
Under review as a conference paper at ICLR 2024

PINA: A PYTORCH FRAMEWORK FOR DEEP DIFFER-
ENTIAL EQUATION LEARNING FOR RESEARCH AND
PRODUCTION ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The last years have manifested the artificial intelligence revolution in several
fields. Within the scientific computing community, there has been a remark-
able effort to exploit the advancements in machine learning to address the lim-
itations of conventional methods for solving differential equations. Notably,
physics-informed neural network (PINN) and neural operator (NO) approaches
have emerged as central players due to their promising and innovative approaches
to computing differential equations’ solutions. In this contribution, we are going
to present a versatile software designed for tackling differential equation learning
using PINN and NO methodologies. The package is called PINA, an open-source
Python library built upon the robust foundations of PyTorch and Lightning.
It empowers end-users to formulate their problem and craft their models to effort-
lessly compute the solution. The modular structure of PINA permits it to adapt
PINN and NO schemas for user specifics, thus offering the freedom to select the
most suitable learning techniques for their particular problem domain. Further-
more, by leveraging the capabilities of the Lightning package, PINA adapts to
various hardware setups, including GPUs and TPUs. This adaptability positions
PINA as an ideal candidate for the transition of these methodologies into produc-
tion and industrial pipelines, where computational efficiency and scalability are of
paramount importance.

1 INTRODUCTION

In recent years, the world has seen an unprecedented revolution in artificial intelligence (AI) and
machine learning (ML), that has permeated numerous sectors, transforming solutions and processes.
Within the scientific computing community, this revolution has manifested itself as a powerful tool
for overcoming the limitations inherent in traditional methods for solving complex differential equa-
tions.

Among the promising developments in this arena, two standout approaches have emerged as central
players for differential equation solutions: Physics-Informed Neural Networks (PINN) and Neural
Operator (NO) methodologies. These models exploit the knowledge of the equations, using them di-
rectly during the training in order to approximate the unknown output of interest, such that the final
distribution satisfies the physical constraints (differential terms, boundary, and initial conditions).
This integration of the equations into the training process simplifies the formulation of the problem,
making it easier to formalize new problems effectively in practice. For this reason, we present in this
contribution an innovative software tool designed to harness the potential of PINN and NO method-
ologies for differential equation learning. This package is called PINA, and it is an open-source
Python library meticulously crafted to empower users in the realm of differential equation solv-
ing. Built upon the robust foundations of PyTorch and Lightning, PINA represents a versatile and
user-friendly resource that wants to simplify the way we approach complex mathematical problems.

PINA presents a modular architectural design, endowing users with the capacity to define and con-
struct models tailored to their specific problem domains, thereby facilitating the computation of
solutions. Within the framework, each component is extensible, allowing for the exploration of
an extensive array of techniques and strategies without theoretical limitations. This design supports
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PINA as a collaborative, open-source framework for the PINN and NO methodologies, where collec-
tive development efforts converge to streamline implementation processes and perpetually integrate
state-of-the-art techniques. PINA aspires to be the central hub for the PINN and NO research com-
munity, harmonizing development efforts to simplify implementation while perpetually maintaining
a repository of cutting-edge methodologies. This collaborative paradigm seeks to empower users
with a versatile toolkit that not only streamlines the implementation journey but also ensures their
continuous alignment with the latest advancements in these techniques.

Furthermore, PINA’s integration with the Lightning package ensures that it can seamlessly adapt to
various hardware setups, including GPUs and TPUs. This adaptability is crucial for transitioning
these cutting-edge methodologies into real-world production and industrial pipelines. In domains
where computational efficiency and scalability are paramount, PINA emerges as an ideal candidate
to drive such methods to their industrial maturity.

In the pages that follow, we will delve deeper into the features, capabilities, and practical applications
of PINA, illustrating how this innovative software tool can empower you to unlock the full potential
of AI in solving complex differential equations. Welcome to the future of scientific computing with
PINA—a tool that brings the power of AI to your fingertips.

2 BACKGROUND

ODEs and PDEs are used to describe different physical phenomena in a mathematical form. Local
updates expressed by partial or total derivatives are used to represent the evolution of a function
characterizing a system. Formally, the general form of a differential equation, which we aim to
solve, can be written as:

F(u(z);α) = f(z) z ∈ Ω,

B(u(z)) = g(z) z ∈ ∂Ω,
(1)

where Ω ∈ Rdz is a suitable domain with ∂Ω its boundaries. The solution field is u ∈ U, the
variables z indicate all the spatio-temporal coordinates, α ∈ A the physical parameters, f the forc-
ing term, and F a differential operator describing the dynamics. Finally, B is the operator which
indicates arbitrary initial or boundary conditions, with g the function on the boundaries.

Solving ODEs and PDEs of the form in Equation equation 1 is one of the main computational
challenges in mathematics and engineering. Numerical solvers, such as finite element methods
(FEM), finite difference methods (FDM), or finite volume method (FVM), rely on discretizing the
domain Ω (Morton & Mayers, 2005; Quarteroni & Quarteroni, 2009). For many complex domains,
the discretization is not straightforward, and a specific study is needed to ensure the final accuracy
of the solver. Moreover, these solvers are often computationally expensive, resulting in high energy
consumption, and slow computational time.

Over the past decades, multiple deep learning methods have risen for solving the problem formalized
in equation 1, aiming to overcome the classical numerical solver issues. Eventually, a dichotomy of
methodologies can be made: Neural Operator (NO) methods, which assume knowledge of the sys-
tem in the form of data; and Physics Informed Neural Networks (PINNs), which use the underlying
equation to learn the solution.

2.1 NEURAL OPERATOR METHODS

Neural Operator (NO) methods (Li et al., 2020; Lu et al., 2021a; Bhattacharya et al., 2021; Kovachki
et al., 2021; Brandstetter et al., 2022) build a mapping from infinite-dimensional function spaces by
using a supervised learning strategy. Given a specific ODE or PDE as in the form of equation 1, a
neural operator G : U′ → U is trained by a finite set of N observations {(u′

i,ui)}Ni=1, such that:

G(u′) = u. (2)

For example, a NO could map the field at the initial temporal condition of a PDE, to the evolution
at a specific time step; or the parameter of a differential equation to its solution for the specific
parameter. NO possesses important characteristics: they are discretization invariant, i.e. the model
is not defined on a fixed grid; the input and output is a function; the universal approximation theorem
for operator holds Chen & Chen (1995).
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2.2 PHYSICS INFORMED NEURAL NETWORKS

In many situations training data are not available, and NO can not be trained using a supervised
loss. As an alternative, PINNs (Raissi et al., 2019) have been proposed. PINNs are trained by
approximating the true solution of equation 1 with a neural network uθ ≈ u with parameters θ.
In PINNs the network is trained directly with the ODE or PDE itself, ensuring that equation 1 is
satisfied by the network:

L(θ) = LF + LB. (3)

The first term is the physics-informed loss inside the domain Ω, while the second one is a supervised
loss for boundary or initial conditions. Different types of losses can be implemented, for example
using the MSE loss equation 3 becomes:

L(θ) = 1

Nf

Nf∑
i=1

∥F(uθ(zi);αi)− f(zi)∥22 +
1

Nb

Nb∑
i=1

∥B(uθ(zi))− g(zi)∥22, (4)

where Nf is the number of collocation points sampled inside Ω, and Nb the number of collocation
points sampled in ∂Ω.

Since PINN’s inception, many follow-up improvements have been made to improve training sta-
bility and convergence. Examples of further research include studying different losses (Kharazmi
et al., 2019; Wang et al., 2022; McClenny & Braga-Neto, 2020), sample strategies for collocation
points (Wu et al., 2023; Nabian et al., 2021; Daw et al., 2023) to speed up convergence, or specific
network architecture (Wang et al., 2021a;b) and input augmentation (Demo et al., 2023; Lu et al.,
2021c) to ease the neural network training.

2.3 DEEP DIFFERENTIAL EQUATION LEARNING SOFTWARE

The recent advancements in the field of deep learning for differential equations learning, as well
as the evolution of open-source frameworks, such as TensorFlow (Abadi et al., 2015), and
PyTorch (Paszke et al., 2019) led to the development of several libraries for solving ODEs and
PDEs via PINNs and NO. PINN TensorFlow-based libraries include DeepXDE (Lu et al., 2021b)
(which also supports PyTorch), TensorDiffEq (McClenny et al., 2021) and PyDEns (Ko-
ryagin et al., 2019); while PyTorch-based libraries include NeuroDiffEq (Chen et al., 2020),
IDRLNet (Peng et al., 2021). For NO NeuralOperator (Li et al., 2020; Kovachki et al., 2021)
is the main library.

There are multiple challenges with the packages mentioned above that limit their usage for research
and production environments. First, most of the packages lack abstract interfaces which limit the
possibility of adding extensions, like new loss functions or training procedures. Additionally, the
packages presented are sectorized to only PINNs or NOs, without the possibility of combining the
two methodologies, which is a new research direction in the field (Li et al., 2021; Wang et al., 2021b).
Another common problem of the libraries is the absence of common deep learning advancements
for training such as multiple device training, modern model compression techniques, gradient ac-
cumulation, and so on. Finally, the possibility of inserting common deep-learning loggers into the
training for monitoring is missing.

3 PINA

Physics Informed Neural network for Advanced modeling (PINA) is an open-source Python library
providing an intuitive interface for solving differential equations using PINNs, NOs or both together.
The software is built-in PyTorch, with PyTorchLightning (Falcon & The PyTorch Light-
ning team, 2019) as backhand. Employing PyTorchLightning as backhand is done to offer
professional AI researchers and machine learning engineers the possibility of using advancement
training strategies provided by the library. In addition, it provides the possibility to add arbitrary
self-contained routines (callbacks) to the training for easy extensions without the need to touch the
underlying code.

PINA is an open-interface software that gives the final user an easy entry point to implement their
extensions. The application programming interface (API) of PINA is schematized in Figure 1. The
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Figure 1: PINA package application programming interface. Starting from the problem definition,
a specific model is passed to the solver, which defines, together with the trainer, the optimization
strategy of the model.

pipeline to solve differential equations with PINA follows five steps: problem definition, model
selection, data generation, solver selection, and training. Furthermore, to enhance the training stage
multiple callbacks have already been implemented, such as switching optimizers during training,
advanced sampling strategies refinements, and so on.

To show the full capabilities of PINA the next sections will follow the prototypical pipeline for
solving a problem, highlighting the various features provided by the software.

3.1 PROBLEM DEFINITION

from pina.problem import SpatialProblem
from pina.operators import grad
from pina.geometry import CartesianDomain
from pina.equation import Equation, FixedValue
from pina import Condition

class SimpleODE(SpatialProblem):

output_variables = ['u']
spatial_domain = CartesianDomain({'x': [0, 1]})

# defining the ode equation
def ode_equation(input_, output_):

# computing the derivative
u_x = grad(output_, input_, components=['u'], d=['x'])
# extracting u input variable
u = output_.extract(['u'])
# calculate residual and return it
return u_x - u

# Conditions to hold
conditions = {

'x0': Condition(
location=CartesianDomain({'x': 0.}),
equation=Equation(initial_condition)

),
'D': Condition(

location=CartesianDomain({'x': [0, 1]}),
equation=Equation(ode_equation)

),
}

Figure 2: PINA problem definition.

The first step is the formalization of
the problem. In PINA the problem
is formulated by constructing a class
inheriting from one or more problem
classes (at the moment the available
classes are AbstractProblem, Spa-
tialProblem, TimeDependentProb-
lem, ParametricProblem), depend-
ing on the nature of the problem
treated. For example, a simple ODE
that depends only on a spatial vari-
able is defined via a class that in-
herits only from SpatialProblem.
Differently, for a parametric time-
independent PDE, the problem class
inherits from both SpatialProblem
and ParametricProblem. In case the
user wants to define its own problem,
the AbstractProblem interface must
be used as the base class. In the prob-
lem formulation class, as shown in
the snippet of Figure 2, the user must
include the information about the do-
main, the output variables, and the
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conditions that the neural network has to satisfy. The domain must be a valid domain, e.g. spa-
tial, temporal, or parametric domain, with the corresponding range of variation. Multiple types of
geometries are available currently in PINA for defining the domain (see Section 3.3). The output
variables are represented by a list of symbols constituting the unknowns of the problem. Indeed,
standard PyTorch tensors carry a label (LabelTensor) in PINA, allowing the user maximal flex-
ibility for the manipulation of the tensor. Finally, for training PINNs and NOs it is essential to
give correct constraints as a form of loss function. The Condition class encapsulates all the possi-
ble ways the loss could be defined, i.e., physical loss, boundary loss, or data loss. The users must
use the Condition class to define all the constraints the unknown field needs to satisfy. Moreover,
PINA already implements functions (e.g. laplacian or grad) and common equations (e.g. Dirichlet
boundary conditions, systems of equations) to ease the problem formulation for the users.

3.2 MODEL AND SOLVER SELECTION

Once the model is defined, the user must choose the neural network model to optimize, and the
optimization strategy. In PINA the model is represented as a standard torch.nn.Module. The

Table 1: PyTorch models and layers available in PINA.

Method Source
Feed Forward Neural Network (MLP) -

Modified MLP Wang et al. (2021a)
Models DeepONet Lu et al. (2021a)

MiONet Jin et al. (2022)
Fourier Neural Operator (FNO) Li et al. (2020)

Residual Layer Li et al. (2020)
Fourier Layer He et al. (2016)

Layers Continuous Convolution Coscia et al. (2023b)
Spectral Convolution -

package is equipped with many models and layers (see Table 1) already implemented in PyTorch
and customizable. The user can then decide to use built-in models (e.g. for benchmarking) or build
new models and layers for research purposes.

For optimizing the model a specific solver must be used. A solver is a Python object which defines
the optimization strategy for the model. In PINA the solver is constructed by inheriting from Solver-
Interface, an abstract class wrapping lightning.pytorch.LightningModule. Available solvers in-
clude a supervised learning solver (SupervisedSolver), particularly crafted for NO problems, a
physics-informed solver (PINN) (Raissi et al., 2019), and an adversarial solver (GAROM) (Coscia
et al., 2023a). We plan to continuously add solvers as the state–of–the–art evolves. Notice that
all solvers are customizable by the user. For example, the PINN solver allows changing the loss
(e.g. using a variational loss (Kharazmi et al., 2019)), or extending the solver with regularization
strategies (Yu et al., 2022), or modifying the optimizer (Davi & Braga-Neto, 2022). All of these,
apparently different solvers, can be changed by a keyword argument in the PINN class.

3.3 DATA GENERATION

NO learning procedure uses a finite set of observations and it is trained in a fully supervised manner.
These observations, obtained by numerical solver solutions, in PINA can be passed as LabelTensor
in the Condition class defined in Section 3.1. Differently, some training strategies, e.g. PINNs,
use collocation points sampled inside the domain where the residual of the differential equation (see
equation 3) must be evaluated. For these types of solvers, PINA provides a simple sampling strat-
egy for multiple different geometries. In PINA each domain is a Location object, which defines the
geometry of the domain. There are already multiple sampling methods in PINA (random uniform,
grid sampling, latin hypercube sampling, Chebyshev sampling) for the different available multidi-
mensional geometries (CartesianDomain, EllispoidDomain, and so on) as depicted in Figure 3.
In addition to multidimensional geometries, the software also provides set operations (difference,
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Figure 3: Examples of possible domain generated using PINA.

from pina.solvers import PINN
from pina.trainer import Trainer
from pina.callbacks import MetricTracker, R3Refinement
from pina.model import FeedForward

# define the problem
problem = SimpleODE()
# choose model + solver
model = FeedForward(input_dimensions=len(problem.input_variables),

output_dimensions=len(problem.output_variables),
n_layers=3,
inner_size=120,
func=torch.nn.Tanh)

solver = PINN(problem=problem, model=model)
# sampling strategy
problem.discretise_domain(n=1000)
# training the model
trainer = Trainer(solver=solver, device = 'gpu', callbacks=[MetricTracker(), R3Refinement(sample_every=10)])
trainer.train()
# saving model
trainer.save_checkpoint(filepath='saveingfilefolder/')

Figure 4: PINA snippet for the solution of a generic problem: problem and model definition, creation
of sampling points, training procedure and saving to file.

union, intersection, and so on) allowing the user to build a custom domain. Finally, in Condition
class the user can also employ available scatter points, and pass them as LabelTensors.

3.4 PINA TRAINING

The last stage on the PINA pipeline is to train the model. This is done using the Trainer class, which
wraps the lightning.pytorch.Trainer class. In the Trainer class the user must pass a SolverInter-
face object in addition to all the available arguments of lightning.pytorch.Trainer. This strategy
allows the user maximal training flexibility by exploiting fully PytorchLightning capabilities, e.g.
low precision training, gradient accumulation, multiple GPU training, and different hardware train-
ing. Figure 4 reports the complete pipeline for training a PINA model. The problem is defined by
instantiating the problem class. A model is then constructed, in this case, an MLP of 3 layers of
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size 120, with hyperbolic tangent activation. The solver is instantiated using the problem and the
model, in this case, the PINN solver is used. Finally the trainer is created using the solver and extra
PytorchLightning arguments, e.g. device and callbacks. In this case, the trainer will track the
metric using the built-in MetricTracker, so no logging will be used, which is pretty convenient for
assessing quickly model results. In addition, adaptive R3 refinement (Daw et al., 2023) is each 10
iterations to update the collocation points.

4 EXPERIMENTS

In this section, we show possible benchmark results obtainable with PINA. We want to highlight
that the purpose of this section is not to provide accurate measurements of model performance, but
rather to show how easily is to benchmark on PINA. As model cases, we use four different models
(see Appendix B for model specifics):

• MLP: A standard Feed Forward Neural Network implemented in PINA

• m-MLP: A modified Feed Forward Neural Network implemented in PINA, with skip con-
nection (Wang et al., 2021a)

• hard-MLP: A standard Feed Forward Neural Network implemented in PyTorch with
hard constraint (Lu et al., 2021c) on the spatial dimensions for boundary conditions

• DeepONet: A DeepONet Network (Lu et al., 2021a) implemented in PINA.

Figure 5: Example of visualization API for the Poisson problem in PINA. Left: PINA solution,
center: real solution, right: absolute value difference of real and predicted solution.

We test on four different problems (see Appendix A for mathematical formulation) with different
PINN’s learning methodologies:

• Burger: The one dimensional time dependent Burgers’s equation, with classical PINN
learning

• Poisson: The two dimensional Poisson’s equation, with extra feature PINN learning (Demo
et al., 2023)

• Wave: The two dimensional time dependent Wave’s equation, with R3 adaptive refinement
PINN learning (Daw et al., 2023)

• Parametric Poisson: The two dimensional parametric dependent Poisson’s equation, with
classical PINN learning (Demo et al., 2023).

In table 2 the final loss for all the simulations done employing PINA are reported. It is worth
mentioning that all simulations have been done by changing just a few lines of code (the problem
class, and model definition), which shows the great versatility of the software. Finally, in Figure 5
we show how solutions can be visualized in PINA via the software plotting API with the Poisson
problem example.
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Table 2: Benchmark results for multiple problems and training model in PINA.

Model Burger Poisson Wave Parametric Poisson

MLP 6.20× 10−4 1.87× 10−7 1.02× 10−3 8.13× 10−5

m-MLP 4.60× 10−4 2.30× 10−7 1.71× 10−4 6.91× 10−6

hard-MLP 9.55× 10−4 1.67× 10−6 4.64× 10−4 2.95× 10−4

DeepONet 2.49× 10−2 5.71× 10−7 2.02× 10−2 5.66× 10−3

5 CONCLUSIONS

We present in this contribution a software framework for PINN and NO learning. PINA is an
emerging package that wants to centralize the research activities related to these methodologies,
making its application to the production environment or improvements with respect to the status quo
easier. We introduced the most important features, highlighting the modular structure, the PyTorch
and PyTorchLighting inheritance, the extensibility for defining problems and domains, the
capability to use several built-in models or crafting from scratch a new one. We showed how PINA
can be used to solve different problems, using benchmarking cases. Such frameworks open the door
to faster development in the field, reducing the required effort to actively apply such techniques even
to complex problems, and fostering new implementations and innovations.
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A APPENDIX A

In this section, we provide the mathematical formulations of the problem presented in the experiment
section 4.

A.1 BURGER’S EQUATION

Burger’s equation is a convection-diffusion equation widely used in many fields of mathematics.
The problem is crafted as the benchmark presented in (Raissi et al., 2019). Let x = (x, t) be the
spatio-temporal variables, and u be the unknown field. The Burger equation is:

∂
∂tu(x) + u(x) ∂

∂xu(x)−
0.01
π

∂2

∂x2u(x) = 0 x ∈ [−1, 1] , t ∈ [0, 1]

u(1, t) = u(−1, t) = 0 t ∈ [0, 1]

u(x, 0) = − sin(πx) x ∈ [−1, 1].

(5)

For solving the equation we sample 10000 points uniformly random in the domain [−1, 1]× [0, 1].

A.2 POISSON’S EQUATION

Poisson’s equation is an elliptic partial differential equation widely used in physics. The problem is
crafted as the benchmark presented in (Demo et al., 2023). Let x = (x, y) be the spatial variables,
u be the unknown field, and Ω = [−1, 1]2 the domain. The Poisson equation is:{

∇2u(x) = sin(πx) sin(πy) x ∈ Ω

u(x) = 0 x ∈ ∂Ω,
(6)

where ∂Ω indicates the boundary of the domain, and the Laplacian operator ∇2 acts on the spatial
variables. For solving the equation we sample 10000 points uniformly random in the domain Ω.
During problem learning we employ extra features, by augmenting the input with the forcing term,
i.e. the model input is given by (x, y, sin(πx) sin(πy)).
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A.3 WAVE’S EQUATION

The Wave’s Equation is a linear differential equation vastly used in fluid dynamics. Let x = (x, y, t)
be the spatio-temporal variables, u be the unknown field, Ω = [0, 1]2 the domain, and T = [0, 1]2

the parameter domain. The Wave equation is:
∇2u(x) = ∂2

∂t2u(x) x ∈ Ω× T
u(x) = 0 x ∈ ∂Ω× T,
u(x) = sin(πx) sin(πy) x ∈ Ω× ∂T,

(7)

where ∂Ω indicates the boundary of the domain, and the Laplacian operator ∇2 acts on the spatial
variables. For solving the equation we sample 10000 points uniformly random in the domain Ω. We
use R3 adaptive refinement for moving the collocation points during training every 100 epochs.

A.4 PARAMETRIC POISSON’S EQUATION

Parametric Poisson’s equation is an example of a Poisson equation where the forcing term depends
on external parameters. The problem is crafted as the benchmark presented in (Demo et al., 2023),
where the objective is to learn a function for different parameters. The problem can be considered
as a NO problem since we map different initial functions (for different parameters) to the field
functions. In the experiment section, we use PINN learning to solve the problem. Let x = (x, y)
be the spatial variables, u be the unknown field, Ω = [0, 1]2 the domain, and Ξ = [−1, 1]2 the
parameter domain. The Poisson equation is:{

∇2u(x) = e−2[(x−ξ1)
2+(y−ξ2)

2] x ∈ Ω× Ξ

u(x) = 0 x ∈ ∂Ω× Ξ,
(8)

where ∂Ω indicates the boundary of the domain, and the Laplacian operator ∇2 acts on the spatial
variables. For solving the equation we sample 10000 points uniformly random in the domain Ω.

B APPENDIX B

In this section, we provide the network specifics for the experiments performed in Section 4. All the
models were trained using the Adam optimizer (Kingma & Ba, 2014), with learning rate of 0.001
for 10000 epochs minimizing the mean square error loss. The training was done on Intel CPU.

B.1 BURGER’S EQUATION

The networks’ composition:

• MLP: Three linear layers of size [20, 10, 5] with hyperbolic tangent activation on all layers
except the last

• m-MLP: Three linear layers of size [20, 20, 20] with hyperbolic tangent activation on all
layers except the last. The transformer networks were two linear layers mapping the input
to the inner size of 20

• hard-MLP: Same as MLP. Hard constraints on boundary conditions are imposed by mul-
tiplying the network output with the term (1 + x)(1− x)

• DeepONet: The branch and trunk net are the same architecture of two linear layers of size
[20, 20] with hyperbolic tangent activation on all layers except the last. The reduction is
done by aggregating with a linear layer with input dimension 20 and output dimension 1.
The trunk net takes t as input. The branch net takes x as input.

The input dimension of the problem is 2 (one spatial + one temporal variables), and the output
dimension is 1.
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B.2 POISSON’S EQUATION

The networks’ composition:

• MLP: Same architecture as Burgers’s problem.
• m-MLP: Same architecture as Burgers’s problem.
• hard-MLP: Same architecture as Burgers’s problem.
• DeepONet: Same architecture as Burgers’s problem, but the trunk net takes x, t as input.

The branch net takes sin(πx) sin(πy) as input.

The input dimension of the problem is 3 (two spatial + augmentation variables), and the output
dimension is 1.

B.3 WAVE’S EQUATION

The networks’ composition:

• MLP: Same architecture as Burgers’s problem.
• m-MLP: Same architecture as Burgers’s problem.
• hard-MLP: Same architecture as Burgers’s problem.
• DeepONet: Same architecture as Burgers’s problem, but the trunk net takes t as input. The

branch net takes x, y as input.

The input dimension of the problem is 3 (two spatial + two parametric variables), and the output
dimension is 1.

B.4 PARAMETRIC POISSON’S EQUATION

The networks’ composition:

• MLP: Same architecture as Burgers’s problem.
• m-MLP: Same architecture as Burgers’s problem.
• hard-MLP: Same architecture as Burgers’s problem.
• DeepONet: Same architecture as Burgers’s problem, but the trunk net takes x, t as input.

The branch net takes ξ1, ξ2 as input.

The input dimension of the problem is 4 (two spatial + two parametric variables), and the output
dimension is 1.
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