∼ G(s, c),

where s ∈ { (cube), (sphere), (cylinder)} and c ∈
{c1(red), c2(blue), c3(gray)}. We then construct our unla-
beled dataset containing red/blue cubes/spheres as:

Xu ≜ {X ,c1 , X ,c1 , X ,c2 , X ,c2}.

For simplicity, we assume each element in Xu is a single
example. W.o.l.g, we also assume the red cube and red
sphere form the target novel class. Then the corresponding
labeling vector on Xu is defined by:

y⃗ ≜ {1, 1, 0, 0}.

To answer “when and how does the known class help dis-
cover novel class?”, we construct two separate scenarios:
one helps and the other one does not. Specifically, in the first
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case, we let the labeled data X case 1
l be strongly correlated

with the target class (red color) in unlabeled data:

X case 1
l ≜ {X ,c1}(red cylinder).

In the second case, we construct the labeled data that has no
correlation with any novel classes. We use gray cylinders
which have no overlap in either shape and color:

X case 2
l ≜ {X ,c3}(gray cylinder).

Putting it together, our entire training dataset is X case 1 =
X case 1

l ∪ Xu or X case 2 = X case 2
l ∪ Xu. We aim to verify

the hypothesis that: the representation learned by X case 1

provides a much smaller regression residual to y⃗ than X case 2

for color class.

Augmentation graph. Based on the data, we now define the
probability of augmenting an image Xs,c to another X ′

s′,c′ :

T
(
X ′

s′,c′ | Xs,c

)
=


τ1 if s = s′, c = c′,
τs if s = s′, c ̸= c′,
τc if s ̸= s′, c = c′,
τ0 if s ̸= s′, c ̸= c′,

(7)

It is natural to assume the magnitude order that follows
τ1 ≫ max(τs, τc) and min(τs, τc) ≫ τ0. In two data
settings X case 1 and X case 2, the corresponding augmentation
matrices T1, T2 formed by T (·|·) are presented in Fig. 2 (b).
According to Eq. (1), it can be verified that the adjacency
matrices are A1 = T 2

1 and A2 = T 2
2 respectively.

Main analysis. We are primarily interested in analyzing the
difference of the representation space derived from A1 vs.
A2. Since τ1 ≫ max(τs, τc), one can show that A1 and A2

are positive-definite. The singular vector is thus equivalent
to the eigenvector. Also note that A1 and their square root T1

have the same eigenvectors and order. It is thus equivalent
to analyzing the eigenvectors of T1. Same with A2 and T2.
In this toy example, we consider the eigenvalue problem of
the unnormalized adjacency matrix2 for simplicity.

We put analysis on the top-2 eigenvectors V ∗
1 , V

∗
2 ∈ R5×2

for A1/A2 —- as we will see later, the top-1 eigenvector of
T1/T2 usually functions at distinguishing known vs novel
data, while the 2nd eigenvector functions at distinguishing
color or shape.

We let U∗
1 ∈ R4×2 contains the last 4 rows of V ∗

1 , and
corresponds to the “representation” for the unlabeled data
only. U∗

2 is defined in the same way w.r.t. A2. We have the
following theorem:
Theorem 5.2. Assume τ1 = 1, τ0 = 0, τs < 1.5τc. We
have

U∗
1 =

[
a1 a1 b1 b1
a2 a2 b2 b2

]⊤
,

2The normalized/unnormalized adjacency matrix corresponds
to the NCut/RatioCut problem respectively (Von Luxburg, 2007).

where a1, b1 are some positive real numbers, and a2, b2 has
different signs.

U∗
2 =


1
2

[
1 1 1 1
1 1 −1 −1

]⊤
, if τs < τc,

1
2

[
1 1 1 1
−1 1 −1 1

]⊤
, if τs > τc,

With label vector y⃗ = {1, 1, 0, 0}, we have

R(U∗
1 , y⃗) = 0,R(U∗

2 , y⃗) =

{
0, if τs < τc
1, if τs > τc.

(8)

Interpretation of Theorem 5.2: The discussion can be
divided into two cases: (1) τs < τc. (2) τs > τc. In
the first case τs < τc, the connection between the same-
color data pair is already stronger than the same-shape data
pair. Thus the eigenvector corresponding to color informa-
tion ( 12 [1, 1,−1,−1]⊤) will be more prominent (and ranked
higher in U∗

2 ) than “shape eigenvector” ( 12 [−1, 1,−1, 1]⊤).
Since the feature U∗

2 already encodes sufficient information
(color) of the labeling vector y⃗, fitting y⃗ becomes easy and
the residual R(U∗

2 , y⃗) becomes 0.

In NCD, we are more interested in the second case
(τs > τc), where unlabeled data indeed need some help
from labeled data for better clustering. Such help comes
from the semantic connection between labeled data and un-
labeled data. In our toy example, the semantic connection
comes from the first row/column of T1 and T2. However, the
first row/column of T2 is [1, 0, 0, 0, 0], which means there
is no extra information offered from X case 2

l . It is because
X case 2

l contains gray cylinders which have neither colors nor
shapes connection to unlabeled data Xu. Contrarily, X case 1

l

with red cylinder provides strong color prior. This allows the
“color eigenvector” ([a2, a2,−b2,−b2]) to become a main
component in U∗

1 , making the residual R(U∗
1 , y⃗) = 0 even

when τs > τc.

Main takeaway. In Theorem 5.2, we have verified the hy-
pothesis that incorporating labeled data X case 1

l (red cylinder)
can reduce the residual R(U∗

1 , y⃗) more than using X case 2
l ,

especially when color is a weaker signal than shape in unla-
beled data.

Extension: A more general result. Note that T1 and T2

are special cases of the following T (t) with t ∈ [τ0, τc]:

T (t) =


τ1 t t τ0 τ0
t τ1 τc τs τ0
t τc τ1 τ0 τs
τ0 τs τ0 τ1 τc
τ0 τ0 τs τc τ1

 ,

where t indicates the strength of the connection between
labeled data and a novel class in unlabeled data. Let U∗

t
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X case 1

Figure 3. UMAP (McInnes et al., 2018) visualization of the fea-
ture embedding learned from X case 1 and X case 2 respectively. The
model is trained with NCD Spectral Contrastive Loss.

be the representation for unlabeled data derived from T (t).
The following theorem indicates that the residual decreases
when t increases and the residual becomes 0 when t is larger
than a threshold t̄ depending on the gap between τs and τc.

Theorem 5.3. Assume τ1 = 1, τ0 = 0, 1.5τc > τs > τc.

Let t̄ =
√

2(τs−τc)2τc
2τc−τs

, r : R 7→ (0, 1) be a real value
function, we have

R(U∗
t , y⃗) =

 0, if t ∈ (t̄, τs),
r(t), if t ∈ (0, t̄),
1, if t = 0.

(9)

Can adding labeled data be harmful? We exemplify the
scenario in Figure 1, where the umbrella images are given
as a known class, undesirably causing the “mushroom with
umbrella shape” to be grouped together. To formally analyze
this case, we construct case 3:

X case 3
l ≜ {X ,c3}(gray cube).

In this case, we have the following Lemma 5.4.

Lemma 5.4. If τc
τs

∈ (1, 1.5), R(U∗
3 , y⃗)−R(U∗

2 , y⃗) = 1.

The residual in case 3 is now larger than in case 2, since
the shape is treated as a more important feature than the
color feature (which relates to the target class). The main
takeaway of this lemma is that the labeled data can be harm-
ful when its connection with unlabeled data is undesirably
stronger in the spurious feature dimension.

Qualitative results. The theoretical results can be verified
in our empirical results by visualization in Fig. 3. Due
to the space limitation, we include experimental details
in Appendix D.2. As seen in Fig. 3 (a), the features of
unlabeled data Xu jointly learned with red cylinder X case 1

l

are more distinguishable by color attribute, as opposed to
Fig. 3 (b).

5.3. Main Theory

The toy example offers an important insight that using the
labeled data help reduce the residual when it provides the
missing information of unlabeled data. In this section, we
will formalize this insight by extending the toy example to
a more general setting with N samples. We start with the
definition of notations.

Notations. Recall that V ∗ ∈ RN×k is defined as the top-k
singular vectors of Ȧ, which is further split into two parts
L∗ = [l1, l2, · · · , lk] ∈ RNl×k, U∗ = [u1, u2, · · · , uk] ∈
RNu×k, for labeled and unlabeled samples respectively.
Then we let V ♭ ∈ RN×(N−k) be the remaining singu-
lar vectors of Ȧ except top-k. Similarly, we split V ♭

into two parts (L♭ = [lk+1, lk+2, · · · , lN ] ∈ RNl×(N−k),
U ♭ = [uk+1, uk+2, · · · , uN ] ∈ RNu×(N−k)).

We now present our first main result in Theorem 5.5.
Theorem 5.5. Denote the projection matrix PL♭ =
L♭⊤(L♭L♭⊤)†L♭, where † denotes the Moore-Penrose in-
verse. For any labeling vector y⃗ ∈ {0, 1}Nu , we have

R(U∗, y⃗) ≤ ∥(I − PL♭)U ♭⊤y⃗∥22. (10)

Interpretation of Theorem 5.5. The bound of residual
in Ineq. (10) is composed of two projections: U ♭⊤ and
(I − PL♭). We first consider the ignorance space formed by
the first projection:

ignorance space ≜ U ♭⊤y⃗,

which contains the information of the labeling vector y⃗ that
is not encoded in the learned representation U∗ of the un-
labeled data. Intuitively, when R (U∗, y⃗) > 0, the labeling
vector y⃗ does not lie in the span of the existing representa-
tion U∗. On the other hand, R

(
[ U∗ U ♭ ], y⃗

)
= 0 since

U∗ together with U ♭ forms a full rank space. We also define
a measure of the ignorance degree of the current feature
space: ignorance degree ≜ T(y⃗) = ∥U♭⊤y⃗∥2

∥y⃗∥2
.

The second projection matrix (I − PL♭) is composed of L♭,
which we deem as the extra knowledge from known classes:

extra knowledge ≜ L♭.

Multiplying the second projection matrix (I − PL♭) further
reduces the norm of the ignorance space by considering the
extra knowledge from labeled data, since PL♭ is a projection
matrix that projects a vector to the linear span of L♭. In the
extreme case, when U ♭⊤y⃗ fully lies in the linear span of L♭,
the residual R(U∗, y⃗) goes 0.

Next, we present another main theorem that bounds the
linear probing error E(f) based on the relations between the
known and novel classes. See Appendix C.3 for a detailed
discussion and assumption.
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Theorem 5.6. Let [ Aul ∈ RNu×Nl , Auu ∈ RNu×Nu ] be
the sub-matrix of the last Nu rows of Ȧ, and qi be the i-
th eigenvector of Auu. The linear probing error can be
bounded as follows:

E(f) ≲ 2Nu

|Yu|

|Yu|∑
i

T(y⃗i) (1− κ(y⃗i)
2 ) +

∥Ȧ− Ā∥2
σk − σk+1

 ,

ignorance degree

knowledge coverage
where

κ(y⃗) = cos(Ū ♭⊤y⃗, l̄♭) ≳ min
i>k,j>k

2
√

y⃗⊤qi
η⃗⊤
u qi

y⃗⊤qj
η⃗⊤
u qj

y⃗⊤qi
η⃗⊤
u qi

+
y⃗⊤qj
η⃗⊤
u qj

,

and Ā is the approximation of Ȧ by taking the expectation in
the rows/columns of labeled samples (Appendix C.2) with a
similar motivation as the SBM model (Holland et al., 1983).
In such condition, Ū ♭⊤, l̄♭ and ηu is the approximation to
U ♭⊤, L♭ and Aul accordingly.

Interpretation of κ(y⃗). We provide the detailed derivation
of κ(y⃗) in Lemma C.10. Intuitively, κ(y⃗) measures the
usefulness and relevance of knowledge from known classes
for NCD. We formally call it coverage, which measures the
cosine distance between the ignorance space and the extra
knowledge:

coverage ≜ κ(y⃗) = cos( Ū ♭⊤y⃗ , l̄♭ ).
ignorance space

extra knowledge

Our Theorem 5.6 thus meaningfully shows that the linear
probing error can be bounded more tightly as κ(y⃗) increases
(i.e., when labeled data provides more useful information
for the unlabeled data).

Implication of Theorem 5.6. Our theorem allows us
to formalize answers to the “When and How” question.
Firstly, the Theorem answers “how the labeled data helps”—
because the knowledge from the known classes changes the
representation of unlabeled data and reduces the ignorance
space for novel class discovery. Secondly, the Theorem an-
swers “when the labeled data helps”. Specifically, labeled
data helps when the coverage between ignorance space and
extra knowledge is nonzero. In the extreme case, if the
extra knowledge fully covers the ignorance space, we get
the perfect performance (0 linear probing error).

6. Experiments on Common Benchmarks
Beyond theoretical insights, we show empirically that our
proposed NCD spectral loss is effective on common bench-
mark datasets CIFAR-10 and CIFAR-100 (Krizhevsky et al.,
2009). Following the well-established NCD benchmarks
(Han et al., 2019; 2020b; Fini et al., 2021), each dataset

Table 1. Main Results. Results are reported in clustering accuracy
(%) on the training split of the novel set. With the learned fea-
ture, we perform a K-Means clustering with the default setting in
Python’s sklearn package. The accuracy of the novel classes
is measured by solving an optimal assignment problem using the
Hungarian algorithm (Kuhn, 1955). “C” is short for CIFAR. SCL
denotes training with Spectral Contrastive Loss purely on Du while
SCL‡ is trained on Du ∪ Dl unsupervisedly.

Method C10-5 C100-80 C100-50

KCL (Hsu et al., 2018) 72.3 42.1 -
MCL (Hsu et al., 2019) 70.9 21.5 -
DTC (Han et al., 2019) 88.7 67.3 35.9
RS+ (Han et al., 2020a) 91.7 75.2 44.1
DualRank (Zhao & Han, 2021) 91.6 75.3 -
Joint (Jia et al., 2021) 93.4 76.4 -
UNO (Fini et al., 2021) 92.6 85.0 52.9
ComEx (Yang et al., 2022) 93.6 85.7 53.4

SCL (HaoChen et al., 2021) 92.4 72.7 51.8
SCL‡ (HaoChen et al., 2021) 93.7 68.9 53.3
NSCL (Ours) 97.5 85.9 64.0

is divided into two subsets, the labeled set that contains
labeled images belonging to a set of known classes, and
an unlabeled set with novel classes. Our comparison is on
three benchmarks: C10-5 means CIFAR-10 datasets split
with 5 known classes and 5 novel classes and C100-80
means CIFAR-100 datasets split with 80 known classes
while C100-50 has 50 known classes. The division is con-
sistent with Fini et al. (2021). We train the model by the
proposed NSCL algorithm with details in Appendix D.1
and measure performance on the features in the penultimate
layer of ResNet-18.

NSCL is competitive in discovering novel classes. Our
proposed loss NSCL is amenable to the theoretical under-
standing of NCD, which is our primary goal of this work.
Beyond theory, we show that NSCL is equally desirable in
empirical performance. In particular, NSCL outperforms
its rivals by a significant margin, as evidenced in Table 1.
Our comparison covers an extensive collection of common
NCD algorithms and baselines. In particular, on C100-50,
we improve upon the best baseline ComEx by 10.6%. This
finding further validates that putting analysis on NSCL is
appealing for both theoretical and empirical reasons.

Ablation study on the unsupervised counterpart. To
verify whether the known classes indeed help discover new
classes, we compare NSCL with the unsupervised counter-
part (dubbed SCL) that is purely trained on the unlabeled
data Du. Results show that the labeled data offers tremen-
dous help and improves 13.2% in novel class accuracy.

Supervision signals are important in the labeled data.
We also analyze how much the supervision signals in labeled
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Table 2. Comparison of results reported in overall/novel/known accuracy (%) on the test split of CIFAR. The three metrics are calculated
as follows. (1) Known accuracy: For the features from the labeled data, we train an additional linear head by linear probing and then
measure classification accuracy based on the prediction h⃗l; (2) Novel accuracy: For features from the unlabeled data, we perform a
K-Means clustering with the default setting in Python’s sklearn package, which produces the clustering prediction h⃗u. The clustering
accuracy is further measured by solving an optimal assignment problem using the Hungarian algorithm (Kuhn, 1955); (3) Overall
accuracy. The overall accuracy is measured by concatenating the prediction h⃗l and h⃗u and then solving the assignment problem.

Method C10-5 C100-50
All Novel Known All Novel Known

DTC (Han et al., 2019) 68.7 78.6 58.7 32.5 34.7 30.2
RankStats (Han et al., 2020a) 89.7 88.8 90.6 55.3 40.9 69.7
UNO (Fini et al., 2021) 95.8 95.1 96.6 65.4 52.0 78.8
ComEx (Yang et al., 2022) 95.0 93.2 96.7 67.2 54.5 80.1

NSCL (Ours) 95.5 96.7 94.2 67.4 57.1 77.4

data help. To investigate it, we compare our method NSCL
with SCL trained on Du ∪ Dl in a purely unsupervised
manner. The difference is that SCL does not utilize the label
information in Dl. We denote this setting as SCL‡ in Table 1.
Results show that NSCL provides stronger performance
than SCL‡. The ablation suggests that relevant knowledge
of known classes indeed provides meaningful help in novel
class discovery.

NSCL is competitive in the inductive setting. We report
performance comparison in Table 2, comprehensively mea-
suring three accuracy metrics—for all/novel/known classes
respectively. Different from Table 1 which reports cluster-
ing results in a transductive manner, the performance in
Table 2 is reported on the test split. For evaluation, we
first collect the feature representations and then report over-
all/novel/known accuracy with inference details provided in
the caption of Table 2. We see that NSCL establishes com-
parable performance with baselines on the labeled data from
known classes and superior performance on novel class dis-
covery. Notably, NSCL outperforms UNO (Fini et al., 2021)
on C10-5 by 1.6% and outperforms ComEx (Yang et al.,
2022) by 2.6% on C100-50 in terms of novel accuracy.

7. Conclusion
In this paper, we present a theoretical framework of novel
class discovery and provide new insight on the research ques-
tion: “when and how does the known class help discover
novel classes?”. Specifically, we propose a graph-theoretic
representation that can be learned through a new NCD Spec-
tral Contrastive Loss (NSCL). Minimizing this objective is
equivalent to factoring the graph’s adjacency matrix, which
allows us to analyze the NCD quality by measuring the
linear probing error on novel samples’ features. Our main
result (Theorem 5.5) suggests such error can be significantly
reduced (even to 0) when the linear span of known samples’
feature covers the “ignorance space” of unlabeled data in

discovering novel classes. Our framework is also empiri-
cally appealing to use since it can achieve similar or better
performance than existing methods on benchmark datasets.

Broader impacts. Our new framework opens a new door to
the NCD community in the following way:

• NSCL provides a framework to answer the fundamen-
tal question that is shared across all NCD methods. At
a high level, NSCL analyzes how the new knowledge
changes the representation space that leads to different
discovery outcomes. This finding can be generalizable
to other NCD methods which may differ in the way of
incorporating new knowledge.

• NSCL can be compatible with prior NCD methods.
Note that NSCL is a representation learning method.
With that being said, one can possibly “plug” NSCL
into existing learning objectives for NCD. Take the two
most popular prior works in NCD as an example. For
example, we can use the encoder learned by NSCL in
RS+ (Han et al., 2020a) and UNO (Fini et al., 2021).

To summarize, NSCL is an important building block in the
NCD research area and have broader impacts both theoreti-
cally and empirically.

Acknowledgement
Li is supported in part by the AFOSR Young Investigator
Award under No. FA9550-23-1-0184; Philanthropic Fund
from SFF; and faculty research awards/gifts from Google,
Meta, and Amazon. Liang is partially supported by Air
Force Grant FA9550-18-1-0166, the National Science Foun-
dation (NSF) Grants 2008559-IIS and CCF-2046710. Any
opinions, findings, conclusions, or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views, policies, or endorsements ei-
ther expressed or implied, of the sponsors. The authors
would also like to thank ICML reviewers for their helpful
suggestions and feedback.

9



When and How Does Known Class Help Discover Unknown Ones?

References
Argyriou, A., Herbster, M., and Pontil, M. Combining

graph laplacians for semi–supervised learning. Advances
in Neural Information Processing Systems, 18, 2005.

Arora, S., Khandeparkar, H., Khodak, M., Plevrakis, O., and
Saunshi, N. A theoretical analysis of contrastive unsuper-
vised representation learning. International Conference
on Machine Learning, 2019.

Balestriero, R. and LeCun, Y. Contrastive and non-
contrastive self-supervised learning recover global and
local spectral embedding methods. Advances in Neural
Information Processing Systems, 2022.

Blum, A. Learning form labeled and unlabeled data us-
ing graph mincuts. In 18th International Conference on
Machine Learning, 2001.

Cheeger, J. A lower bound for the smallest eigenvalue
of the laplacian. In Problems in analysis, pp. 195–200.
Princeton University Press, 2015.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual repre-
sentations. In Proceedings of the international conference
on machine learning, pp. 1597–1607. PMLR, 2020.

Chen, X. and He, K. Exploring simple siamese represen-
tation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
15750–15758, 2021.

Chi, H., Liu, F., Yang, W., Lan, L., Liu, T., Han, B., Niu, G.,
Zhou, M., and Sugiyama, M. Meta discovery: Learning
to discover novel classes given very limited data. In
International Conference on Learning Representations,
2021.

Chung, F. R. Spectral graph theory, volume 92. American
Mathematical Soc., 1997.

Eckart, C. and Young, G. The approximation of one matrix
by another of lower rank. Psychometrika, 1(3):211–218,
1936.

Fini, E., Sangineto, E., Lathuilière, S., Zhong, Z., Nabi,
M., and Ricci, E. A unified objective for novel class
discovery. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9284–9292, 2021.

Han, K., Vedaldi, A., and Zisserman, A. Learning to dis-
cover novel visual categories via deep transfer clustering.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2019.

Han, K., Rebuffi, S., Ehrhardt, S., Vedaldi, A., and Zis-
serman, A. Automatically discovering and learning new
visual categories with ranking statistics. In Proceedings of
the 8th Intennational Conference on Learning Representa-
tions. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2020a.

Han, K., Rebuffi, S.-A., Ehrhardt, S., Vedaldi, A., and Zis-
serman, A. Automatically discovering and learning new
visual categories with ranking statistics. International
Conference on Learning Representations, 2020b.

HaoChen, J. Z., Wei, C., Gaidon, A., and Ma, T. Provable
guarantees for self-supervised deep learning with spec-
tral contrastive loss. Advances in Neural Information
Processing Systems, 34:5000–5011, 2021.

HaoChen, J. Z., Wei, C., Kumar, A., and Ma, T. Beyond
separability: Analyzing the linear transferability of con-
trastive representations to related subpopulations. Ad-
vances in neural information processing systems, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Holland, P. W., Laskey, K. B., and Leinhardt, S. Stochastic
blockmodels: First steps. Social networks, 5(2):109–137,
1983.

Hsu, Y.-C., Lv, Z., and Kira, Z. Learning to cluster in order
to transfer across domains and tasks. Proceedings of the
International Conference on Learning Representations,
2018.

Hsu, Y.-C., Lv, Z., Schlosser, J., Odom, P., and Kira, Z.
Multi-class classification without multi-class labels. Pro-
ceedings of the International Conference on Learning
Representations, 2019.

Jia, X., Han, K., Zhu, Y., and Green, B. Joint representa-
tion learning and novel category discovery on single-and
multi-modal data. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 610–619,
2021.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L.,
Zitnick, C. L., and Girshick, R. Clevr: A diagnostic
dataset for compositional language and elementary visual
reasoning. In CVPR, 2017.

Kannan, R., Vempala, S., and Vetta, A. On clusterings:
Good, bad and spectral. Journal of the ACM (JACM), 51
(3):497–515, 2004.

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola,
P., Maschinot, A., Liu, C., and Krishnan, D. Supervised

10



When and How Does Known Class Help Discover Unknown Ones?

contrastive learning. Advances in Neural Information
Processing Systems, 33:18661–18673, 2020.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kuhn, H. W. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–
97, 1955.

Lee, J. D., Lei, Q., Saunshi, N., and Zhuo, J. Predicting
what you already know helps: Provable self-supervised
learning. Advances in Neural Information Processing
Systems, 34:309–323, 2021.

Lee, J. R., Gharan, S. O., and Trevisan, L. Multiway spec-
tral partitioning and higher-order cheeger inequalities.
Journal of the ACM (JACM), 61(6):1–30, 2014.

Li, Z., Otholt, J., Dai, B., Meinel, C., Yang, H., et al. A
closer look at novel class discovery from the labeled set.
arXiv preprint arXiv:2209.09120, 2022.

McInnes, L., Healy, J., Saul, N., and Grossberger, L. Umap:
Uniform manifold approximation and projection. The
Journal of Open Source Software, 3(29):861, 2018.

McSherry, F. Spectral partitioning of random graphs. In
Proceedings 42nd IEEE Symposium on Foundations of
Computer Science, pp. 529–537. IEEE, 2001.

Ming, Y., Cai, Z., Gu, J., Sun, Y., Li, W., and Li, Y. Delving
into out-of-distribution detection with vision-language
representations. Proceedings of the Advances in Neural
Information Processing Systems, 2022.

Ming, Y., Sun, Y., Dia, O., and Li, Y. How to exploit hyper-
spherical embeddings for out-of-distribution detection?
In The Eleventh International Conference on Learning
Representations, 2023.

Ng, A., Jordan, M., and Weiss, Y. On spectral clustering:
Analysis and an algorithm. Advances in neural informa-
tion processing systems, 14, 2001.

Shaham, U., Stanton, K., Li, H., Nadler, B., Basri, R., and
Kluger, Y. Spectralnet: Spectral clustering using deep
neural networks. International Conference on Learning
Representations, 2018.

Shen, K., Jones, R. M., Kumar, A., Xie, S. M., HaoChen,
J. Z., Ma, T., and Liang, P. Connect, not collapse: Explain-
ing contrastive learning for unsupervised domain adapta-
tion. In International Conference on Machine Learning,
pp. 19847–19878. PMLR, 2022.

Shi, J. and Malik, J. Normalized cuts and image segmenta-
tion. IEEE Transactions on pattern analysis and machine
intelligence, 22(8):888–905, 2000.

Shi, Z., Chen, J., Li, K., Raghuram, J., Wu, X., Liang, Y.,
and Jha, S. The trade-off between universality and label
efficiency of representations from contrastive learning. In
International Conference on Learning Representations,
2023.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In International
Conference on Learning Representations, 2020.

Sun, Y. and Li, Y. Opencon: Open-world contrastive learn-
ing. Transactions of Machine Learning Research, 2023.

Sun, Y., Su, T., and Tu, Z. Faster r-cnn based autonomous
navigation for vehicles in warehouse. In 2017 IEEE
International Conference on Advanced Intelligent Mecha-
tronics (AIM), pp. 1639–1644. IEEE, 2017.

Sun, Y., Ravi, S. N., and Singh, V. Adaptive activation
thresholding: Dynamic routing type behavior for inter-
pretability in convolutional neural networks. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 4938–4947, 2019.

Sun, Y., Guo, C., and Li, Y. React: Out-of-distribution
detection with rectified activations. In Proceedings of
the Advances in Neural Information Processing Systems,
2021.

Sun, Y., Ming, Y., Zhu, X., and Li, Y. Out-of-distribution de-
tection with deep nearest neighbors. In International Con-
ference on Machine Learning, pp. 20827–20840. PMLR,
2022.

Tosh, C., Krishnamurthy, A., and Hsu, D. Contrastive esti-
mation reveals topic posterior information to linear mod-
els. J. Mach. Learn. Res., 22:281–1, 2021a.

Tosh, C., Krishnamurthy, A., and Hsu, D. Contrastive learn-
ing, multi-view redundancy, and linear models. In Algo-
rithmic Learning Theory, pp. 1179–1206. PMLR, 2021b.

Von Luxburg, U. A tutorial on spectral clustering. Statistics
and computing, 17(4):395–416, 2007.

Wang, H., Xiao, R., Li, Y., Feng, L., Niu, G., Chen, G.,
and Zhao, J. Pico: Contrastive label disambiguation for
partial label learning. Proceedings of the International
Conference on Learning Representations, 2022.

Yang, M., Zhu, Y., Yu, J., Wu, A., and Deng, C. Divide and
conquer: Compositional experts for generalized novel
class discovery. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
14268–14277, 2022.

11



When and How Does Known Class Help Discover Unknown Ones?

Zhang, D., Nan, F., Wei, X., Li, S., Zhu, H., McKeown, K.,
Nallapati, R., Arnold, A., and Xiang, B. Supporting clus-
tering with contrastive learning. Proceedings of the North
American Chapter of the Association for Computational
Linguistics, 2021.

Zhao, B. and Han, K. Novel visual category discovery with
dual ranking statistics and mutual knowledge distillation.
In Conference on Neural Information Processing Systems
(NeurIPS), 2021.

Zhong, Z., Fini, E., Roy, S., Luo, Z., Ricci, E., and Sebe,
N. Neighborhood contrastive learning for novel class
discovery. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 10867–
10875, 2021a.

Zhong, Z., Zhu, L., Luo, Z., Li, S., Yang, Y., and Sebe, N.
Openmix: Reviving known knowledge for discovering
novel visual categories in an open world. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9462–9470, 2021b.

Zhu, X., Ghahramani, Z., and Lafferty, J. D. Semi-
supervised learning using gaussian fields and harmonic
functions. In Proceedings of the 20th International con-
ference on Machine learning (ICML-03), pp. 912–919,
2003.

12



When and How Does Known Class Help Discover Unknown Ones?

Appendix

A. Proof Details for Section 4
A.1. Bound Linear Probing Error by Regression Residual

Lemma A.1. (Recap of Lemma 5.1) Denote by y(x) ∈ RCu a one-hot vector, whose y(x)-th position is 1 and 0 elsewhere.
Let Y ∈ RNu×Cu be a matrix whose rows are stacked by y(x). We have:

R(U∗) ≜ min
M∈Rk×Cu

∥Y − U∗M∥2F ≥ 1

2
E(f)

Proof. Suppose f̃(x) =
√
wxf(x), we first show that

∥y(x)− f̃(x)⊤M∥2 ≥ 1

2
1

[
y(x) ̸= h(x; f̃ ,M)

]
If y(x) = h(x; f̃ ,M), it is clear that ∥y(x) − f̃(x)⊤M∥2 ≥ 0. If y(x) ̸= h(x; f̃ ,M), then there exists another index
y′ ̸= y(x) so that f̃(x)⊤µ⃗y′ ≥ f̃(x)⊤µ⃗y(x). Then,

∥y(x)− f̃(x)⊤M∥22 ≥ (1− f̃(x)⊤µ⃗y(x))
2 + (f̃(x)⊤µ⃗y′)2

≥ 1

2
(1− f̃(x)⊤µ⃗y(x) + f̃(x)⊤µ⃗y′)2

≥ 1

2
,

where the first inequality is by only keeping y′-th and y(x)-th terms in the l2 norm. We can then prove the lemma by:

R(U∗) = min
M∈Rk×Cu

∥Y − U∗M∥2F

= min
M∈Rk×Cu

∑
x∈Xu

∥y(x)−√
wxf(x)

⊤Σ
− 1

2

k M∥2

= min
M∈Rk×Cu

∑
x∈Xu

∥y(x)−√
wxf(x)

⊤M∥2

≥ 1

2
min

M∈Rk×Cu

∑
x∈Xu

1

[
y(x) ̸= h(x; f̃ ,M)

]
=

1

2
E(f),

where the second equation is given by F ∗Σ
− 1

2

k = Vk, and U∗ is the last Nu rows of Vk, and the last equation is based on the
fact that multiplying a scalar value on the output does not change the prediction result (h(x; f,M) = h(x; f̃ ,M)).

A.2. Spectral Contrastive Loss

Theorem A.2. (Recap of Theorem 4.1) We define fx =
√
wxf(x) for some function f . Recall α, β is a hyper-parameter

defined in Eq. (1). Then minimizing the loss function Lmf(F,A) is equivalent to minimizing the following loss function for
f , which we term NCD Spectral Contrastive Loss (NSCL):

Lnscl(f) ≜ −2αL1(f)− 2βL2(f)

+ α2L3(f) + 2αβL4(f) + β2L5(f),
(11)

13
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where

L1(f) =
∑
i∈Yl

E
x̄l∼Pli

,x̄′
l∼Pli

,

x∼T (·|x̄l),x
+∼T (·|x̄′

l)

[
f(x)⊤f

(
x+
)]

,L2(f) = E
x̄u∼Pu,

x∼T (·|x̄u),x
+∼T (·|x̄u)

[
f(x)⊤f

(
x+
)]

,

L3(f) =
∑
i∈Yl

∑
j∈Yl

E
x̄l∼Pli

,x̄′
l∼Plj

,

x∼T (·|x̄l),x
−∼T (·|x̄′

l)

[(
f(x)⊤f

(
x−))2] ,L4(f) =

∑
i∈Yl

E
x̄l∼Pli

,x̄u∼Pu,

x∼T (·|x̄l),x
−∼T (·|x̄u)

[(
f(x)⊤f

(
x−))2] ,

L5(f) = E
x̄u∼Pu,x̄

′
u∼Pu,

x∼T (·|x̄u),x
−∼T (·|x̄′

u)

[(
f(x)⊤f

(
x−))2] .

Proof. We can expand Lmf(F,A) and obtain

Lmf(F,A) =
∑

x,x′∈X

(
wxx′√
wxwx′

− f⊤x fx′

)2

= const +
∑

x,x′∈X

(
−2wxx′f(x)⊤f (x′) + wxwx′

(
f(x)⊤f (x′)

)2)
,

where fx =
√
wxf(x) is a re-scaled version of f(x). At a high level we follow the proof in (HaoChen et al., 2021), while

the specific form of loss varies with the different definitions of positive/negative pairs. The form of Lnscl(f) is derived from
plugging wxx′ and wx.

Recall that wxx′ is defined by

wxx′ = α
∑
i∈Yl

Ex̄l∼Pli
Ex̄′

l∼Pli
T (x|x̄l)T (x′|x̄′

l) + βEx̄u∼Pu
T (x|x̄u)T (x′|x̄u) ,

and wx is given by

wx =
∑
x′

wxx′

= α
∑
i∈Yl

Ex̄l∼Pli
Ex̄′

l∼Pli
T (x|x̄l)

∑
x′

T (x′|x̄′
l) + βEx̄u∼Pu

T (x|x̄u)
∑
x′

T (x′|x̄u)

= α
∑
i∈Yl

Ex̄l∼Pli
T (x|x̄l) + βEx̄u∼Pu

T (x|x̄u).

Plugging wxx′ we have,

− 2
∑

x,x′∈X
wxx′f(x)⊤f (x′) = −2

∑
x,x+∈X

wxx+f(x)⊤f
(
x+
)

= −2α
∑
i∈Yl

Ex̄l∼Pli
Ex̄′

l∼Pli

∑
x,x′∈X

T (x|x̄l)T (x′|x̄′
l) f(x)

⊤f (x′)− 2βEx̄u∼Pu

∑
x,x′

T (x|x̄u)T (x′|x̄u) f(x)
⊤f (x′)

= −2α
∑
i∈Yl

E
x̄l∼Pli

,x̄′
l∼Pli

,

x∼T (·|x̄l),x
+∼T (·|x̄′

l)

[
f(x)⊤f

(
x+
)]

− 2β E
x̄u∼Pu,

x∼T (·|x̄u),x
+∼T (·|x̄u)

[
f(x)⊤f

(
x+
)]

= −2αL1(f)− 2βL2(f)

Plugging wx and wx′ we have,

14
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∑
x,x′∈X

wxwx′
(
f(x)⊤f (x′)

)2
=

∑
x,x−∈X

wxwx−
(
f(x)⊤f

(
x−))2

=
∑

x,x′∈X

(
α
∑
i∈Yl

Ex̄l∼Pli
T (x|x̄l) + βEx̄u∼PuT (x|x̄u)

)
·

α
∑
j∈Yl

Ex̄′
l∼Plj

T (x−|x̄′
l) + βEx̄′

u∼Pu
T (x−|x̄′

u)

(f(x)⊤f (x−))2
= α2

∑
x,x−∈X

∑
i∈Yl

Ex̄l∼Pli
T (x|x̄l)

∑
j∈Yl

Ex̄′
l∼Plj

T (x−|x̄′
l)
(
f(x)⊤f

(
x−))2

+ 2αβ
∑

x,x−∈X

∑
i∈Yl

Ex̄l∼Pli
T (x|x̄l)Ex̄u∼Pu

T (x−|x̄u)
(
f(x)⊤f

(
x−))2

+ β2
∑

x,x−∈X

Ex̄u∼Pu
T (x|x̄u)Ex̄′

u∼Pu
T (x−|x̄′

u)
(
f(x)⊤f

(
x−))2

= α2
∑
i∈Yl

∑
j∈Yl

E
x̄l∼Pli

,x̄′
l∼Plj

,

x∼T (·|x̄l),x
−∼T (·|x̄′

l)

[(
f(x)⊤f

(
x−))2]+ 2αβ

∑
i∈Yl

E
x̄l∼Pli

,x̄u∼Pu,

x∼T (·|x̄l),x
−∼T (·|x̄u)

[(
f(x)⊤f

(
x−))2]

+ β2 E
x̄u∼Pu,x̄

′
u∼Pu,

x∼T (·|x̄u),x
−∼T (·|x̄′

u)

[(
f(x)⊤f

(
x−))2]

= α2L3(f) + 2αβL4(f) + β2L5(f).
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B. Proof for Eigenvalue in Toy Example
Before we present the proof of Theorem 5.2, Theorem5.3 and Lemma 5.4, we first present the following lemma B.1 which
extensively explore the order and the form of eigenvectors of the general form T (t). Note that T1 and T2 are special cases of
the following T (t) with t ∈ [τ0, τc]:

T (t) =


τ1 t t τ0 τ0
t τ1 τc τs τ0
t τc τ1 τ0 τs
τ0 τs τ0 τ1 τc
τ0 τ0 τs τc τ1

 ,

where t indicates the strength of the connection between labeled data and a novel class in unlabeled data.

Lemma B.1. Assume τ1 = 1, τ0 = 0, τc < τs < 1.5τc, t̄ =
√

2(τs−τc)2τc
2τc−τs

, let a(λ) = λ−1
2t and b(λ) = τs(λ−1)

2(λ−1−τc)t
are

real value functions, the matrix T (t)’s eigenvectors (not necessarily l2-normalized) and its eigenvalues are the following:

(Case 1): If t ∈ (t̄, τc],

v1 = [1, a(λ1), a(λ1), b(λ1), b(λ1)]
⊤, λ1 > 1 + τs + τc,

v2 = [1, a(λ2), a(λ2), b(λ2), b(λ2)]
⊤, λ2 ∈ [1 + τs − τc, 1 + τc)

v3 = [0,−1, 1,−1, 1]⊤, λ3 = 1 + τs − τc,
v4 = [1, a(λ4), a(λ4), b(λ4), b(λ4)]

⊤, λ4 ∈ (1− τs − τc, 1)
v5 = [0, 1,−1,−1, 1]⊤, λ5 = 1− τs − τc,

(Case 2): If t ∈ (0, t̄),

v1 = [1, a(λ1), a(λ1), b(λ1), b(λ1)]
⊤, λ1 > 1 + τs + τc,

v2 = [0,−1, 1,−1, 1]⊤, λ2 = 1 + τs − τc,
v3 = [1, a(λ3), a(λ3), b(λ3), b(λ3)]

⊤, λ3 ∈ [1, 1 + τs − τc)
v4 = [1, a(λ4), a(λ4), b(λ4), b(λ4)]

⊤, λ4 ∈ (1− τs − τc, 1)
v5 = [0, 1,−1,−1, 1]⊤, λ5 = 1− τs − τc,

(Case 3): If t = 0,

v1 = [0, 1, 1, 1, 1]⊤, λ1 = 1 + τs + τc,
v2 = [0,−1, 1,−1, 1]⊤, λ2 = 1 + τs − τc,
v3 = [1, 0, 0, 0, 0]⊤, λ3 = 1
v4 = [0, 1, 1,−1,−1]⊤, λ4 = 1− τs + τc
v5 = [0, 1,−1,−1, 1]⊤, λ5 = 1− τs − τc,

Proof. For t = 0, Case 3, we can verify by direct calculation.

Now for Case 1 and Case 2, we consider t ∈ (0, τc). For any i ∈ [5], denote λ̂i as unordered eigenvalue and v̂i is its
corresponding eigenvector. We can direct verify that

λ̂1 =1 + τs − τc (12)

λ̂2 =1− τs − τc, (13)

are two eigenvalues of Ãt and

v̂1 =[0,−1, 1,−1, 1]⊤ (14)

v̂2 =[0, 1,−1,−1, 1]⊤, (15)
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are two corresponding eigenvectors. Now, we prove for i ∈ {3, 4, 5}, v̂i = [1, a(λ̂i), a(λ̂i), b(λ̂i), b(λ̂i)]
⊤ are eigenvector

for λ̂i. For i ∈ {3, 4, 5} we only need to show
1 + 2ta(λ̂i) = λ̂i

t+ (1 + τc)a(λ̂i) + τsb(λ̂i) = λ̂ia(λ̂i)

τsa(λ̂i) + (1 + τc)b(λ̂i) = λ̂ib(λ̂i).

(16)

Equivalently to 
1 + 2ta(λ̂i)− λ̂i = 0

t+ (1 + τc + τs − λ̂i)(a(λ̂i)d+ b(λ̂i)) = 0

t+ (1 + τc − τs − λ̂i)(a(λ̂i)− b(λ̂i)) = 0.

(17)

Let zi = λ̂i − 1. Equivalently to 
1 + 2ta(λ̂i)− λ̂i = 0

(λ̂i − 1− τc)b(λ̂i)− τsa(λ̂i) = 0

z3i − 2τcz
2
i + (τ2c − τ2s − 2t2)zi + 2τct

2 = 0.

(18)

Let g(z) = z3 − 2τcz
2 + (τ2c − τ2s − 2t2)z + 2τct

2, we can verify that g(−∞) < 0, g(−τc − τs) = −4τc(τc + τs)
2 +

4t2τc + 2t2τs < 0, g(0) = 2τct
2 > 0, g(τc) = −τ2s τc < 0, g(τc + τs) = −2τst

2 < 0, g(+∞) > 0. Thus, we have
three solutions and satisfying 1− τc − τs < λ̂5 < 1 < λ̂4 < 1 + τc < 1 + τc + τs < λ̂3. As λ̂i ̸= 1 + τc for i ∈ {3, 4, 5},
thus, equivalently to

a(λ̂i) = λ̂i−1
2t

b(λ̂i) = τs(λ̂i−1)

2(λ̂i−1−τc)t

(λ̂i − 1)3 − 2τc(λ̂i − 1)2 + (τ2c − τ2s − 2t2)(λ̂i − 1) + 2τct
2 = 0.

(19)

When t > t̄, we have g(τs − τc) > 0. Thus, we have 1− τc − τs < λ̂5 < 1+ τs − τc < λ̂4 < 1+ τc + τs < λ̂3. By reorder,
we finish Case 1.

When t < t̄, we have g(τs − τc) < 0. Thus, we have 1− τc − τs < λ̂5 < 1 < λ̂4 < 1 + τs − τc < 1 + τc + τs < λ̂3. By
reorder the eigenvectors w.r.t the size of eigenvalues, we finish Case 2.

Theorem B.2. (Recap of Theorem 5.2) Assume τ1 = 1, τ0 = 0, τs < 1.5τc. We have

U∗
1 =

[
a1 a1 b1 b1
a2 a2 b2 b2

]⊤
,

where a1, b1 are some positive real numbers, and a2, b2 has different signs.

U∗
2 =


1
2

[
1 1 1 1
1 1 −1 −1

]⊤
, if τs < τc,

1
2

[
1 1 1 1
−1 1 −1 1

]⊤
, if τs > τc,

With label vector y⃗ = {1, 1, 0, 0}, we have

R(U∗
1 , y⃗) = 0,R(U∗

2 , y⃗) =

{
0, if τs < τc
1, if τs > τc.

(20)
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Proof. In the Case 1 and Case 3 of Lemma B.1, we have shown the U∗
1 and U∗

2 case when τs > τc respectively. In this
proof, we just need to show the case when τs < τc. For U∗

2 and τs < τc, since t = 0, we can directly prove by giving the
eigenvectors with order:

v1 = [0, 1, 1, 1, 1]⊤, λ1 = 1 + τs + τc,
v2 = [0, 1, 1,−1,−1]⊤, λ2 = 1− τs + τc
v3 = [1, 0, 0, 0, 0]⊤, λ3 = 1
v4 = [0,−1, 1,−1, 1]⊤, λ4 = 1 + τs − τc,
v5 = [0, 1,−1,−1, 1]⊤, λ5 = 1− τs − τc,

For U∗
1 , one can see that in the Case 1 of Lemma B.1, we still have λ2 > λ3 since τs < 1.5τc < 2τc holds. Therefore the

order of v2 and v3 does not change. Then U∗
1 is the concatenation of the last four dimensions of v2 and v1.

Now we would like to show that a1, b1 are positive and a2, b2 have different signs. We have shown in Lemma B.1 that
a(λ) = λ−1

2t and b(λ) = τs(λ−1)
2(λ−1−τc)t

. Since a1 = a(λ1) and b1 = b(λ1), one can show that a1 > 0, b1 > 0 since
λ1 > 1 + τs + τc. For λ2 ∈ [1 + τs − τc, 1 + τc), it is clear that a2 = a(λ2) > 0 > b(λ2) = b2 when τs > τc, and
conversely we have a2 = a(λ2) < 0 < b(λ2) = b2 when τs < τc. So a2 and b2 have different signs in both cases.

Recall R(U∗, y⃗) is defined as:
R(U∗, y⃗) = min

µ⃗∈Rk
∥y⃗ − U∗µ⃗∥22,

Let µ⃗ = [ b2
a1b2−a2b1

, −b1
a1b2−a2b1

]⊤, R(U∗
1 , y⃗) = 0. If τs < τc, let µ⃗ = [1, 1]⊤, then R(U∗

2 , y⃗) = 0. If τs > τc, µ⃗∗ =

U∗⊤
2 y⃗ = [1, 0]⊤ is the minimizer and we have R(U∗

2 , y⃗) = 1.

Theorem B.3. (Recap of Theorem 5.3) Assume τ1 = 1, τ0 = 0, 1.5τc > τs > τc. Let t̄ =
√

2(τs−τc)2τc
2τc−τs

, r : R 7→ (0, 1) as
a real value function, we have

R(U∗
t , y⃗) =

 0, if t ∈ (t̄, τs),
r(t), if t ∈ (0, t̄)
1, if t = 0.

(21)

Proof. According to Lemma B.1, if t ∈ (t̄, τs),

U∗
t =

[
a1 a1 b1 b1
a2 a2 b2 b2

]⊤
,

where a1, b1 are some positive real numbers, and a2, b2 has different signs. Let µ⃗ = [ b2
a1b2−a2b1

, −b1
a1b2−a2b1

]⊤, R(U∗
t , y⃗) = 0.

If t = 0, R(U∗
t , y⃗) = 0, which is proved in Theorem B.2 when τs > τc. If t ∈ (0, t̄), as shown in Lemma B.1, we have

U∗
t =

[
λ1−1
2t

λ1−1
2t

τs(λ1−1)
2(λ1−1−τc)t

τs(λ1−1)
2(λ1−1−τc)t

−1 1 −1 1

]⊤
,

where λ1 > 0. µ⃗∗ = (U∗⊤
t U∗

t )
†U∗⊤

t y⃗ = [
λ1−1

2t

(
λ1−1

2t )2+(
τs(λ1−1)

2(λ1−1−τc)t
)2
, 0]⊤, then:

R(U∗
t , y⃗) =

2τ2s
(λ1 − 1− τc)2 + τ2s

= r(λ1) ∈ (0, 1).

Note that λ1 is a value dependent on t, therefore r(λ1) can be represented as r(t).

Lemma B.4. (Recap of Lemma 5.4) If τs < τc < 1.5τs, R(U∗
3 , y⃗) = 1,R(U∗

2 , y⃗) = 0.
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Proof. When X case 3
l ≜ {X ,c3}(gray cube), we have

T3 =


τ1 τs τ0 τs τ0
τs τ1 τc τs τ0
τ0 τc τ1 τ0 τs
τs τs τ0 τ1 τc
τ0 τ0 τs τc τ1

 ,

Follow the same proof in Lemma B.1, one can show that

U∗
3 =

[
a1 b1 a1 b1
a2 b2 a2 b2

]⊤
,

where a1, b1 are some positive real numbers, and a2, b2 has different signs. Note that U∗
3 forms the same linear span as

1

2

[
1 1 1 1
−1 1 −1 1

]⊤
.

Therefore, we have R(U∗
3 , y⃗) = 1 as proved in Theorem B.2.

C. Additional Details for Section 5.3
This section acts as an expanded version of Section 5.3. We will first show in Section C.1 with the background and proof for
Theorem 5.5 with the original adjacency matrix Ȧ. Then we present the analysis based on the approximation matrix Ā in
Section C.2. Finally, we show the formal proof of our main Theorem 5.6 in Section C.3. The proof of Theorem 5.6 requires
two important ingredients (Lemma C.6 and Lemma C.10) with proof deferred in Section C.4 and Section C.5 respectively.

C.1. Sufficient and Necessary Condition for Perfect Residual

We first present the formal analysis in Theorem C.1 which is an extended version of Theorem 5.5 without approximation
and we start with the recap of definitions.

Notations. Recall that V ∗ ∈ RN×k is defined as the top-k singular vectors of Ȧ and we split the eigen-matrix into two parts
for labeled and unlabeled samples respectively:

V ∗ =

[
L∗ ∈ RNl×k

U∗ ∈ RNu×k

]
=

[
l1 l2 · · · lk
u1 u2 · · · uk

]
for labeled and unlabeled samples respectively. Then we let V ♭ ∈ RN×(N−k) be the remaining singular vectors of Ȧ except
top-k. Similarly, we split V ♭ into two parts:

V ♭ =

[
L♭ ∈ RNl×(N−k)

U ♭ ∈ RNu×(N−k)

]
=

[
lk+1 lk+2 · · · lN
uk+1 uk+2 · · · uN

]
.

We can also split the matrix Ȧ at the Nl-th row and the Nl-th column and we obtain All ∈ RNl×Nl , Aul ∈ RNu×Nl , Auu ∈
RNu×Nu with

Ȧ =

[
All A⊤

ul

Aul Auu

]
.

Theorem C.1. (No approximation) Denote the projection matrix PL♭ = L♭⊤(L♭L♭⊤)†L♭, where † denotes the Moore-
Penrose inverse. For any labeling vector y⃗ ∈ {0, 1}Nu , we have

R(U∗, y⃗) ≤ ∥(I − PL♭)U ♭⊤y⃗∥22. (22)

The sufficient and necessary condition for R(U∗, y⃗) = 0 is ω⃗ ∈ RNl such that

∀i = k + 1, . . . , N, ⟨y⃗⊤(σiI −Auu)
†Aul, li⟩ = ⟨ω⃗, li⟩ (23)

where σi is the i-th largest eigenvalue of Ȧ.
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Proof. Define y⃗′ = [ζ⃗⊤, y⃗⊤]⊤ as an extended labeling vector, where ζ⃗ ∈ RNl can be a “placeholder” vector with any values.
We have

R (U∗, y⃗) = min
µ⃗∈Rk

∥y⃗ − U∗µ⃗∥22

= min
µ⃗∈Rk,ζ⃗∈RNl

∥y⃗′ − V ∗µ⃗∥22

= min
ζ⃗∈RNl

∥y⃗′ − V ∗V ∗⊤y⃗′∥22

= min
ζ⃗∈RNl

∥V ♭⊤y⃗′∥22

= min
ζ⃗∈RNl

∥L♭⊤ζ⃗ + U ♭⊤y⃗∥22

= ∥(I − L♭⊤(L♭L♭⊤)†L♭)U ♭⊤y⃗∥22.

The sufficient and necessary condition for R(U∗, y⃗) = 0 is:

∃ω⃗ ∈ RNl ,∀i = k + 1, . . . , N, u⊤
i y⃗ = l⊤i ω⃗.

We then look into the relationship between li and ui. Since[
All A⊤

ul

Aul Auu

] [
li
ui

]
= σi

[
li
ui

]
,

we have the following results:
ui = (σiI −Auu)

†Aulli.

So the sufficient and necessary condition becomes: there exists ω⃗ ∈ RNl such that

∀i = k + 1, . . . , N, ⟨y⃗⊤(σiI −Auu)
†Aul, li⟩ = ⟨ω⃗, li⟩, (24)

where σi is the i-th largest singular value of Ȧ.

Interpretation of Theorem C.1. The bound of residual in Ineq. (10) composed of two projections: U ♭⊤ and (I − PL♭). If
we only consider ∥U ♭⊤y⃗∥22, it is equivalent to y⃗⊤(I − U∗U∗⊤)y⃗ which indicates the information in y⃗ that is not covered by
the learned representation U∗. Then multiplying the second projection matrix (I − PL♭) further reduces the residual by
considering the information from labeled data, since PL♭ is a projection matrix that projects a vector to the linear span of L♭.
In the extreme case, when U ♭⊤y⃗ fully lies in the linear span of L♭, the residual R(U∗, y⃗) becomes 0. To provide further
insights about Eq. (23), we analyze in a simplified setting by approximating Ȧ in the next section.

C.2. Analysis with Approximation

In Theorem C.1, we put an analysis on how L♭ can influence the residual function. However, L♭ is a matrix with Nl rows, so
it is hard to quantitatively understand the effect of Nl labeled samples individually. We resort to viewing the labeled samples
as a whole. Our idea is motivated by the Stochastic Block Model (SBM) (Holland et al., 1983) model, which analyzes the
probability between different communities instead of individual values. In our case, we aim to analyze the probability vector
ηu ∈ RNu denoting the chance of each unlabeled data point having the same augmentation view as one of the samples from
the known class. The relationship between ηu and Auu is then of our interest. Specifically, we define Ā with values at (i, j)
be the following:

Āxixj =


Ȧxixj if xi ∈ Xu, xj ∈ Xu,

Ex′∈Xl
Ȧxix′ if xi ∈ Xu, xj ∈ Xl,

Ex′∈Xl
Ȧx′xj

if xi ∈ Xl, xj ∈ Xu,

Ex′,x′′∈Xl
Ȧx′x′′ if xi ∈ Xl, xj ∈ Xl.

(25)
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The probability is estimated by taking the average. It is equivalent to multiplying matrix P and P⊤ on left and right side,
where P ∈ RN×N is given by:

P =

[
1
Nl

1Nl×Nl
0Nl×Nu

0Nu×Nl
INu

]
,

where 1n×m and 0n×m represent matrix filled with 1 and 0 respectively with shape n×m. Then we can write Ā ∈ RN×N ,
the approximated version of A, as follows:

Ā = PAP⊤ =

[
ηl1Nl×Nl

1Nl×1η⃗
⊤
u

η⃗u11×Nl
Auu,

]
,

where ηl ∈ R and η⃗u ∈ RNu×1. Our analysis can then focus on how ηu influences the representation space learned by Auu.
Similar to Section C.1, we define the top-k and the remainder singular vectors with corresponding splits as :

V̄ ∗ =

[
L̄∗

Ū∗

]
=

[
l̄1 l̄2 · · · l̄k
ū1 ū2 · · · ūk

]
,

V̄ ♭ =

[
L̄♭

Ū ♭

]
=

[
l̄k+1 l̄k+2 · · · l̄N
ūk+1 ūk+2 · · · ūN

]
.

Note that due to the special structure of Ā with Nl duplicated rows and columns, the eigenvector V̄ has a special structure as
we demonstrate in the next Lemma C.2. We defer the proof to Section C.2.1.

Lemma C.2. Since Auu is symmetric and has large diagonal values, we assume Auu is a positive semi-definite matrix. L̄∗

is stacked by the same row such that L̄∗ =
1Nl×1

Nl
l̄∗⊤, where l̄∗ ∈ Rk and that L̄♭ has the following form:

L̄♭ =
[

1Nl×1

Nl
l̄′⊤ l̄N−Θ+1 ... l̄N

]
,

where Θ is the rank of the null space for Auu − ηuη
⊤
u

ηl
, l̄′ ∈ RN−k−Θ with non-zero values, and l̄N−Θ+1, ..., l̄N are all

perpendicular to 1Nl
.

By property in Lemma C.2, we define:

l̄♭ ≜ L̄♭⊤1Nl×1 =
[
l̄′⊤ 0 ... 0

]⊤ ∈ RN−k. (26)

Definition C.3. To ease the notation, we let I ≜ {k + 1, k + 2, ..., N −Θ} and we mainly discuss i ∈ I.

These definitions facilitate the presentation of the following Theorem C.4.

Theorem C.4. (With approximation) Denote T(y⃗) = ∥Ū♭⊤y⃗∥2

∥y⃗∥2
and κ(y⃗) = cos(Ū ♭⊤y⃗, l̄♭), where cos measures the cosine

distance between two vectors. Let σi as the i-th largest eigenvalue of Ȧ and σ̄i is for Ā. For a labeling vector y⃗ ∈ {0, 1}Nu ,
we have

R(Ū∗, y⃗) =
Nu

|Yu|
(1− κ(y⃗)2)T(y⃗)2. (27)

If the ignorance degree T(y⃗) is non-zero, the sufficient and necessary condition for R(Ū∗, y⃗) = 0: there exists ω ∈ R such
that

∀i ∈ I, y⃗⊤(σ̄iI −Auu)
†η⃗u = ω. (28)
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Proof. Define y⃗′ = [ζ11×Nl
, y⃗⊤]⊤ as an extended labeling vector where ζ is any real number. We have

R
(
Ū∗, y⃗

)
= min

µ⃗∈Rk
∥y⃗ − Ū∗µ⃗∥22

= min
µ⃗∈Rk,ζ∈R

{∥y⃗ − Ū∗µ⃗∥22 + ∥(ζ − l̄∗⊤µ⃗)11×Nl
∥22}

= min
µ⃗∈Rk,ζ∈R

∥y⃗′ − V̄ ∗µ⃗∥22

= min
ζ∈R

∥y⃗′ − V̄ ∗V̄ ∗⊤y⃗′∥22

= min
ζ∈R

∥V̄ ♭⊤y⃗′∥22

= min
ζ∈R

∥ζL̄♭⊤1Nl×1 + Ū ♭⊤y⃗∥22

= min
ζ∈R

∥ζ l̄♭ + Ū ♭⊤y⃗∥22

= ∥(I − l̄♭̄l♭⊤

∥̄l♭∥22
)Ū ♭⊤y⃗∥22

= (1− κ(y⃗)2)∥Ū ♭⊤y⃗∥22
=

Nu

|Yu|
(1− κ(y⃗)2)T(y⃗)2.

We then look into the components of l̄♭ and Ū ♭. According to Lemma C.2, when i > N −Θ, we have:

l̄♭ =
[
l̄′⊤ 0 ... 0

]⊤
= [ (̄l♭)k+1 (̄l♭)k+2 · · · (̄l♭)N−Θ 0 · · · 0 ]. (29)

And the sufficient and necessary condition for R(Ū∗, y⃗) to be minimized by l̄♭ is:

∃ω ∈ R,∀i ∈ I, ū♭⊤
i y⃗ = ω(̄l♭)i. (30)

Note that for i ∈ I, [
ηl1Nl×Nl

1Nl×1η⃗
⊤
u

η⃗u11×Nl
Auu

] [
l̄i
ūi

]
= σ̄i

[
l̄i
ūi

]
.

Also since (̄l♭)i = 11×Nl
l̄i ∈ R, we have the following results:

ūi = (σ̄iI −Auu)
†η⃗u(̄l

♭)i.

Thus, the sufficient and necessary condition (30) becomes: there exists ω ∈ R such that

∀i ∈ I, y⃗⊤(σ̄iI −Auu)
†η⃗u = ω. (31)

C.2.1. PROOF OF LEMMA C.2

Proof. To understand the structure of Ū and L̄, we consider the eigenvalue problem:[
ηl1Nl×Nl

1Nl×1η⃗
⊤
u

η⃗u11×Nl
Auu

] [
l̄i
ūi

]
= σ̄i

[
l̄i
ūi

]
.

In the non-trivial case, ηl ̸= 0, η⃗u ̸= 0Nl
, we have the following two equations:

ηl1Nl×111×Nl
l̄i + 1Nl×1η⃗

⊤
u ūi = σ̄i l̄i

(σ̄iI −Auu)ūi = η⃗u11×Nl
l̄i.
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(Case 1) When σ̄i ̸= 0, then l̄i has Nl duplicated scalar values η⃗⊤
u ūi

σ̄i−Nlηl
for the first equation to satisfy.

(Case 2) When σ̄i = 0, then by combing the two equations, we have:

Auuūi =
η⃗uη⃗

⊤
u

ηl
ūi.

If Auu − η⃗uη⃗
⊤
u

ηl
is a full rank matrix, then ūi = 0Nu

, and by the first equation 11×Nl
l̄i = 0. If Auu − η⃗uη⃗

⊤
u

ηl
is a deficiency

matrix and rank(Auu − η⃗uη⃗
⊤
u

ηl
) ≥ rank(Auu)

3, then ūi lies in the null space formed by η⃗u and Auu jointly, then η⃗⊤u ūi = 0,
we still have 11×Nl

l̄i = 0.

Therefore when i ∈ {1, . . . , k}, σ̄ is non-zero values, so that L̄∗ is stacked by the same row such that L̄∗ =
1Nl×1

Nl
l̄∗⊤,

where l̄∗ ∈ Rk. For i ∈ {k + 1, . . . , N}, L̄♭ has the following form:

L̄♭ =
[

1Nl×1

Nl
l̄′⊤ l̄N−Θ+1 ... l̄N

]
,

where Θ is the rank of the null space for Auu − ηuη
⊤
u

ηl
, l̄′ ∈ RN−k−Θ, and l̄N−Θ+1, ..., l̄N are all perpendicular to 1Nl

.

C.3. Proof for the Main Theorem 5.6

In this section, we provide the main proof of Theorem 5.6. For reader’s convenience, we provide the recap version in
Theorem C.5 by omitting the definition claim, where the detailed definition of Aul, All, qi, Ū

♭⊤, l̄♭, η⃗u is in Section C.2.

The proof of Theorem 5.6 consists of four steps. Firstly, E(f) is bounded by R(U∗) as we show in Lemma 5.1. Secondly,
the residual R (U∗, y⃗) of the original representation can be approximated by the residual R

(
Ū∗, y⃗

)
analyzed in Section C.2.

Thirdly, the approximation error bound is in the order of ∥Ȧ−Ā∥2

σk−σk+1
as shown in Section C.4. Finally, we show that the

coverage measurement κ(y⃗) can be lower bounded in Section C.5.

Theorem C.5. (Recap of Theorem 5.6) Based on the assumptions made in Lemma C.6, Lemma C.9 and Lemma C.10. The
linear probing error is bounded by:

E(f) ≲ 2Nu

|Yu|

|Yu|∑
i

T(y⃗i)(1− κ(y⃗i)
2) +

∥Ȧ− Ā∥2
σk − σk+1

 , (32)

where for single labeling vector y⃗,

κ(y⃗) = cos(Ū ♭⊤y⃗, l̄♭) ≳ min
i>k,j>k

2
√

y⃗⊤qi
η⃗⊤
u qi

y⃗⊤qj
η⃗⊤
u qj

y⃗⊤qi
η⃗⊤
u qi

+
y⃗⊤qj
η⃗⊤
u qj

.

Proof. According to Lemma 5.1, we have

E(f) ≤ 2R(U∗) = 2
∑
i∈Yu

R(U∗, y⃗i),

where we can view each y⃗i separately. For simplicity, we use y⃗ in the following proof. As show in Section C.2, R(U∗, y⃗)
can be approximately estimated by R(Ū∗, y⃗i) = (1 − κ(y⃗)2)∥Ū ♭⊤y⃗i∥22 = T(y⃗i)(1 − κ(y⃗)2)∥y⃗i∥22. Such approximation
bound is given by

R(U∗, y⃗) ≲ R(Ū∗, y⃗) +
2∥Ȧ− Ā∥2
σk − σk+1

∥y⃗∥22,

3When rank(Auu − η⃗uη⃗⊤
u

ηl
) < rank(Auu), it means that ηu happens to cancel out one of the direction in Auu. Such an event has zero

probability almost sure in reality. We do not consider this case in our proof.
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as shown in Lemma C.6 in Section C.4. Putting things together, we have

E(f) ≲ 2

|Yu|∑
i

T(y⃗i)(1− κ(y⃗)2)∥y⃗i∥22 +
2∥Ȧ− Ā∥2
σk − σk+1

∥y⃗i∥22.

If the sample size in the novel class is balanced, we have ∥y⃗∥22 = Nu

|Yu| , we have:

E(f) ≲ 2Nu

|Yu|

|Yu|∑
i

T(y⃗i)(1− κ(y⃗)2) +
∥Ȧ− Ā∥2
σk − σk+1

 ,

Finally, the lower bound of κ is given by Lemma C.10 and proved in Section C.5.

C.4. Error Bound by Approximation

We see in Section C.2 that we use the approximated version Ū∗ instead of the actual feature representation U∗, which creates
a gap. In this section, we will present a formal analysis on the gap between the induced residuals R(U∗, y⃗) and R(Ū∗, y⃗).

Lemma C.6. When ∥Ȧ− Ā∥2 < 1
2 (σk − σk+1) and cu ≜ Ei∈I(1− ∥ūi∥22) is a non-zero value4, we have

R(U∗, y⃗) ≲ R(Ū∗, y⃗) + 2
∥Ȧ− Ā∥2
σk − σk+1

∥y⃗∥22.

Proof. Recall that y⃗′ = [ζ11×Nl
, y⃗⊤]⊤ is an extended labeling vector where ζ is any real number defined in the proof of

Theorem C.4. We let ζ∗ = argminζ∈R ∥V̄ ♭⊤y⃗′∥22 so that ȳ∗ = [ζ∗11×Nl
, y⃗⊤]. We then define δ ≜ min{σk − σ̄k+1, σ̄k −

σk+1},

R(U∗, y⃗) =min
ζ∈R

∥V ♭⊤y⃗′∥22

=min
ζ∈R

y⃗
′⊤V ♭V ♭⊤y⃗′

=min
ζ∈R

(y⃗
′⊤V̄ ♭V̄ ♭⊤y⃗′ + y⃗

′⊤V ♭V ♭⊤y⃗′ − y⃗
′⊤V̄ ♭V̄ ♭⊤y⃗′)

≤R(Ū∗, y⃗) + |ȳ∗⊤(V ♭V ♭⊤ − V̄ ♭V̄ ♭⊤)ȳ∗|
≤R(Ū∗, y⃗) + ∥V ♭V ♭⊤ − V̄ ♭V̄ ♭⊤∥∥ȳ∗∥22
=R(Ū∗, y⃗) + ∥V ♭⊤V̄ ∗∥∥ȳ∗∥22

≤R(Ū∗, y⃗) +
∥Ȧ− Ā∥2

δ
∥ȳ∗∥22

≤R(Ū∗, y⃗) +
2∥Ȧ− Ā∥2
σk − σk+1

∥ȳ∗∥22,

where the second last inequality is from Davis-Kahan theorem on subspace distance ∥V ♭V ♭⊤ − V̄ ♭V̄ ♭⊤∥ = ∥V ♭⊤V̄ ∗∥ =
∥V̄ ♭⊤V ∗∥, and the last inequality is from Weyl’s inequality so that δ ≥ (σk − σk+1)− ∥Ȧ− Ā∥2 ≥ 1

2 (σk − σk+1).

We then investigate the magnitude order of ∥ȳ∗∥22. Note that ∥ȳ∗∥22 = ∥y⃗∥22 +Nl(ζ
∗)2 and ζ∗ = l̄♭⊤Ū♭⊤y⃗

∥̄l♭∥2
2

according to the

4Note that cu = 0 happens in an extreme case that ∀i ∈ I, ∥l̄i∥22 = 0 which means the extra knowledge is purely irrelevant to the
feature representation. Specifically, this could happen when Aul (defined in Section C.1) is a zero matrix.
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proof of Theorem C.4. Then,

∥ȳ∗∥22 = ∥y⃗∥22 +
Nl(̄l

♭⊤Ū ♭⊤y⃗)2

∥̄l♭∥42

= ∥y⃗∥22 +
Nlκ(y⃗)

2∥Ū ♭⊤y⃗∥22
∥̄l♭∥22

= ∥y⃗∥22
(
1 +

Nlκ(y⃗)
2T(y⃗)2

∥̄l♭∥22

)
= ∥y⃗∥22

(
1 +

κ(y⃗)2T(y⃗)2∑N−Θ
i=k+1(1− ∥ūi∥22)

)
,

where the last equation is given by Lemma C.2 when i > N − Θ, (̄l♭)i = 0 and also by the fact that when i ∈ I,

1− ∥ūi∥22 = ∥l̄i∥22 = Nl(
(̄l♭)i
Nl

)2 = (̄l♭)2i /Nl. Then by the assumption that cu is non-zero, we have

∥ȳ∗∥22 = ∥y⃗∥22(1 +
κ(y⃗)2T(y⃗)2

(N −Θ− k)cu
) ≲ ∥y⃗∥22(1 +O(

1

N
)).

By plugging back ∥ȳ∗∥22, we have

R(U∗, y⃗) ≲ R(Ū∗, y⃗) +
2∥Ȧ− Ā∥2
σk − σk+1

∥y⃗∥22.

C.5. Analysis on the Coverage Measurement κ(y⃗)

So far we have shown in Theorem C.4 that the sufficient and necessary condition for a zero residual is when the coverage
measurement κ(y⃗) = cos(Ū ♭⊤y⃗, l̄♭) equals to one. In this section, we provide a deeper analysis on κ(y⃗) in a less restrictive
case.

Recall that we have proved in Theorem C.4 that the sufficient and necessary condition for κ(y⃗) = 1 is:

∃ω ∈ R,∀i ∈ I, y⃗⊤(σ̄iI −Auu)
†η⃗u = ω. (33)

In a general case, we consider ωi which is variant on i:

ωi ≜ y⃗⊤(σ̄iI −Auu)
†η⃗u.

Our discussion on κ(y⃗) is based on the following definitions:

Definition C.7. Let qj and dj as the j-th eigenvector/eigenvalue of Auu. Then we define ỹj ≜ y⃗⊤qj and η̃j ≜ η⃗⊤u qj .

Before showing the bound on κ(y⃗), we first show the following Lemma C.8 and Lemma C.9 which is the important
ingredient needed to derive the lower bound of κ(y⃗). We defer the proof to Section C.5.1 and Section C.5.2 respectively.

Lemma C.8. Let Ω ∈ R(N−Θ−k)×(N−Θ−k) be the diagonal matrix with Ωi′i′ = ωi (i′ = i − k to be aligned with the
indexing of ωi). For any vector l ∈ RN−Θ−k, we have the following inequality:

1 ≥ l⊤Ωl

∥Ωl∥2∥l∥2
≥ min

i,j∈I

2
√
ωiωj√

ωj +
√
ωi

,

A sufficient and necessary condition for l⊤Ωl
∥Ωl∥2∥l∥2

being 1 for all l is to let ωi be the same for all i ∈ I.

Lemma C.9. Assume ηu is upper bounded by a small value 1
M : maxj=1...Nu(η⃗u)j =

1
M .5 For each indexing pair i ∈ I

and i′ ∈ I with order ωi < ωi′ , we have
ωi

ωi′
≳

y⃗⊤qi
η⃗⊤u qi

/
y⃗⊤qi′

η⃗⊤u qi′
.

5Such assumption is used to align the magnitude later in the proof between y⃗ ∈ [0, 1] and η⃗u ∈ [0, 1
M
] for the value range.
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Putting the ingredients together, we can finally derive an analytical lower bound of κ(y⃗) in Lemma C.10 based on the angle
of y⃗ / η⃗u to each eigenvector of Auu.

Lemma C.10. W.o.l.g, we let ω > 0 and assume that ωi > 0,∀i ∈ I so that perturbation of ωi to ω to be not significant
enough to change the sign of ω. we have:

κ(y⃗) = cos(Ū ♭⊤y⃗, l̄♭) ≳ min
i>k,j>k

2
√

y⃗⊤qi
η⃗⊤
u qi

y⃗⊤qj
η⃗⊤
u qj

y⃗⊤qi
η⃗⊤
u qi

+
y⃗⊤qj
η⃗⊤
u qj

,

Proof. Recall that

ūi = (σ̄iI −Auu)
†η⃗u(̄l

♭)i,

we consider the specific form of κ(y⃗),

κ(y⃗) = cos
(
Ū ♭⊤y⃗, l̄♭

)
=

∑N
i=k+1 ωi(̄l

♭)2i√∑N
i=k+1 ω

2
i (̄l

♭)2i

√∑N
i=k+1(̄l

♭)2i

=

∑
i∈I ωi(̄l

♭)2i√∑
i∈I ω2

i (̄l
♭)2i

√∑
i∈I (̄l

♭)2i

=
l̄′⊤Ω̄l′

∥Ω̄l′∥2∥̄l′∥2
,

where Ω ∈ RNu−k−Θ is a diagonal matrix defined in Lemma C.8, and l̄′ is defined in Eq. (29). According to Lemma C.8,
we have

κ(y⃗) =
l̄′⊤Ω̄l′

∥Ω̄l′∥2∥̄l′∥2
≥ min

i,j∈I

2
√
ωiωj√

ωj +
√
ωi

= min
i,j∈I

2√
ωj

ωi
+
√

ωi

ωj

,

Then by Lemma C.9 and by the fact that 2
t+ 1

t

is a monotonically increasing function when t ∈ (0, 1):

κ(y⃗) ≥ min
i,j∈I

2√
ωj

ωi
+
√

ωi

ωj

≳ min
i,j∈I

2√
y⃗⊤qi
η⃗⊤
u qi

/
y⃗⊤qj
η⃗⊤
u qj

+
√

y⃗⊤qj
η⃗⊤
u qj

/ y⃗⊤qi
η⃗⊤
u qi

> min
i>k,j>k

2
√

y⃗⊤qi
η⃗⊤
u qi

y⃗⊤qj
η⃗⊤
u qj

y⃗⊤qi
η⃗⊤
u qi

+
y⃗⊤qj
η⃗⊤
u qj

.
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C.5.1. PROOF FOR LEMMA C.8

Proof. Consider the function g(l) = l⊤Ωl
∥Ωl∥2∥l∥2

, the directional derivative ∂g(l)/∂l is given by:

∂g(l)

∂l
=

2Ωl∥Ωl∥2∥l∥2 − Ω2l ∥l∥2

∥Ωl∥2
l⊤Ωl− l∥Ωl∥2

∥l∥2
l⊤Ωl

∥Ωl∥22∥l∥22
.

The condition for ∂g(l)/∂l = 0 is

2Ωl = Ω2l
l⊤Ωl

∥Ωl∥22
+ l

l⊤Ωl

∥l∥22
.

Note that the first condition to satisfy this equation is to let l as the eigenvectors of 2Ω−Ω2 l⊤Ωl
∥Ωl∥2

2
which is a diagonal matrix.

Then one of the solutions sets is l = cej where c is any non-zero scalar value and ej is the unit vector with j-th value 1 and
0 elsewhere. Note that this solution set corresponds to the maximum value of g(l) which is 1. We are then looking into the
local minimum value of g(l) by another solution set. We consider another solution set by considering the following matrix
as deficiency:

Γ ≜ 2Ω− Ω2 l⊤Ωl

∥Ωl∥22
− l⊤Ωl

∥l∥22
I,

where l lies in the null space of this matrix. If we let ϱ = ∥l∥2

∥Ωl∥2
, we have:

Γ = 2Ω− ϱg(̂l)Ω2 − ϱ−1g(̂l)I

and
Γi′i′ = 2ωi − ϱg(̂l)ω2

i − ϱ−1g(̂l),

where i′ is indexed starting from 1 and i is indexed starting from k. Note that Γi′i′ only has two zero roots. If we
consider all ωi(s) in Ω to be different, Γ can have at most two zero values in the diagonal. Let ωa, ωb as two roots of
2ω − ϱg(̂l)ω2 − ϱ−1g(̂l), we have:

ϱωa + (ϱωa)
−1 = ϱωb + (ϱωb)

−1 =
2

g(̂l)

ϱ =

√
ωb√
ωa

, g(̂l) =
2√

ωb

ωa
+
√

ωa

ωb

,

which corresponds to one local minimal with the indexing pair (a, b). By enumerating all the indexing pairs, we have the
global minimum of g(l):

g(l∗) = min
i,j∈I

2
√
ωiωj√

ωj +
√
ωi

.

Note that when some ωi, ωj are identical, this is a special case where the local minimum is equal to the maximum 1.
Therefore a sufficient and necessary condition for g(l) = 1 is to let ωi be the same for all i ∈ I.

C.5.2. PROOF FOR LEMMA C.9

Proof. We can write ωi by ỹ and η̃ in Definition C.7:

ωi = y⃗⊤(σ̄iI −Auu)
†η⃗u

=
∑
j∈I

(y⃗⊤qj)(η⃗
⊤
u qj)

σ̄i − dj
+

Nu∑
j=N−Θ+1

(y⃗⊤qj)(η⃗
⊤
u qj)

σ̄i

=
∑
j∈I

ỹj η̃j

σ̄i − dj
+

1

σ̄i

Nu∑
j=N−Θ+1

ỹj η̃j .
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We then look into the value of σ̄i by solving the eigenvalue problem:[
ηl1Nl×Nl

1Nl×1η⃗
⊤
u

η⃗u11×Nl
Auu

] [
l̄i
ūi

]
= σ̄i

[
l̄i
ūi

]
⇐⇒ ηl1Nl×Nl

l̄i + 1Nl×1η⃗
⊤
u ūi = σ̄i l̄i

⇐⇒ 1Nl×1ηl(̄l
♭)i + 1Nl×1η⃗

⊤
u ūi = 1Nl×1σ̄i

1

Nl
(̄l♭)i

⇐⇒ ηl(̄l
♭)i + η⃗⊤u ūi = σ̄i

1

Nl
(̄l♭)i

⇐⇒ ηl(̄l
♭)i + η⃗⊤u (σ̄iI −Auu)

†η⃗u(̄l
♭)i = σ̄i

1

Nl
(̄l♭)i

⇐⇒ ηl + η⃗⊤u (σ̄iI −Auu)
†η⃗u =

σ̄i

Nl

⇐⇒ ηl +
∑
j∈I

η̃2
j

σ̄i − dj
=

σ̄i

Nl

Note that we get a (|I|+ 1)-th degree polynomials of σ̄i with (|I|+ 1) roots. By observation, we see that there is one root
significantly large (≈ Nlηl) since Nl and other |I| roots are very close to each dj . Based on this intuition, we approximately
view it as a unary quadratic equation:

ηl + ϕi +
η̃2
i

σ̄i − di
=

σ̄i

Nl
,

where we let ϕi ≜
∑

j∈I,j ̸=i

η̃2
j

σ̄i−dj
. We then proceed by solving this unary quadratic equation by viewing ϕi as a variable.

σ̄i(σ̄i − di) = Nlηl(σ̄i − di) +Nlϕi(σ̄i − di) +Nlη̃
2
i

⇐⇒ σ̄2
i = (di +Nl(ηl + ϕi))σ̄i +Nl(η̃

2
i − (ηl + ϕi)di)

⇐⇒ σ̄i =
di +Nl(ηl + ϕi)

2
±
√

(di +Nl(ηl + ϕi))2

4
+Nl(η̃

2
i − (ηl + ϕi)di)

⇐⇒ σ̄i =
di +Nl(ηl + ϕi)

2
±
√

(Nl(ηl + ϕi)− di)2

4
+Nlη̃

2
i

⇐⇒ σ̄i =
di +Nl(ηl + ϕi)

2
±

Nl(ηl + ϕi)− di
2

+
Nlη̃

2
i

Nl(ηl+ϕi)−di

2 +
√

(Nl(ηl+ϕi)−di)2

4 +Nlη̃
2
i



⇐⇒ σ̄i =
di +Nl(ηl + ϕi)

2
±

Nl(ηl + ϕi)− di
2

+
1

ηl+ϕi−
di
Nl

2η̃2
i

+

√
(
ηl+ϕi−

di
Nl

2η̃2
i

)2 + 1


⇐⇒ σ̄i =

di +Nl(ηl + ϕi)

2
±
(
Nl(ηl + ϕi)− di

2
+

η̃2
i

ηl + ϕi − di

Nl

−O((
η̃2
i

ηl + ϕi
)2)

)

Here we see that σ̄i has two approximated solutions: in the first case, when ± becomes +, σ̄i ≈ Nlηl which is the unique
very large solution as we mentioned. Another solution is by picking ± as −, we then have σ̄i ≈ di − η̃2

i

ηl+ϕi−
di
Nl

. The second

case is what we are using in this proof since we are looking at the indexing of ωi with i ∈ I, which is beyond top-k.
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For each indexing pair i and i′ with order ωi < ωi′ , we plug in the solution of σ̄i and σ̄′
i respectively:

ωi

ωi′
=

∑
j∈I

ỹj η̃j

dj−σ̄i
+ 1

σ̄′
i

∑Nu

j=N−Θ+1 ỹj η̃j∑
j∈I

ỹj η̃j

dj−σ̄i′
+ 1

σ̄′′
i

∑Nu

j=N−Θ+1 ỹj η̃j

=

ỹiη̃i

di−σ̄i
+
∑

j∈I,j ̸=i

ỹj η̃j

dj−σ̄i
+ 1

σ̄′
i

∑Nu

j=N−Θ+1 ỹj η̃j

ỹi′ η̃i′
di′−σ̄i′

+
∑

j∈I,j ̸=i′
ỹj η̃j

dj−σ̄i′
+ 1

σ̄′′
i

∑Nu

j=N−Θ+1 ỹj η̃j

=

ỹi

η̃i
(ηl + ϕi) + ỹiη̃i(O((

η̃2
i

ηl+ϕi
)2)−O( 1

Nl
)) +

∑
j∈I,j ̸=i

ỹj η̃j

dj−σ̄i
+ 1

σ̄′
i

∑Nu

j=N−Θ+1 ỹj η̃j

ỹi′
η̃i′

(ηl + ϕi′) + ỹi′ η̃i′(O((
η̃2

i′
ηl+ϕ′

i
)2)−O( 1

Nl
)) +

∑
j∈I,j ̸=i′

ỹj η̃j

dj−σ̄i′
+ 1

σ̄′′
i

∑Nu

j=N−Θ+1 ỹj η̃j

=

ỹi

η̃i
ηl + ỹiη̃i(O((

η̃2
i

ηl+ϕi
)2)−O( 1

Nl
)) +

∑
j∈I,j ̸=i

1
dj−σ̄i

η̃j(ỹj + ỹi
η̃j

η̃i
) + 1

σ̄′
i

∑Nu

j=N−Θ+1 ỹj η̃j

ỹi′
η̃i′

ηl + ỹi′ η̃i′(O((
η̃2

i′
ηl+ϕ′

i
)2)−O( 1

Nl
)) +

∑
j∈I,j ̸=i′

1
dj−σ̄i′

η̃j(ỹj + ỹi′
η̃j

η̃i′
) + 1

σ̄′′
i

∑Nu

j=N−Θ+1 ỹj η̃j

.

According to assumption that ηu is bounded by 1
M , we align the magnitude between y⃗ and η⃗u by defining η⃗′u = Mη⃗u which

is now also in the range of [0, 1] like y⃗. Then we also scale the following terms: η̃′ = M η̃. Therefore we can simplify the
equation to be:

ωi

ωi′
=

M ỹi

η̃′
i
ηl +

1
M ỹiη̃

′
i(O( 1

M4 (
η̃′2

i

ηl+ϕi
)2)−O( 1

Nl
)) + 1

M

∑
j∈I,j ̸=i

1
dj−σ̄i

η̃′
j(ỹj + ỹi

η̃′
j

η̃′
i
) + 1

Mσ̄′
i

∑Nu

j=N−Θ+1 ỹj η̃
′
j

M ỹi′
η̃′

i′
ηl +

1
M ỹi′ η̃

′
i′(O( 1

M4 (
η̃′2

i′
ηl+ϕ′

i
)2)−O( 1

Nl
)) + 1

M

∑
j∈I,j ̸=i′

1
dj−σ̄i′

η̃′
j(ỹj + ỹi′

η̃′
j

η̃′
i′
) + 1

Mσ̄′′
i

∑Nu

j=N−Θ+1 ỹj η̃
′
j

=

ỹi

η̃′
i
ηl + ỹiη̃

′
i(O( 1

M6 )−O( 1
M2Nl

)) + 1
M2

∑
j∈I,j ̸=i

1
dj−di+O( 1

M2 )
η̃′
j(ỹj + ỹi

η̃′
j

η̃′
i
) + ỹi

η̃′
j

η̃′
i
) + 1

M2σ̄′
i

∑Nu

j=N−Θ+1 ỹj η̃
′
j

ỹi′
η̃′

i′
ηl + ỹi′ η̃

′
i′(O( 1

M6 )−O( 1
M2Nl

)) + 1
M2

∑
j∈I,j ̸=i′

1
dj−di′+O( 1

M2 )
η̃′
j(ỹj + ỹi′

η̃′
j

η̃′
i′
) + 1

M2σ̄′′
i

∑Nu

j=N−Θ+1 ỹj η̃
′
j

=

ỹi

η̃′
i
ηl +O( 1

M2 )

ỹi′
η̃′

i′
ηl +O( 1

M2 )
,

where we simply regard the remaining term with a magnitude much smaller than M. Note that M can be viewed as the
magnitude gap of maxi(y⃗)i

maxi(η⃗u)i
. In our case, maxi(y⃗)i is set to 1. However, one can always multiply y⃗ with a large constant to

make M significantly large without changing the residual analysis in the main theorem. In summary, we have

ωi

ωi′
≳

ỹi

η̃′
i
ηl

ỹi′
η̃′

i′
ηl

=
ỹi

η̃i

/
ỹi′

η̃i′
=

y⃗⊤qi
η⃗⊤u qi

/
y⃗⊤qi′

η⃗⊤u qi′
.
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D. Experimental Details
D.1. Details of Training Configurations

For a fair comparison, we use ResNet-18 (He et al., 2016) as the backbone for all methods. We add a trainable two-layer
MLP projection head that projects the feature from the penultimate layer to an embedding space Rk (k = 1000). We use the
same data augmentation strategies as SimSiam (Chen & He, 2021; HaoChen et al., 2021). We train our model f(·) for 1200
epochs by NCD Spectral Contrastive Loss defined in Eq. (4). We set α = 0.0225 and β = 2. We use SGD with momentum
0.95 as an optimizer with cosine annealing (lr=0.03), weight decay 5e-4, and batch size 512. We also conduct a sensitivity
analysis of the hyper-parameters in Figure 4. The performance comparison for each hyper-parameter is reported by fixing
other hyper-parameters. The results suggest that the novel class discovery performance of NSCL is stable when α, β in a
reasonable range and with different learning rates.

Figure 4. Sensitivity analysis of hyper-parameters α, β, and learning rate. We use the training split of CIFAR-100-50/50, and report the
novel class accuracy.

D.2. Experimental Details of Toy Example

Recap of set up. In Section 5.1 we consider a toy example that helps illustrate the core idea of our theoretical find-
ings. Specifically, the example aims to cluster 3D objects of different colors and shapes, generated by a 3D rendering
software (Johnson et al., 2017) with user-defined properties including colors, shape, size, position, etc.

In what follows, we define two data configurations and corresponding graphs, where the labeled data is correlated with
the attribute of unlabeled data (case 1) vs. not (case 2). For both cases, we have an unlabeled dataset containing red/blue
cubes/spheres as:

Xu ≜ {X ,c1 , X ,c1 , X ,c2 , X ,c2}.

In the first case, we let the labeled data X case 1
l be strongly correlated with the target class (red color) in unlabeled data:

X case 1
l ≜ {X ,c1}(red cylinder).

In the second case, we use gray cylinders which have no overlap in either shape and color:

X case 2
l ≜ {X ,c3}(gray cylinder).

Putting it together, our entire training dataset is X case 1 = X case 1
l ∪ Xu or X case 2 = X case 2

l ∪ Xu.

Experimental details for Figure 3. For training, we rendered 2500 samples for each type of data (4 types in Xu

and 1 type in Xl). In total, we have 12500 samples for both X case 1 and X case 2. For training, we use the same data
augmentation strategy as in SimSiam (Chen & He, 2021). We use ResNet18 and train the model for 40 epochs (sufficient
for convergence) with a fixed learning rate of 0.005, using NSCL defined in Eq. (4). We set α = 0.04 and β =
1, respectively. Our visualization is by PyTorch implementation of UMAP (McInnes et al., 2018), with parameters
(n_neighbors=30, min_dist=1.5, spread=2, metric=euclidean).
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