
The Privileged Students: On the Value of Initialization in Multilingual
Knowledge Distillation

Anonymous ACL submission

Abstract

Knowledge distillation (KD) has proven to be a001
successful strategy to improve the performance002
of smaller models in many NLP tasks. How-003
ever, most of the work in KD only explores004
monolingual scenarios. In this paper, we inves-005
tigate the value of KD in multilingual settings.006
We find the significance of KD and model ini-007
tialization by analyzing how well the student008
model acquires multilingual knowledge from009
the teacher model. Our findings show that010
model initialization using copy-weight from011
the fine-tuned teacher contributes the most com-012
pared to the distillation process itself across013
various multilingual settings. Furthermore, we014
demonstrate that efficient weight initialization015
preserves multilingual capabilities even in low-016
resource scenarios, enabling the student models017
to perform to languages unseen during distilla-018
tion.019

1 Introduction020

Recent work has shown that knowledge distillation021

(KD) is effective in distilling multilingual language022

models (Hui et al., 2024; Grattafiori et al., 2024;023

Ansell et al., 2023; Team et al., 2024). However,024

how multilingual capabilities are preserved during025

the distillation process remains understudied.026

Understanding the mechanisms of multilingual027

KD is crucial for improving best practices. Some028

of the main challenges in multilingual NLP are029

the scarcity of data and limited computational re-030

sources (Conneau et al., 2020). By uncovering031

how cross-lingual information is transferred during032

multilingual KD, we can train lightweight multi-033

lingual models more effectively, reducing the need034

for extensive data, thus enhancing accessibility.035

The typical KD process involves two stages036

pattern (Jiao et al., 2020): initialization, where037

the student model receives knowledge from the038

teacher model, and fine-tuning, where the student039

learns downstream tasks through distillation loss.040

In this work, we analyze which component con- 041

tributes more to preserving multilingual capabili- 042

ties in resource-constrained settings. 043

We are also intrigued whether the teacher’s 044

cross-lingual generalization abilities transfer to 045

the student model through this process. Under- 046

standing this transfer capability is important as it 047

could enable more efficient deployment of multilin- 048

gual models in resource-constrained environments. 049

Moreover, we examine how efficiently knowledge 050

is transferred across different training data sizes. 051

Achieving multilingual capabilities through simple 052

weight copying, rather than full pre-training, would 053

represent a significant advancement in efficiency. 054

Our findings indicate that weight copying plays 055

a more important role, even more than the KD loss 056

itself. Specifically, we observe that models with 057

copy-weight initialization outperform freshly ini- 058

tialized models trained using a KD loss. Moreover, 059

properly initialized student models demonstrate the 060

ability to generalize to unseen languages during 061

the distillation process—an outcome unattainable 062

when relying solely on the KD loss (Ansell et al., 063

2023). 064

Based on the above motivations, our contribu- 065

tions to this work are as follows. 066

1. We found that model initialization through 067

weight copying plays a more crucial role than 068

the distillation process itself in preserving 069

multilingual performance. 070

2. We show that distilled model can generalize 071

towards languages unseen during distillation 072

training, as long as the model is initialized 073

properly. 074

3. We identify that the weight-copy approach 075

leads to more efficient training, exhibiting 076

faster convergence across varying amounts 077

of training data. 078
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Figure 1: We investigate the multilingual capability of distilled model with copy-weight as the initialization. We
found that, it moderately preserves multilingual capability of the teacher, which happily make the learning data
efficient and faster convergence.

2 Background: Knowledge Distillation079

Knowledge distillation (KD) is a technique used080

to transfer knowledge from a large, trained teacher081

model to a smaller student model. This process082

aims to retain the large model’s performance while083

reducing the computational cost during inference.084

KD involves training the student model to mimic085

the outputs of the teacher model, using a combi-086

nation of the teacher’s soft target outputs and the087

ground truth labels as the learning objective.088

Jiao et al. (2020) introduces a two-step distilla-089

tion process. First, the student model is pre-trained090

on a large corpus to acquire good initialization091

suitable for the next step. Afterward, the model092

is fine-tuned for the desired tasks. Unfortunately,093

The former approach requires substantial data and094

computational resources, making it challenging to095

implement with limited resources.096

In this work, we explore the impact of these com-097

ponents of knowledge distillation in multilingual098

settings. Instead of the extensive pre-training step099

used in Jiao et al., 2020; Ansell et al., 2023, we100

investigated a simpler and more efficient initial-101

ization approach by copying the weights from the102

teacher model to the student model proposed by103

DistilBERT (Sanh et al., 2020). By copying some104

of the layers, They may preserve multilingual in-105

formation that is beneficial for the smaller model106

(See Figure 1 for the illustration). We elucidate107

the possibility that this approach has already trans-108

ferred the multilingual transfer even without further109

pre-training.110

The underlying mechanism of KD and the copy111

weight are elaborated in this section. 112

2.1 Distillation Architecture 113

We utilize KD, comprised of a teacher T and a 114

student S model. The student model always has 115

fewer layers than the teacher model. We follow 116

TinyBERT (Jiao et al., 2020)’s objective loss and 117

architecture. The loss of the KD comprises embed- 118

ding loss Lembd, hidden-layer loss Lhidn, attention 119

loss Latt, and prediction-layer loss Lpred. These 120

objective functions can be formulated as follows: 121

Latt =
1

l

1

h

l

∑

i=1

h

∑

j=1

MSE(Ai
S ,A

k
T ) (1) 122

Lhid =
1

l

l

∑

i=1

MSE(W ⋅H i
S ,H

k
T ) (2) 123

Lembd =MSE(W ⋅ES ,ET ) (3) 124

Lpred =MSE(zS , zT ) (4) 125

Where A, H , E, and z are the values of the at- 126

tention outputs, hidden layers’ outputs, embedding 127

layer’s outputs, and the logits, respectively, for the 128

teacher T or student S models. Indices of model 129

layers and attention heads are denoted as l and h. 130

If the student model’s hidden unit dimension is 131

smaller than the teacher’s, we leverage a projec- 132

tion weight W to match the hidden unit dimension. 133

Otherwise, W is an identity matrix1. 134

1In the implementation, we omit W instead.
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The mapping function of student and teacher135

model is based on the best ablation results of Jiao136

et al. (2020), which defined as follows:137

k = i ⋅
NT

NS
, i ∈ [1,NS], k ∈ [1,NT ] (5)138

In this formula, i represents the index of the stu-139

dent’s layer, while k is the index of the correspond-140

ing teacher’s layer. NS denotes the total number of141

layers in the student model, and NT represents the142

total number of layers in the teacher model.143

The KD loss can be formulated as follows:144

LKD = Latt +Lhid +Lembd +Lpred145

We calculate the classification loss Lclf as fol-146

lows:147

Lclf = CE(zS ,GT )148

Where GT is the ground truth of the observed149

instance.150

Finally, we obtain the overall loss Loverall which151

is going to be minimized in the training process:152

Loverall = LKD +Lclf153

We use Mean Square Error (MSE) instead of KL154

Divergence due to faster convergence and higher155

performance, as supported by the experiment of156

Nityasya et al., 2022.157

2.2 Model Initialization158

We use model initialization approach from Dis-159

tilBERT (Sanh et al., 2020), where the student160

model’s weights are initialized by copying the161

weights of the teacher model.162

We alternately copy the weights of the teacher’s163

embedding layer and classification layers to the164

student model. For the self-attention layer, we165

copy the weights based on the following mapping166

function:167

SAj
T = SAi∗2

S for i, j ∈ Z+ (6)168

Here, SA denotes the self-attention layers of169

the teacher T and student S models, respectively.170

The notations i and j indicate the indices of the171

student and teacher self-attention layers, respec-172

tively. To illustrate, the second self-attention layer173

of the teacher model will be mapped to the first174

self-attention layer of the student model.175

If the student’s hidden unit dimension is smaller 176

than the teacher’s, previous copy-weight approach 177

will not work. Thus, we follow the approach of Xu 178

et al., 2024, which has demonstrated a good initial- 179

ization method for smaller model from large model 180

by selecting evenly spaced elements in the teacher’s 181

linear weight and bias for the self-attention layer to 182

map the student’s self-attention layer correspond- 183

ingly. For instance, suppose the teacher has a linear 184

weight of 4x4, and the student has a 2x2 matrix; we 185

select the 1st and 3rd slices along both the first and 186

second dimensions. For the bias, we do the slicing 187

in one dimension instead. 188

3 Experiment Setup 189

We provide three experiment setups: data, model, 190

and training, that will be consistently used through- 191

out this work. 192

Data We utilized massive (FitzGerald et al., 193

2022), Tweet Sentiment Multilingual dataset 194

(denoted as tsm) (Barbieri et al., 2022), and 195

universal-ner (Mayhew et al., 2024). We se- 196

lected these datasets to observe the behavior of 197

multilingual performance under different situations: 198

high-resource data with parallel data (massive) 199

and low-resource data with non-parallel data (tsm). 200

We also use universal-ner for more complex 201

multilingual task which has medium-resource data 202

with non-parallel data. In this experiment, these 203

data comprises of languages that are divided into 204

unseen lang and seen lang to simulate zero-shot 205

cross-lingual scenarios. Table 11 in Appendix B 206

shows the corresponding datasets’ data statistics 207

and language partition. The detailed language par- 208

tition information can be seen in Appendix C. 209

Model We used transformers library (Wolf 210

et al., 2020) and the off-the-shelf implementation of 211

xlm-roberta (Liu et al., 2019) and mdeberta (He 212

et al., 2021) models. We used a reduction factor 213

of 2 for the number of student layers compared 214

to the teacher. Additionally, we compared per- 215

formance by reducing the hidden units by half 216

and keeping the hidden units the same as the 217

teacher’s. We experimented with three different 218

model initialization scenarios: copying the weights 219

from xlm-roberta-base or mdeberta-v3-base 220

(from-base), copying from the fine-tuned teacher 221

(from-teacher), and initializing without copying 222

from any model (from-scratch). we compared 223

their performances to understand the differences 224
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Model Method Layers XLM-R mDeBERTa Avg
massive tsm universal-ner massive tsm universal-ner

Teacher from-base 12 80.18 70.10 87.66 81.36 66.96 88.81 79.18

Student

from-scratch 6 75.19 50.20 45.68 75.93 49.86 46.21 57.18
from-scratch + KD 6 79.23 54.13 48.29 76.22 51.80 39.55 60.30

from-teacher 6 81.18 62.99 79.50 80.45 58.12 78.20 73.41
from-teacher + KD 6 81.63 67.61 80.18 82.31 61.08 79.17 75.33

Table 1: Comparative performance (F1-scores %) of XLM-R and mDeBERTa models across different datasets (all
languages), initialization methods, and with/without knowledge distillation (KD). The teacher model has 12 layers,
while all student models have 6 layers. All models are trained with all languages for each data. Bold denotes best
methods for each data and their average.

between these strategies.225

Training To fine-tune the model and226

perform knowledge distillation, we used227

AdamW (Loshchilov and Hutter, 2019) as the228

optimizer, with the default hyperparameters stated229

in the transformers library. We set the number230

of epochs to 30 and obtained the best results231

evaluated on the development set using the F1232

score metric. The evaluation steps for massive233

are as follows: 5000 steps for §4.1 and §4.2, and234

100 steps for §4.3. For tsm and universal-ner,235

we set the evaluation steps to 500, 250, and 60236

for §4.1, §4.2, and §4.3, respectively. These237

differences are due to the data sizes used in238

the corresponding experiments. The rest of the239

hyperparameters follow the default configuration240

in the transformers library. We used an A100241

GPU to train our models to run our experiments,242

running each model’s training three times with243

different seeds. Performances are evaluated244

using Macro F1-Score. For universal-ner, it is245

evaluated using overall-f1 of seqeval wrapped246

in evaluate package2.247

4 Multilingual Transferability in KD248

The ability of knowledge distillation (KD) to trans-249

fer knowledge across multiple languages efficiently250

remains unexplored. As mentioned in §2, two com-251

ponents need to be analyzed: model initialization252

and the distillation process itself. It is still unclear253

which of these factors contributes the most to the254

overall performance. Also, in multilingual scenar-255

ios, we often encounter situations where not all256

languages are covered in the training set. Under-257

standing whether KD can facilitate zero-shot cross-258

lingual (ZSCL) generalization and effectively trans-259

2https://huggingface.co/spaces/
evaluate-metric/seqeval

fer multilingual knowledge remains unexplored. 260

Building a multilingual dataset is tedious, thus lead- 261

ing researchers to opt for using one language. As 262

a result, it is desirable if such setup can achieve 263

cross-lingual generalization (Artetxe and Schwenk, 264

2019). 265

4.1 Weight Copy Transfers More Information 266

vs Distillation Loss 267

Table 1 presents a comparative analysis of model 268

performance with and without the copy-weight 269

initialization strategy using all languages in the 270

training dataset. The results demonstrate that 271

the from-teacher approach significantly outper- 272

forms the from-scratch method, particularly 273

when trained on the tsm and universal-ner 274

datasets. While the performance gap is less pro- 275

nounced for the massive dataset, it still favors the 276

from-teacher method. These findings suggest 277

that directly copying weights from a larger model 278

can serve as an effective initialization strategy, es- 279

pecially for low-resource scenarios. 280

Furthermore, the application of knowledge dis- 281

tillation consistently yields performance improve- 282

ments across all configurations. However, it is 283

noteworthy that the initial weight initialization 284

plays a more critical role in determining overall 285

model performance. The from-scratch initial- 286

ization, even with knowledge distillation, struggles 287

to match the performance levels achieved by the 288

from-teacher. 289

To evaluate the effectiveness of different initial- 290

ization strategies, we compared models initialized 291

from the teacher to those initialized from the base 292

model. As shown in Table 2, the from-teacher 293

approach demonstrates a slight performance advan- 294

tage over from-base, which can be attributed to 295

the teacher model’s prior fine-tuning. The appli- 296

cation of Knowledge Distillation (KD) improves 297

4
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Initialization XLM-R mDeBERTa Avg
massive tsm universal-ner massive tsm universal-ner

from-base 80.37 60.17 78.64 80.61 58.24 77.04 72.51
+KD 81.61 65.94 80.29 81.82 59.11 79.24 74.67

from-teacher 81.18 62.99 79.50 80.45 58.29 78.20 73.44
+KD 81.63 67.61 80.18 82.31 61.08 79.17 75.33

Table 2: Performance comparison of XLMR and MDEBERTA models on from-base and from-teacher initializa-
tion. Bold denotes best methods for each data and their average.

Model Hidden Size XLM-R mDeBERTa Avg
massive tsm universal-ner massive tsm universal-ner

from-scratch
384 78.05 51.63 36.46 75.93 49.97 44.33 56.09
768 79.23 54.13 48.29 76.22 49.86 52.13 59.98

from-teacher
384 79.90 58.34 44.87 80.10 54.75 44.87 60.47
768 81.63 67.61 80.18 82.31 61.08 79.17 75.33

Table 3: Comparative performance of XLM-R and mDeBERTa models across different datasets, initialization
methods, and hidden sizes using Knowledge Distillation. from-scratch and from-teacher use a layer reduction
factor of 2.

performance for both initialization methods. For298

datasets such as massive and universal-ner, the299

performance gains are comparable between the two300

initialization strategies when KD is applied.301

Our previous experiments simply reduced the302

model size by reducing the layer size while retain-303

ing the unit size. In practice, however, we might304

also want to reduce the unit size. In from-teacher305

initialization, the performance in all datasets falls306

significantly in tsm and universal-ner by halv-307

ing the unit size. This performance reduction is308

expected due to the model’s decreased capacity to309

retain multilingual information. Additionally, the310

current approach of uniformly copying weights (Xu311

et al., 2024) may not be optimal for this multilin-312

gual distillation task.313

4.2 Knowledge of Unseen Languages is314

Transferrable with Seen Language315

Teacher Weight Copy316

To test the zero-shot cross-lingual performance, we317

observe two conditions: 1) using the seen lang318

subset as training data for both the student and319

teacher models, and 2) using the seen lang subset320

as training data for the teacher, then using the En-321

glish language to fine-tune the student model. The322

motivation is to observe if the model retains mul-323

tilingual information from the copy-weight, even324

when fine-tuned using only English.325

Table 4 shows the results of zero-shot cross-326

lingual generalization. The teacher’s accuracy327

drops significantly compared to the scenario in §4.1. 328

When using the seen lang subset for training, we 329

observe similar behavior to the previous results, 330

with a slight difference between in with and with- 331

out KD in both datasets, unlike the results shown 332

in §4.1. However, without weight-copy, the per- 333

formance of each data plummets to near-random 334

answers. This shows that weight-copy preserves 335

multilingual knowledge and enables zero-shot 336

cross-lingual generalization in both high and 337

low-resource scenarios. 338

Using English as the training data deteriorates 339

the performance in massive’s without KD setup, 340

yet it gains considerable performance by using KD 341

in the copy-weight initialization. Even when using 342

only the English language, the student still retains 343

the ZSCL generalization performance, albeit with 344

reduced effectiveness, which further strengthens 345

our claim regarding copy-weight multilingual gen- 346

eralization. 347

On the other hand, tsm and universal-ner per- 348

form similarly to the student model trained on seen 349

lang, where using KD yields only a marginal in- 350

crease. This is attributed to KD needing a sufficient 351

amount of data to be effective. 352

4.3 Multilingual Distillation is Possible Even 353

if Only English Data is Available 354

We fine-tune the teacher and student models using 355

only English, as this language is the most widely 356

available. Note that, unlike the experiment done in 357
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Model Initialization Train Data XLM-R mDeBERTa Avg
massive tsm universal-ner massive tsm universal-ner

Teacher from-base seen-lang 68.22 57.11 84.38 68.54 57.04 87.50 70.47

Student

from-teacher seen-lang 65.74 54.02 78.47 55.62 47.35 72.77 62.33
from-scratch seen-lang 15.10 40.27 14.61 16.36 32.74 14.61 22.28

from-teacher english 59.65 53.35 73.73 32.82 46.18 66.61 55.39
from-scratch english 7.55 33.24 7.09 3.92 28.89 7.50 14.70

Table 4: Cross-lingual performance (F1-scores %) for XLM-R and mDeBERTa models with different initialization
and training data. Knowledge Distillation is used on these models. Teacher models are trained using seen-lang.

Model Initialization ma
ss

iv
e

ts
m

un
iv

er
sa

l-
ne

r

Avg

XLMR (T) from-base 56.42 58.97 77.86 64.42
XLMR (S) from-teacher 47.85 54.18 69.05 57.03
XLMR (S) from-scratch 7.50 35.10 9.23 17.28

mDEBERTa (T) from-base 63.19 59.29 77.93 66.80
mDEBERTa (S) from-teacher 26.83 44.54 61.97 44.45
mDEBERTa (S) from-scratch 3.72 28.45 10.12 14.10

Table 5: Cross-lingual performance (F1-scores). (T)
denotes Teacher model trained on English only; (S)
denotes Student model.

§4.2, we do not train the teacher model with seen358

lang; we use English instead. We then evaluate it359

on unseen lang to make the results comparable360

with those in §4.2. We focus on KD since it has361

shown a consistent pattern in the previous experi-362

ments in §4.1 and §4.2.363

Table 5 shows the results of the current exper-364

iment. Compared to using a fine-tuned teacher365

model with seen lang, we can see that massive366

performance dropped by about 12%, while it367

slightly improved for tsm and universal-ner. We368

argue that tsm and universal-ner data is non-369

parallel and contains substantial fewer instances370

than massive . As a result, these performances do371

not follow the same pattern as massive.372

Although from-teacher exhibited the highest373

score, there is a significant gap compared to the374

§4.2 experiment. Having one language trained on375

the teacher makes copy-weight initialization less376

effective, yet the model still retains some multi-377

lingual capability. In contrast, from-scratch per-378

forms similarly and near random score3.379

3Random score is obtained by making all predictions equal
to the major class in the dataset.

Training Method massive tsm universal-ner

With Finetune 81.63 67.61 80.18
Without Finetune 38.05 33.57 7.79
Random Score 7.02 33.33 1.75

Table 6: Zero-shot performance by only copying
the weight of the respective fine-tuned teacher to
their half-layer students. Random score obtained on
universal-ner is generated through average of ran-
dom predictions in 30 runs.

5 Behavior Analysis in Copy-weight 380

Strategy 381

In §4, we summarized that model initialization 382

strategy significantly impacts transferring multilin- 383

gual knowledge, with from-teacher performing 384

the best. This section provides more detailed analy- 385

sis related to the model’s characteristics when using 386

the copy-weight strategy, such as zero-shot copy 387

classification performance (§5.1), training speed 388

after the weight is copied from the teacher to the 389

student model across different data subsets (§5.2), 390

and 3) performance across different data subsets 391

(§5.3). 392

The experiments performed in this section will 393

use KD and the setup described in §4.1, with full 394

hidden size. We focus on analyzing the behavior of 395

the copy-weight strategy. 396

5.1 Weight Copy model preserve some 397

information even without finetuning 398

Given the that copy-weight approach is better than 399

the distillation technique itself, we investigate how 400

much multilingual information is retained simply 401

by copying the weights without any additional 402

fine-tuning. Table 6 provides the performance re- 403

sults. We observe that these scores are substantially 404

lower than when fine-tuning is performed. Intrigu- 405

ingly, massive and universal-ner scores are 406

not as low as random guesses, implying that 407

6



Figure 2: Performance across different data subsets in
different initialization strategies.

some knowledge is still retained, though not fully408

’connected,’ and needs to be fine-tuned. On the409

other hand, tsm shows performance comparable410

to random guessing. We hypothesize that this is411

due to the low number of instances in tsm, which412

do not preserve the inherent bias of multilingual413

knowledge as strongly as the others.414

5.2 Weight Copy Models Achieve Higher415

Performance with Less Data416

The experiment in §4.1 demonstrated that the copy-417

weight approach exhibited higher performance, es-418

pecially in the massive dataset due to its large num-419

ber of instances. We argue that these results are420

attributed to better initialization, which enhances421

data efficiency. To test this hypothesis, we con-422

ducted an experiment by creating four subsets of423

the massive dataset, consisting of 1%, 5%, 10%,424

and 20% of the original data. These subsets were425

generated using stratified sampling based on the426

label distribution for each language.427

Figure 2 illustrates the results for the three428

model initialization strategies. We observe a pat-429

tern where using more data corresponds to higher430

scores. The performance order is consistent, with431

the best scores achieved by from-teacher and432

the worst by from-scratch. In the 1% data sub-433

set, from-teacher achieved around 69% f1-score,434

showing a significant gap compared to the others,435

with more than a 20% difference. However, as the436

dataset size increases, the gap between scenarios437

becomes smaller, yet from-teacher consistently438

exhibits the best results. This demonstrates that439

utilizing the teacher’s fine-tuned weights, even in440

a low-resource setting, benefits from the inherited441

information, providing better scores.442

Figure 3: Training loss plot per step across different
data subsets.

5.3 Weight Copy Provides Better 443

Initialization – Model Converged Faster 444

So far, we have explored that different data subsets 445

exhibit different performances across model initial- 446

ization strategies. This might also correlate with 447

the training speed due to a better start. Thus, we 448

are also interested in exploring learning efficiency 449

by comparing the learning speed of each strategy 450

with each data subset. 451

The resulting score correlates with the learning 452

speed, depicted in Figure 3. Using the full data sub- 453

set, we observe that the order of scenarios sorted 454

by learning speed is similar to the order in Figure 2. 455

With smaller data subsets, the gap in training loss 456

between each model is wide, with from-teacher 457

showing the fastest convergence rate. As more data 458

is added, the gap becomes smaller. We posit that 459

this is attributed from the fine-tuned teacher weight- 460

copy, making the model learns faster. Further- 461

more, this also indicates that copying the teacher’s 462

weights in low-resource settings not only improves 463

the score but also accelerates learning speed, reduc- 464

ing the cost of training the model. 465

6 Related Work 466

Model Initialization Model initialization is cru- 467

cial when training a model. Glorot and Bengio 468

(2010) introduced a method to properly initialize 469

the weights of neural networks using a normal dis- 470

tribution to avoid issues related to vanishing and 471

exploding gradients during training. This approach 472

has been extended by several others, such as He 473

et al. (2015), Mishkin and Matas (2016), and Saxe 474
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et al. (2014), to add robustness to gradient prob-475

lems. While these methods address numerical in-476

stability, they do not incorporate inherent initial477

knowledge. Transfer learning (Zhuang et al., 2020;478

Howard and Ruder, 2018) provides a way to start479

training a model with better initialization with prior480

knowledge. We pre-train the model on unlabeled481

data and then fine-tune it on the desired task. Mul-482

tilingual models like DeBERTa (He et al., 2021),483

mBERT (Devlin et al., 2019), and XLM-R (Liu484

et al., 2019) can be used to train models that handle485

multiple languages. However, these models require486

extensive training resources to create.487

Knowledge Distillation Knowledge distillation488

(KD) (Hinton et al., 2015) produces models with489

fewer parameters (student model) guided by a490

larger model (teacher model), often resulting in491

higher quality than models trained from scratch. In492

NLP, KD can be applied directly to task-specific493

or downstream tasks (Nityasya et al., 2022; Ad-494

hikari et al., 2020; Liu et al., 2020b), or during495

the pre-training phase of the student model (Sun496

et al., 2020), which can then be fine-tuned. Several497

works apply KD during both pre-training and fine-498

tuning steps (Jiao et al., 2020; Sanh et al., 2019;499

Liu et al., 2020a). The aspects of the teacher model500

that the student should mimic can vary; a common501

approach is for the student to mimic only the prob-502

ability distribution of the teacher’s prediction layer503

output. However, Jiao et al. (2020) and Sun et al.504

(2020) also include outputs such as the teacher505

model’s layer outputs, attention layers, and embed-506

ding layers. Wang et al. (2020) and Ansell et al.507

(2023) explore the potential of KD in multilingual508

settings, with the latter utilizing sparse fine-tuning509

and a setup similar to Jiao et al. (2020). However,510

these works do not thoroughly investigate the be-511

havior of the approach, such as the impact of initial-512

ization and data size. This research work dives into513

probing the influence of these components, pro-514

viding better insight into multilingual performance515

capability using weight-copy techniques.516

7 Conclusion517

In this work, we observed the effectiveness of518

Knowledge Distillation, in multilingual settings,519

focusing on identifying the factors that signifi-520

cantly influence the performance of student models.521

Our findings demonstrated that model initializa-522

tion, specifically through weight copying from a523

fine-tuned teacher model, plays a crucial role in524

enhancing the performance and learning speed of 525

student models. This finding was consistent across 526

both high-resource and low-resource datasets, high- 527

lighting the importance of weight initialization in 528

retaining multilingual knowledge and facilitating 529

effective KD. 530

These insights underscore the critical role of ini- 531

tialization in KD, suggesting that simple yet effec- 532

tive strategies, such as weight copying, can lead 533

to substantial performance gains without requiring 534

extensive data or computational resources. This 535

work contributes valuable and practical insights to 536

developing efficient and high-performing multilin- 537

gual models, particularly in resource-constrained 538

environments. A promising future work is to pro- 539

pose a novel, efficient initialization method that do 540

selective weight-copy or pruning to have a better 541

initialization for the distillation process or normal 542

fine-tuning. 543

8 Limitations 544

In this work, we focus on sequence classification 545

and token classification tasks, which may not gener- 546

alize to other tasks, such as Natural Language Gen- 547

eration. The languages observed in this work are 548

those represented in massive, universal-ner and 549

tsm, which do not include every possible language. 550

Additionally, our study is limited to specific model 551

sizes and architectures (e.g., XLM-RoBERTa and 552

mDEBERTa). 553

We concentrate on analyzing multilingual capa- 554

bility, specifically zero-shot fine-tuning generaliza- 555

tion, rather than zero-shot inference as exhibited 556

in Large Language Models. This focus is due to 557

the amount of computational cost associated with 558

fine-tuning such large models. Additionally, most 559

tasks done in real case are mostly classification, 560

which is the case why we focus on encoder models 561

that are more suitable for these tasks. 562

Finally, while using unlabeled datasets for dis- 563

tillation may improve the system’s performance, 564

it adds another layer of complexity to our work. 565

Analyzing the data for use in a multilingual setting 566

is beyond the scope of this study. We leave this for 567

future work. 568

Ethical Considerations 569

This work has no ethical issues, as it focuses on an- 570

alyzing the inner workings of a multilingual model 571

in knowledge distillation. All artifacts used in this 572

research are permitted for research purposes and 573
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align with their intended usage in multilingualism.574

Additionally, the data utilized does not contain575

any personally identifiable information or offensive576

content. We use AI Assistants (LLM and Gram-577

marly) to assist our writing in correcting grammati-578

cal errors.579
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Model Initialization #L #U massive tsm universal-ner

NON KD NON KD NON KD

XLM-R

from-base (T) 12 768 80.13 – 70.10 – 87.66 –

from-teacher 6 768 81.18 81.63 62.99 67.61 79.50 80.18
from-base 6 768 80.37 81.61 60.17 65.94 78.64 80.29
from-scratch 6 768 75.19 79.23 50.20 54.13 45.68 48.29

from-teacher 6 384 78.20 79.90 56.74 58.34 47.15 44.87
from-base 6 384 77.55 79.41 55.03 58.15 45.94 44.24
from-scratch 6 384 75.27 78.05 50.01 51.63 40.80 36.46

mDeBERTa

from-base (T) 12 768 81.36 – 66.96 – 88.81 –

from-teacher 6 768 80.45 82.31 58.29 61.08 78.20 79.17
from-base 6 768 80.61 81.82 58.24 59.11 77.04 79.24
from-scratch 6 768 75.93 76.22 49.86 51.80 46.21 44.56

from-teacher 6 384 79.76 80.10 54.59 54,75 62.57 59.72
from-base 6 384 78.49 78.35 53.94 46.20 62.81 59.24
from-scratch 6 384 76.22 75.93 49.97 43.39 45.55 44.33

Table 7: F1-scores (%) for XLM-R and mDeBERTa models with different initializations, both with (KD) and
without (NON) knowledge distillation, across three datasets. #L: Number of Layers, #U: Number of Units, T:
Teacher.

A Additional Experiment Results 984

The complete and comprehensive results of the experiment can be seen in Table 7 and Table 8 for all 985

training languages and zero-shot cross-lingual performance in copy-weight, respectively. 986

B Data Statistic 987

Table 11 provides the statistic of the data used for the research. 988

C Language Partition Explanation 989

Details of language partitions in the training dataset can be seen in Table 12 (massive), Table 10 (tsm), 990

and Table 9 (universal-ner). 991
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Model Initialization Training Data Test Data massive tsm universal-ner

NON-KD KD NON-KD KD NON-KD KD

XLM-R

from-base (T) seen lang unseen lang 68.22 – 57.11 – 84.38 –

from-teacher seen lang unseen lang 64.30 65.74 53.99 54.02 77.05 78.47
from-base seen lang unseen lang 62.77 64.82 52.31 52.36 77.27 79.15
from-scratch seen lang unseen lang 15.08 15.10 37.93 40.27 15.58 14.61

from-teacher english unseen lang 47.23 59.65 54.36 53.35 66.96 73.73
from-base english unseen lang 38.69 46.16 50.47 49.74 64.99 71.73
from-scratch english unseen lang 5.25 7.55 34.39 33.24 9.21 7.09

mDeBERTa

from-base (T) seen lang unseen lang 68.54 – 57.04 – 87.50 –

from-teacher seen lang unseen lang 50.91 55.62 48.10 47.35 73.28 72.77
from-base seen lang unseen lang 47.59 54.90 46.66 49.04 69.13 73.56
from-scratch seen lang unseen lang 14.80 16.36 39.59 32.74 15.58 14.61

from-teacher english unseen lang 20.98 32.82 43.14 46.18 59.10 66.61
from-base english unseen lang 16.23 33.64 43.38 48.32 53.37 65.34
from-scratch english unseen lang 7.09 3.92 38.45 28.89 8.26 7.50

Table 8: F1-scores (%) for zero-shot cross-lingual generalization in Knowledge Distillation for XLM-R and
mDeBERTa models. We fine-tune the teacher model using seen lang and fine-tune the student model according to
the training data provided. NON-KD follows the student model configuration. All models contain 6 layers, except
for the teacher models which have 12 layers.

Code Language Code Language Code Language

ceb Cebuano en English sk Slovak
da Danish hr Croatian sr Serbian
de German pt Portuguese sv Swedish
ru Russian tl Tagalog zh Chinese

Table 9: Languages in the universal-ner dataset

Code Language Code Language Code Language

arabic Arabic german German portuguese Portuguese
english English hindi Hindi spanish Spanish
french French italian Italian

Table 10: Languages in the tsm dataset

Information massive tsm universal-ner

Number of Training Data 11,514 1,839 6,366*
Number of Classes 60 3 7
Number of Languages 52 8 9
unseen lang partition "am-ET", "cy-GB", "af-ZA",

"km-KH", "sw-KE", "mn-MN",
"tl-PH", "kn-IN", "te-IN",
"sq-AL", "ur-PK", "az-AZ",
"ml-IN", "ms-MY", "ca-ES",
"sl-SL", "sv-SE", "ta-IN",
"nl-NL", "it-IT", "he-IL",
"pl-PL", "da-DK", "nb-NO",
"ro-RO", "th-TH", "fa-IR"

"arabic", "french",
"hindi", "portuguese"

"da-ddt", "pt-bosque",
"sr-set", "sk-snk",
"sv-talbanken"

Table 11: Data statistics for massive, tsm, and universal-ner. Each language consists of the same number of
instances in both datasets, except universal-ner which number instance varies across languages. unseen lang
denotes language subset used in the zero-shot cross-lingual experiment. The rest of the languages are categorized as
seen lang. universal-ner data does not include partition that does not have training set. * denotes the mean of
number of instances across languages.
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Code Language Code Language Code Language

af-ZA Afrikaans it-IT Italian ru-RU Russian
am-ET Amharic ja-JP Japanese sl-SL Slovanian
ar-SA Arabic jv-ID Javanese sq-AL Albanian
az-AZ Azeri ka-GE Georgian sv-SE Swedish
bn-BD Bengali km-KH Khmer sw-KE Swahili
ca-ES Catalan ko-KR Korean hi-IN Hindi
zh-CN Chinese (China) lv-LV Latvian kn-IN Kannada
zh-TW Chinese (Taiwan) mn-MN Mongolian ml-IN Malayalam
da-DK Danish ms-MY Malay ta-IN Tamil
de-DE German my-MM Burmese te-IN Telugu
el-GR Greek nb-NO Norwegian th-TH Thai
en-US English nl-NL Dutch tl-PH Tagalog
es-ES Spanish pl-PL Polish tr-TR Turkish
fa-IR Farsi pt-PT Portuguese ur-PK Urdu
fi-FI Finnish ro-RO Romanian vi-VN Vietnamese
fr-FR French he-IL Hebrew cy-GB Welsh
hu-HU Hungarian hy-AM Armenian id-ID Indonesian
is-IS Icelandic

Table 12: Language codes and corresponding language names in massive dataset.
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