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I. INTRODUCTION

Robots are becoming increasingly prevalent in our daily
lives. However, these autonomous agents are usually designed
to operate in isolation such as restricted areas in warehouses,
or in a non-interactive manner, such as stopping and waiting
when humans are around. A main barrier that hinders seamless
human-robot interaction is the highly dynamic and complex
nature of humans: As shown in Fig. 1 (a) and (b), in the real
world, human behaviors are driven by subtle intentions that
are difficult to predict. In addition, humans interact with each
other, robots, and static obstacles frequently, which causes
abrupt behavior changes.

To address the above challanges, my research aims to
enable robots to interact and cooperate with people in dynamic
environments. To accomplish this goal, the robot must predict
intricate human behavior, reason about the interactions, and
adjust its plans accordingly. Fortunately, interactive human
behaviors are not completely random; instead, they follow
inductive biases that originate from common sense knowledge
and social norms. My key insight is that human behaviors ex-
hibit structured spatio-temporal patterns that, when explicitly
modeled, enable proactive robot planning in dynamic environ-
ments. Following this principle, I propose structured robot
learning paradigms for safe, efficient, and socially aware
robot operation alongside humans. My main contributions
include the following two aspects:
(1) A structured system that incorporates predictions of hu-

man behaviors in planning, which leads to longsighted
robot plans that align with human intentions (Fig. 1 (c)).

(2) A principled approach to build structured network archi-
tectures with spatial and temporal reasoning capabilities,
which improves the robustness of robot policies with
respect to changes in human environments (Fig. 1 (d)).

My methods are motivated by and successfully deployed in
various applications, including navigation of mobile robots
and vehicles in human crowds, shared control of a mobile
manipulator, and a sighted guide for blind people (Fig. 1 (a)).

II. PAST AND ONGOING RESEARCH

A. Structured prediction and planning [19, 20, 3, 4, 21, 17]

Humans express their intentions through explicit language
instructions and subtle non-verbal motions. To cooperate with
humans in a proactive way, robots must infer these intentions
to make longsighted plans. A line of previous work decouples
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Fig. 1. Overview of my research. To address the challenges of robot
navigation in human spaces, I propose (1) a structured prediction and planning
system and (2) structured networks to learn robot policies. My method leads
to successful robot deployment in various human-centered navigation tasks.

prediction and planning, both of which are trained separately
and combined together in test time [11, 25, 26]. Although
interpretable and easy to trouble shoot, this decoupled frame-
work leads to compounding errors and information loss be-
tween the predictor and the planner [15, 24]. To deal with this
issue, end-to-end (e2e) systems combines the two modules
and train them with multi-task learning [5, 10, 23]. However,
multi-task learning easily results in negative transfer, where the
gradients of each objective conflict with each other [15, 20].
As a result, the robot learns suboptimal behaviors that misalign
with human intentions, such as intruding into pedestrians’
personal spaces or failing to follow instructions [3, 20].

To combine the best of both worlds, we propose a structured
learning framework to avoid collisions with humans and fulfill
human intents, where the predictor and planner are modular
but highly correlated (Fig. 1(c)). To develop the prediction
module, we start what needs to be predicted for downsteam
planning tasks. For example, future trajectories and traits of
pedestrians and drivers are important information for crowd
navigation, whereas desired goals are necessary for command
following robots. After the predictors are trained, we use
its output to modify the Markov Decision Process (MDP)
formulation for policy learning. The predictor intentions are
used as part of observation space of the MDP. Meanwhile,
they are also used to calculate reward: robots are penalized
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for intruding into humans’ future trajectories, and awarded for
reaching humans’ desired goals. By doing this, the robot gets
immediate reward feedback for its actions that respond to hu-
man intentions during training. Thus, the robot is able to take
proactive and context-aware actions during deployment. The
predictor weights are frozen during RL training to minimize
negative transfer and improve data efficiency.

Our system is decoupled but effectively uses predicted
information to influence RL policy learning, maximizing the
synergy between the prediction and planning modules. In all
three application domains in Fig. 1(a), simulation and/or real-
world experiments demonstrate that intention-aware RL leads
to longsighted and more intention-aligned robot behaviors,
such as avoiding the personal spaces of pedestrians, passing
through an intersection when human drivers slow down and
yield, and assisting disabled people with manipulation and
navigation tasks. Our work illustrates the necessity of mod-
ifying the MDP formulation for RL to succeed in real-world
robotic problems. Furthermore, our work has inspired follow-
up research that co-designs prediction and planning modules
in human-centered robotics [16, 12].

B. Structured policy networks [18, 19, 20, 22]

In dynamic environments, humans, robots, and static obsta-
cles interact with each other in various ways. To navigate, a
robot must reason about these interactions that occur in both
space and time to avoid collisions and unnecessary delays.
To model interactions, previous works use mathematical mod-
els [14, 27], which heavily rely on assumptions, or black-box
neural networks [7, 10], which leads to overfitting in low data
regime. Thus, both lines of works result in undesirable robot
behaviors such as freezing in front of a large crowd.

To learn robust policies with the limited data, for the first
time, we propose a structured robot policy network with both
principled interaction models and trainable hyperparameters
(Fig. 1(d)). We first convert a dynamic scene with a hetero-
geneous spatio-temporal graph (st-graph), where agents and
entities are nodes and their relations are edges. Based on the
st-graph, we derive a novel neural network to parameterize
navigation policies, which consists of two components as
follows. First, we use attention networks to represent spatial
interactions among agents at the same timestep. The attention
networks enable the robot to pay more attention to important
agents, which ensures good performance when the number of
humans increases and the graph becomes complex. Second,
we use recurrent neural networks to represent the temporal
interactions, which accounts for the rapid evolution of dynamic
navigation scenarios.

In crowd navigation and intersection driving tasks, our
spatio-temporal network learns more robust robot policies
when the density of humans and obstacles changes, compared
with model-based methods and black-box methods. We also
successfully deploy a mobile robot to challenging indoor
navigation environments with continuous human flows, various
furniture, and narrow corridors (Fig. 1(a)). This result demon-
strates the power of injecting graph structures into neural

networks. By doing so, complex multi-agent problems are
decomposed into smaller components and become easier to
solve. Our work has spurred a new line of research efforts that
expand the usage of spatio-temporal graph attention networks
in interactive navigation tasks [13, 29, 1, 6].

III. FUTURE WORK

Moving forward, to align robots with human values in our
daily lives, I hope to enable robots to continually learn and
adapt after deployment. To conquer performance degradation,
I aim to develop interfaces and algorithms to enable end-
users rather than engineers to finetune robots, which is more
scalable and allows for customization of robots to individual
preferences. Meanwhile, robots will collect a large amount of
unstructured data from deployment. To turn these data into
generalizable knowledge, I aim to contribute to large-scale
HRI benchmarks and foundation HRI models.

Lifelong learning from non-expert feedback: When a
robot is deployed in everyday environments, its performance
drops inevitably due to domain shifts. Relying solely on
engineers for finetuning after large-scale deployment would
be both costly and impractical. Thus, we need data-efficient
and intuitive fine-tuning algorithms that allow non-experts with
little domain expertise to customize and improve the robot.
Building on my previous work on a real-world finetunable
RL pipeline [3] and recent advances in RL from human
feedback [8], I aim to propose (1) intuitive user interfaces for
non-experts to provide finetuning data from their own devices
such as cellphones; (2) data-efficient algorithms for robot to
self-improve with minimal data [4, 28].

Datasets and benchmarks: In many HRI fields, datasets
and benchmarks are scattered among individual works, pre-
venting a systematic comparison of new methodologies and
training more generalizable foundation models. Inspired by
the standardized benchmarks of autonomous driving and robot
manipulation [2, 9], I aim to contribute to the benchmarking
efforts of HRI fields with an emphasis on human-centered
tasks such as spatio-temporal reasoning and intention predic-
tion. By categorizing the difficulty levels of tasks, identifying
the source of task difficulties, and collecting comprehensive
scenarios and associated labels, we will be able to understand
the merits and limitations of HRI models in a more objective
way, which provides lessons and guidance for future research.

Foundation models in HRI: My previous work trains
predictors and planners using a separate dataset or simulator
for each task, which results in limited generalization. To
improve the training data efficiency and generalization of
my method, I plan to adopt large language/vision language
models (LLMs/VLMs) to reason about dynamic scenarios and
make plans for robots to execute. In this way, robots will
be able to perform common sense reasoning and chain-of-
thought reasoning [30]. These abilities are important to infer
diverse human intents and assist humans with long-horizon
mobile manipulation tasks in unstructured environments, such
as helping a human chef prepare meals.
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