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ABSTRACT

Video Large Language Models (video LLMs) have demonstrated remarkable ca-
pabilities in video understanding tasks, such as video question answering and tem-
poral localization. However, understanding long videos still remains a significant
challenge. Existing video LLMs adopt uni-granularity tokens for long videos, fail-
ing to simultaneously understand both high-level semantics and low-level visual
details in videos. To tackle the problem, we propose CrossVLLM, a video LLM
framework with adaptive modules of different granularities to collaborate with
each other for long video understanding, which not only retains the capabilities
of high-level video semantics understanding, but also strengthens the fine-grained
understanding abilities. Specifically, we propose the coarse-to-fine grounding and
fine-to-coarse reflection strategies for long video understanding. In the coarse-
to-fine grounding strategy, video LLM with a coarse-grained module first locates
the key video segments from the long video by tackling massive frames of the
long video with fewer per-frame tokens. And then video LLM adapted with the
fine-grained module further analyzes the key video segments with more per-frame
tokens so that it can understand fine-grained information. In case the video LLM
locates the wrong key video segments, during the inference stage, our designed
fine-to-coarse reflection strategy instructs the fine-grained module to reflect the
effectiveness of the locating result and decide whether to return to the coarse-to-
fine grounding strategy with reflection feedback. Additionally, during the train-
ing stage, the coarse-to-fine grounding strategy is optimized with our proposed
cross-granularity reinforcement learning strategy to further improve grounding ef-
ficiency. Extensive experiments for long video question answering and temporal
video grounding tasks demonstrate that our proposed CrossVLLM framework can
significantly improve the Video Large Language Model for long video understand-
ing.

1 INTRODUCTION

Recently, Video Large Language Models (video LLMs) have made significant progress in video
understanding tasks such as video question answering and temporal localization (Zhang et al.,
2023). By leveraging techniques like modality alignment and visual instruction tuning, several mod-
els (Huang et al., 2024; Ren et al., 2024; Li et al., 2023) have been developed to improve temporal
video representation learning and comprehension.

Despite the success of video LLMs, understanding long videos still remains a significant chal-
lenge (Wu et al., 2024; Zhou et al., 2025; Tan et al., 2025). Compared to short videos, long videos
involve much more frames and thus require much more tokens that may exceed the token length
limits of the LLMs (Weng et al., 2024; Shen et al., 2025). Existing video LLMs for long videos gen-
erally adopt uni-granularity tokens to represent the videos and then adopt the token pruning methods
or frame sampling methods to reduce the token number (Song et al., 2024; Huang et al., 2024; Bai
et al., 2023). However, the token pruning methods may suffer from losing visual details, and the
frame sampling methods will even lose high-level temporal semantic context.

To address the problems, as shown in Figure 1, different from existing works that adopt uni-
granularity tokens and then reduce tokens, we propose CrossVLLM, a novel video LLM frame-
work for long video understanding with adaptive modules of different granularities to reflectively

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Coarse-grained
visual representations 

Video question

Coarse-grained vision encoder

Long video input

Coarse-grained moduleVideo LLM

Fine-grained 
visual representations

Video LLM for Fine-grained 
answering/reflection 

Grounded video

Video LLM for Coarse-grained 
grounding/re-grounding 

Long video input

Video Large Language Model

Video question

Vision encoder

Video question

Frame 
Sampling

Coarse-to-Fine 
Grounding

Fine-grained moduleVideo LLM

Fine-to-Coarse 
Reflection

Long video input

Video Large Language Model

Video question

Vision encoder

Token 
reduction

(a) Existing Video LLMs with uni-granularity 
video tokens through token reduction

(c) Our Cross-granularity video LLM framework with cross-granularity
video tokens for long video understanding

(b) Existing Video LLMs with uni-granularity 
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Figure 1: Comparison between existing works and our cross-granularity video LLM framework.
Figure 1(a) denotes token reduction for long video understanding, which limits the video LLMs for
detailed video perception. Figure 1(b) represents the frame sampling method, which would ignore
massive intermediate question-related frames when analyzing long videos.

collaborate with each other. The proposed CrossVLLM works similarly to the way that humans
try to answer a question for a given long video, where we first skim through the video to roughly
understand the global semantics of the video, and then watch the segments relevant to the question
in a fine-grained manner. Specifically, the proposed CrossVLLM framework consists of i) a video
LLM with a coarse-grained module to process more visual frames under fewer per-frame visual to-
kens, tackling massive frames of the long video, and ii) a video LLM with a fine-grained module
processing fewer frames through more per-frame visual tokens. With the cross-granularity modules,
we design coarse-to-fine grounding and fine-to-coarse reflection strategies for cross-granularity long
video understanding. During the coarse-to-fine grounding strategies, we first utilize the video LLM
with the coarse-grained module to locate the key video segments from the long video according to
the textual input. And then instruct the video LLM adapted with the fine-grained module to further
analyze the key video segments with more per-frame tokens so that it can understand fine-grained
visual information. In case the video LLM locates the wrong key video segments, during the in-
ference stage of our cross-granularity method, we design the fine-to-coarse strategy, prompting the
video LLM with the fine-grained module to reflect the effectiveness of the locating result, and de-
cide whether to return information to the coarse-to-fine grounding strategy with prior reflection. In
addition, during the training stage, we design our cross-granularity reinforcement learning strategy
to further optimize the coarse-to-fine grounding strategy with grounding feedback. Extensive ex-
periments show that our CrossVLLM framework is able to significantly outperform existing video
LLMs in long video question answering and temporal video grounding tasks.

To summarize, we make the following contributions:

• To the best of our knowledge, the proposed CrossVLLM is the first attempt at cross-
granularity video LLM for long video understanding.

• We propose coarse-to-fine grounding and fine-to-coarse reflection strategies for the
CrossVLLM, where the coarse-to-fine grounding strategy is further optimized with our
designed cross-granularity reinforcement learning strategy.

• Extensive experiments show that our CrossVLLM outperforms state-of-the-art baseline
methods in long video question answering and temporal grounding tasks, indicating its
superiority for high-level semantics and low-level visual details in long video understand-
ing.

2 RELATED WORK

2.1 VIDEO LARGE LANGUAGE MODEL

With the rapid development of Large Language Models (Touvron et al., 2023), significant research
has been devoted to enabling LLMs for temporal visual information understanding (Zhang et al.,
2023; Li et al., 2023). These Large Language Models capable of processing video input, could
be collectively referred to as Video Large Language Models. Many video LLMs, such as Video-
LLaMA (Zhang et al., 2023; Cheng et al., 2024), VideoChat (Li et al., 2023), and Video-LLaVA (Lin
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et al., 2024) share similar methods with image LLMs (Bavishi et al., 2023; Bai et al., 2023) through
inputting entire image patches or massive visual tokens (with more than 200 tokens per frame) to the
transformer architecture (Waswani et al., 2017) of LLMs. These methods, however, all have critical
challenges when dealing with long video understanding tasks due to exceeding the maximum token
limitations for visual representation or only processing a small number of sampled video frames in
the video, resulting in the loss of keyframe capture.

2.2 VIDEO LLMS FOR LONG VIDEO UNDERSTANDING

To address the critical challenges of long video understanding, video LLMs such as LLaMA-VID (Li
et al., 2024b), MovieChat (Song et al., 2024), and LongVU (Shen et al., 2025) have been developed
for long video understanding through compressing each video frame into one or a few visual to-
kens so that the language model is able to handle all the visual representations from the entire video
input (Shu et al., 2025). However, since these methods are pre-trained from a short video under-
standing model and reduced visual representation features of each video frame, they are unable to
analyze detailed visual information for long videos.

On the other hand, some methods such as VideoTree (Wang et al., 2025) and VideoAgent (Wang
et al., 2024b) attempted to explore two-stage strategies in the format of first selecting keyframes for
the next-stage detailed perception (Tang et al., 2025). However, these methods primarily employ
training-free approaches or only involve basic model fine-tuning, failing to optimize the overall
strategy. They overlook the reflection refinement and specific training for strategies when the model
incorrectly selects keyframes, which would compromise the accuracy of long video analysis.

3 THE PROPOSED CROSSVLLM FRAMEWORK

In this section, we will introduce our CrossVLLM framework. As shown in Figure 2, our
CrossVLLM framework includes video LLMs with a coarse-grained module and a fine-grained
module, collaborating through our designed coarse-to-fine grounding and fine-to-coarse reflection
strategies. In the coarse-to-fine grounding strategy, video LLM processes a large number of frames
from the long video using fewer visual tokens per frame, allowing the coarse-grained module to
efficiently identify key video segments. The key segment is then passed to the fine-grained video
LLM, which analyzes it in greater detail using more tokens per frame to capture fine-grained vi-
sual information. In the fine-to-coarse reflection strategy, in case the coarse-grained video LLM
locates the wrong key video segments, the fine-grained video LLM will reflect the effectiveness of
the grounding result and determine whether to go back to the coarse-to-fine grounding strategy for
re-grounding correct segments.

3.1 COARSE-TO-FINE GROUNDING

The coarse-to-fine grounding includes a coarse-grained grounding model and a fine-grained answer-
ing model, which are our pre-finetuned coarse-grained video LLM and fine-grained video LLM,
respectively.

Coarse-grained Grounding. Given a long video input v ∈ RT×H×W×C with T frames, the coarse-
grained video LLM would uniformly sample N frames, represented as ṽ ∈ RN×H×W×C , and
process these frames through the vision transformer (ViT) independently:

{vclsi , v1i , v
2
i , ..., v

patch
i } = V iT (ṽi), i = 1, 2, ..., N, (1)

where patch represents the number of patches of the ViT. Utilizing the global feature vclsi as the
feature for the i-th frame. The video LLM then applies a projection layer to map the ViT features
into the feature space of the LLM:

zi = f(vclsi ), i = 1, 2, ..., N,

Z = {zi} ∈ RN×L×d,
(2)

where Z is the input sequence LLM able to understand, d is the dimension of LLM’s hidden space,
and N × L is the total number of visual tokens for the input video. Noted that for the video LLM
with different settings, the parameters N (number of sampled frames) and L (number of tokens per
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Figure 2: Our CrossVLLM framework, including a video LLM with a coarse-grained module to
process more visual frames, and a video LLM with a fine-grained module processing more per-
frame visual tokens of fewer frames. In our designed coarse-to-fine grounding strategy, the coarse-
grained video LLM would localize the question-related short video segment and send it to the fine-
grained video LLM for detailed perception. In case the coarse-grained video LLM locates the wrong
video segments, during our fine-to-coarse reflection strategy, the fine-grained video LLM will reflect
the effectiveness of the grounding result and determine whether to go back to the coarse-to-fine
grounding strategy for re-grounding with prior feedback.

frame) from the above equations may vary1. Since we require the coarse-grained video LLM to have
the global understanding capability and temporal boundary perception capability on the input long
videos. To achieve that, compared to the default setting of the original video LLM, we increase the
number of sampled frames N to process more more video frames and gain a more comprehensive
global understanding of the input long video while decreasing the number of tokens per frame L at
a lower level, to ensure that N × L does not exceed the LLM processing limit for visual tokens.

After the processing of visual information, we introduce our coarse-grained grounding prompt
Pc in the textual format (details are provided in the supplement), which is designed to stimulate the
video LLM to temporally localize the most relevant short video segments to the textual question
input and send the temporal grounding results. To enable the LLM aware of the original length of
the input video before grounding prediction, we insert the statement ‘The length of the original video
is ttotal seconds’ in the prompt Pc, where ttotal is the total duration of the original long video. The
coarse-grained prompt Pc and the original video question q are first combined and transformed into
the textual embedding list [w1, w2, ..., wM ] = Tokenizer(Pc, q), where wi ∈ Rd is the embedding
of the word token and M is the word number. Then, the video feature sequence will be inserted to
form the input content for the video LLM:

input = [Z,w1, w2, ..., wM ], (3)

so that the video LLM can further encode the input embedding to understand the video, related
question, and our coarse-grained prompt, and give the final response:

pgrounding = V idLLMcorase−grained(input),

pgrounding = {tstart, tend, answer},
(4)

where pgrounding is the output policy prompted in the JSON format and contains the predicted
start timestamp tstart and end timestamp tend of the video segment that the video LLM judges is
most relevant to the original video question. Since video LLM with the coarse-grained module may
encounter relatively simple video questions for short videos, it is also prompted allowed to give
policies with direct output answer in simple video cases.

Fine-grained Answering. With the predicted start timestamp tstart and end timestamp tend, we
obtain the video segment v′ ∈ RT ′×H×W×C with T ′ = T tend−tstart

ttotal
frames. The fine-grained

1Normally LLMs have token limits. Therefore, the value of N × L cannot exceed a certain threshold.
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video LLM would sample N ′ frames represented as ṽ ∈ RN ′×H×W×C and process visual frames
similar to the coarse-grained module:

{vclsi , v1i , v
2
i , ..., v

patch
i } = V iT (ṽi), i = 1, 2, ..., N ′,

zi = f ′(vclsi ), i = 1, 2, ..., N ′,

Z = {zi} ∈ RN ′×L′×d.

(5)

Since the fine-grained video understanding module is designed for video LLM to analyze the lo-
calized short video content related to the input query, which is relatively shorter, and its visual
information is more worthy of in-depth extraction and understanding. Therefore, we increase the
number of tokens per frame L compared to the default setting of the original video LLM, enabling
the model to have fine-grained perception under visual frames from the relatively short video while
decreasing the number of sampled frames N to keep N × L within the capabilities of LLM.

After the processing of visual information, we transform the original video question q into a textual
embedding list [w1, w2, ..., wM ] = Tokenizer(q) to encode the input embedding for the short video
segment understanding:

input = [Z,w1, w2, ..., wM ],

output = V idLLMfine−grained(input),
(6)

and we obtain the detailed perception answer output responded by the video LLM adapted with the
fine-grained module, which analyzes the key video segment with more per-frame visual tokens.

3.2 FINE-TO-COARSE REFLECTION

The fine-to-coarse reflection includes a fine-grained reflection model and a coarse-grained re-
grounding model, which are consistent with the fine-grained video LLM and coarse-grained video
LLM of the last section. Considering it is possible for the coarse-grained video LLM to produce
incorrect grounding results in a single inference, during our fine-to-coarse reflection strategy, in
addition to generating normal responses under fine-grained visual representations, the video LLM
with the fine-grained module is also prompted to provide reflective judgments on the validity of
the received short video segments and decide whether it requires re-grounding the relevant video
segments.

Fine-grained Reflection. The visual information processing during the fine-grained reflection is the
same as that of the fine-grained answering module. Different from the textual processing of fine-
grained answering, we design our fine-to-coarse reflection prompt Pf in the textual format (details
are provided in the appendix), which is able to instruct the video LLM to provide reflective judg-
ments on the validity of the received grounded video segments. The fine-grained prompt Pf and
the original video question q would be combined and transformed into the textual embedding list
[w1, w2, ..., wM ] = Tokenizer(Pc, q) for short video understanding and reflection:

input = [Z,w1, w2, ..., wM ],

preflection = V idLLMfine−grained(input),

preflection = {reflection, answer},
(7)

where the output policy in the JSON format contains two aspects, which are reflection and
answer. The reflection denotes the textual reason that the grounded short video is not suitable for
the original question and requires another attempt for related segment grounding, and it would be
returned to the coarse-grained re-grounding module. If the video LLM judges the localized video to
be suitable for question answering, the reflection would be empty and answer would be the final
output to the video question.

Coarse-grained Re-grounding. If the judgement of the fine-to-coarse reflection indicates that the
grounded short video is not related to the video question, this reflection information of the tem-
poralization would be transformed into the format of ‘tstart to tend is not the suitable grounding
segments because...’ and it will be returned to the coarse-grained video LLM.

The visual information processing during the coarse-grained re-grounding is the same as that of the
coarse-grained grounding module. During the textual processing, we will first combine the reflection
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and coarse-grained prompt to form a new coarse-grained prompt Pc = (Pc, reflection) with the
last time grounding feedback. And the updated coarse-grained prompt Pc is transformed similarly
[Z,w1, w2, ..., wM ] = Tokenizer(Pc, q) compared to the coarse-grained grounding module for
re-grounding:

input = [Z,w1, w2, ..., wM ],

pgrounding = V idLLMcoarse−grained(input),

pgrounding = {t′start, t′end, answer},
(8)

where the output policy pgrounding contains the new start timestamps and end timestamps that the
video LLM predicts are relevant to the original video question and different from the last time of
coarse-grained grounding.

For a single video question in our complete CrossVLLM framework, the fine-grained reflection mod-
ule would replace the fine-grained answering module, and the coarse-grained re-grounding module
could be considered as a coarse-grained grounding module with at least one feedback prior. There-
fore, two cross-granularity modules could be called multiple times, until the video LLM with the
fine-grained module responds with positive feedback on the short video segment, or the video LLM
with the coarse-grained module only responds with direct output policy without temporal grounding
result. If the calls of two modules exceed a certain threshold limit, the calls will also terminate and
select the answer response from the last round of video LLM as output.

4 MODULE TRAINING

In this section, we will introduce how we optimize the modules of video LLM with different granu-
larities. Our training method includes the fine-tuning of the coarse-grained module, the fine-tuning
of the fine-grained module, and most importantly, the cross-granularity reinforcement learning for
modules with different granularities through the coarse-to-fine strategy.

4.1 COARSE-GRAINED AND FINE-GRAINED FINE-TUNING

Formally, given a question q through tokenization and related video v through visual processing for
video LLM, the supervised fine-tuning loss can be defined as the cross-entropy loss as follows:

LCE(ŷ(q, v), y) = −
∑

(v,q,y)∈D

y log(ŷ(q, v)), (9)

where y is the ground truth answer in the token sequence and D is the dataset.

Coarse-grained Module Training. To effectively localize short segments from the original video
that are relevant to the question, we collect the training datasets of temporal video grounding datasets
including Charades-STA (Gao et al., 2017), ActivityNet-Captions (Krishna et al., 2017), and VTG-
IT (Guo et al., 2025) to finetune the coarse-grained module, which will receive the global visual
representations transformed from the complete video content and predict the most relevant short
video segments to the question input.

Fine-grained Module Training. The fine-grained module is designed for video LLM to analyze
the localized short video content related to the input query, which is relatively shorter, and its visual
information is more worthy of in-depth extraction and understanding. Therefore, we select the
training subset of video data with a duration of less than one minute from several VideoQA datasets,
including ActivityNet-QA (Yu et al., 2019), Ego-QA (Grauman et al., 2022), and Next-QA (Xiao
et al., 2021), to fine-tune another fine-grained module to complete the fine-grained understanding
and reasoning tasks for short videos.

4.2 CROSS-GRANULARITY REINFORCEMENT LEARNING

Since the task of providing temporal localization policies for video-related questions still has some
differences from the retrieval input textual query, which the coarse-grained video LLM is trained
with, it is difficult to use in-context learning alone to ensure the quality of policies. To address
this issue, we propose a reinforcement learning-based cross-granularity training method to optimize
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cross-granularity modules of video LLM continuously for processing long videos, which enables
the video LLM to improve the temporal grounding quality of generated policies, and adapt to the
key video segment for fine-grained understanding.

Training Strategy. Given a question q about the input long video v, we prompt the coarse-grained
video LLM to generate several different temporal localization policies {pj} of question-relevant
short video segments from the original long video. These policies would inform the fine-grained
module to process the grounded short videos in more detailed visual representations and give the
final answers. It could be inferred that a correct policy that more accurately localizes the tempo-
ral video segments related to the video question would be more helpful for the fine-grained video
LLM. Consequently, the loss computed by the video LLM tends to be smaller. Meanwhile, negative
policies that localize irrelevant video segments would mislead the video LLM, resulting in incorrect
responses and an increase in loss. The details about our reinforcement learning strategy are provided
in Algorithm 1 in the Appendix.

Therefore, we are able to provide feedback to the coarse-grained video LLM with the losses com-
puted by the fine-grained video LLM for cross-granularity training. Inspired by the Reinforcement
Learning from Human Feedback (RLHF) (Bai et al., 2022; Christiano et al., 2017), we apply Direct
Preference Optimization (DPO) (Rafailov et al., 2024) to train the coarse-grained video LLM to
generate more accurate policies. The DPO method directly optimizes the Video Large Language
Model without explicit rewarding models and formulates the policy objective as:

LDPO(πθ;πref )

= −E(q,v,pw,pl)∼D[log σ(β log
πθ(pw|q)
πref (pw|q)

− β log
πθ(pl|q)
πref (pl|q)

)],
(10)

where pw represents the positive with the smaller loss that accurately localizes the short video seg-
ment related to the video question, and pl denotes the negative policy with the larger loss. πθ

represents our coarse-grained video LLM to be trained in this stage, while πref is a reference model
also initialized with coarse-grained video LLM but remains frozen. σ is the sigmoid function and β
is a controlling parameter.

Our cross-granularity reinforcement learning alternates between direct preference optimization for
the coarse-grained video LLM and SFT for the fine-grained video LLM, which optimizes with the
loss function in Equation 9 and 10. After the cross-granularity training, the coarse-grained video
LLM is able to provide refined policies with more accurate localization segments, and the fine-
grained video LLM would also adapt the localization of short videos from the coarse-grained video
LLM. For training datasets, we select the subset from the NeXT-QA and ActiveNet-QA datasets
with videos that exceed 2 minutes.

5 EXPERIMENTS

Implementations. We conduct our experiments on long video understanding and temporal video
grounding datasets. We select VideoMME, Lvbench and MLVU for assessing the long video un-
derstanding ability (Fu et al., 2024; Wang et al., 2024a; Zhou et al., 2025). For the temporal video
grounding task, we utilize the test set of ActivityNet Captions and Charades-STA. Our baselines
include long-video video LLMs and fine-grained video LLMs for long video understanding, and
baselines for temporal video grounding include state-of-the-art temporal perception video LLMs.
We implement our fine-tuning and reinforcement learning method based on the SWIFT framework.
We utilize LLaVA-Next-Video(7B) (Zhang et al., 2024b) as the backbone for both our coarse-
grained and fine-grained video LLM with linear scale factor=2. More details are provided in the
Appendix A.1.

5.1 EXPERIMENTS ON LONG VIDEO UNDERSTANDING

Based on the long video understanding benchmarks, we evaluate the capabilities of existing video
LLMs in long video understanding tasks. As the results shown in Table 1, we can draw the fol-
lowing conclusion: (i) compared to existing video LLMs, our CrossVLLM achieves the overall best
performance, and we even utilize small-scale base models (LLaVA-NeXT-Video-7B) outperform
larger-scale identical base model (LLaVA-NeXT-Video-34B), demonstrating the effectiveness of
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Table 1: Performance comparison of state-of-the-art video LLMs with our CrossVLLM methods on
long video understanding benchmarks. The best average performance is in bold and the second is
underlined.

Models Size VideoMME Lvbench MLVU
Short Medium Long Overall

Duration(min) ≤2 4∼15 30∼60 1∼60 30∼140 3∼120

Video-LLaVA (Lin et al., 2024) 7B 46.1 40.7 38.1 41.6 21.6 47.3
Chat-UniVi (Jin et al., 2024) 7B 51.2 44.6 41.8 45.9 25.3 52.6
ShareGPT4Video (Chen et al., 2024) 8B 53.6 39.3 37.9 43.6 21.8 46.4
VideoChat2 (Li et al., 2024a) 7B 52.8 39.4 39.2 43.8 23.7 47.9
LongVA (Zhang et al., 2024a) 7B 61.6 53.6 47.6 54.3 31.7 56.3
Video-RAG with LLaVA-NeXT (Luo et al., 2024) 7B 56.6 47.4 46.0 50.0 30.2 53.5
LongVU (Shen et al., 2025) 7B 64.7 58.2 59.5 60.9 38.3 65.4
Video-XL (Shu et al., 2025) 7B 67.4 60.7 54.9 61.0 37.7 64.9
VITA 1.5 (Fu et al., 2025) 7B 67.0 54.2 47.1 56.1 32.1 60.2
LLaVA-NeXT-Video (Zhang et al., 2024b) 34B 65.1 52.2 47.2 54.9 32.2 61.6

Ours-CrossVLLM 7B 70.9 64.4 61.9 65.7 41.8 70.4

our method, and (ii) under VideoMME evaluation, as video duration increases, the performance of
all the methods declines. Nevertheless, thanks to our coarse-to-fine grounding and fine-to-coarse re-
flection strategies, our CrossVLLM performance on long videos still surpasses all evaluated models,
including state-of-the-art long video understanding models.

5.2 EXPERIMENTS ON TEMPORAL VIDEO GROUNDING

We evaluate the capabilities of existing video LLMs in temporal video grounding tasks shown in Ta-
ble 2. Given a video and a textual query, the models are required to identify the start and end times-
tamps of the video segment corresponding to the query in the video. During our cross-granularity
inference strategy, our coarse-to-fine strategy would localize the related short video segment. The
fine-grained video LLM would receive an additional description of ‘the short video is sampled from
<start time> to <end time> of the original video’ and would be informed to further localize the
temporal grounding segment under more detailed visual representations from the short video. We
can see that our CrossVLLM outperforms video LLMs trained through temporal perception on both
metrics of recall and mean IoU.

Table 2: Performance comparison of state-of-the-art temporal perception video LLMs with our
CrossVLLM methods on temporal video grounding tasks. The best average performance is in bold
and the second is underlined.

Models ActivityNet Captions Charades-STA

R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

ChatVTG (Qu et al., 2024) 40.7 22.5 9.4 27.2 52.6 33.0 15.9 34.9
VtimeLLM (Huang et al., 2024) 44.0 27.8 14.3 30.4 51.0 27.5 11.4 31.2
TimeChat (Ren et al., 2024) - - - - - 32.2 13.4 -
Momentor (Qian et al., 2024) 42.9 23.0 12.4 29.3 42.6 26.6 11.6 28.5
VTG-LLM (Guo et al., 2025) - - - - 52.0 33.8 15.7 -
NumPro (Wu et al., 2025) 45.5 30.8 18.4 33.6 60.7 36.8 15.9 38.5
BTDP (Deng et al., 2025) 50.6 30.6 17.5 36.6 58.3 40.0 20.9 39.1

Ours-CrossVLLM 53.9 41.7 23.1 39.8 63.5 44.9 21.0 42.6

5.3 ABLATION STUDY

In this section, we provide detailed ablation analyses of our cross-granularity strategies through
experiments on our models to evaluate the effectiveness of our designed modules. The results are
shown in Table 3.
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5.3.1 RESULT ABOUT FINE-TUNING AND REINFORCEMENT LEARNING

Based on the results of Row 1,3,4 and 5 from Table 3, we can see the positive impact through
both coarse-grained and fine-grained fine-tuning on video LLMs. The utilization of coarse-grained
fine-tuning comprehensively improves the video LLMs in processing both temporal video ground-
ing and long video understanding tasks. The fine-grained fine-tuning helps mainly in short video
understanding and temporal video grounding. In addition, although only applying basic model fine-
tuning does not significantly improve overall performance compared to applying our entire cross-
granularity framework, they still occupy an important position in our method, as shown in Row 1
and 2, we can see that directly using not fine-tuned video LLMs for fine-to-coarse reflection and
reinforcement learning would not bring performance improvement, encountering a certain degree of
cold start problem.

Table 3: Ablation study of our cross-granularity strategies. The coarse-to-fine grounding strategy
is activated through the entire experiment. The Tune in the line of Coarse and Fine respectively
represent coarse-grained training and fine-grained training for video LLMs while Freeze represents
image-text feature alignment only. RL represents the utilization of cross-granularity reinforcement
learning. The best average performance is in bold.

Row Coarse Fine RL Fine-to-Coarse
Reflection

ActivityNet Captions VideoMME

R@0.3 R@0.5 R@0.7 mIoU Short Medium Long Overall

1 Freeze Freeze ✕ ✕ 31.3 16.0 6.8 22.4 55.2 44.0 42.7 47.3
2 Freeze Freeze ✓ ✓ 31.8 16.6 6.9 23.2 56.8 44.6 41.5 47.6
3 Tune Freeze ✕ ✕ 42.3 25.8 11.6 29.4 58.2 45.4 43.7 49.1
4 Freeze Tune ✕ ✕ 38.7 20.4 8.6 25.9 60.3 44.5 42.2 49.0
5 Tune Tune ✕ ✕ 44.7 28.1 14.2 31.2 61.6 47.2 44.9 51.2
6 Tune Tune ✓ ✕ 52.3 38.9 20.4 38.5 71.8 60.3 53.8 62.0
7 Tune Tune ✕ ✓ 47.9 30.5 15.6 32.4 67.7 57.8 51.4 58.9
8 Tune Tune ✓ ✓ 53.9 41.7 23.1 39.8 70.9 64.4 61.9 65.7

5.3.2 RESULT ABOUT CROSS-GRANULARITY REINFORCEMENT LEARNING

In Row 5, 7 vs Row 6, 8 from Table 3, we removed the cross-granularity reinforcement learning
strategy and conducted evaluations on benchmarks. The results show a decrease in all the evaluation
metrics. Compared to the results of other models shown in Table 1 and 2, our experiment without
the reinforcement learning method only performs at an average level among baselines, indicating
the necessity of the cross-granularity reinforcement learning strategy we proposed for training video
LLMs to further improve grounding efficiency.

5.3.3 RESULT ABOUT FINE-TO-COARSE REFLECTION

During the inference stage, our fine-to-coarse reflection strategy prompts the fine-grained video
LLM to reflect on the locating effectiveness and decide whether to return the response to the coarse-
grained video LLM for re-grounding with reflection feedback. As shown in Row 7, 8 vs Row 5, 6,
with the addition of fine-to-coarse reflection, the performance of our method has further improved,
indicating our fine-to-coarse reflection provided by fine-grained video LLM contains useful infor-
mation for coarse-grained video LLM to regenerate a suitable grounding policy.

6 CONCLUSION

In this paper, we propose CrossVLLM, a novel cross-granularity video LLM framework for long
video understanding. Specifically, we design the coarse-to-fine grounding and fine-to-coarse reflec-
tion strategies utilizing adaptive modules of video LLM with different granularities to collaborate
with each other for cross-granularity long video inference. We further propose a cross-granularity
reinforcement learning strategy to optimize video LLM through training and inference when pro-
cessing long videos. Extensive experiments demonstrate that CrossVLLM outperforms existing
video LLMs in long video question answering and temporal video grounding tasks, indicating its
superiority for processing both high-level semantics and low-level visual details in long video un-
derstanding.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We provide the implementation details of our work shown in Table 4. We implement our fine-
tuning and reinforcement learning method based on the SWIFT framework. We utilize LLaVA-
Next-Video(7B) (Zhang et al., 2024b) as the backbone for both our coarse-grained and fine-grained
video LLM with linear scale factor=2. We set the number of sampled frames N and number of tokens
per frame L to (16, 12× 12 = 144) for fine-grained video LLM and (144, 4× 4 = 16) for coarse-
grained video LLM during training, and extended to (32, 12 × 12 = 144) and (288, 4 × 4 = 16)
during inference enabled by linear scale factor. Before the fine-tuning of different granularity mod-
ules and reinforcement learning, we first train the visual adapter f through the LLaVA (Liu et al.,
2024) dataset for image-text feature alignment. Our first stage coarse-grained and fine-grained fine-
tuning are conducted separately under one NVIDIA A100-40GB GPU. And our cross-granularity
reinforcement learning for coarse-grained and fine-grained modules is conducted jointly under two
A100-40GB GPUs.

Table 4: Implementation details

Config Coarse-grained finetuning Fine-grained finetuning Coarse-grained during RL Fine-grained during RL

Video LLM LLaVA-Next-Video-7B
Optimizer AdamW

Epochs 3 10 2
Warmup ratio 0.05
Learning rate 2e-5 1e-4 2e-5

Batch size 1
Gradient accumulation steps 16

linear scale factor 2
Pooling Stride 6 2 6 2

Number of Tokens per Frame 4 × 4 12 × 12 4 × 4 12 × 12
Training cost 87h 41h 350h

number of policies per data n not required 4

You are a coarse-grained video reasoner. You will receive a video with simple or complex 
question to answer. I hope you to try answering the question according to a video of known 
duration. If you sense the video require a more detailed way for extraction and perception, 
you may suggest another policy for temporally grounding specific time segments in the 
video for fine-grained video reasoner to answer. Now I have and only have these modules:
1. temporal_localize(start_time, end_time): This module would temporally ground the video 
and input the new video to the fine-grained video reasoner. This module locate specific time 
of video segments from start_time to end_time in the original video. start_time and 
end_time are timespans in the format of 12.3s, 0.9s, 49.1s or something like that. To be 
aware that end_time should be bigger than start_time.
2. direct_output(answer): This module works as a output responder and will directly return 
the answer to the video question.
What you need to do is to provide a policy according to the given question using the above 
2 modules. A policy always has two parts: temporal_localize and direct_output, each utilizing 
one or some of the above 2 modules.
Generally speaking, a reasonable policy will be in a format as follows:
{

"temporal_localize": {
"module": "temporal_truncate",
"params": [$(start_time), $(end_time)]

},
"direct_output": {

"module": "output_truncate",
"params": [$(answer to the video question)]

}
}
Content within $() is what you need to consider carefully. They are not necessarily directly 
from the origin question: sometimes you need to think deep into the question and the 
video and try to think of a reasonable sentence or value to fill in $() part. To be aware that 
end_time should be bigger than start_time.
If you think there are no temporal segment that needs to be specifically precepted, just 
simplify the format as:
{

"temporal_localize": {
"module": "temporal_truncate",
"params": []

},
"direct_output": {

"module": "output_truncate",
"params": [$(answer to the video question)]

}
}
On the contrary, if you think there are no suitable answer to the video question, please still 
provide a response that you think is reasonable to the question in the format of:
{

"temporal_localize": {
"module": "temporal_truncate",
"params": [$(start_time), $(end_time)]

},
"direct_output": {

"module": "output_truncate",
"params": [$(answer to the video question)]

}
}

Except what I have mentioned above, you are not allowed to change the format of the policy 
in other strange ways. And to be aware that start_time and end_time given by the 
temporal_localize should be within the video duration, and start_time should be smaller 
than end_time.
Here is some examples:
1.question: What is the boy holding after his mother entering the room? The original video 
duration is 31.5s.
policy:
{

"temporal_localize": {
"module": "temporal_truncate",
"params": ["10.1s", "23.5s"]

},
"direct_output": {
"module": "output_truncate",
"params": ["he is holding a computer"]
}

}
2.question: Why is the girl crying? The original video duration is 143.7s.
policy:
{

"temporal_localize": {
"module": "temporal_truncate",
"params": ["127.3s", "140.9s"]

},
"direct_output": {

"module": "output_truncate",
"params": ["A car hit her foot"]

}
}
3.question: What is the animal on the left of the farmer? The original video duration is 52.8s.
policy:
{

"temporal_localize": {
"module": "temporal_truncate",
"params": ["17.6s", "19.1s"]

},
"direct_output": {

"module": "output_truncate",
"params": ["A cow"]

}
}

Expand your thinking, and don't be confined to the words and phrases in the original 
question. 
Remember that your goal in coarse-grained video understanding. 
Therefore, feel free to think creatively about how to select appropriate temporal segments 
for fine-grained video understanding if difficult under coarse-grained input. 
Based on the original question, you can make some reasonable extensions and provide 
appropriate policies. To be aware that end_time should be bigger than start_time.
Now, I will give you a new question, and you will give me a corresponding policy. Note that 
the policies should be strictly in a JSON format.

Figure 3: Prompt for coarse-grained video LLM

Prompt for Video LLM. We design coarse-grained and fine-grained prompts for the video LLM
with the corresponding visual modules to generate policies from given questions based on the in-
context learning capabilities of LLM. The complete prompts are presented in Figure 3 and 4. We first
inform the video LLM with the basic information about the functional modules, and then provide
the general template of the policy in the uniform JSON format.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

You are a fine-grained video reasoner. You will receive a specific time segment from a video 
with simple or complex question to answer. The temporal segment is grounded by a corase-
grained video reasoner. I hope you to try judging whether this segment of the video related 
to the question and answering the question. If you sense requiring a different way for 
extraction and perception of another video segment, you may suggest another policy 
reflected to corase-grained video reasoner. Now I have and only have these modules:
1. temporal_reflect(reflection): This works as a reflection module and will use reflection to 
summarize whether the specific temporal segment is irrelevant to the video question, which 
will return to the coarse-grained video reasoner for another round tenporal grounding.
2. direct_output(answer): This module works as a output responder and will directly return 
the answer to the video question.
What you need to do is to provide a policy according to the given question using the above 
2 modules. A policy always has two parts: temporal_reflect and direct_output, each utilizing 
one or some of the above 2 modules.
Generally speaking, a reasonable policy will be in a format as follows:
{

"temporal_reflect": {
"module": "reflect_truncate",
"params": [$(reflection to the video segment)]

},
"direct_output": {

"module": "output_truncate",
"params": [$(answer to the video question)]

}
}
Content within $() is what you need to consider carefully. They are not necessarily directly 
from the origin question: sometimes you need to think deep into the question and the 
video and try to think of a reasonable sentence or value to fill in $() part.
If you think he specific temporal segment is not irrelevant to the video question, just 
simplify the format as:
{

"temporal_reflect": {
"module": "reflect_truncate",
"params": []

},
"direct_output": {

"module": "output_truncate",
"params": [$(answer to the video question)]

}
}
On the contrary, if you think there are no suitable answer to the video quesion, please still 
provide a response that you think is reasonable to the question in the format of:
{

"temporal_reflect": {
"module": "reflect_truncate",
"params": [$(start_time), $(end_time)]

},
"direct_output": {

"module": "output_truncate",
"params": [$(answer to the video question)]

}
}
Except what I have mentioned above, you are not allowed to change the format of the policy 
in other strange ways.

Here is some examples:
1.question: What is the boy holding after his mother entering the room? The segment is 
sampled from 10.1s to 23.5s of the original video.
policy:
{

"temporal_reflect": {
"module": "reflect_truncate",
"params": ["In the video from 10.1s to 23.5s, the mother can be seen but the boy 

cannot be found"]
},
"direct_output": {

"module": "output_truncate",
"params": ["he may hold a basket"]

}
}
2.question: Why is the girl crying? The segment is sampled from 127.3s to 140.9s of the 
original video.
policy:
{

"temporal_reflect": {
"module": "reflect_truncate",
"params": []

},
"direct_output": {

"module": "output_truncate",
"params": ["A car hit her foot"]

}
}
3.question: What is the animal on the left of the farmer? The segment is sampled from 17.6s 
to 19.1s of the original video.
policy:
{

"temporal_reflect": {
"module": "reflect_truncate",
"params": []

},
"direct_output": {

"module": "output_truncate",
"params": ["A cow"]

}
}
Expand your thinking, and don't be confined to the words and phrases in the original 
question. 
Remember that your goal in fine-grained video understanding. 
Therefore, feel free to think creatively about whether and how to reflect the effectiveness of 
the grounding segment. 
Based on the original question, you can make some reasonable extensions and provide 
appropriate policies.
Now, I will give you a new question, and you will give me a corresponding policy. Note that 
the policies should be strictly in a JSON format.

Figure 4: Prompt for fine-grained video LLM

Fine-grained vision encoder

Output Ground-truth

Fewer sampled frames with 

more tokens per-frame

Video question:
“Describe how the man in the 
white suit saved the woman 
when she was about to fall. ”

(a) Fine-grained module training

Output Ground-truth

More sampled frames with 

fewer tokens per-frame

Temporal video grounding 
question:

“Localize the start time and end 
time of <event> in the <video>.”

(b) Coarse-grained module training

Long video input

Model Input/output Ground-truth Supervision Cross-granularity Strategy Training Feedback Training Model

(c) Cross-granularity training

Answer policy

Coarse-grained
visual representations 

Video question

Coarse-grained vision encoder

Long video input

Output

Ground
truth

OutputPolicy output

Coarse-grained vision encoder

Fine-grained moduleLLM

Coarse-grained moduleLLM
Coarse-grained moduleLLM

Fine-grained 
visual representations

Fine-grained moduleLLM

Fine-grained key video segment understanding

Video questionGrounding policy

Policy output Answer policy

Cross-granularity
Reinforcement learning

Grounded video

Coarse-grained long video temporal perception

Coarse-to-Fine 
Grounding

Reflection policy

Figure 5: Detailed framework for the module training of CrossVLLM. The left part shows our
fine-tuning strategies for adaptive modules of video LLM, including (a) a fine-grained module for
detailed video understanding and (b) a coarse-grained module for temporal perception. The right
part (c) demonstrates the training details of our cross-granularity reinforcement learning.

During the inference stage, both prompts would be applied entirely. During the training stage, only
the coarse-grained prompt would be applied, and in order to stimulate the collaboration of modules
with different granularities for video LLM, we replace the instruction of prompting coarse-grained
video LLM to inference direct output, instructing video LLM to predict temporal grounding policy
only. Therefore, the video LLM would learn how to generate the correct policy through the examples
provided by the prompts and the reinforcement learning strategy mentioned in our main text.

Module Training details. For coarse-grained module training, we collect a 175k training dataset
of temporal video grounding datasets including Charades-STA (Gao et al., 2017), ActivityNet-
Captions (Krishna et al., 2017), and VTG-IT (Guo et al., 2025) to finetune the coarse-grained mod-
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Algorithm 1 Cross-granularity Training Strategy
1: Input: Coarse-grained module (coarse-grained video LLM) C, Temporal-Grounding module G, Coarse-

grained prompt Pc, Fine-grained module (fine-grained video LLM) F , dataset D = {(vi, qi, yi)}Ni=1,
training stepts S, gradient accumulate step s, numbers of policies per data n

2: Freeze: F,G, Activate: C
3: for t=1,...,S do
4: initialize πθ = C, πref = C
5: for m=1,...,s do
6: i← ((t− 1)s+m− 1)%N + 1
7: Prepare data(vi, qi, yi) from D
8: Generate policies p1, p2, ...pn = πref (Pc(qi, vi))
9: for j=1,...,n do

10: G execution localization: vj = G(vi, pj)
11: F forward propagation: ŷ = F (qi, vj)
12: Compute LCEj in Equation(9)
13: end for
14: pw ← argmin{pj}LCE

15: pl ← {pj , p ̸= pw}
16: Optimize πθ with loss:LDPO in Equation(10)
17: Add(vi, qi, yi) to CACHE
18: end for
19: C ← πθ ,freeze C, activate F
20: for i=1,...,s do
21: Prepare data (vi, qi, yi) from CACHE
22: Generate single policy p = Q(Pc(qi, vi))
23: G execution localization: vp = G(vi, p)
24: F forward propagation: ŷ = F (qi, vp)
25: Optimize F with loss:LCE in Equation( 9)
26: end for
27: clear CACHE, freeze F , activate C
28: end for

ule. For the fine-grained module training, we select a 21.5k training dataset of video data with a du-
ration of less than one minute from several VideoQA datasets, including ActivityNet-QA (Yu et al.,
2019), Ego-QA (Grauman et al., 2022), and Next-QA (Xiao et al., 2021), to fine-tune another fine-
grained module to complete the fine-grained understanding and reasoning tasks for short videos. For
cross-granularity reinforcement learning, we select a 7.5k training dataset from the NeXT-QA and
ActiveNet-QA datasets with video data exceeding 2 minutes. We provide the detailed framework of
module training shown in Figure 5 and reinforcement learning algorithm in Algorithm 1.

Evaluation Metrics. We conduct our experiments on long video understanding and temporal video
grounding datasets. We select VideoMME, Lvbench and MLVU for assessing the long video under-
standing ability (Fu et al., 2024; Wang et al., 2024a; Zhou et al., 2025). Based on the multi-choice
question, we calculate the matching accuracy between the output of the model and the correct an-
swer. For the temporal video grounding task, we utilize the test set of ActivityNet Captions and
Charades-STA. We evaluate the performance of different methods by calculating the Intersection
over Union(IoU) between the time segments generated by the model and the time segments of the
ground truth. We report the mean IoU(mIoU) and recall@1, IoU≥ m(R@m) as evaluation metrics.

Baselines. On long video understanding tasks, our baselines include long-video video LLMs
LongVA (Zhang et al., 2024a), LongVU (Shen et al., 2025), Video-RAG (Luo et al., 2024),
video-XL (Shu et al., 2025) and fine-grained video LLMs (Chen et al., 2024) such as Video-
LLaVA (Lin et al., 2024), VideoChat2 (Li et al., 2024a), Chat-UniVi-V1.5 (Jin et al., 2024),
ShareGPT4Video (Chen et al., 2024), LLaVA-NeXT-Video (Zhang et al., 2024b). Our baselines
for temporal video grounding include temporal perception video LLMs such as VTimeLLM (Huang
et al., 2024), TimeChat (Ren et al., 2024), Monmentor (Qian et al., 2024), VTG-LLM (Guo et al.,
2025), NumPro (Wu et al., 2025), ChatVTG (Qu et al., 2024), and the LLM-based temporal ground-
ing method BTDP (Deng et al., 2025).
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A.2 RESULT ABOUT HYPERPARAMETER SENSITIVITY

We modify the parameters on number of sampled frames N and number of tokens per frame L, to
evaluate the hyperparameter sensitivity of the video LLM. The results are shown in Table 5 and
6, where Video LLMs are applied with coarse-grained and fine-grained training but without rein-
forcement learning. Based on Table 5, by increasing the processing granularity and decreasing the
sampling frames for coarse-grained video LLM, our cross-granularity framework achieves higher
performance on shorter video understanding while underperforming on long videos. These results
can be attributed to the fact that the key content of short videos is not easily missed due to the low
sampling rate, and the accuracy of understanding can be improved through higher visual processing
granularity, while the key information of long videos is more likely to be missed by using a lower
sampling rate, resulting in wrong answers. On the contrary, increasing the number of sampling
frames would help ground key content in long videos, while decreasing the granularity would nega-
tively affect detailed visual perception for shorter videos. Based on Table 6, the overall performance
is optimal when the parameters of the fine-grained video LLM are in the middle instead of the high-
est sampling frames or granularity. This can be attributed to the variable length of video grounding
segments sent from the coarse-grained video LLM, which requires the fine-grained video LLM to
process both short videos and relatively longer videos (from 10 seconds to a few minutes).

Table 5: Hyperparameter experiment on the
coarse-grained video LLM. The configs (N,L)
of fine-grained video LLM remain (32, 12 ×
12 = 144).

Hyperparameters VideoMME

(N,L) Short Medium Long Overall

Duration(min) ≤2 4∼15 30∼60 1∼60

(72, 8× 8 = 64) 70.3 59.7 45.8 58.6
(288, 4× 4 = 16) 67.7 57.8 51.4 58.9
(1152, 2× 2 = 4) 66.3 55.0 52.2 57.8

Table 6: Hyperparameter experiment on the
fine-grained video LLM. The configs (N,L) of
coarse-grained video LLM remain (288, 4×4 =
16).

Hyperparameters VideoMME

(N,L) Short Medium Long Overall

Duration(min) ≤2 4∼15 30∼60 1∼60

(8, 24× 24 = 512) 66.4 56.2 48.6 57.1
(32, 12× 12 = 144) 67.7 57.8 51.4 58.9
(128, 6× 6 = 36) 67.5 57.3 51.5 58.8
(288, 4× 4 = 16) 66.1 56.3 50.2 57.5
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A.3 ANALYSIS OF THE INFERENCE LATENCY AND REFLECTION CYCLES

Considering the inference latency and reflection cycles for the real-time application scenarios, as
shown in Table 7, we compared the inference speed of our method and other Video LLM methods
under the same settings using two A100-40GB GPUs. To avoid unlimited reflection iterations, we
set a specific reflection threshold, which will terminate the reflection and select the answer response
from the last round of video LLM as output if the iterated calls of two modules exceed a certain
limit. By setting different thresholds of fine-to-coarse reflection cycles of our method, the inference
speed and performance would vary. We could conclude that the current inference latency is under-
standable and consistent with the CrossVLLM framework since our method normally requires at
least 2 separate inferences for coarse-grained and fine-grained Video LLMs. However, our method
maintains a similar level of inference speed to existing Video LLMs, and considering the perfor-
mance improvement brought by our method, this is acceptable for current long video understanding
tasks.

We also report the number of reflection cycles required for our experiments, as shown in Table 8.
The benchmarks for long video understanding tasks, on average, require more reflection cycles under
our cross-granularity framework, and temporal video grounding tasks require less. This is because
the long video understanding tasks are more complex and may require more iterations of key video
segment grounding and fine-grained perception. Meanwhile, we can see that in the vast majority of
cases from different benchmark datasets, the number of our reflection cycles is controlled within 1,
which prevents expensive computational overhead caused by massive reflection iterations.

Table 7: Performance and inference speed comparison of our CrossVLLM methods with different
thresholds of reflection cycles. The performance of Baseline Video LLMs represents their best
performance of all the baseline models.

Models Inference Speed Reflection Cycles VideoMME

Short Medium Long Overall

Baseline Video LLMs 0.95∼1.5 qa pairs/s ✕ 67.4 60.7 59.5 61.0

Ours-CrossVLLM
0.29∼0.64 qa pairs/s ≤ 3 70.9 64.4 61.9 65.7
0.45∼0.64 qa pairs/s ≤ 1 70.9 64.2 61.4 65.5
0.57∼0.64 qa pairs/s 0 71.8 60.3 53.8 62.0

Table 8: Ratio of reflection cycles required for different video understanding benchmarks. The
threshold of reflection cycles is set to be 3.

Datasets Reflection Cycles

0 1 2 3

VideoMME 80.1% 17.5% 1.8% 0.6%
Lvbench 73.9% 21.4% 3.2% 1.5%
MLVU 75.5% 20.9% 2.9% 0.7%

ActivityNet Captions 89.6% 8.7% 1.6% 0.1%
Charades-STA 91.2% 7.6% 1.2% <0.1%
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A.4 VISUALIZATION EXAMPLES

Here we present some inference examples of our CrossVLLM framework. In the examples, we omit
the prompts, and policies’ unimportant parts and the repeated questions to make them more concise.
Figure 6 represents the examples of cross-granularity inference without the execution of fine-to-
coarse reflection since the video segment to the question is relatively easy for localization, and the
answer could be inferred through fine-grained perception at once. For example, in Figure 6(a), the
video is a PPT animation with numerical titles (from 1 to 10), and the grounding condition is ’eighth
point’ that guides the coarse-grained video LLM to locate the key segment in the middle to back
position of the video. Figure 6(b) is even more obvious as the condition ‘finished’ directly guides
the coarse-grained video LLM to focus on the final part of the input long video.

What does the finished handcraft look like? The 
duration of the video is 488.2sQuestion:

Video:

Grounding segment: 460s-488s…

Direct output: An octopus.

Video LLM Coarse-grained 
module

Grounding module

Video LLM Fine-grained 
module

Fine-grained perception

… …

When introducing the eighth point, how many people finally 
appeared on the screen? The duration of the video is 314sQuestion:

Video:

Grounding segment: 260s-275s…

Direct output: Eight.

Video LLM Coarse-grained 
module

Grounding module

Video LLM Fine-grained 
module

Fine-grained perception

… …

(a) Example 1. (b) Example 2.

Figure 6: Visualization examples of cross-granularity inference without fine-to-coarse reflection.

What happens when a boy picks up a mirror? The 
duration of the video is 328.1sQuestion:

Video:

Grounding segment: 100s-105s…

Reflection: During 100s-105s, a dog can be seen in front of a 
big mirror but without a boy, try another video segments. 

Grounding segment: 250s-275s…

Direct output: A bird attacks him.

Video LLM Coarse-grained 
module

Grounding module

Video LLM Fine-grained 
module

Video LLM Coarse-grained 
module

Grounding module

Video LLM Fine-grained 
module

Fine-grained perception

… …

Grounding segment: t1s-t2s

Reflection: During … 
Repeat for several times 

What happens when a baby elephant chases a group 
of ducks? The duration of the video is 292.2sQuestion:

Video:

Grounding segment: 180s-189s…

Reflection: During 180s-189s, a baby elephant can be seen 
in the video but without a group of ducks, try video 
segments before or after. 

Grounding segment: 191s-200s…

Direct output: The baby elephant falls to the ground.

Video LLM Coarse-grained 
module

Grounding module

Video LLM Fine-grained 
module

Video LLM Coarse-grained 
module

Grounding module

Video LLM Fine-grained 
module

Fine-grained perception

… …

(a) Example with a single time of reflection. (b) Example with multiple times of reflection.

Figure 7: Visualization examples of cross-granularity inference. (a) represents an example with
fine-to-coarse reflection once, and (b) represents an example with fine-to-coarse reflection repeated
multiple times.

In addition, we provide examples of reflective granularity inference with reflection at least once
shown in Figure 7. These long video understanding tasks are designed for the interaction of multi-
ple objects, and they are original failure cases for the cross-granularity strategy without reflection.
Figure 7(a) represents a video question example that requires a single time of fine-to-coarse reflec-
tion, and the regenerated grounding policy locates the correct key video segment for the second time.
In the example of Figure 7(a), the grounding condition is ‘a baby elephant chases a group of ducks’
and the video includes several segments distributed in different times, but all contain ‘elephant’,
which interferes with the Video LLM to localize the correct video segment. Figure 7(b) represents
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a video question example that is more difficult (as its condition is that ‘a boy picks up a mirror’, but
‘mirror’ occurs across the entire video), and requires multiple fine-to-coarse reflections to finally
locate the corresponding key video segment that fulfills the question entirely.

A.5 LIMITATION AND FUTURE WORK

We discover some failure cases under the cross-granularity framework to further study how LLM
analyzes long videos, and an example is provided in Figure 8. During this failure case, the coarse-
grained video LLM is asked, ‘How many magic shows are included in this video?’, and the video
LLM processes the long video input and responds with a grounded subset video segment that con-
tains several magic shows and sends it to the fine-grained video LLM. However, since the grounded
subset video contains ’magic shows’ content, related to the original video question, the fine-grained
video LLM would confirm the grounded policy is effective and directly give the answer only based
on the subset grounded video, ignoring that there might be other ’magic shows’ in the video seg-
ments that are not grounded.

How many magic shows are included in this video? 
The duration of the video is 1840sQuestion:

Video:

Grounding segment: 2s-304s…

Direct output: There are 3 magic shows in the grounded 
short video.(without reflection policy)

Video LLM Coarse-grained 
module

Grounding module

Video LLM Fine-grained 
module

… …

Figure of failure case example: coarse-to-fine grounding strategy for event counting task . The coarse-grained Video LLM accurately 

localized a subset video contains 'magic shows' content related to the original video question. And then the fine-grained Video LLM 
would confirm the grounded policy is effective and directly give the answer (without reflection policy) only based on the subset 

grounded video, ignoring that there m ight be other 'magic shows' in the video segments that are not grounded.

Ground truth: 10 magic shows in total through entire video

Figure 8: Example of a failure case. The coarse-grained video LLM accurately localized a subset
video contains ‘magic shows’ content related to the original video question. And then the fine-
grained video LLM would confirm the grounded policy is effective and directly give the answer
(without reflection policy) only based on the subset grounded video, ignoring that there might be
other ‘magic shows’ in the video segments that are not grounded.

This failure case originates from the insufficient prompting and policy design during our fine-to-
coarse reflection. The optimal solution in such event-counting tasks is to ground and reflect segment
by segment until the entire video is fine-grained percepted and summarize the count result, which
calls for different prompting and policy design. Similar failure cases also occurred in action/event
ordering tasks of long video understanding, and these would be the future direction of our method
to further improve fine-grained long video understanding capabilities.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal
experimentation are involved. All datasets used, including ActivityNet-QA, Ego-QA, Next-QA,
ActivityNet-Captions, Charades-STA, VTG-IT, VideoMME, Lvbench, and MLVU, are sourced in
compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken care
to avoid any biases or discriminatory outcomes in our research process. No personally identifiable
information is used, and no experiments are conducted that could raise privacy or security concerns.
We are committed to maintaining transparency and integrity throughout the research process.

C REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
datasets are publicly available to facilitate replication and verification. Our experimental setup, in-
cluding training steps, model configurations, proposed algorithm, and hardware details, is described
in detail in the paper. We have also provided a full description of CrossVLLM to assist others in
reproducing our experiments.

Additionally, our experimental benchmarks for long video understanding and temporal video
grounding, such as VideoMME, Lvbench, MLVU, Charades-STA, and ActivityNet-Captions, are
publicly available, ensuring consistent and reproducible evaluation results. We believe these mea-
sures will enable other researchers to reproduce our work and further advance the field.

D LLM USAGE

Large Language Models (LLMs) are not used to aid in the writing or polishing of our manuscript.
It is important to note that the LLM is also not involved in our ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses are developed and conducted by the
authors. The authors take full responsibility for the content of the manuscript.
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