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Abstract

We develop techniques for refining representations for
fine-grained classification and segmentation tasks in a self-
supervised manner. Current fine-tuning methods based on
instance-discriminative contrastive learning are not as ef-
fective, possibly due to object pose and background, which
are highly discriminatory for instances but act as a nuisance
factor for categorization. We present an iterative learning
approach that incorporates part-centric equivariance and
invariance objectives. First, pixel representations are clus-
tered in a part discovery step, where we analyze the rep-
resentations from convolutional and vision transformer net-
works best suited for this. Then, a part-centric learning step
aggregates and contrasts representations of parts within an
image. We show that this improves the downstream perfor-
mance on image classification and part segmentation tasks
across datasets. For example, under a linear-evaluation
scheme, the classification accuracy of a ResNet50 archi-
tecture trained using a self-supervised learning approach
called DetCon [18] on ImageNet, improves from 35.4% to
42.0% on the Caltech-UCSD birds dataset, from 35.5% to
44.1% on the FGVC aircraft dataset, and 29.7% to 37.4%
on Stanford Cars dataset. We also observe significant gains
in few-shot part segmentation tasks in these datasets, while
in both cases instance-discriminative learning was not as
effective. Smaller, yet consistent, improvements are also ob-
served for stronger baseline models based on vision trans-
formers. We present experiments that evaluate the signif-
icance of pre-trained networks and techniques for part-
discovery for downstream tasks.

1. Introduction

Contrastive learning based on instance discrimination
has emerged as a leading self-supervised learning (SSL)
technique (e.g., [6,13,15,20,40]) for a wide range of image
understanding tasks. Yet, their performance on fine-grained
categorization has been lacking compared to the supervised
counterparts especially in the few-shot setting [10, 32]. In-
stances within a category often appear in a wide variety of
poses and backgrounds which is highly discriminative of

green line = +ve samples

average each  
cluster 

average each  
cluster 

Cluster features

Step I : Part Discovery

Step II : Part Contrastive Training

Encoder

Momentum 
Encoder

Pixel-wise labels 
from Step I

Mask 
Pooling 

Part-wise 
Contrast 

red line = -ve samples

fk

For k = 1, …, N

fk+1   =   fktrained

f1 = Initial network

for image in TrainSet:

fk

Extract pixel features

Figure 1. Self-supervised fine-tuning using part discovery and
contrastive learning (PARTICLE). Given a collection of unla-
beled images, at each iteration we cluster pixels features from an
initial network to obtain part segmentations (§ 3.1), and fine-tune
the network using a contrastive objective between parts (§ 3.2).

instances which can be a nuisance factor for categorization.
At the same time appearance of parts are discriminative of
categories and thus part-centric appearance have often been
used to improve performance on fine-grained recognition
tasks [3, 23, 33, 39].

Thus we develop an approach for fine-tuning representa-
tions that is especially suited for fine-grained classification
and segmentation tasks (e.g., recognizing species of birds
and segmenting their parts). Our approach shown in Fig. 1
consists of two steps. First, we discover parts within an
image by clustering pixel representations using an initial
network. This is done by clustering hypercolumn repre-
sentations of CNNs [7, 14], or patch embedding of vision
transformers (Step I). We then train the same network us-
ing an objective where we aggregate and contrast pixel rep-
resentations across parts within the same image (Step II).
Similar to prior work (e.g., [5, 7, 18, 34]) we learn invari-
ances and equivariances through data augmentations. The
resulting network is then used to re-estimate part segmen-
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tations and the entire process repeated (see Algorithm 1).
Our approach, for part discovery and contrastive learning
(PARTICLE) can be used to adapt representations to new
domains in an entirely self-supervised manner.

We test our approach for adapting residual networks
(ResNet50) [17], as well as vision transformers (ViTs) [11]
trained on ImageNet [27] using self-supervision techniques
to fine-grained domains. We consider two tasks: 1) clas-
sification under a linear evaluation, and 2) part segmenta-
tion with a few labeled examples. For ResNet50 networks
trained with DetCon [18], PARTICLE improves the classi-
fication accuracy from 35.4% to 42.0% on Caltech-UCSD
birds [38] and 35.5% to 44.1% on FGVC aircrafts [24],
closing the gap over ImageNet supervised variant. On
part-segmentation our approach leads to significant im-
provements over both the baseline and supervised Ima-
geNet networks. Similar gains are also observed for net-
works trained using momentum-contrastive learning (Mo-
Cov2 [16]). ViTs, in particular, those trained with DINO [4]
are highly effective, surpassing the supervised ResNet50
ImageNet baseline, but our approach improves the classi-
fication accuracy from 83.3% to 84.2% on birds, 72.4% to
73.6% on aircrafts, and 72.7% to 73.9% on cars while show-
ing larger gains on the part segmentation tasks. Notably, the
same objective (i.e., MoCo, DetCon, or DINO) yield signif-
icantly smaller, and sometimes no improvements across the
tasks and datasets (Tab. 1), in comparison to PARTICLE.

We also systematically evaluate the effectiveness of var-
ious representations for part discovery. Parts generated
by color and texture features are less effective than hyper-
columns. Hypercolumns are critical to obtain good parts
for ResNets, which explains our improvements over related
work such as ODIN [19] and PICIE [8] which are based
on clustering final-layer features. On Birds, we find that
parts obtained via ground-truth keypoints and figure-ground
masks also lead to a significantly better categorization per-
formance, and PARTICLE approaches this oracle baseline.
For ViTs we find that last layer “key” features of patches
are effective and hypercolumns are not as critical, perhaps
because resolution is maintained throughout the feature hi-
erarchy. These differences are highlighted in Tab. 1, Tab. 2,
and Fig. 2. Our approach is also relatively efficient as it
takes only ⇡2⇥ the amount of time to train MoCo and is
⇡5⇥ faster than ODIN for ResNet50.

2. Related Work
Fine-grained Recognition using SSL. Cole et al. [10]
show that self-supervised CNNs trained on ImageNet do
not perform well on fine-grained domains compared to their
supervised counterparts in the “low-data” regime. Prior
work [10, 31, 32] has also investigated the role of do-
main shifts on the generalization concluding that high do-
main similarity is critical for good transfer. Our work

aims to mitigate these issues by showing that the per-
formance of ImageNet self-supervised representations can
be improved by fine-tuning the representations using it-
erative part-discovery and contrastive learning on moder-
ately sized datasets ( 10k images). Recent work in self-
supervised learning using vision transformers (ViTs) such
as DINO [4] show remarkable results for fine-grained clas-
sification. DINO performs as well as supervised ImageNet
ViT models and much better than supervised ImageNet
ResNet50 models [21]. Our experiments show that PAR-
TICLE still offers improvements, especially on aircrafts
where the domain shift is larger.

Part Discovery Methods. Our approach for part discov-
ery is motivated by work that shows that hypercolumns
extracted from generative [36, 41] or contrastively [7, 28]
trained networks, as well as ViTs [1, 9] lead to excellent
transfer on landmark discovery or part segmentation tasks.
Among techniques for part discovery on fine-grained do-
mains the most related ones include Sanchez et al. [30] who
use a supervised keypoint detector to adapt to the target
domain. Aygun et al. [2] boost landmark correspondence
using an objective that captures finer distances in feature
space. The focus of this line of work has been on part dis-
covery, but our goal is to also evaluate how part discov-
ery impacts fine-grained classification. Better techniques
for part discovery are complementary to our approach.

Pixel Contrastive Learning. Several pixel-level SSL ap-
proaches have been proposed for image segmentation or ob-
ject detection tasks. Our approach for part-centric learning
is based on DetCon [18] which learns by clustering pixels
based on color and texture [12]. They show improved de-
tection and semantic segmentation performance compared
to image-level SSL on standard benchmarks. We adopt the
underlying objective due to its computational efficiency, but
instead use pixel representations based on deep networks.
ODIN [19] uses k-means clustering on the last-layer fea-
tures of a discovery network to find object clusters to guide
a contrastive objective of a separate representation network.
The training is based on the student-teacher learning frame-
work of BYOL [13]. Similarly, PiCIE [8] considers global
clustering of pixel level features within a dataset and trains a
network using photometric invariance and geometric equiv-
ariance on the segmentation task. Much of the focus of the
above work has been on tasks on coarse domains (e.g., Im-
ageNet or COCO), while our work considers fine-grained
image classification and part segmentation tasks. Notably,
we find that unlike hypercolumns, the last layer features of
a ResNet often used to discover objects do not contain finer
demarcations that constitute parts of objects in fine-grained
domains (see Fig. 3 for some examples).
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3. Method
Problem and Evaluation. We consider the problem of
learning representations on fine-grained domains (e.g.,
Birds or Aircrafts) for image categorization and part seg-
mentation tasks. We consider a setting where the dataset
is moderately sized (e.g.,  10,000 unlabeled images) and
the goal is to adapt a SSL pre-trained representation trained
on ImageNet. This represents a practical setting where one
might have access to a large collection of unlabeled images
from a generic domain and a smaller collection of domain-
specific images. For evaluation we consider classification
performance under a linear evaluation scheme (i.e., using
multi-class logistic regression on frozen features), or part
segmentation given a few (⇡ 100) labeled examples.

Approach. Given an initial network, our training proce-
dure iterates between a part discovery step and a part-centric
learning step outlined in Algorithm 1 and Fig. 1. In § 3.1 we
outline various methods to obtain parts and compare them
to baselines based on low-level features as well as keypoints
and figure-ground masks when available. The latter serves
as an oracle “upper bound” on the performance of the ap-
proach. In § 3.2 we present the part-level contrastive learn-
ing framework which discriminates features across parts
within the same image under photometric and geometric
transformations.

3.1. Part Discovery Methods
CNNs. Hypercolumn representations of CNNs have been
widely used to extract parts of an object. A deep network of
n layers (or blocks) can be written as F(x) = F(n) �F(n�1) �
· · ·�F(1)(x). A representation F(x) of size H 0 ⇥W 0 ⇥K can
be spatially interpolated to input size H⇥W ⇥K to produce
a pixel representation FI(x) 2 RH⇥W⇥K . We use bilinear
interpolation and normalize these features using a `2 norm.
The hypercolumn representation of layers l1, l2, . . . , ln is ob-
tained by concatenating interpolated features from corre-
sponding layers i.e.

FI(x) = kF(l1)
I (x)k2�kF(l2)

I (x)k2� · · ·�kF(ln)
I (x)k2

We then use k-means clustering of features within the same
image to generate part segmentation. We choose the lay-
ers based on a visual inspection and keep it fixed across
datasets. Further details are in § 5.1.

ViTs. Unlike CNNs, ViTs maintain constant spatial reso-
lution throughout the feature hierarchy allowing one to ob-
tain relatively high resolution pixel representations from the
last layer. DINO [4] shows that the self-attention of the
“[cls] token” has a strong figure-ground distinction. Last
layer ‘key’ features of DINO have also been used to obtain
part segmentations [1]. Motivated by this and our initial ex-
periments that did not indicate better results using features

Algorithm 1 Part Discovery and Contrast Learning
Require: D := {X} . Unlabeled images
Require: f , params={#iters, #clusters} . Initial network, params

1: function PARTDISCOVERY(x, f )
2: FREEZEWEIGHTS(f)
3: h = NORMFEATURES( f (x)) . Forward pass as in § 3.1
4: y = KMEANS(h, #clusters)
5: return y
6: end function

f1 f . Initialize network
7: for k 1 to #iters do
8: Y = {} . Initialize labels
9: for x 2 X do . On each example individually

10: y = PARTDISCOVERY(x, fk)
11: Y append(y) . Part labels
12: end for
13: fk+1 PARTCONTRAST(X, Y, fk) . Training § 3.2
14: end for

across multiple layers, we consider the last layer ‘key’ fea-
tures to extract pixel representations.

Baseline: Color and Texture. We extract parts using a
classical image segmentation algorithm based on pixel color
and texture – Felzenzwalb Huttenlocher [12]. The parame-
ters used to generate segmentations are described in §4.

Baseline: Keypoints and Masks. As an oracle baseline
we generate parts clustering based on keypoints or figure-
ground masks. On birds dataset we assign each foreground
pixel to the nearest keypoint (using a Voronoi tessellation)
while all background pixels are assigned a background cat-
egory. For Aircrafts, we consider the figure-ground mask as
a binary segmentation (see Datasets, §4 for details).

Analysis. Fig. 2 visualizes the part clusters obtained using
various techniques and pre-trained models. Hypercolumns
extracted from pre-trained ResNet50 using DetCon pro-
duces slightly better visual results than from MoCo. Previ-
ous work, ODIN and PICIE cluster last-layer features which
are rather coarse and not well aligned with object parts as
shown in Fig. 3. This might explain the relatively weaker
performance of ODIN on our benchmarks compared to our
approach that uses hypercolumns (31.19 vs 34.31 on CUB
classification fine-tuned over MoCo ImageNet - more in
suppl.). Parts using color and texture are often not as ef-
fective, conflating foreground and background. The bottom
row shows the clusters obtained using “side information”,
i.e., keypoints for birds and figure-ground for airplanes.

3.2. Part Contrastive Learning
Given an image x and an encoder f we a obtain a rep-

resentation y = f (x) where y 2 RH⇥W⇥K for CNNs and

3
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Image

Color + 
Texture

MoCo 
Hypercolumns

Detcon 
Hypercolumns

Clustering  
using Side 

Information

DINO ‘key’ 
feature 

clustering

Figure 2. Visualization of the parts obtained by clustering representations. Clusters based on color and texture representations often
conflate the object with the background. Clustering using hypercolumn features from ResNet50 trained using MoCo or DetCon are more
aligned with semantic parts. For example, parts such as the head, tail, wing and breast in birds are distinct, and align with clusters generated
using ground truth keypoints and figure-ground masks. DINO ViT representations are qualitatively similar. For Aircrafts, the only side
information available is the figure-ground mask. Note that for the purpose of this visualization we manually mask out the clusters in the
background. Refer to Fig. 3 last column to see the background clusters.

After Layer B1 After Layer B2 After Layer B3 After Layer B4After  MaxPool Hypercolumn

Figure 3. Clusters features from various layers of a ResNet50.
The shallower layer (left) features are similar to those based on
colour and texture. As we go deeper (from left to right), the parts
are more distinctive (e.g., layer B2 and B3). Layer B4, the layer
before the final average pooling, fails to produce meaningful clus-
ters. Hypercolumns (last column) clusters often result in distinct
parts. This ResNet50 was trained using DetCon on ImageNet.

y2R(P+1)⇥K for ViTs where (P+1) is the number of patches
and the [cls] token. We consider the representation be-
fore the last Average Pooling layer in a ResNet50 network
and the last layer output tokens only for the patches in case
of ViT. Given the segmentation of the image x obtained in
the previous step, we downsample it using nearest neigh-
bour interpolation to get s so that we have a mask value
m associated with each spatial location (i, j) in y. A mask
pooled feature vector for every mask value m can be ob-

tained as:

ym =
Âi, j1(s[i, j] = m)⇤y[i, j]

Âi, j1(s[i, j] = m)
(1)

Given an image we generate two views x and x0 us-
ing various augmentations (see supplementary). Next using
Equation 1 we can obtain mask pooled features from both
views as ym,y0m0 where m,m0 are mask indices. Now using
a projector MLP g and a predictor MLP q we get:

pm = qq �gq (ym) p0m0 = gx (y0m0) (2)

Note that the second view x0 is passed to a momen-
tum encoder fx , then the mask pooled features are fed to
gx . These networks are trained using momentum update
whereas qq ,gq , fq are trained using backpropagation. All
the latents are rescaled so they have norm as 1/

p
t where

t = 0.1
Next to contrast across masks we use the following loss

function:

L = Â
m
� log

exp(pm.p0m)
exp(pm.p0m)+Ân exp(pm.p0n)

(3)

where p0n are the negatives i.e. samples from different
masks from same image as well as across examples.
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4. Datasets and Evaluation Metrics
Here we describe the datasets we use for the part aware

contrastive training step and for the downstream tasks of
fine-grained classification and few-shot part segmentation.

4.1. Birds
Self-Supervised Training. We use the Caltech-UCSD
birds (CUB) [38] dataset that has 11788 images centered
on birds with 5994 for training and 5794 for testing. We use
the training set images for our contrastive learning part. The
CUB dataset provides keypoints, figure-ground masks and
classes as annotations. It has labels for 15 keypoints per-
image. We remove the left/right distinctions and get a total
of 12 keypoints : ‘back’, ‘beak’, ‘belly’, ‘breast’, ‘crown’,
‘forehead’, ‘eye’, ‘leg’, ‘wing’, ‘nape’, ‘tail’, ‘throat’. Each
foreground pixel is assigned a cluster based on the index of
the nearest part, while background pixels are assigned their
own labels. For clustering using color and texture, we use
FH with the scale parameter of 400 and minimum compo-
nent size of 1000 for this dataset, to get an average of 25
clusters per image. For hypercolumns we use k=25 for k-
means clustering.

Classification. We again use the CUB dataset for classi-
fication. It has birds from 200 classes. We use the official
train-test splits for our experiments and report the per-image
accuracy on the test and validation sets.

Few-shot Part Segmentation. We use the PASCUB
dataset for part segmentation with 10 part segments intro-
duced by Saha et al. [29]. We use the training set consisting
of 421 images to train and use the validation (74) and test-
ing (75) sets of the CUB partition to present results. We
report the mean intersection-over-union (IoU) on the vali-
dation and test sets.

4.2. Aircrafts
Self-Supervised Training. We use the OID Aircraft [37]
dataset for pre-training. We use the official training split
containing 3701 images. Since we do not have keypoint
annotations for this dataset, we only use the figure-ground
masks as the side information segmentations. For the color
and texture we use FH with a scale parameter of 1000 and
minimum component size of 1000 and get an average of 30
clusters per image. For clustering using hypercolumns we
use k=25 for k-means clustering.

Classification. For classification we use the FGVC Air-
craft [24] dataset. It contains 10,000 images belonging to
100 classes. We use the official ‘trainval’ set to train and
the ‘test’ set for reporting testing results. They contain
6667 and 3333 images respectively. We report the mean
per-image accuracy on this dataset.

Few-shot Part Segmentation. We use the Aircraft seg-
mentation subset extracted from OID Aircraft in Saha et
al. [29]. It contains 4 partially overlapping parts per im-
age. We use the official 150 images for training and 75 each
for validation and testing. We report the mean intersection-
over-union (IoU) on this dataset.

5. Implementation Details and Baselines
5.1. ImageNet pre-trained SSL CNNs

We consider initialization using two choices of Ima-
geNet self-supervised models both based on a ResNet50
architecture for a uniform comparison. One is based on
MoCo and the other is based on DetCon. To obtain part
clusters, every image in the dataset is resized to 224⇥224
and hypercolumn features are extracted from the first Max-
Pool, BottleNeck Block 1, BottleNeck Block 2 and Bottle-
Neck Block 3 layers. We resample all features to a spatial
resolution of 64⇥64 and concatenate across channel dimen-
sion. This results in a 64⇥64⇥1856 feature vector. We use
sklearn k-means clustering using k=25 and 500 max itera-
tions. We provide an ablation to justify the number of clus-
ters in supplementary. We cluster each image in the dataset
independently. We use the same specifications for hyper-
column extraction and clustering while training iterations
of discovery and contrast.

5.2. ImageNet pre-trained DINO ViT
We also extend our method to vision transformers. We

extract parts from ImageNet pre-trained DINO ViT by clus-
tering the last layer (Layer 11) ‘key’ features using the
method by Amir et al. [1]. We fix the number of parts to
7 for birds and 5 for aircrafts. We use the 8⇥8 patch ver-
sion of ViT S/8 as it has the largest feature resolution for
parts. For fine-tuning DINO ViT using PARTICLE, we
apply the part contrastive loss over the output patch tokens
of the ViT and add to the DINO student-teacher loss with
equal weights. We use 224⇥224 input image resulting in
28⇥28 feature vector at every layer.

5.3. Baselines for Self-Supervised Adaptation
To determine the effect of our training strategy over the

boost coming from simply fine-tuning on a category specific
dataset, we benchmark over some standard baselines. For
each of these baselines we fine-tune over the category spe-
cific dataset (CUB for birds/OID for aircrafts) while learn-
ing using their objective. Below we list the baselines:

MoCo (V2). The Momentum Contrast (MoCo [16]) ap-
proach minimizes a InfoNCE loss [25] over a set of unla-
beled images. MoCo performs instance level contrast by
maintaining a queue of other examples considered negatives
and treating transformations of a single image as positives.
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DetCon. DetCon uses color and texture features to
generate object segmentations using the Felzenzswalb-
Huttenlocher [12] algorithm. It uses a ResNet-50 based
model to train using pixel contrast based on these object
segmentations. Their loss function is the same as in § 3.1.

ODIN. This method has the same training objective of
DetCon but creates segmentations by clustering the last
layer features of a ‘discovery’ network using K-means in
every iteration. This ‘discovery’ network is initialized ran-
domly and is trained using momentum update from the main
encoder. In Fig. 3 we show that the clusters of the last layer
features of even a pre-trained network is not a good repre-
sentation of object parts. We show a comparison of using
ODIN vs other objectives in the Supplementary Material.

DINO ViT. We use the ViT S/8 network which the Small
ViT using 8⇥8 patches, trained with DINO [4]. DINO
trains using a student teacher framework where the student
is updated by minimizing the cross-entropy between soft-
max normalized outputs of the student and teacher. The
teacher is updated using momentum. DINO is also an in-
stance level contrastive method.

PiCIE. PiCIE [8] learns unsupervised object segmenta-
tion by clustering the features of the complete dataset using
mini-batch k-means and training using invariance to photo-
metric transformations and equivariance to geometric trans-
formations. For part segmentation, PiCIE does not work
well (see supplementary) because it uses only the last down-
sampled feature space of the encoder which does not have
part information (see Fig. 3) and trying to fit object parts
from all images to a single set of centroids for the whole
dataset results in loss of information.

5.4. Hyper-parameters
Self-Supervised Adaptation. For all baselines and our
method based on CNN we finetune the initialized model
for 600 epochs with a learning rate of 0.005 with a batch
size of 320. We use a SGD optimizer with weight decay of
1.5E-6 and momentum of 0.9. We use a cosine learning rate
decay with 10 epochs for warm up. For momentum updates
we use a decay of 0.996. For all methods, we train using
an image resolution of 224⇥224. We utilize the augmen-
tations as defined in BYOL [13]. We provide the details in
the Supplementary. For adaptation to DINO ViT, we use a
learning rate of 1E-7 with cosine decay and a weight decay
of 0.4. We train for 100 epochs with a batch size of 64.

Iterative Training. For extracting hypercolumns, we use
the same specification as in § 5.1. We train for 20 epochs
with a learning rate of 0.05. Rest of the hyperparameters
stay the same as in the previous paragraph. For DINO ViT
based models, we use a LR of 1E-8 and train for 60 epochs.

Linear Probing. We initialize a ResNet50 encoder with
the contrastively trained networks as described above and
§ 3. We do the evaluation using the input image of resolu-
tion 224⇥224. We store the features before the last Average
pooling layer for both train and test sets. We do not use any
data augmentation for this. We then use the Logistic Re-
gression method of sklearn, which we train using L-BFGS
for 1000 maximum iterations. We choose the best model by
evaluating on the validation set. For DINO ViT based mod-
els we average over the class token and patch tokens and
use the same details as above.

Fine-Tuning. We also report results using fine-tuning in
the supplementary where the entire network is trained for
200 epochs with a batch size of 200. We use SGD with a lr
of 0.01 and momentum of 0.9. We train for varying number
of images in the train set – 1, 3, 8, 15, 30 per class. Only
flipping augmentation is used while training, except the low
shot versions (1,3 and 8) where we also add random resized
cropping and color jitter. For reporting scores on test set,
we choose the best checkpoint based on the val set.

Part Segmentation. We add a decoder network consist-
ing of four upsampling layers followed by convolutions to
generate part segmentations from the ResNet50 features.
We use the best pre-training checkpoint for each experiment
obtained in linear probing on validation set. We follow all
the parameters for training/evaluation of Saha et al. [29].
We fine-tune the entire network for part segmentation. Here
we train and test using input images of resolution 256⇥256
following. We train the network using a cross entropy loss
for PASCUB experiments. For Aircrafts, we treat it as
a pixel-wise multi-label classification task and use binary
cross entropy (BCE) loss. We use Adam optimizer with a
learning rate of 0.0001 for 200 epochs. We use flipping and
color-jitter augmentations while training. We use the mean
IoU metric to report results. During evaluation, we perform
5 fold cross validation to find the best checkpoint using the
validation sets and report the mean of them. For DINO ViT
based models we rearrange the patch ‘key’ features of the
last layer back to a 3D tensor and use 3 layers of upsam-
pling each of which consists of two 3⇥3 kernel Convs. We
use a learning rate of 1E-5. Other details are same as above.

6. Results
We describe the results of evaluating the baselines and

our method across different settings for fine-grained visual
classification and few-shot part segmentation. In the follow-
ing sections, we present a detailed analysis of various fac-
tors that affect the performance of baselines and our model.

6.1. PARTICLE Improves Performance Consistently
Tab. 1 shows that our method improves performance

across baselines. For each model, we compare PARTI-
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Caltech-UCSD Birds FGVC Aircrafts OID AircraftsArchitecture Method Cls Seg Cls Seg
Supervised ImageNet 66.29 47.41 ± 0.88 46.46 54.39 ± 0.52
MoCoV2 (ImageNet) 28.92 46.08 ± 0.55 19.62 51.57 ± 0.98
MoCoV2 fine-tuned 31.17 46.22 ± 0.70 23.99 52.65 ± 0.54
PARTICLE fine-tuned 36.09 47.40 ± 1.06 29.13 54.74 ± 0.47
DetCon (ImageNet) 35.39 47.42 ± 0.92 35.55 53.62 ± 0.67
DetCon fine-tuned 37.15 47.88 ± 1.18 40.74 56.26 ± 0.25

ResNet50

PARTICLE fine-tuned 41.98 50.21 ± 0.85 44.13 58.99 ± 0.61
DINO (ImageNet) 83.36 49.57 ± 1.26 72.37 61.73 ± 0.88
DINO fine-tuned 83.36 49.66 ± 0.98 72.37 61.68 ± 0.71ViT S/8
PARTICLE fine-tuned 84.15 51.40 ± 1.29 73.64 62.71 ± 0.56

Table 1. Performance on downstream tasks. We present the performance boost that our approach offers over various pre-trained SSL
methods with backbone architecture as ResNet-50 or ViT S8. We show results for Birds and Aircrafts datasets. We significantly boost
classification accuracy for CNN based models. While DINO is already much better than CNN based models for fine-grained classification,
we are still able to improve the performance using our method. The gap in segmentation performance for DINO ViT vs DetCon/MoCo V2
is much less pronounced. Our method contributes steady improvement over all baseline models for segmentation.

CUB FGVC OID
Method Cls Seg Cls Seg
Color+Texture 37.15 47.88 40.74 56.26
Hypercolumns 40.88 49.23 43.99 58.95
Side Information 43.72 50.15 39.03 55.98

Table 2. Effect of part discovery method. We compare the
performance of one iteration of PARTICLE over the ResNet50
model trained using DetCon. Hyercolumns lead to improved re-
sults compared to color and texture, and nearly match the per-
formance obtained by clustering keypoints + figure-ground masks
on birds. On airplanes, side information beyond figure-ground is
lacking, and PARTICLE performs better.

Method Iter 0 Iter 1 Iter 2 Iter 3

MoCo Cls. 28.92 34.31 36.03 36.09
Seg. 46.08 46.39 47.38 47.40

DetCon Cls. 35.39 40.88 42.00 41.98
Seg. 47.42 49.23 50.17 50.21

Table 3. Effect of number of iterations. We present the perfor-
mance on CUB dataset over PARTICLE iterations. Iter 0 refers
to the performance of the initial model (either MoCo or DetCon).
The largest boost is observed in the first iteration, while the per-
formance often saturates after two iterations.

CLE to the ImageNet pre-trained SSL model, and when
the model is fine-tuned on the dataset using the objective
of the underlying SSL model. We report the results of the
best iteration to compare the maximum boost that PARTI-
CLE can contribute. However, most of the improvement
is obtained after a single iteration (Tab 3). ResNet50 SSL
models lag behind supervised ImageNet models for clas-
sification tasks. PARTICLE fine-tuning goes a long way
toward bridging this gap. DINO ViT on the other hand
performs exceptionally well on fine-grained classification,
even outperforming the ImageNet supervised CNNs. Yet,
PARTICLE offers consistent improvements. For few-shot
part segmentation, PARTICLE offers significant improve-

Iter 0

Iter 1

Iter 2

Figure 4. Effect of Iterative training on clustering. For the first
bird as an example, the first iteration captures the boundary of the
wing, head and belly better. The second iteration introduces a new
middle part.

ment over all baseline SSL models. We present results on
an additional domain of Cars in the supplementary.
Performance of DINO. ImageNet pre-trained DINO is ex-
ceptionally good in fine-grained classification. It performs
better than ImageNet pre-trained DetCon in classification
tasks, however the difference is not as large for the part seg-
mentation tasks. We believe that this can be attributed to
DINO’s strong figure-ground decomposition and the struc-
ture of it’s feature space that makes it effective for linear
and nearest-neighbor classification [4, 21].

6.2. Effect of Clustering Method
As we described earlier, Fig. 2 shows a qualitative com-

parison of clusters obtained using various representations
described in § 3.1. Tab 2 shows the quantitative perfor-
mance of various clustering methods on classification and
segmentation tasks. Hypercolumn features from ImageNet
pre-trained DetCon beats the performance of color + tex-
ture features. However, it lags behind the side information
oracle in the case of birds, since the weak supervision of
keypoints and figure-ground mask results in better part dis-
covery. This indicates that better part discovery methods
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Figure 5. Effect of initialization and adaption. The left panel
shows the classification performance (Linear evaluation) while the
right panel shows the part segmentation performance on the CUB
dataset. In each panel we show the result of initializing the repre-
sentation network using MoCo and DetCon, and various ways to
obtain part segmentation via clustering.

could lead to improvements in classification tasks.

6.3. Effect of Iterative Training
We vary the number of outer iterations on our model

from zero, i.e., the initialization, to three, which consists of
three iterations of part discovery and representation learn-
ing over the entire dataset. Results are shown in Tab. 3.
For both initializations we did not find significant improve-
ments beyond the second iteration on Birds. On Aircrafts
the improvements over iterations were smaller (also see Ta-
ble 1, 1⇥ vs. 3⇥). Fig. 4 shows how the clustering changes
over iterations. To produce consistent clusters across im-
ages, i.e., to avoid the randomness of k-means, we initial-
ize the successive clustering for k-means using the previous
partition and continue k-means for 500 iterations.

6.4. Effect of Initialization
Fig. 5 compares the effect of initializing weights with ei-

ther MoCo V2 or DetCon ImageNet pre-trained weights.
We compare performance on both classification and seg-
mentation for various clustering techniques. The initial Det-
Con model has a higher performance than MoCo on both
tasks. The boost observed follows the same trend for both
initialization strategies. For Part Segmentation again the
base DetCon ImageNet performs better than MoCo, how-
ever the trend of the boost over base model is not same for
both initializations. Starting with a MoCo initialization the
fine-tuned models do not see an adequate boost, whereas in
the case of DetCon initialization the fine-tuned models see
significant boost over the base DetCon model.

6.5. Comparison to ImageNet supervised CNNs
Tab. 1 shows that our ResNet50 based methods improve

over ImageNet supervised models for few-shot part seg-
mentation on both Birds and Aircrafts datasets. The Ima-
geNet pre-trained SSL baselines are close to ImageNet su-
pervised in the case of Birds and slightly worse on Aircrafts.
However, using our methods leads to a significant boost

over the pre-trained SSL methods. This once again sug-
gests that the current CNN based SSL approaches are quite
effective at learning parts, but are limited in their ability to
recognize categories. The aircrafts dataset has a larger do-
main gap from the ImageNet dataset and our CNN based
methods achieve closer performance to ImageNet super-
vised ResNet50 models. Our linear evaluation score reaches
close to ImageNet supervised for Aircrafts (⇠2 points gap)
unlike for Birds where there is still a gap of about ⇠24
points. ImageNet already has a large number of classes of
birds and has been trained for classification, which gives it a
large advantage on a fine-grained bird classification dataset.
The improvement in part segmentation of our method over
ImageNet supervised ResNet-50 remains similar for both
Birds and Aircrafts.

6.6. Efficiency of Various Methods
CNNs. Training MoCo is fastest since it performs image
level contrast. Both DetCon and our method (one iteration)
take the same amount of time which is less than 2⇥ that of
MoCo. Note that we train each baseline and our method for
600 epochs. Since we use relatively small datasets to train,
our approach takes less than 11 hours on 8 2080TI GPUs
for the first iteration. We train the next iterations only for
20 epochs which takes around 20 minutes on the same GPU
setup (total of 40 minutes for 2 extra iterations).
ViTs. For the first iteration, we train for 100 epochs which
takes less than 2 hours on 8 2080TI GPUs. For the next
iteration we train for 60 epochs which takes about an hour
in the same setting.

7. Conclusion
We show that clustering and contrasting parts obtained

through ImageNet self-supervised networks is an effective
way to adapt them on small to moderately sized fine-grained
datasets without any supervision. While we observe signif-
icant improvements on part segmentation tasks, even out-
performing supervised ImageNet ResNets, we also show
consistent improvements over the significantly better ViT
models. On the Airplanes dataset where the domain gap
over ImageNet is larger, our approach leads to larger gains.
The analysis shows that current self-supervised models (in-
cluding our own) are very effective at learning pose and
parts. Moreover, conditioning and contrasting the discov-
ered parts allows the model to learn diverse localized repre-
sentations allowing better generalization to the classifica-
tion tasks. However, a big limitation of the approach is
that it requires a good initial model to discover parts, and
the approach may not generalize to significantly different
domains. Future work will explore if parts extracted from
generic large-scale models lead to better guidance for part
and feature learning, and will aim to characterize the effect
of domain shifts on the effectiveness of transfer. We will
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also publicly release pre-trained models and codebase to re-
produce the results upon acceptance.
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