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Abstract

We propose Masked Capsule Autoencoders (MCAE), the first Capsule Network that utilises
pretraining in a modern self-supervised paradigm, specifically the masked image modelling
framework. Capsule Networks have emerged as a powerful alternative to Convolutional
Neural Networks (CNNs), and have shown favourable properties when compared to Vision
Transformers (ViT), but have struggled to effectively learn when presented with more com-
plex data, leading to Capsule Network models that do not scale to modern tasks. Our
proposed MCAE model alleviates this issue by reformulating the Capsule Network to use
masked image modelling as a pretraining stage before finetuning in a supervised manner.
Across several experiments and ablations studies we demonstrate that similarly to CNNs
and ViTs, Capsule Networks can also benefit from self-supervised pretraining, paving the
way for further advancements in this neural network domain. For instance, pretraining on
the Imagenette dataset, a dataset of 10 classes of Imagenet-sized images, we achieve not only
state-of-the-art results for Capsule Networks but also a 9% improvement compared to

:::
on

::::::::::
Imagenette

:::::::::
compared

::
to

:::
our

::::
own

::::::::
method

:::::
using purely supervised training. Thus we propose

that Capsule Networks benefit from and should be trained within a masked image modelling
framework, with a novel capsule decoder, to improve a Capsule Network’s performance on
realistic-sized images.

1 Introduction

Capsule networks are an evolution of Convolutional Neural Networks (CNNs) which remove pooling opera-
tions and replace scalar neurons with a fixed number of vector or matrix representations known as capsules
at each location in the feature map. At each location there will be multiple capsules, each theoretically
representing a different concept. Each of these capsules has a corresponding activation value between 0
and 1 which

:
1.

:::::
This

::::::::::
activation

:::::
value

:
represents how strongly the network believes the concept which the

capsule represents is presentat the location in the feature map. Capsule Networks have shown promising
signs, such as being naturally strong in invariant and equivariant tasks (Sabour et al., 2017; Hinton et al.,
2018; De Sousa Ribeiro et al., 2020; Hahn et al., 2019; Ribeiro et al., 2020; 2022) while having low parameter
counts, but have yet to scale to more complex datasets with realistic resolutions that CNNs and Vision
Transformers (ViTs) are typically benchmarked on.

Masked Image Modelling (MIM) is a Self Supervised Learning (SSL) technique with roots in language
modelling (Devlin et al., 2018). In language modelling, words are removed from passages of text, the
network is then trained to predict the correct words to fill in the gaps. This technique can be extended to
image modelling by splitting an image into equal regions called patches, randomly removing some of these
patches and then requiring the network to predict the pixel values of the removed patches. This has been
shown to require the network to have an improved world model in both Vision Transformers (ViTs) (He
et al., 2021) and CNNs (Woo et al., 2023), which is strong enough to reconstruct occluded areas from the
remaining visible areas. Combining this technique with supervised finetuning, accuracy can be significantly
improved compared to not using any pretraining (He et al., 2021; Woo et al., 2023).

We propose that MIM pretraining should be added to the training paradigm of Capsule Networks to mitigate
the weaknesses, as it will force the Capsule Network to learn better representations at each area of the image
to allow for accurate reconstruction. These better local representations can then be utilised at the finetuning
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Figure 1: Our Masked Capsule Autoencoder architecture. During pretraining we randomly select a number
of patches from the original image to be processed. The Capsule Network will then create a representation
for each patch. Masked patch capsule representations are then re-added before the capsule decoder, where
the unmasked capsules can contribute to the masked positions, which are finally decoded by a single linear
layer to the original patch dimensions. The pretraining objective is the mean squared error between the
reconstructed patches and the target patches. The dog image used is sourced from the Imagewoof validation
set (Howard, 2019b).

stage for better activation of the correct global class capsules which are added after pretraining. These
proposals are based upon how both CNNs and ViTs have seen significant improvements relating to better
training regimes with little to no architectural changes, thus rather than solely focusing on improving the
routing algorithm, we instead show that capsule networks can be improved via training modifications instead.

The main contributions of this work can be summarised as follows:

1. We propose a novel adaption of Capsule Networks to accommodate masked image modelling.

2. We have shown that classification accuracy with a Capsule Network can be improved via self-
supervised pretraining followed by supervised finetuning compared to only supervised training.

3. We have improved the state-of-the-art on multiple benchmark datasets for Capsule Networks, in-
cluding realistically sized images where Capsule Networks typically perform very badly.

4. We implemented a fully capsule decoder layer, replacing the CNN decoders which are typically used
for reconstruction tasks in Capsule Networks to ensure that our proposed MCAE model does not
need a handcrafted decoder.

5. We provide the first investigation into the use of ViTs to replace the traditional convolutional stem.

The rest of this paper presents the necessary background on Capsule Networks, highlighting previous re-
search that has inspired the work presented here. We then formally define our new self-supervised capsule
formulation called Masked Capsule Autoencoders and present several experiments and ablation studies on
benchmark datasets. We conclude the paper by highlighting the main advantages of our new methods, with
some key takeaway messages and some future directions that could further support the future developments
of large-scale self-supervised Capsule Network models.

While interest in capsule networks may have waned in recent years, we argue that this is largely due to
research being overly focused on routing algorithms, leading to incremental improvements on toy datasets
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without addressing fundamental challenges such as handling complex images. This work represents a sig-
nificant departure from this trend by proposing a novel training regime for capsule networks, analogous
to the advancements seen in Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs). We
posit that this approach could reignite interest in capsule networks and encourage researchers to explore
alternative training paradigms beyond the standard supervised learning framework.

2 Related Works

2.1 Capsule Networks

Capsule Networks are a variation of CNNs, which replace scalar neurons with vector or matrix capsules
and construct a parse tree, representing part-whole relationships within the network. Each type of capsule in
a layer of capsules can be thought of as representing a specific concept at the current level of the parse tree
which is part of a bigger concept. Capsules in deeper layers are closer to the final class label than capsules
in shallower layers. The capsules in the lowest layercan be thought of as

:
,
::::::
known

::
as

::::::::
primary

::::::::
capsules,

::::::
detect

the most basic parts which could be a part of
:::::
visual

::::::::
features.

::::::
These

:::::
basic

::::::::
features

:::::
serve

::
as

::::::::
building

::::::
blocks

::::
that

:::::
could

:::
be

:::::::::
combined

::
to

:::::
form any of the end classes, thus are denoted as the primary capsules, signifying

that they are the base parts
::::
final

::::::
object

:::::::
classes,

:::::::
making

:::::
them

:::
the

:::::::::::
foundation of the parse tree. Capsules in

lower layers decide their contribution to capsules in higher layers through a process called routing.

Capsule Routing, in brief, is a non-linear, cluster-like process that takes place between adjacent capsule
layers. This part of the network has been the predominant research focus for state-of-the-art Capsule
Networks, to find better or more efficient methods of finding ways to decide the contribution of lower
capsules to higher capsules. In brief, the purpose of capsule routing is to assign part capsules i = 1, . . . , N in
layer ℓ to object capsules j = 1, . . . , M in layer ℓ+1, by adjusting coupling coefficients γ ∈ RN×M iteratively,
where 0 ≤ γij ≤ 1. These coupling coefficients have similarities to an attention matrix (Vaswani et al., 2017)
which modulates the outputs as a weighted average of the inputs. For more information on the numerous
routing algorithms proposed for Capsule Networks, please see here (Ribeiro et al., 2022).

Dynamic Routing Capsule Networks are the original Capsule Network architecture, as described in
(Sabour et al., 2017). DR Caps employs a technique called dynamic routing to iteratively refine the connec-
tions between capsules. This approach introduces the concept of coupling coefficients which represent the
strength of each connection and updates them using a softmax function to ensure that each capsule in a lower
layer must split its contribution amongst capsules that it deems relevant in the higher layer. The update
process relies on agreement values calculated as the dot product between a lower-level capsule’s output and
a predicted output from a higher-level capsule. After a pre-determined number of iterations, the activation
of each higher-level capsule is calculated as the weighted sum of the lower-level capsule activations, where
the weights are the final coupling coefficients.

Self-Routing Capsule Networks (SR-Caps) (Hahn et al., 2019) address the heavy
::::::::::::
SR-CapsNet)

:::::::::::::::::
Hahn et al. (2019)

::::::
address

::::
the

:
computational burden of iterative routing algorithms in

:::::::::
traditional

:
Cap-

sule Networks by introducing a novel
::
an

::::::::
efficient, independent routing mechanism. Each capsule in an

::::::
Unlike

:::::::::::
conventional

:::::::::::::::::::
routing-by-agreement

:::::::::::
approaches,

:
SR-CapsNet utilises

:::::::
employs a dedicated routing net-

work to directly
:::
for

::::
each

::::::::
capsule

::
to

:
compute its coupling coefficients , eliminating the need for iterative

agreement-based approaches. This approach draws inspiration from the concept of a
:::::::
directly,

:::::::
rather

::::
than

:::::::
relying

::::::
upon

::::::::
iterative

::::::::::
agreement

:::::::::
methods,

::::::::
drawing

:::::::::::
inspiration

:::::
from

:
mixture of experts network

(Masoudnia & Ebrahimpour, 2014), where each capsule acts as an expert specialising in a specific concept
of the feature space.

:::::::
networks

:::::::::::::::::::::::::::::::
Masoudnia & Ebrahimpour (2014)

:
.
:

SR Caps achieve this by employing two trainable weight matrices, Wroute and Wpose. These matrices
represent fully connected layers for each capsule in the subsequent layer. Within each routing network layer,
capsule pose vectors (ui) are multiplied by Wroute to directly generate coupling coefficients. These

:::
Let

::
us

::::::::
formally

::::::
define

::
a
:::::
layer

::
in

:::::::::::::
SR-CapsNet.

::::::
Given

:::
an

::::::
input

::::::
feature

:::::
map

:::::
with

::::::
batch

::::
size

::
b,

:::
the

::::::::::
activation

:::::
tensor

::::::::::::::
a ∈ Rb×A×h×w

:::::::::
represents

::::::::
capsule

::::::::::
activations

::::::
across

:
a
:::::::
feature

:::::
map,

::::::
where

::
A
::
is
::::
the

:::::::
number

:::
of

:::::
input

::::::
capsule

::::::
types

:::
and

::::
h, w

::::
are

::::::
spatial

::::::::::
dimensions

::
of
::::
the

::::::
feature

:::::
map.

::::::
Each

::::::
capsule

::::
also

::::::::::
maintains

:
a
:::::
pose

::::::
matrix

::::::::::::::::::
pose ∈ Rb×AC×h×w,

::::::
where

::
C

:::::::::
represents

::::
the

:::::::::::::
dimensionality

:::
of

::::
each

::::::::
capsule’s

:::::
pose

::::::
vector.

:
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:::
The

:::::::::::
self-routing

:::::::::::
mechanism

:::
is

:::::::::::::
parameterized

::::
by

::::
two

:::::::::
learnable

:::::::
weight

:::::::::
matrices:

::::::::::::::::::::
Wroute ∈ RkkA×B×C

::
for

:::::::::::
computing

:::::::
routing

:::::::::::
coefficients

::::
and

::::::::::::::::::::
Wpose ∈ RkkA×BD×C

::::
for

:::::
pose

:::::::::::::::
transformation,

::::::
where

::
k
:::

is
::::

the
::::::::::::
convolutional

::::::
kernel

::::
size

::::::::::
(kk = k2),

::
B

::
is
::::

the
:::::::
number

:::
of

:::::::
output

:::::::
capsule

::::::
types,

::::
and

:::
D

::
is

:::
the

:::::::
output

:::::
pose

:::::::::
dimension.

:

:::
The

:::::::
routing

::::::::
process

::::::
begins

:::
by

::::::::
applying

:
a
:::::::::::::

convolutional
:::::::::
operation

::::
with

::::::
kernel

::::
size

::
k,
::::::

stride
::
s,
::::
and

::::::::
padding

:
p
:::
to

:::::::::
transform

:::
the

::::::
input

:::::
poses

::::
into

::::::::::::::::::::::::::::
poseunfolded ∈ Rb×l×kkA×C×1,

::::::
where

:
l
::::::::::
represents

:::
the

::::::::
resulting

:::::::
spatial

:::::::::
dimension.

::::::
The

:::::::
routing

:
coefficients are then normalised using softmax and multiplied by the capsule’s

activation scalar (ai) to generate weighted votes. Finally, the activation (aj) of the capsule in the higher
layer is calculated by summing these weighted votes across spatial dimensions (H × W ) or across K × K
dimensions for convolutions

:::::::::
computed

:::
as:

:

r = softmax(Wrouteposeunfolded)
:::::::::::::::::::::::::::::

(1)

:::::
where

:::::::::::::::
r ∈ Rb×l×kkA×B .

:::
The

:::::::
output

::::::::::
activations

:::::::::::::::::
aout ∈ Rb×B×h′×w′

:::
are

:::::::::
computed

:::
by

:::::::::
weighting

:::
the

:::::
input

::::::::::
activations

:::::
with

:::
the

:::::::
routing

::::::::::
coefficients:

:

aout =
∑

i∈Ωl
airi∑

i∈Ωl
ai

::::::::::::::::

(2)

:::::
where

:::
Ωl :::::::::

represents
:::
the

:::
set

:::
of

:::::
input

::::::::
capsules

::
in

:::
the

:::::
local

::::::::
receptive

:::::
field,

::::
and

:::::
h′, w′

:::
are

:::
the

:::::::
spatial

::::::::::
dimensions

::::
after

:::::::::::
convolution.

:

:::
For

::::
pose

:::::::::::::::
transformation,

:::
the

::::::::
network

:::::::::
computes:

:

poseout =
∑

i∈Ωl
riai(Wposeposei)∑

i∈Ωl
riai

:::::::::::::::::::::::::::::::

(3)

:::::
where

::::::::::::::::::::::
poseout ∈ Rb×BD×h′×w′

:::::::::
represents

::::
the

:::::::::::
transformed

:::::
pose

::::::::
matrices.

:

::::
This

:::::::::::
formulation

:::::::
enables

:::::
each

:::::::
capsule

::
to

:::::::::::::
independently

::::::::::
determine

:::
its

:::::::
routing

::::::::::
coefficients

::::::::
through

:::::::
learned

::::::::::
parameters

:::::
while

:::::::::::
maintaining

::::
the

::::::
ability

:::
to

::::::
model

::::::::::
part-whole

:::::::::::::
relationships.

:::::
The

::::::::::
elimination

:::
of

::::::::
iterative

::::::
routing

:::::::::::
significantly

:::::::
reduces

::::::::::::::
computational

::::::::::
complexity

:::::::::
compared

::
to

:::::::
capsule

::::::::
networks

:::::
with

:::::::
iterative

::::::::
routing.

While SR Caps achieve competitive performance on standard benchmarks, their reliance on pre-learned
routing network parameters limits the network’s ability to dynamically adjust routing weights based on the
specific input, a characteristic advantage of agreement-based routing approaches.

The Stacked Capsule Autoencoder
::::::::
Stacked

:::::::::
Capsule

::::::::::::::
Autoencoder (SCAE) Kosiorek et al. (2019) is

another capsule network architecture which does not use supervised learning. Comprising of a Part Capsule
Autoencoder (PCAE) and an Object Capsule Autoencoder (OCAE), the SCAE segments images into parts
and organises these parts into coherent objects without labeled data. The model’s unsupervised learning
mechanism maximises the likelihood of reconstructing both the input image and inferred part poses, subject
to sparsity constraints. By leveraging explicit geometric relationships between objects and their parts,
SCAE achieves improved generalisation and viewpoint robustness. This approach demonstrates competitive
performance in unsupervised classification tasks, particularly on MNIST and SVHN datasets, without relying
on mutual information-based techniques or data augmentation. SCAE thus represents a significant paradigm
shift from the standard capsule network training regime.
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2.2 Masked Autoencoders

Masked Autoencoders (He et al., 2021) are a specific variant of ViTs which are pretrained via a patch-specific
reconstruction loss, tasking the network to reconstruct masked patches based upon the information which
can be learnt from the visible patches, this can be seen visually in figure 4. An image is first split into
N × N patches of equal size and are flattened, allowing for the tokenisation of an image akin to text in a
standard transformer (Vaswani et al., 2017). To mask patches of the image, tokens are chosen randomly up
to a specified percentage of the total tokens and removed from the sequence, removing the information from
the feature map. The remaining visible patches are then processed via a ViT. Once the encoder has finished
processing the visible patches, masked tokens are reinserted where the selected visible tokens were once
removed in the masking process. The network now uses a ViT decoder to make predictions for these masked
tokens utilising the attention mechanism and multi layer perceptrons within the standard ViT blocks. This
process requires the network to learn how local areas might correspond to their neighbouring patches by
predicting the removed patches.

3 Masked Capsule Autoencoders

To create the MCAE we must first define how Capsule Networks can have their feature maps masked. In
CNNs this is a difficult task that is usually achieved by setting areas of the feature map to 0, but this does
not mask in the same way as the masked autoencoder (He et al., 2021) as 0 masking has been shown to
change the distribution of pixels in the image (Balasubramanian & Feizi, 2023) and thus effecting results.
As such, in the following section, we will discuss the changes we have made to allow for correct masking
within our MCAE.

3.1 Flattened Feature Map

2d patch feature map

1d patch feature map

2d capsule feature map

1d capsule feature map

 length 

 length 

 width  width 

height height

Figure 2: A visual representation of how a 2D patch feature map or capsule feature map with height and
width is flattened into a 1D feature map with a length instead. At each location, there is the same amount
of different capsule types, each corresponding to a different part or concept in the part-whole parse tree.
The dog image used is sourced from the Imagewoof validation set (Howard, 2019b).
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Patchify Remove Patches
(Mask) Flatten

Figure 3: A visual representation of the masking process. An image is split into non-overlapping patches
of N × N pixels. Randomly, a percentage, in this case, 50% of patches are removed in order to deprive
the network of information available in these patches. The patches are then flattened into a 1D sequence
of the remaining patches, ready to be processed by our encoder. The dog image used is sourced from the
Imagewoof validation set (Howard, 2019b).

Vision Transformers can easily perform masking on a feature map, as patches of the image can be removed
from computation by simply removing selected patches from the flattened sequence of patches after the
patch embedding layer. Capsule Networks on the other hand have traditionally used a 2D feature map,
which comes with the drawback that masking can only be achieved either via replacing masked regions with
0’s or utilising sparse operations (Woo et al., 2023), which come with their own drawbacks (Balasubramanian
& Feizi, 2023; Tian et al., 2023).

Thus we propose that by flattening the 2D feature map into a 1D feature map, mimicking the design of a
ViT feature map, masking can be achieved in the same way as in the Masked Autoencoder (He et al., 2021).
We thus achieve masking by simply removing all capsules at a specific location along the length dimension
of our feature map.

3.2 Building Upon Self Routing Capsule Networks

We use the SR Caps Network (Hahn et al., 2019) as a
:::::::::::::::::
Hahn et al. (2019)

::
as

::::
our

:
starting point due to

its simplicity and speed
:
,
::::
but

:::::::
modify

:::
its

:::::::
routing

::::::::::::
architecture

::
to

:::::::
better

::::
suit

::::
our

:::::::
masked

::::::
image

:::::::::
modeling

:::::::::
approach.

::::
The

::::
key

::::::::::::
architectural

::::::
change

::::
lies

::
in

:::::
how

:::
we

::::::
handle

:::::::
spatial

::::::::::::
relationships

::
in

:::::::
routing. We adjust

the routingprocedure such that rather than merging local capsules within a H × W sliding kernel, we simply
use a 1 × 1 region and

:::
The

::::::::
original

:::
SR

:::::
Caps

:::::::
model

::::
uses

::
a

::::::
sliding

::::::::
window

::::::::
approach

::::::
where

:::::
each

:::::::
output

:::::::
capsule

:::::::::
considers

::::::
inputs

::::
from

::
a

::::
local

::::::
region

::::::
k × k

::
of

:::
the

:::::::
feature

:::::
map.

::
In

:::::::::
contrast,

:::
our

:::::::
MCAE

::::
uses

::::::::::
point-wise

::::::
routing

::::::
where

::::::::
capsules

only route to the capsules in the upper layer at the same location in the
::::
layer

::::::
above

::
at

:::::
their

:::::
exact

:::::::
spatial

:::::::
position

::
in

:::::::::
flattened 1D feature map , meaning our network is fully isotropic in the encoder. This allows for

a per-patch parse tree to be constructed which is used to provide a pose representation for each capsule at
each patch in the feature map. When

:::::
shown

:::
in

::
2.

:::::
This

:::::::
creates

::
an

:::::
local

:::::
parse

:::::
tree

:::
for

::::
each

::::::
patch

::::::::
position,

:::::
which

:::::
aims

::
to

::::::::::
determine

:::
the

:::::::
concept

:::::::::::
represented

::
in

::::
the

::::::
patch.

:

::::::
During

:
pretraining, we do not route to a class capsule , instead, we reinsert a masked capsule placeholder

at the locations in the feature map which were previously removed
::::::
include

::::
the

::::
final

:::::
class

:::::::
capsule

:::::
layer

::::
that

:::::
would

:::::::::
normally

:::
be

::::
part

:::
of

:
a
::::::::::

supervised
::::::::

capsule
::::::::
network.

::::::::
Instead,

:
after the encoding stage, ensuring the

feature map is ready for decoding to the original shape.
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This feature map which now contains both encoded capsule representations and a random noise-masked
capsule representation is now fed through a capsule layer which considers all capsules at all locations in
the lower layer when creating the pose vector and activation values of all capsules at all locations in the
higher layer, meaning that the encoded capsules can predict the values of the masked regions. We call this
layer the fully capsule decoder. These reconstructed regions are then fed through a single linear projection
layer which projects the activation scaled pose vectors at each location into the correctly sized pixel values
of the original images patch at this location

::
we

:::::::::
introduce

::
a
:::::::::

learnable
:::::::
masked

::::::
token

::
-
::
a

::::::
shared

::::::
vector

:::
of

:::
the

:::::
same

::::::::::
dimension

::
as

::::
our

:::::::
capsule

::::::::
vectors.

:::::
This

:::::::
masked

::::::
token

::
is

::::::::
inserted

::
at

:::
all

:::::::::
positions

::::::
where

:::::::
patches

::::
were

:::::::::
originally

:::::::::
removed,

:::::::::
returning

:::
the

:::::::::
sequence

::
to

::::
it’s

:::::::
original

:::::::
length.

::::::::::
Following

:::
the

::::::
design

::::::::::
principles

::
of

:::
the

:::::::
original

:::::::
masked

:::::::::::
autoencoder

:::::::::::::::
He et al. (2021),

::::
this

:::::
same

:::::::::
learnable

:::::::::::
placeholder

::
is

::::
used

::::::
across

:::
all

:::::::
masked

::::::::
positions

::::
and

::
is

:::::::
updated

:::::::
during

:::::::
training

:::
as

::
a

:::::::::
parameter

::
of

::::
the

::::::
model.

The decision to use a fully capsule decoder, as opposed to traditional MLP, convolutional Woo et al. (2023)
or ViT He et al. (2021) decoders, was motivated by several factors. Firstly, it maintains the capsule
representation throughout the entire network, preserving the part-whole relationships and spatial information
encoded in the capsules. This consistency allows for a direct interpretation of the network’s internal
representations by the additional capsule layers. Secondly, the fully capsule decoder enables the network to
leverage the routing mechanism during reconstruction, potentially capturing more complex relationships
between patches than a simple MLP or convolutional layer

:::::::
decoder

:::::
then

::::
uses

::
a
:::::::::::::::

fully-connected
:::::::
capsule

::::
layer

::::::
where

:::::
each

:::::::
capsule

::::
can

:::::
route

:::
to

:::
all

::::::::
capsules

:::
in

:::
the

:::::::::::
subsequent

:::::
layer

:::::::::
regardless

:::
of

:::::::
spatial

::::::::
position.

::::
This

::
is
:::::::::

achieved
:::
by

:::::::
setting

::::
the

::::::
kernel

::::
size

:::
to

:::
be

::::::
equal

:::
to

::::
the

::::::::
sequence

:::::::
length. While this approach

is computationally more intensive, as evidenced by our ablation studies (see Appendix A.1), it provides
comparable or superior performance on most datasets. The slight performance trade-off on larger datasets
like Imagenette and Imagewoof is outweighed by the conceptual consistency and potential for future
improvements in capsule-based architectures. Furthermore, this design choice aligns with the overall goal
of pushing the boundaries of what’s possible with pure capsule-based architectures, rather than relying on
hybrid approaches that may dilute the unique properties of Capsule Networks

:::::
global

:::::::
routing

::::::
allows

::::::::
capsules

::
at

::::
any

:::::::
position

:::
to

::::::::
influence

::::
the

:::::::::::::
reconstruction

:::
of

::::
any

:::::::
masked

::::::
patch,

::
it
::::::
comes

:::::
with

:::::::::::
significantly

:::::::::
increased

:::::::::::::
computational

::::
cost

:::::::::
compared

::
to

:::
the

::::::::::::
position-wise

:::::::
routing

:::::
used

::
in

:::
the

::::::::
encoder.

:::::::::
However,

::::
this

:::::::::::::
computational

::::::::
overhead

::::
only

:::::::
affects

:::
the

:::::::::::
pretraining

::::::
phase.

:::::
Once

:::::::::::
pretraining

::
is

:::::::::
complete,

::::
the

:::::::
decoder

::
is
::::::::::
discarded.

:::::
This

:::::
design

::::::
choice

::::::
trades

::::::
higher

:::::::::::
pretraining

:::::::::::
computation

:::
for

:::::::::
improved

::::::::
network

::::::::
accuracy

::::::
during

:::::::::
inference,

::::::
where

:::
the

:::::::
network

::::
also

::::::::::
maintains

:::
the

::::
fast

::::::::
inference

::::::
speed

::
of

:::
SR

:::::
Caps.

When
::
we

::::::
switch

::
to

:
finetuning, we remove the capsule decoder and add an additional

:::
this

:::::::
decoder

:::::::::::
architecture

:::
and

:::::::
replace

::
it

:::::
with

:
a
:

class capsule layeron top of the encoder. This new layer averages the activations per
capsule type along the H × W feature map, allowing for class predictionsto be made for supervised finetuning
while leveraging

:
of

:::::
each

:::::::
capsule

::::
type

::::::
across

:::
all

::::::
spatial

:::::::::
positions

::
to

:::::
make

:::::
class

:::::::::::
predictions,

::
as

::
is
:::::::::
standard

::
in

:::
the

:::
self

:::::::
routing

::::::::
training

:::::::::
procedure.

:::::::::
However,

::::
this

:::::
layer

::
is

::::
now

::::
able

::
to

::::::::
leverage

:
the improved representations

from the pretrained encoder
:::::::
required

:::
for

:::::::::::::
reconstruction

:::::::
learned

::::::
during

:::::::::::
pretraining.

3.3 Loss Function

A crucial aspect of the pretraining stage of the MCAE involves training the network to accurately reconstruct
the masked portions of the input image. To achieve this, we use the Mean Squared Error (MSE) loss, which
quantifies the difference between the actual pixel values of the masked patches and the predicted pixel values
generated by the capsule decoder. MSE loss is defined as:

MSE = 1
N

N∑
i=1

(yi − ŷi)2 (4)

where N represents the total number of pixels across all masked patches in the training batch, yi is the actual
value of the ith pixel in the masked patch, and ŷi denotes the predicted value from our capsule decoder for
the same pixel. A visual representation of patch selection from the target and prediction can be seen in
figure 4.
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Extract Reconstructions
and Targets from

masked patches only

Reconstructed Masked Token

Reconstructed Unmasked Token

Figure 4: A visual representation of how our pretrain loss function selects patches for the loss function
defined in equation 4. The dog image used is sourced from the Imagewoof validation set (Howard, 2019b).

The MSE loss aligns with our objective to minimize the difference between the reconstructed and original
patches, ensuring precise prediction of masked patch pixel values by the capsule decoder. It accentuates
larger discrepancies by squaring errors, thereby pushing the model to improve on significant deviations and
enhance reconstruction on each masked patch.

When finetuning for classification, the MSE loss is replaced with the cross entropy (CE) loss, defined by:

CE = −
N∑

i=1

C∑
c=1

yic log(ŷic) (5)

where N is the number of samples, C the number of classes, yic indicates if class c is correct for sample i,
and ŷic is the average activation for each class c of sample i. This loss encourages the model to activate the
correct class capsules with high confidence.

3.4 Backbone Selection

To ensure that information is completely masked out, we replace a standard ResNet (He et al., 2016) or
ConvNet backbone with a ConvMixer (Trockman & Kolter, 2022). This architecture’s first layer uses a kernel
size and stride of equal size, known as a patch embedding layer, allowing for our feature map to contain no
overlapping information. This ensures that when regions of the image are masked, information cannot be
leaked via the overlapping sliding convolutional kernel.

We also provide a set of architectures with a ViT backbone. This is achieved by setting the dimension of each
token’s representation to Number of Primary Capsules × Primary Capsule Embedding Dimension allowing
for an easy reshape into the primary capsules tensor dimensions. To create the activations for the primary
capsules, we use a simple linear layer with sigmoid activation to ensure that the value of the activation
remains between 0 and 1.

4 Experiments

To validate that our method is successful, we have run numerous experiments with various ablations on
multiple datasets. These experiments validate that masking is indeed effective for pushing the boundaries
of Capsule Networks.

8
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Capsule
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Figure 5: A visual depiction of the pretrain and finetuning components. We show how the feature extracting
CNN and capsule encoder are kept from the pretrain to finetune step. The capsule decoder is discarded
after pretraining and replaced with a class capsules layer which maps the capsule encoder network to a
classification output.

4.1 Experimental Setup

All of our experiments follow the same experimental setup, which is to optionally pretrain the network
minus the class capsules for 50 epochs with 50% of patches removed on either removed patch or whole image
reconstruction as a target. We then add the class capsules to our network and fully finetune the network for
350 epochs, following the supervised training settings of (Hahn et al., 2019; Everett et al., 2023). A visual
depiction of the elements of the components of pretraining and finetuning can be found in figure 5. All
models use the SGD optimizer with default settings and the cosine annealing learning rate scheduler with a
0.1 initial learning rate.

When a validation dataset has not been predefined, we randomly split 10% of the training dataset to act as
our validation dataset. The best model is tested once on the test set of our datasets, with the best model
being chosen based on the epoch with the lowest validation loss.

4.2 Datasets

We validate our results on multiple datasets. For all of our benchmark datasets, we use the augmentation
strategy proposed in (Everett et al., 2023), which aligns with the augmentations used in other capsule papers,
as we are the first to provide results on Imagenette, we define the augmentations to be exactly the same as
the augmentations for Imagewoof.

Initially, we provide a sanity check on the MNIST dataset (LeCun et al., 2010), to provide quick experi-
mentation to ensure that our methods work at all. Next, we use both the FashionMNIST and CIFAR-10
datasets (Xiao et al., 2017; Krizhevsky et al., 2009), two datasets which are well within the abilities of a
standard Capsule Network and allow us to ensure that we are not limited to the simplest of experiments.
:::
For

:::::
these

::::
two

::::::::
datasets,

:::
the

:::::::::::::
augmentation

::::
that

:::
we

::::
use

::
is

:
a
::::::::
random

::::::
resized

:::::
crop

::
of

:::
0.8

::
to

::::
1.0

::::::
during

::::::::
training.

The SmallNORB dataset (LeCun et al., 2004) allows us to ensure that we are maintaining the equivari-
ant properties and generalisation abilities of Capsule Networks as the test set is specifically chosen to vary
substantially from the train set while remaining within a similar distribution. In addition to standard classi-
fication accuracy on the SmallNORB dataset, we also follow (Hahn et al., 2019; Ribeiro et al., 2020; Hinton
et al., 2018) and test our model on the novel azimuth and elevation tasks to verify generalisation capabilities.
:::
The

::::::::::::::
augmentations

::::
that

:::
we

:::
use

:::
for

::::
this

:::::::
dataset

:::
are

::::
that

:::
we

:::::::::::
standardise

:::
and

:::::
take

:::::::
random

::::::
32x32

:::::
crops

::::::
during

:::::::
training.

::::
At

:::
test

::::::
time,

::
we

::::::
centre

:::::
crop

:::
the

:::::::
images

::
to

::::::
32x32

::
as

:::::::
defined

:::
in

:::
(?).

:
Finally, we use the Imagenette

and Imagewoof datasets (Howard, 2019a;b) to test our networks
::::::::
network’s

:
performance on larger, more re-

alistic datasets. Imagenette and Imagewoof take 10 different classes from the Imagenet dataset (Deng et al.,
2009). Imagenette is designed to be easily differentiable and simply tests our network’s ability to process
larger, more complex images. While Imagewoof is ten classes of dogs and is designed to be more difficult to

9



Under review as submission to TMLR

differentiate between classes due to the highly overlapping shared features between classes.
:::
For

::::::::::
Imagewoof

:::
and

:::::::::::
Imagenette

:::
we

::::
also

:::::
resize

:::
the

:::::::
images

::
to

::::::
64x64

:::
for

:::::::::::::
computational

:::::::::
efficiency.

::::
For

:::::
these

::::::::
datasets,

:::
we

:::::
once

:::::
again

:::
use

::
a

:::::::
random

::::::
resize

::::
crop

::::
and

::::::
colour

::::::
jitter.

4.3 Results

4.3.1 Results on Image Classification:
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Figure 6:
::::::
Graphs

::::::::::
comparing

::::
the

:::::::::
validation

::::
loss

::::
and

::::::::
accuracy

:::::::::::
throughout

::::::::
training

:::
on

:::
our

:::::
best

::::::::::
performing

::::::
MCAE

:::
no

:::
PT

::::
and

:::::::
MCAE

:::::::
models

:::
on

:::
the

:::::::::
CIFAR10

:::::::
dataset

:::::
from

:::::
table

::
1.

Table 1 presents the classification results of key state-of-the-art Capsule Networks compared to our approach
with no pretraining and with pretraining on the datasets proposed in our experimental design. MCAE with
no pretraining is architectually similar to SR Caps Networks, but with the 1D modification to the feature
map and 1 × 1 kernels, along with the other required changes to the computation to allow for this. This
method yields improved results over SR-Caps, but does not achieve state-of-the-art in any dataset. However,
when we apply the masked pretraining paradigm, our results improve on all datasets except MNIST, pushing
the MCAE with pretraining to be state-of-the-art for Capsule Networks in all datasets except SmallNORB,
which is still dominated by iterative routing methods.

::
In

:::::::
addition

:::
to

::::::
capsule

::::::::
network

:::::::
models,

:::
we

::::
have

:::::::
trained

::::
three

::::::::
baseline

:::::::
models

::::::
using

:::
the

::::::
exact

:::::
same

::::::::::::
experimental

:::::::
setting

::
as

::::
our

:::::::
MCAE

:::
no

::::
PT

:::::::::
regarding

:::::::
epochs,

:::::::::::::::
hyperparameters

::::
and

:::::::
dataset

::::::::::::::
augmentations.

::::::
These

:::::::
models

::::
were

:::::::
trained

::::::
using

:::
the

::::::::
Pytorch

::::::
Image

:::::::
Library

:::::::
(TIMM)

:::::::::::::::::
Wightman (2019)

::::
and

:::
are

::
a
::::::::::

ResNet18
:::::::::::::::
(He et al., 2016),

::::::::::::
MobileNetv3

:::::::::::::::::::::
(Howard et al., 2019)

:::
and

:::::
ViT-S

:::::::::::::::::::::::
(Dosovitskiy et al., 2020).

:

4.3.2 Backbone Choice:

Leveraging a ConvMixer backbone (Trockman & Kolter, 2022) aligns with our models’ requirement of a
patch embedding layer to provide non-overlapping patches of the image. ConvMixer’s feature maps are
by default patchified, while ViTs (Dosovitskiy et al., 2020) utilise a patch embedding layer. Prompted
by this similarity, we explored this as an ablation study. Our observation reveals that ViT-based models
underperform compared to those employing a convolutional backbone. Although ViT models yielded better
performance than vanilla ViTs on smaller datasets, such as CIFAR-10 or SmallNORB, the overall results,
shown in table 2, suggest that ConvMixers offer a more suitable architecture for the MCAE and thus have
been used for our results in 1.

4.3.3 Reconstruction Target:

While the masked autoencoder (He et al., 2021) framework that we build upon only reconstructs masked
patches, we also provide results where the reconstruction objective includes visible patches. Reconstructing
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Table 1: The results for a number of foundational Capsule Network models compared to both the MCAE with
masked pretraining and without. Showing the effectiveness of masked pretraining when applied to Capsule
Networks. We show results on the four datasets that Capsule Networks are traditionally benchmarked on,
as well as providing results for the Imagenette and Imagewoof datasets which are subsets of the Imagenet
dataset. Unfortunately, it is computationally infeasible to train DR, EM or VB Caps on these larger datasets
due to their heavy VRAM requirements. Results for similarly sized CNNs and ViTs have been included using
the results from Everett et al. (2023) and additional Imagenette results using our experimental settings for
Imagewoof for fair comparison.

MNIST FashionMNIST CIFAR-10 SmallNORB Imagenette Imagewoof
ResNet18 (He et al., 2016) 99.1 89.3 78.4 89.8 68.9 52.7
MobileNetv3 (Howard et al., 2019) 99.5 98.7 77.1 83.3 62.4 45.9
ViT-S (Dosovitskiy et al., 2020) 99.4 99.3 80.0 91.1 70.1 57.3

DR Caps (Sabour et al., 2017) 99.5
:

†
:

82.5
:

†
:

91.4
:

†
:

97.3
:

†
:

- -
EM Caps (Hinton et al., 2018) 99.4

:

†
:

- 87.5
:

†
:

- - -
VB Caps (Ribeiro et al., 2020) 99.7

:::::
99.7† 94.8

:

†
:

88.9
:

†
:

98.5
::::
98.5† - -

SR Caps (Hahn et al., 2019) 99.6 -
:

91.5 -
:

92.2
:

†
:

92 -
:

45.2
:
- 32.5 -

:

ProtoCaps (Everett et al., 2023) 99.5
:

†
:

92.5
:

†
:

87.1
:

†
:

94.4
:

†
:

74.4 59.0
:

†
:

ResNet20 SR* (Hahn et al., 2019) -
:

-
: ::::

90.0†
:

-
: :

-
:
-

SR Caps SA** (Hahn et al., 2019)
::::
99.6†

: ::::
91.5†

: ::::
82.7†

: ::
92†

: ::::::
45.2***

: ::::
32.5†

:

MCAE no PT 99.6 92.1 91.9 93.1 73.1 55.9
MCAE 99.6 95.0

::::
95.0 92.8

::::
92.8 95.0 82.1

::::
82.1 61.8

:::
61.8

*The ResNet20-SR results are the performance of the ResNet20 architecture from the Self Routing capsule
networks paper Hahn et al. (2019) which uses more augmentations, such as a random horizontal flip and
normalisation, us to show the performance difference that including augmentations has on the convolutional
baselines. **The SR Caps SA (Same Augmentations) results are taken from the ProtoCaps paper Everett
et al. (2023) and shows the performance of the SR Caps model using the same augmentations as us, note
that the only overlapping dataset is Cifar10. ***The Imagenette results for SR Caps are trained using the
exact experimental settings defined in ProtoCaps for their Imagewoof results. † denotes to denote any results
which were taken from their original papers and thus may not use our exact experimental setting, however
care has been taken to follow conventions of training, as defined in section 4.2.

Table 2: Results of experimentation with a ViT (Dosovitskiy et al., 2020) with depth 4 backbone compared to
Capsule Networks with standard CNN backbone. The specific CNN which we use is a ConvMixer (Trockman
& Kolter, 2022) of depth 4 due to its easily scalable esoteric design being based on the presumption that
the image has been patchified, ensuring no information leakage of masked regions due to a sliding window
of overlapping convolutional kernels.

::
In

::::::::
addition

:::
we

:::::
show

:::
the

::::::::
gFLOPS

:::::::
(Total

::::::::
Floating

:::::
Point

::::::::::
Operations

::
/

::::
1e9)

::
to

:::::::
process

::::
one

:::::
image

::::::::
through

:::
the

::::::::::
backbone,

:::::::
showing

::::
that

::::
the

::::::::::
ConvMixer

::
is

:::::::::::
significantly

:::::
more

::::::::
efficient.

::::::
FLOPs

::::
are

:::::::::
calculated

:::::
using

::::
the

:::::::
FVCore

:::::::
library

:::::::::::
FAIR (2023)

:
.

height gFLOPS Vision
Transformer gFLOPS Conv

Mixer
MNIST

:::
0.08

:
99.6

:::::
0.0005

:
99.6

FashionMNIST
:::
0.08

:
91.1

:::::
0.0005

:
95.0

SmallNORB
:::
0.11

:
91.4

:::::
0.002 95.0

CIFAR-10
:::
0.11

:
90.3

:::::
0.003 92.8

Imagenette
:::
0.11

:
68.4

:::::
0.013 82.1

Imagewoof
:::
0.11

:
55.4

:::::
0.013 61.8

based upon the whole image is inspired by DR Caps (Sabour et al., 2017) using a full image reconstruction
objective along with the classification objective in order to regularise the network. The results are shown
in table 3 and show that reconstructing masked patches is the best method, with reconstructing all patches
providing significantly worse results.
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Table 3: This table compares performance across our target datasets for MCAE pretraining based upon
reconstructing both visible and masked patches versus those focusing on masked patches only. Results show
equal or superior performance for models reconstructing masked patches only, across all datasets.

Visible and
Masked Patches

Masked
Patches Only

MNIST 99.6 99.6
FashionMNIST 88.4 95.0
SmallNORB 82.0 95.0
CIFAR-10 84.8 92.8
Imagenette 45.1 82.1
Imagewoof 32.5 61.8

4.3.4 SmallNORB Novel Viewpoint:

Table 4: Comparing novel viewpoint generalisation on the SmallNORB novel azimuth and elevation tasks
(LeCun et al., 2004). Results for DR, EM and SR Caps are from (Hahn et al., 2019) and results for VB
Caps are taken from (Ribeiro et al., 2020).

Azimuth Elevation
Familiar Novel Familiar Novel

DR Caps 93.1 79.7 94.2 83.6
EM Caps 92.6 79.8 94.0 82.5
VB Caps 96.3

:::::
96.3 88.7

:::::
88.7 95.7

:::::
95.7 88.4

:::::
88.4

SR Caps 92.4 80.1 94.0 84.1
MCAE 93.2 85.6 95.3 86.1

In order to verify that we retain the novel viewpoint generalisation capabilities of Capsule Networks, we use
the novel azimuth and elevation tasks of the SmallNORB dataset. We replicate the experimental design of
(Hahn et al., 2019; Hinton et al., 2018) and conduct two experiments. 1) Training only on azimuths in (300,
320, 340, 0, 20, 40) and test on azimuths in the range of 60 to 280. 2) Training on the elevations in (30, 35,
40) degrees from horizontal and then testing on elevations in the range of 45 to 70 degrees. In table 4 we
compare our accuracy on the test set on both the seen and unseen viewpoints. We pretrain for 50 epochs
and finetune for 350 epochs, the same as our best model for SmallNORB in table 1.

We do not achieve state-of-the-art results on this task, but do outperform all Capsule Networks except for VB
Caps (Ribeiro et al., 2020), showing that masked pretraining does not remove the generalisation capabilities
of our network.

5 Conclusion

We have proposed the Masked Capsule Autoencoder model, the first capsule architecture trained in a self-
supervised manner, which can be a step change in the development of scalable Capsule Network models.
Extensive experiments demonstrate that MCAE outperforms other Capsule Network architectures on almost
all datasets, with particularly favourable results on higher-resolution images. Considering the unique and
well-established advantages that Capsule Networks have around capturing viewpoint equivariance and view-
point invariance (Ribeiro et al., 2022) compared with Transformers and CNNs, our model is a step towards
developing large and scalable Capsule Network models. These models can compete on equal terms with the
likes of Transformers and CNNs.

We would consider the drawbacks of our method to be in the fully capsule decoder. In the Masked Autoen-
coder paper (He et al., 2021) they state that the pretraining loss was continuing to decrease at the point
at which they stopped pretraining at 1600 epochs. While our reconstruction loss plateaus much quicker,
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to the point where it does not decrease any further after the 50 epochs which we pretrain for, indicating
that there is a point at which our model has reached the best reconstructions that it can achieve. While we
have shown that the pretraining stage improves the maximum classification accuracy for all datasets except
MNIST (due to very fine margins for quantifiable improvement), if an improved decoding mechanism can be
found to benefit from additional masked pretraining, the peak classification accuracy could likely be higher.
In addition, the decoder is computationally heavy due to the need to consider the entire feature map, thus
increasing training time and VRAM requirements significantly compared to when no finetuning is used.
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A Appendix

A.1 Decoder Ablations

Table 5: Table showing ablation results of a MLP and Convolutional decoder in our MCAE model. Trained
under the exact same experimental results as our MCAE model in 1. MLP models are 3 linear layer decoders
of dimension num_caps * num_dim * h * w, num_caps * num_dim * h * w * 2, image_channels * img_h
* img_w. Each layer has a ReLU activation function. Convolutional models use a ConvNextv2-S decoder
as specified in Woo et al. (2023).

MNIST FashionMNIST CIFAR-10 SmallNORB Imagenette Imagewoof
MCAE Conv Decoder 99.6 91.3 92.1 93.5 77.3 57.2
MCAE MLP Decoder 99.6 94.7 92.5 92.4 77.1 58.9

A.2 Effect of Different Components in MCAE
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Figure 7: Graphs depicting how the top 1 accuracy changes based on different ablations of the MCAE per
dataset. Full Image Reconstruction refers to a ConvMixer backbone MCAE pretrained for 50 epochs on
full image reconstruction. No PT refers to a ConvMixer backbone MCAE with no pretraining epochs. ViT
Backbone refers to a ViT backbone MCAE pretrained for 50 epochs on masked patch reconstruction. MCAE
refers to our best-performing model which utilises a ConvMixer backbone and masked patch reconstruction.
All models use the same linear SR Caps model which contains 3 layers, with 16 Capsules per layer and are
finetuned for 350 epochs.
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